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Economic dispatch (ED) plays an important role in power system operation, since it can decrease the operating cost, save energy
resources, and reduce environmental load. This paper presents an improved particle swarm optimization called biogeography-
based learning particle swarm optimization (BLPSO) for solving the ED problems involving different equality and inequality
constraints, such as power balance, prohibited operating zones, and ramp-rate limits. In the proposed BLPSO, a biogeography-
based learning strategy is employed in which particles learn from each other based on the quality of their personal best
positions, and thus it can provide a more efficient balance between exploration and exploitation. The proposed BLPSO is
applied to solve five ED problems and compared with other optimization techniques in the literature. Experimental results
demonstrate that the BLPSO is a promising approach for solving the ED problems.

1. Introduction

Economic dispatch (ED) is an important optimization task in
power system operation and planning. The main objective of
ED problems is to allocate generation among the committed
generating units so as to meet the required load demand at
minimum operating cost, with various physical constraints
[1]. The cost of power generation is high, and economic dis-
patch can help in saving a significant amount of revenue [2].

In the original ED problem, the cost function for each
generation unit is approximately represented by a single qua-
dratic function, and traditional approaches based on mathe-
matical programming techniques have been utilized to solve
the ED problem, including the lambda-iteration method,
gradient method, Newton’s method, linear programming,
interior point method, and dynamic programming [3–5].
Usually, these methods are highly sensitive to starting points
and rely on the assumption that the cost function needs to be
continuous and convex. However, the practical ED problems

exhibit nonconvex and nonsmooth characteristics because of
valve-point effects, ramp-rate limit, multifuel cost, prohib-
ited operating zones, and so on [6]. The traditional methods
are not capable of efficiently solving the ED problems with
these characteristics.

In the past decades, more and more researchers are turn-
ing to metaheuristic search (MS) algorithms for solving the
ED problems. These methods have the ability to identify
higher-quality solutions and can be grouped into three cate-
gories, as original, improved, and hybrid MS algorithms.

The first category consists of methods applied in their
original version, such as genetic algorithm (GA) [7], parti-
cle swarm optimization (PSO) [8], differential evolution
(DE) [9], ant colony optimization (ACO) [10], harmony
search (HS) [11], artificial bee colony (ABC) [12], teaching-
learning-based optimization (TLBO) [13], gravitational
search algorithm (GSA) [14], firefly algorithm (FA) [15],
biogeography-based optimization (BBO) [16, 17], bacterial
foraging optimization (BFO) [18], imperialist competitive
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algorithm (ICA) [19], seeker optimization algorithm (SOA)
[20], grey wolf optimization (GWO) [21], backtracking search
algorithm (BSA) [22], and root tree optimization (RTO) [23].

The second refers to improved or modified methods
derived from the original version, and the following are
included: self-adaptive real-coded genetic algorithm (SARGA)
[24], random drift PSO (RDPSO) [25, 26], fuzzy adaptive
modified PSO (FAMPSO) [27], improved differential evolu-
tion (IDE) [28], shuffled differential evolution (SDE) [29],
improved harmony search (IHS) [30], modified artificial bee
colony (MABC) [31], incremental artificial bee colony (IABC)
[32], ramp-rate biogeography-based optimization (RRBBO)
[33], dynamic nondominated sorting biogeography-based
optimization (Dy-NSBBO) [34], multistrategy ensemble
biogeography-based optimization (MsEBBO) [35], and modi-
fied group search optimizer (MGSO) [36].

The third is the hybrid method in which two or more
optimization techniques are combined, including hybrid
genetic algorithm (HGA) [37], chaotic PSO with sequential
quadratic programming (CPSO-SQP) [38], hybrid PSO and
gravitational search algorithm (HPSO-GSA) [39], hybrid
differential evolution algorithm based on PSO (DEPSO)
[40], hybrid differential evolution with biogeography-based
optimization (DE/BBO) [41], hybrid chemical reaction
optimization with differential evolution (HCRO-DE) [42],
and hybrid imperialist competitive-sequential quadratic pro-
gramming (HIC-SQP) [43].

In this paper, an improved PSO algorithm with
biogeography-based learning strategy is proposed to solve
the ED problems. The main contributions of this paper are
listed as follows:

(1) A biogeography-based learning particle swarm
optimization (BLPSO) algorithm which employs a
biogeography-based learning strategy (BLS) is pre-
sented. The computational complexity of BLPSO is
also analyzed.

