Skip to main content
Log in

A Fundamental Principle Governing Populations

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Proposed here is that an overriding principle of nature governs all population behavior; that a single tenet drives the many regimes observed in nature—exponential-like growth, saturated growth, population decline, population extinction, and oscillatory behavior. The signature of such an all embracing principle is a differential equation which, in a single statement, embraces the entire panoply of observations. In current orthodox theory, this diverse range of population behaviors is described by many different equations—each with its own specific justification. Here, a single equation governing all the regimes is proposed together with the principle from which it derives. The principle is: The effect on the environment of a population’s success is to alter that environment in a way that opposes the success. Experiments are suggested which could validate or refute the theory. Predictions are made about population behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berryman A (2003) On principles, laws and theory in population ecology. Oikos 103:695–701

    Article  Google Scholar 

  • Blount ZD, Boreland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906

    Article  Google Scholar 

  • Britton NF (2003) Essential mathematical biology. Springer, London

    Book  Google Scholar 

  • Carroll SB (2006) The making of the fittest. W.W. Norton, New York

    Google Scholar 

  • Clutton-Brock TH (ed) (1990) Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago

    Google Scholar 

  • Coulson T, Benton TG, Lundberg P, Dall SRX, Kendall BE, Gaillard J-M (2006) Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proc R Soc B 273:547–555

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology. Sinauer, Sunderland

    Google Scholar 

  • Ginzburg LR (1972) The analogies of the “free motion” and “force” concepts in population theory (in Russian). In: Ratner VA (ed) Studies on theoretical genetics. USSR: Academy of Sciences of the USSR, Novosibirsk, pp 65–85

    Google Scholar 

  • Ginzburg LR (1986) The theory of population dynamics: I. Back to first principles. J Theor Biol 122:385–399

    Article  Google Scholar 

  • Ginzburg LR (1992) Evolutionary consequences of basic growth equations. Trends Ecol Evol 7:133; further letters, 1993, 8, 68–71

    Google Scholar 

  • Ginzburg LR, Colyvan M (2004) Ecological orbits. Oxford University Press, Oxford

    Google Scholar 

  • Ginzburg LR, Inchausti P (1997) Asymmetry of population cycles: abundance-growth representation of hidden causes of ecological dynamics. Oikos 80:435–447

    Article  Google Scholar 

  • Ginzburg LR, Taneyhill D (1995) Higher growth rate implies shorter cycle, whatever the cause: a reply to Berryman. J Anim Ecol 64:294–295

    Article  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  Google Scholar 

  • Jones JM (1976) The r-K-selection continuum. Am Nat 110:320–323

    Article  Google Scholar 

  • Kuno E (1991) Some strange properties of the logistic equation defined with r and K—inherent defects or artifacts. Res Popul Ecol 33:33–39

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Ingolf Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  Google Scholar 

  • Lotka AJ (1956) Elements of mathematical biology. Dover, New York

    Google Scholar 

  • Ma S (2010) Did we miss some evidence of chaos in laboratory insect populations? Popul Ecol. doi:10.1007/s10144-010-0232-7

  • Malthus T (1798) An essay on the principle of population. J. Johnson, London

    Google Scholar 

  • Marion JB (1970) Classical dynamics of particles and systems. Academic Press, New York. Green’s Function Method, exibited in Equation 4.83 on page 140

  • Matis JH, Kiffe TR, van der Werf W, Costamagna AC, Matis TI, Grant WE (2009) Population dynamics models based on cumulative density dependent feedback: a link to the logistic growth curve and a test for symmetry using aphid data. Ecol Model 220:1745–1751

    Article  Google Scholar 

  • McNamara JM, Houston AI (2009) Integrating function and mechanism. Trends Ecol Evol 24:670–675

    Article  Google Scholar 

  • Michod RE (1999) Darwinian dynamics: evolutionary transitions in fitness and individuality. Princeton University Press, Princeton

    Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, Berlin

    Google Scholar 

  • Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Harvard Press, Canada

    Google Scholar 

  • Okada H, Harada H, Tsukiboshi T, Araki M (2005) Characteristics of Tylencholaimus parvus (Nematoda: Dorylaimida) as a fungivorus nematode. Nematology 7:843–849

    Article  Google Scholar 

  • Parry GD (1981) The meanings of r- and K-selection. Oecologia 48:260–264

    Article  Google Scholar 

  • Pelletier F, Garant D, Hendry AP (2009) Eco-evolutionary dynamics. Phil Trans R Soc B 364:1483–1489

    Article  Google Scholar 

  • Ruokolainen L, Lindéna A, Kaitalaa V, Fowler MS (2009) Ecological and evolutionary dynamics under coloured environmental variation. Trends Ecol Evol 24:555–563

    Article  Google Scholar 

  • Torres J-L, Pérez-Maqueo O, Equihua M, Torres L (2009) Quantitative assessment of organism–environment couplings. Biol Philos 24:107–117

    Article  Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton

    Google Scholar 

  • Turchin P, Wood SN, Ellner SP, Kendall BE, Murdoch WW, Fischlin A, Casas J, McCauley E, Briggs CJ (2003) Dynamical effects of plant quality and parasitism on population cycles of larch budmoth. Ecology 84:1207–1214

    Article  Google Scholar 

  • Vainstein JH, Rube JM, Vilar JMG (2007) Stochastic population dynamics in turbulent fields. Eur Phys J Special Top 146:177–187

    Article  Google Scholar 

  • Verhulst P-F (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique 10:113–121

    Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Chester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chester, M. A Fundamental Principle Governing Populations. Acta Biotheor 60, 289–302 (2012). https://doi.org/10.1007/s10441-012-9160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-012-9160-6

Keywords

Navigation