Skip to main content
Log in

Teaching Modern Chemistry through ‘Recurrent Historical Teaching Models’

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

Today there are little more of 3 million chemist all over the world producing about 800,000 papers a year. They produce new substances – from some hundreds in 1800 to about 20 million now – the vast majority artificial. This rate is growing quite fast. Once the majority of chemistry teachers all over the world used textbooks as the main (sometimes the only) source of information, we became, without wanting to... history teachers! If ‘scientific literacy’ is the aim of science lessons in school, it is much more than the literacy now developed in science classrooms. It must include an understanding of the nature and process by which scientific activities are carried out. Recognition of the exponentially chemistry knowledge growth and the incompleteness of the current chemistry textbooks are thus intimately related to recognition of the need for recurrent historical teaching models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • D. Allchin (2000) ArticleTitle‘How Not to Teach History in Science’ Journal of College Science Teaching 30 33–37

    Google Scholar 

  • D. Allchin (1997) ArticleTitle‘Rekindling Phlogiston: from classroom case study to interdisciplinary relationships’ Science & Education 6 473–509 Occurrence Handle10.1023/A:1008640314559

    Article  Google Scholar 

  • G. Bachelard (1972) El compromiso racionalista Siglo XXI 1 Buenos Aires

    Google Scholar 

  • V. Barker (2000) Beyond Appearances: Students’ misconceptions about basic chemical ideas Royal Society of Chemistry London

    Google Scholar 

  • J.F. Bunnet (1996) ArticleTitle‘Physical Organic Terminology, after Ingold’ Bulletin for the History of Chemistry 19 33–43

    Google Scholar 

  • R Breslow M.V. Tirrell InstitutionalAuthorName(co-chairs) (2003) Beyond the Molecular Frontier. Challenge for Chemistry and Chemical Engineering National Research Council Washington

    Google Scholar 

  • Chamizo, J.A.: 2005, La enseñanza de la historia de la ciencia con modelos recurrentes.II El modelo de Lewis-Langmuir-Sidgwick Enseñanza de las ciencias Número extraordinario

  • J.A. Chamizo M.Y. Gutierrez (2004) ArticleTitle‘Conceptos fundamentales de química. I Valencia’ Educación Química 15 359–365

    Google Scholar 

  • J.A. Chamizo (2002) ‘Towards the Essence of Chemistry’ Proceedings from the 17th IUPAC International Conference on Chemical Education Chinese Chemical Society Beijing

    Google Scholar 

  • J.A. Chamizo (2001) The History of Chemistry in México. A Brief Approach to its Teaching University of California Los Angeles

    Google Scholar 

  • Chemical Abstracts Service: 2005, Statistical Summary 1907–2004, Columbus, Chemical Abstracts

  • M. Carr (1984) ArticleTitle‘Model Confusion in Chemistry’ Research in Science Education 14 97–103 Occurrence Handle10.1007/BF02356795

    Article  Google Scholar 

  • R.K. Coll I. Taylor (2005) ArticleTitle‘The Role of Models/and Analogies in Science Education: Implications from Research’ International Journal of Science Education 27 183–198 Occurrence Handle10.1080/0950069042000276712

    Article  Google Scholar 

  • R. Driver P. Newton J. Osborne (2000) ArticleTitle‘Establishing the Norms of Scientific Argumentation in Classrooms’ Science Education 84 287–312 Occurrence Handle10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A

    Article  Google Scholar 

  • W. Vos ParticleDe B. Berkel Particlevan A.H. Verdonk (1994) ArticleTitle‘A Coherent Conceptual Structure of the Chemistry Curriculum’ Journal of Chemical Education 71 743–746

    Google Scholar 

  • R.A. Duschl (1994) Research in the History and Philosophy of Science D.L Gabel (Eds) Handbook of Research on Science Teaching and Learning MacMillan New York 443–465

    Google Scholar 

  • J. Ellis (1976) ArticleTitle‘The Teaching of Organometallic Chemistry to Undergraduates’ Journal of Chemical Education 53 IssueID1 1–6

    Google Scholar 

  • S. Erduran R. Duschl (2004) ArticleTitle‘Interdisciplinary Characterization of Models and the Nature of Chemical Knowledge in the Classroom’ Studies in Science Education 40 111–144

    Google Scholar 

  • S. Erduran E. Scerri (2002) ‘The Nature of Chemical Knowledge and Chemical Education’ J.K. Gilbert (Eds) et al. Chemical Education: Towards Research-based Practice Kluwer Dordrecht 7–27

    Google Scholar 

  • D. Gabel (1999) ArticleTitle‘Improving Teaching and Learning through Chemistry Education Research: A Look to the Future’ Journal of Chemical Education 76 548–554

    Google Scholar 

  • D. Gabel (2002) ‘‘Foreword’ in Chemical Education: Towards Research-based Practice’ J.K. Gilbert (Eds) et al. Chemical Education: Towards Research-based Practice Kluwer Dordrecht xv–xx