(2) By combining the feature of EDproblems, theBLPSO-
based economic dispatch method is developed.

(3) BLPSO is applied to solve five ED problems with
various practical constraints, and the experimental
results demonstrate that the proposed method can
obtain promising results for ED problems.

This paper is organized as follows: Section 2 briefly
introduces the formulation of ED problems. Section 3
introduces the original PSO and its three variants. In addi-
tion, a biogeography-based learning particle swarm optimi-
zation algorithm is presented in this section. Section 4
addresses the implementation of BLPSO for solving ED
problems. Section 5 provides the experimental results on five
test systems. Finally, the paper is concluded in Section 6.

2. Formulation of ED Problems

The objective of the ED problem is to minimize the fuel cost
of thermal power plants for a given load demand subject to
various physical constraints.

2.1. Objective Function. The traditional fuel cost or objective
function of the ED problem is the quadratic fuel cost equa-
tion of the thermal generating units and is given by

min  F = 〠
Ng

j=1
Fj Pj = 〠

Ng

j=1
aj + bjPj + cjP

2
j , 1

where Ng is the total number of generating units or gen-
erators, Fj Pj is the cost function of the jth generating
unit ($/hr), Pj is the real output of the jth generating units
(in MW), and aj, bj, and cj are fuel cost coefficients of the
jth generator.

In some ED problems, the admission valves control the
steam entering the turbine through separate nozzle groups.
When the valve opens, the fuel cost will increase dramatically
because of the wire drawing effect, and this makes the practi-
cal objective function have many nondifferentiable points
[44]. Therefore, the fuel cost function often contains many
nonsmooth ripple curves due to the presence of valve-point
effects. The objective function when the valve-point effect is
taken into account is represented as

min  F = 〠
Ng

j=1
Fj Pj = 〠

Ng

j=1
aj + bjPj + cjP

2
j

+ ej sin f j Pmin
j − Pj ,

2

where ej and f j are nonsmooth fuel cost coefficients of the jth

generator with valve-point effects and Pmin
j is the minimum

power generation limit of the jth generator (in MW).

2.2. Optimization Constraints

2.2.1. Power Balance Constraint. The total generated power
should be equal to the sum of the total system demand (PD)
and the total transmission network loss (PL):

〠
Ng

j=1
Pj = PD + PL 3

The B coefficient method is widely utilized to calculate
the total transmission network loss PL. In such a way, PL
can be calculated as follows:

PL = 〠
Ng

j=1
〠
Ng

i=1
PjBjiPi + 〠

Ng

j=1
B0jPi + B00, 4

where Bji, Bj0, and B00 are the loss coefficients or B coeffi-
cients. It can be seen that Bji is an Ng ×Ng matrix.

2.2.2. Power Generation Limits. The power generation
of each generator should be within its minimum and
maximum limits:

Pmin
j ≤ Pj ≤ Pmax

j , 5
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where Pmin
j and Pmax

j are the minimum and maximum power
generation limits of the jth generator.

2.2.3. Ramp-Rate Limits. The physical limitations of starting
up and shutting down of generators impose ramp-rate limits,
which are modeled as follows. The increase in generation is
limited by

Pj − P0
j ≤UR j 6

Similarly, the decrease is limited by

P0
j − Pj ≤DR j, 7

where P0
j is the previous output power and URj and DRj

are the up-ramp limit and the down-ramp limit of the jth
generator, respectively.

Combining 6 and 7 with 5 results in the change of the
effective operating or generation limits to

max Pmin
j , P0

j −DRj ≤ Pj ≤min Pmax
j , P0

j +URj 8

2.2.4. Prohibited Operating Zones. The prohibited operating
zones (POZ) are due to steam valve operation or vibration

1 Input: particle index i immigration rate λk and emigration rates μk
2 Output: learning exemplar indices τi = τi 1 ,… , τi d ,… , τi D
3 For k = 1 to D Do // for each dimension
4 If rand < λrank i Then
5 Utilize a roulette wheel to select a particle index j with probability ∝ μrank j ;

6 τi k = j; // learn from other particle
7 Else
8 τi k = i; // learn from itself
9 End If
10 End For
11 If τi k = i in all dimension Then
12 Randomly select a particle index l l ≠ i ;
13 Randomly select a dimension d;
14 τi d = l;
15 End If
16 Return τi = τi 1 ,… , τi d ,… , τi D

Algorithm 1: (biogeography-based exemplar generation method).

1 Stage 1: Initialization
2 For each particle i = 1, 2,… ,N Do
3 Initialize position xi and velocity vi;
4 Evaluate the fitness f xi and store the personal best position pbesti;
5 Generate the learning exemplar indices τi using Algorithm 1;
6 Set the refreshing gap G;
7 End For
8 Stage 2: Main loop
9 For each particle i = 1, 2,… ,N Do
10 If the stagnation number stagnated i >G Then
11 Generate the exemplar vector index τi using Algorithm 1;
12 Set stagnated i = 0;
13 End If
14 Update velocity vi using Eq.16;
15 Update position xi using Eq.17;
16 Evaluate the new position f xi ;
17 If xi is better than pbesti Then
18 Set pbesti = xi, stagnated i = 0;
19 Else
20 stagnated i = stagnated i + 1;
21 End If
22 End For
23 Store swarm’s gbest with the best pbesti
24 Stage 3: If the stop criterion is satisfied, the process is terminated. Otherwise, return to Stage 2.

Algorithm 2: (BLPSO).
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in shaft bearing. The feasible operating zones of the jth gen-
erator can be described as follows:

Pj ∈

Pmin
j ≤ Pj ≤ Pl

j,1,

Pu
j,k−1 ≤ Pj ≤ Pl

j,k,
Pu
j,nj−1 ≤ Pj ≤ Pmax

j ,

k = 2, 3,… , nj, j = 1, 2,… ,Ng,

9

where nj is the number of prohibited zones of the jth gener-

ator. Pl
j,k and P

u
j,k are the lower and upper power output of the

kth prohibited zone of the jth generator, respectively.
Combining the equations from 2 to 9, the ED problem

can be formulated as

min  F = 〠
Ng

j=1
Fj Pj = 〠

Ng

j=1
aj + bjPj + cjP

2
j

+ ej sin f j Pmin
j − Pj ,

s t  〠
Ng

j=1
Pj = PD + PL,

max   Pmin
j , P0

j −DRj ≤ Pj ≤ Pl
j,1,

Pu
j,k−1 ≤ Pj ≤ Pl

j,k,

Pu
j,k−1 ≤ Pj ≤min Pmax

j , P0
j +URj ,

k = 2, 3,… , nj, j = 1, 2,… ,Ng

10

3. Particle Swarm Optimization and Its
Three Variants

3.1. Particle Swarm Optimization. The PSO algorithm is a
population-based metaheuristic algorithm which was firstly

proposed by Eberhart and Kennedy [45]. It is based on
the swarm intelligence theory, and the fundamental idea
is that the optimal solution can be found through cooper-
ation and information sharing among individuals in the
swarm. In the past decade, PSO has gained increasing
popularity due to its effectiveness in performing difficult
optimization tasks.

In PSO, each individual is treated as a particle in the
D-dimensional space, with a position vector xi t = xi1 t ,
xi2 t ,… , xiD t and a velocity vector vi t = vi1 t , vi2 t ,
… , viD t . The particle updates its velocity and position
according to the following equations:

vij t + 1 =wvij t + c1r1 pbestij t − xij t

+ c2r2 gbestj t − xij t ,
11

xij t + 1 = xij t + vij t , 12

where pbesti t = pbesti1 t , pbesti2 t ,… , pbestiD t is the
personal best position of particle i; gbest t = gbest1 t , gbe
st2 t ,… , gbestD t is the position of the best particle in
the population; w is the inertia weight; c1 and c2 are acceler-
ation coefficients; and r1 and r2 are two random real numbers
distributed uniformly within [0,1].