    Google Scholar 

  • R. Giere (1990) Explaining Science, A cognitive approach University of Chicago Press Chicago

    Google Scholar 

  • J.K. Gilbert O. Jong ParticleDe R. Justi D.F. Treagust J.H. Driel ParticleVan (2002) ‘Research and Development for the Future of Chemical Education’ J.K. Gilbert (Eds) et al. Chemical Education: Towards Research-based Practice Kluwer Dordrecht 391–408

    Google Scholar 

  • N.N. Greenwood A. Earnshaw (1997) Chemistry of the Elements Butterworth-Heinemann Oxford

    Google Scholar 

  • K. Grossligth C. Unger E. Jay C. Smith (1991) ArticleTitle‘Understanding Models and their Use in Science: Conceptions of Middle and High School Students and Experts’ Journal of Research in Science Teaching 29 799–822 Occurrence Handle10.1002/tea.3660280907

    Article  Google Scholar 

  • Hall, N. (Eds) (2000) The New Chemistry Cambridge University Press Cambridge

    Google Scholar 

  • A.G. Harrison D.F. Treagust (1996) ArticleTitle‘Secondary Students Mental Models of Atoms and Molecules: Implications for Teaching Chemistry’ Science Education 80 509–534 Occurrence Handle10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F

    Article  Google Scholar 

  • D. Hodson (2003) ArticleTitle‘Time for Action: Science Education for an Alternative Future’ International Journal of Science Education 25 645–670 Occurrence Handle10.1080/09500690305021

    Article  Google Scholar 

  • J.E. Huheey E.A. Keiter R.L. Keiter (1993) Inorganic Chemistry HarperCollins New York

    Google Scholar 

  • C. Husbands (2003) What is History Teaching? Language, Ideas and Meaning in Learning about the Past Open University Press Buckingham

    Google Scholar 

  • M. Izquierdo A. Adúriz (2003) ArticleTitle‘Epistemological Foundations of School Science’ Science & Education 12 27–43 Occurrence Handle10.1023/A:1022698205904

    Article  Google Scholar 

  • Izquierdo, M., Sanmartí, N., Espinet, M., Garcia, M.P., Pujol, R.M.: 1999, ‘Caracterización y fundamentación de la ciencia escolar’, Enseñanza de las ciencias, número extraordinario, junio 79–92.

  • L.K. James (Eds) (1993) Nobel Laureates in Chemistry 1901–1992 American Chemical Society-Chemical Heritage Foundation Washington

    Google Scholar 

  • W.B. Jensen (1998) ArticleTitle‘One Chemical Revolution or Three?’ Journal of Chemical Education 75 961–969 Occurrence Handle10.1021/ed075p961

    Article  Google Scholar 

  • R. Justi (2000) ‘Teaching with Historical Models’ J.K. Gilbert C.J. Boutler (Eds) Developing Models in Science Education Kluwer Dordrecht 209–226

    Google Scholar 

  • R. Justi J. Gilbert (2002) Models and Modeling in Chemical Education in Chemical Education: Towards Research-based Practice Kluwer Dordrecht 47–68

    Google Scholar 

  • H. Kragh (1987) An Introduction to the Historiography of Science Cambridge University Press Cambridge

    Google Scholar 

  • T.S. Kuhn (1970) The Structure of Scientific Revolutions University of Chicago Press Chicago

    Google Scholar 

  • K.J. Laidler (1998) ArticleTitle‘Contrast in Chemical Style: Sidgwick and Eyring’ Bulletin of the History of Chemistry 22 1–9

    Google Scholar 

  • I. Lakatos (1978) Mathematics, Science and Epistemology: Philosophical papers 2 Cambridge University Press Cambridge

    Google Scholar 

  • I. Langmuir (1919) ArticleTitle‘The Arrangement of Electrons in Atoms and Molecules’ Journal of the American Chemical Society 41 868–881 Occurrence Handle10.1021/ja02227a002

    Article  Google Scholar 

  • A.L. Lehninger D.L. Nelson M.M. Cox (1993) Principles of Biochemistry Worth Publishers New York

    Google Scholar 

  • G.N. Lewis (1916) ArticleTitle‘The Atom and the Molecule’ Journal of the American Chemical Society 38 762–786 Occurrence Handle10.1021/ja02261a002

    Article  Google Scholar 

  • G.N. Lewis (1923) Valence and the Structure of Atoms and Molecules The Chemical Catalog New York

    Google Scholar 

  • J.W. Linnett (1961) ArticleTitle‘A Modification of the Lewis–Langmuir Octet Rule’ Journal of the American Chemical Society 83 2643–2653 Occurrence Handle10.1021/ja01473a011

    Article  Google Scholar 

  • T.H. Lowry K.S. Richardson (1987) Mechanism and Theory of Organic Chemistry HarperCollins New York

    Google Scholar 

  • M.R. Matthews (1994) Science Teaching: The Role of History and Philosophy of Science Routledge London