3.2. Comprehensive Learning Particle Swarm Optimization.
Liang et al. [46] proposed a comprehensive learning PSO
(CLPSO) which uses a novel comprehensive learning strategy
whereby all other particle personal best positions are used to
update a particle velocity. This strategy can preserve the
diversity of the swarm to discourage premature convergence.
CLPSO uses the following velocity updating equation:

vij t + 1 =wvij t + cr1 pbestτi j ,j t − xij t , 13

1 Initialize a set I = 1, 2,… ,D
2 If ∑Ng

j=1Pij ≤ PD + PL Then
3 Randomly select a component k from the set I;
4 While Pik = Pmax

i

5 Exclude k from I, and let the new set be I′;
6 Randomly select a component k′ from I′;
7 k = k′, I = I′;
8 End While

9 Add an amount w = ∑Ng
j=1Pij ≤ PD − PL to Pik, such as Pik =min Pik +w, Pmax

i ;

10 Else If ∑Ng
j=1Pij ≤ PD + PL

11 Randomly select a component k from the set I;
12 While Pik = Pmin

i

13 Exclude k from I, and let the new set be I′;
14 Randomly select a component k′ from I′;
15 k = k′, I = I′;
16 End While

17 Add an amount w = ∑Ng
j=1Pij ≤ PD − PL to Pik, such as Pik =max Pik +w, Pmin

i ;
18 End If

Algorithm 3: (the repair operator for power balance constraint).
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where pbestτi t = pbestτi 1 ,1 t , pbestτi 2 ,2 t ,… , pbestτi
D ,D t is the learning exemplar for particle i and τi =
τi 1 , τi 2 ,… , τi D is the learning exemplar indices for
particle i, which is generated based on tournament selec-
tion procedure. The CLPSO does not introduce any com-
plex operations to the original simple PSO framework, and
the main difference from the original PSO is the velocity
update equation.

3.3. Social Leaning Particle Swarm Optimization. Cheng
and Jin [47] proposed a social learning PSO (SLPSO)
inspired by learning mechanisms in social learning of ani-
mals. The SLPSO is performed on a sorted swarm, and
particles learn from any better particles in the current
swarm. The particles learn from different particles based on
the following equations:

xij t + 1 =
xij t + Δxij t if pi t ≤ PL

i ,
xij t , otherwise,

14

Δxij t + 1 = r1Δxij t + r2 xkj t − xij t

+ r3ε xj t − xij t ,
15

where PL
i is the learning probability for particle i, pi t is

a randomly generated probability that satisfies 0 ≤ pi t ≤
PL
i ≤ 1, xkj t is the demonstrator of particle i in the jth

dimension, xj t =∑N
i=1xij/N is the mean position of the all

particles in the current swarm, and ε is the social influence
factor. In addition, the SLPSO adopts dimension-dependent
parameter control methods to determine the three parame-
ters, that is, the swarm size N , PL

i the learning probability,
and the social influence factor ε.

3.4. Biogeography-Based Learning Particle Swarm
Optimization. In this paper, a biogeography-based learning
particle swarm optimization (BLPSO) which employs a new
biogeography-based learning strategy (BLS) [48] is proposed
for the ED problems.

Table 1: Table of abbreviations.

Optimization algorithms Abbreviation

Backtracking search algorithm BSA

Biogeography-based optimization BBO

Chaotic bat algorithm CBA

Chaotic improved honey bee mating optimization CIHBMO

Continuous quick group search optimizer CQGSO

Differential evolution DE

Enhanced Hopfield neural network EHNN

Firefly algorithm FA

Genetic algorithm-ant colony optimization GAAPI

Group search optimizer GSO

Honey bee mating optimization HBMO

Hybrid chemical reaction optimization
with differential evolution

HCRO-DE

Hybrid differential evolution with
biogeography-based optimization

DE/BBO

Harmony search HS

Hopfield modeling framework HM

Hybrid harmony search HHS

Hybrid differential evolution with
biogeography-based optimization

DE/BBO

Hybrid differential evolution with particle
swarm optimization

DEPSO

Immune algorithm IA

Improved differential evolution IDE

Improved orthogonal design particle swarm
optimization-global version

IODPSO-L

Improved orthogonal design particle swarm
optimization-local version

IODPSO-G

Improved random drift particle swarm optimization IRDPSO

Modified artificial bee colony MABC

Multiple tabu search MTS

Multistrategy ensemble biogeography-based
optimization

MsEBBO

New particle swarm optimization New-PSO

New particle swarm optimization
with local random search

NPSO-LRS

Oppositional invasive weed optimization OIWO

Oppositional real-coded chemical reaction
optimization

ORCCRO

Particle swarm optimization PSO

Particle swarm optimization with chaotic
sequences and crossover operator

CCPSO

Particle swarm optimization with
time-varying acceleration coefficients

PSO-TVAC

Random drift particle swarm optimization RDPSO

Self-tuning improved random drift particle
swarm optimization

ST-IRDPSO

Simulated annealing SA

Stochastic weight trade-off particle swarm
optimization

SWT-PSO

Tabu search TS

Table 2: Optimal generations and cost obtained by BLPSO for test
system 1 (6-unit system, PD = 1263 MW).

Unit Pmin
j Pmax

j POZ Generation

1 100 500
(210, 240);
(350, 380)

447.0682

2 50 200
(90, 110);
(140, 160)

173.5899

3 80 300
(150, 170);
(210, 240)

263.2341

4 50 150
(80, 90);
(110, 120)

142.6879

5 50 200
(90, 110);
(140, 150)

162.5776

6 50 120
(75, 85);
(100, 105)

86.5033

Cost ($/hr) 15447.34

Transmission loss (MW) 12.6619
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3.4.1. Biogeography-Based Learning Strategy. BLS is inspired
from both from the comprehensive learning strategy of
CLPSO [46] and biogeography-based optimization [49, 50].
It has two characteristics:

(1) Each particle updates itself by using the combina-
tion of its own personal best position and per-
sonal best positions of all other particles, which
is similar to the comprehensive learning strategy
of CLPSO. This updating method enables the diver-
sity of the swarm to be preserved to discourage
premature convergence.

(2) The migration operator of biogeography-based opti-
mization is used to generate the learning exemplar
for each particle, in which a ranking technique is
employed to make particles learn more from particles
with high-quality personal best positions. This can
provide a more effecient balance between exploration
and exploitation for the new PSO algorithm.

In BLS, each particle updates its velocity and position
according to the following equations:

Table 3: Comparison of fuel costs and statistical results for test system 1 (6-unit system, PD = 1263 MW).

Algorithm Minimum cost ($/h) Mean cost ($/h) Maximum cost ($/h) Standard deviation Time (s)

NPSO-LRS [54] 15,450 15,454 15,452 NA NA

MTS [55] 15450.06 15451.17 15450.06 0.9287 1.29

TS [55] 5454.89 15472.56 15454.89 13.7195 20.55

SA [55] 15461.1 15488.98 15461.1 28.3678 50.36

GAAPI [56] 15449.78 15449.81 15449.85 NA NA

HCRO-DE [42] 15443.075 15443.327 15443.916 0.067 4.17

DE [57] 15449.5826 15449.62 15449.6508 NA 3.634

MABC [31] 15449.8995 15449.8995 15449.8995 6.04E-08 0.62

CBA [58] 15450.2381 15454.76 15518.6588 2.965 0.704

RDPSO [26] 15449.89 15458.01 NA 13.647 0.707

IRDPSO [26] 15449.89 15456.55 NA 10.9865 0.676

ST-IRDPSO [26] 15449.89 15450.7 NA 1.416 0.727

CLPSO 15447.72 15449.83 15452.88 1.28 0.48

SLPSO 15447.34 15447.46 15447.62 0.08 0.84

BLPSO 15447.34 15447.45 15447.67 0.09 0.50

NA means the data are not available in the literature.

×104

2000 4000 6000 8000 100000
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1.544
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Figure 1: Convergence characteristics for test system 1.

Table 4: Optimal generations and cost obtained by BLPSO for test
system 2 (15-unit system, PD = 2630 MW).

Unit Pmin
j Pmax

j Generation

1 150 455 455.0000

2 150 455 450.0000

3 20 130 130.0000

4 20 130 130.0000

5 150 470 200.0000

6 135 460 460.0000

7 135 465 430.0000

8 60 300 60.0000

9 25 162 35.1998

10 25 160 91.2383

11 20 80 80.0000

12 20 80 80.0000

13 25 85 25.0000

14 15 55 15.0000

15 15 55 15.0000

Cost ($/hr) 32587.33

Transmission loss (MW) 12.6619
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vij t + 1 =wvij t + cr1 pbestτi j ,j t − xij t , 16

xij t + 1 = xij t + vij t , 17

where pbestτi t = pbestτi 1 ,1 t , pbestτi 2 ,2 t ,… , pbestτi
D ,D t is the learning exemplar for particle i; τi = τi 1 ,
τi 2 ,… , τi D is the learning exemplar indices for parti-
cle i, which is generated by the biogeographic migration.