    Google Scholar 

  • R. Millar J. Osborne (Eds) (1999) Beyond 2000: Science Education for the Future King’s College London

    Google Scholar 

  • D.M.P. Mingos (1998) Essential Trends in Inorganic Chemistry Oxford University Press Oxford

    Google Scholar 

  • J.W. Moore (2005) ArticleTitle‘Reaping the Benefits of Chemical Education Research’ Journal of Chemical Education 82 1431

    Google Scholar 

  • R.T. Morrison R.N. Boyd (1992) Organic Chemistry Prentice Hall Englewood Cliffs

    Google Scholar 

  • J.V. Pickstone (1995) ArticleTitle‘Past and Present Knowledges in the Practice of the History of Science’ History of Science xxxiii 203–224

    Google Scholar 

  • K.F. Purcell J.C. Kotz (1977) Inorganic Chemistry Saunders Philadelphia

    Google Scholar 

  • Royal Society of Chemistry: 2000, Cutting Edge Chemistry, London

  • E.R. Scerri (2000) ArticleTitle‘Philosophy of Chemistry – A New Interdisciplinary Field’ Journal of Chemical Education 77 522–525

    Google Scholar 

  • J. Schummer (1999) ArticleTitle‘Coping with the Growth of Chemical Knowledge: Challenges for Chemistry Documentation, Education, and Working Chemists’ Educación Quimica 10 92–101

    Google Scholar 

  • J. Schummer (1997) ArticleTitle‘Scientometric Studies on Chemistry I. The Exponential Growth of Chemical Substances 1800–1995’ Scientometrics 37 107–123 Occurrence Handle10.1007/BF02457433

    Article  Google Scholar 

  • N.V. Sidgwick (1927) The Electronic Theory of Valence Oxford University Press Oxford

    Google Scholar 

  • J. Solomon G. Aikenhead (Eds) (1994) STS Education: International Perspectives on Reform Teachers College Press-Columbia University Press New York

    Google Scholar 

  • C.J. Suckling K.E. Suckling C.W. Suckling (1978) Chemistry through Models Cambridge University Press Cambridge

    Google Scholar 

  • J. Tague J. Beheshti L. Rees-Potter (1981) ArticleTitle‘The Law of Exponential Growth: Evidence, Implications, and Forecasts’ Library Trends 30 125–150

    Google Scholar 

  • M. Tiles (1984) Bachelard: Science and Objectivity Cambridge University Press Cambridge

    Google Scholar 

  • N. Tosh (2003) ArticleTitle‘Anachronism and Retrospective Explanation: In Defence of a Present Centred History of Science’ Studies in History and Philosophy of Science 34 647–659 Occurrence Handle10.1016/S0039-3681(03)00052-9

    Article  Google Scholar 

  • K. Taber (2002) Chemical Misconceptions – Prevention, Diagnosis, and Cure (2 Volumes) Royal Society of Chemistry London

    Google Scholar 

  • C.A. Tolman (1972) ArticleTitle‘The 16 and 18 Electron Rule in Organometallic Chemistry and Homogeneous Catalysis’ Chemical Society Reviews 1 337–353 Occurrence Handle10.1039/cs9720100337

    Article  Google Scholar 

  • S. Toulmin (1972) Human Understanding Princeton University Press Princeton

    Google Scholar 

  • J. Aalsvoort ParticleVan (2004) ArticleTitle‘Logical Positivism as a Tool to Analyse the Problem of Chemistry’s Lack of Relevance in Secondary School Chemical Education’ International Journal of Science Education 26 1151–1168 Occurrence Handle10.1080/0950069042000205369

    Article  Google Scholar 

  • B. Berkel ParticleVan W. Vos Veronk Particlede A. Pilot (2000) ArticleTitle‘Normal Science Education and its Dangers: The case of School Chemistry’ Science & Education 9 123–159 Occurrence Handle10.1023/A:1008765531336

    Article  Google Scholar 

  • J.H. Wandersee P.B. Griffard (2002) ‘The History of Chemistry: Potential and Actual Contributions to Chemical Education’ J.K. Gilbert (Eds) et al. Chemical Education: Towards Research-based Practice. Kluwer Dordrecht 29–46

    Google Scholar 

  • J.H. Wandersee L.M. Roach (1998) ‘Interactive historical vignettes’ J.J. Mintzes (Eds) et al. Teaching Science for Understanding: A Human Constructivist View Academic Press San Diego 281–306

    Google Scholar 

  • R.E. Yager (2004) `Science is Not Written, But It Can Be Written About' W. Saul (Eds) Crossing Borders in Literacy and Science Instruction NSTA Washington 95–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Chamizo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamizo, J.A. Teaching Modern Chemistry through ‘Recurrent Historical Teaching Models’. Sci Educ 16, 197–216 (2007). https://doi.org/10.1007/s11191-005-4784-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-005-4784-4

Keywords

Navigation