In the biogeographic migration, all particles are firstly
sorted based on the value of their pbest from best to worst
and assigned with ranking values. For a minimization
problem, assume

f pbests1 ≤ f pbests2 ≤⋯ ≤ f pbestsN , 18

where s1 is the subscript of the particle with the best pbest, s2
is the subscript of the particle with the second best pbest, and
sN is the subscript of the particle with the worst pbest; N is
the population size. Then, the rankings of particles are
assigned as below:

rank xsk =N − k, k = 1, 2,… ,N 19

Table 5: Comparison of fuel costs and statistical results for test system 2 (15-unit system, PD = 2630 MW).

Algorithm Minimum cost ($/h) Mean cost ($/h) Maximum cost ($/h) Standard deviation Time (s)

CCPSO [60] 32704.4514 32704.4514 32704.4514 0 16.2

HBMO [59] 32637.6219 32663.19 32676.07 NA 2.8

CIHBMO [59] 32548.58588 32548.58588 32548.58588 NA 3.1

FA [15] 32,704.50 32,856.10 33,175.00 147.17 NA

MsEBBO [35] 32,692.40 32,692.40 32,692.40 0 NA

DEPSO [40] 32588.81 32588.99 32591.49 4.02 1.88 s

SWT-PSO [61] 32704.45 NA NA NA NA

IA [62] 32,698.20 32,750.22 32,823.78 9.3 NA

IODPSO-G [63] 32,692.39 32,692.39 32,692.39 NA NA

IODPSO-L [63] 32,692.39 32,692.39 32,692.39 NA NA

CLPSO 32608.83 32649.9 32705.5 23.13 2.77

SLPSO 32674.25 32707.46 32758.69 14.67 4.93

BLPSO 32587.33 32607.17 32667.2 17.06 2.85

NA means the data are not available in the literature.
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Figure 2: Convergence characteristics for test system 2.

Table 6: Optimal generations and cost obtained by the BLPSO for
test system 3 (20-unit system, PD = 2500 MW).

Unit Pmin
j Pmax

j Generation

1 150 600 512.2358

2 50 200 169.7731

3 50 200 126.4272

4 50 200 102.6131

5 50 160 113.9049

6 20 100 73.6208

7 25 125 115.506

8 50 150 116.631

9 50 200 100.2842

10 30 150 105.5532

11 100 300 150.2329

12 150 500 293.3209

13 40 160 118.8701

14 20 130 30.6567

15 25 185 115.3421

16 20 80 36.2973

17 30 85 67.0567

18 30 120 87.9775

19 40 120 101.2398

20 30 100 54.4584

Cost ($/hr) 62456.58

Transmission loss (MW) 92.0046
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Second, immigration and emigration rates are assigned
for all particles. The immigration and emigration rates for
all particles can be calculated as follows:

λ xsk = 1 − N − k
N

2
,

μ xsk = N − k
N

2
,

k = 1, 2,… ,N

20

According to 20, the solution xs1 with the best pbests1 will
have the lowest immigration rate and highest emigration
rate; and the solution xsN with the worst pbestsN will have
the highest immigration rate and lowest emigration rate.

Third, the biogeography-based exemplar indices τi =
τi 1 , τi 2 ,… , τi D for particle i can be generated based
on the biogeography-based exemplar generation method,
see Algorithm 1.

3.4.2. Procedures of BLPSO. Using the BLS, the procedures of
BLPSO can be outlined in Algorithm 2. It can be seen from
Algorithm 2 that the structure of BLPSO is as simple as the
classic PSO.

In addition, based on lines 10–13 in Algorithm 2, it can
be seen that Algorithm 1 is executed to generate new learn-
ing exemplar indices τi only when there is a stagnation for
G generations, which is used to save computational cost of
the BLPSO. In other words, if new learning exemplar indi-
ces τi are generated for all particles in each generation,
Algorithm 2 will be executed too frequently, and this may
cost a large computational time, which is inappropriate
for real-world ED problems.

3.4.3. Remarks

(1) Complexity Analysis. The computational costs of the
original BLPSO algorithm involve the initialization (T ini),
biogeography-based exemplar generation method (Tbio),
velocity and position update (Tupd), and evaluation (Teva)
for each particle. Assume D is the dimensionality of the

optimization problem, N is the population size, and maxF
ES is maximum number of functional evaluations allowed
for the algorithm. The complexity of initialization, velocity
and position update, and evaluation are O D , O 2D , and
O D , respectively. The computational costs of biogeography-
based exemplar generation method Tbio include population
sorting O N · log N , ranking assignment O N , immi-
gration and emigration rate assignment O 2N , and
migration operator O N ·D . Therefore, Tbio =O N · log
N + O N + O 2N + O N · D =O 3N + N · log N +
N ·D .

The total computational complexity of BLPSO is
TBLPSO = T ini + Teva + Tupd + 1/G Tbio · maxFE =O D +
D + 2D + 3N +N · log N + N · D /G · maxFES . In
general, the population size N is often set to be propor-
tional to the problem dimension D (i.e., N = kD) [47].
Thus, the complexity of BLPSO is TBLPSO =O D + D + 2
D + 3kD + kD · log kD + kD2 /G · maxFES =O D2 ·
maxFES .

Table 7: Comparison of fuel costs and statistical results for test system 3 (20-unit system, PD = 2500 MW).

Algorithm Minimum cost ($/h) Mean cost ($/h) Maximum cost ($/h) Standard deviation Time (s)

EHNN [65] 62,610 NA NA NA 0.11

λ-iteration [64] 62456.6391 NA NA NA 33.757

HM [64] 62456.6341 NA NA NA 6.355

GSO [66] 62456.6332 62456.6336 62456.6353 NA 30.45

CQGSO [66] 62456.633 62456.6331 62456.63337 NA 11.13

BBO [22] 62456.7793 62456.7928 62456.7928 NA NA

BSA [22] 62456.6925 62457.1517 62458.1272 NA 14.477

CBA [58] 62456.6328 62456.6348 62501.6714 0.3879 1.16

CLPSO 62456.44 62456.84 62457.10 0.17 2.68

SLPSO 62456.92 62457.38 62458.06 0.28 3.80

BLPSO 62456.58 62456.64 62456.65 0.01 2.75

NA means the data are not available in the literature.
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Figure 3: Convergence characteristics for test system 3.
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(2) Compared with Previous Hybrid PSO/BBO Algorithms.
Several hybrid PSO/BBO algorithms have been proposed in
the literature. For example, Guo et al. [51] presented a
biogeography-based particle swarm optimization with fuzzy
elitism (BPSO-FE) for constrained engineering problems.
In this BPSO-FE algorithm, the whole population is split into
several subgroups, and BBO is employed to search within
each subgroup while PSO for the global search. Mo and Xu
[52] applied the position updating strategy of PSO to increase

the diversity of population in BBO and develop a biogeogra-
phy particle swarm optimization algorithm (BPSO) to opti-
mize the paths in path network. However, there are some
differences between BLPSO and them. First, the hybrid strat-
egies of BLPSO, BPSO-FE, and BPSO are different. In
BLPSO, the biogeography-based migration is used to gener-
ate the learning exemplar for each particle; while in BPSO-
FE and BPSO, the biogeography-based migration is used as
search operator. Second, the application areas of BLPSO,
BPSO-FE, and BPSO are different. BLPSO is presented for
ED problems, while BPSO-FE and BPSO are proposed for
classical engineering optimization problems and robot path
planning, respectively.

4. Implementation of BLPSO for ED Problems

When solving the ED problems using BLPSO, the following
three important issues should be considered: initialization
of population, constraint handling, and stopping criterion.

4.1. Initialization of Population. In BLPSO, each individual of
the population is a solution of an ED problem. If there areNg

units that must be operated to provide power to load, then
the current position of the ith particle can be given by

Xi = Pi1, Pi2,… , Pij,… , PiNg
, k = 1, 2,… ,N , 21

where N is the population size, j is index of the generating
unit, and Pij is the generation power output of the jth gener-
ating unit in the ith particle.

4.2. Constraint Handling. One of the most important issues
in solving ED problems is how to handle the quality and
inequality constraints. There are four types of constraints in
the ELD problems: power generation limits, ramp-rate limits,
prohibited operating zone, and power balance constraint.

For power generation limit and ramp-rate limit con-
straints, the following strategy is employed:

Pij =

max Pmin
j , P0

j −DRj if Pij ≤max Pmin
j , P0

j −DRj ,

min Pmax
j , P0

j +URj if Pij ≥min Pmax
j , P0

j +URj ,

Pij, otherwise
22

For prohibited operating zone constraints, if Pij is located

in the kth prohibited operating zone, that is, Pl
j,k ≤ Pij ≤ Pu

j,k, it
is truncated to the closest boundary of the kth prohibited
operating zone as follows:

Pij =
Pl
j,k if Pl

j,k < Pij ≤
Pl
j,k + Pu

j,k

2 ,

Pu
j,k if

Pl
j,k + Pu

j,k

2 < Pij < Pu
j,k,

23

Table 8: Optimal generations and cost obtained by the BLPSO for
test system 4 (38-unit system, PD = 6000 MW).

Unit Pmin
j Pmax

j Generation

1 220 550 426.5025

2 220 550 426.7865

3 200 500 429.5064

4 200 500 429.6401

5 200 500 429.7661

6 200 500 429.5265

7 200 500 429.7083

8 200 500 429.5542

9 114 500 114

10 114 500 114

11 114 500 119.7279

12 114 500 127.1661

13 110 500 110

14 90 365 90

15 82 365 82

16 120 325 120

17 65 315 159.6378

18 65 315 65

19 65 315 65

20 120 272 272

21 120 272 272

22 110 260 260

23 80 190 130.682

24 10 150 10

25 60 125 113.3391

26 55 110 88.0312

27 35 75 37.5497

28 20 70 20

29 20 70 20

30 20 70 20

31 20 70 20

32 20 60 20

33 25 60 25

34 18 60 18

35 8 60 8

36 25 60 25

37 20 38 21.7594

38 20 38 21.0902

Cost ($/hr) 9417208.19
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where Pl
j,k and Pu

j,k denote the lower and the upper bounds of
prohibited operation zone k of generator j, respectively.

For the power balance constraint, a repaired opera-
tor together with a common penalty is employed [28]. The
repaired operator is shown in Algorithm 3, and the objective
function becomes

min  F = 〠
Ng

j=1
Fj Pj + K 〠

Ng

j=1
Pj − PD − PL , 24

where K is the penalty coefficient and the penalty term

∑
Ng

j=1Pj − PD − PL is the measure of violation of the equality
constraint.

4.3. Stopping Criterion. The BLPSO algorithm will be termi-
nated if the maximum number of functional evaluations ma
xFES is reached.

5. Results and Discussion

To test the effectiveness of the proposed BLPSO algorithm,
five different test systems of varying computational difficulty
levels have been solved using BLPSO. The results obtained by
BLPSO are compared with two PSO algorithms, comprehen-
sive learning PSO (CLPSO) [46] and social leaning PSO
(SLPSO) [47]. The results are also compared with several
techniques reported in the literature whose abbreviations
are listed in Table 1.

To compare the performance of the BLPSO, 50 indepen-
dent trial runs are made, and the statistical results including
the minimum, mean, maximum fuel cost, and standard
deviation, as well as average run time, are tabulated for each
test system. The parameters of BLPSO are set as follows:
population size N = 40, inertia weight w linearly decreases
from 0.9 to 0.2, acceleration coefficient c = 1 496, and
refreshing gap G = 5. The parameters of CLPSO and SLPSO
are set as those recommended in their original papers. The
maximum number of functional evaluations maxFES is set
as 10,000; 50,000; 50,000; 50,000; and 200,000 for the five test
systems, respectively. The programs are implemented in
MATLAB language on a personal computer with a 3.2GHz
processor and 8GB RAM.

5.1. Test System 1. This is a small system comprising 6 gener-
ators and meeting a load demand of 1263MW and includes
transmission loss, POZ, and ramp-rate limits. The system
data are taken from [8, 53] and listed in Table S1. Table 2
presents the optimal generation values and fuel cost
obtained by BLPSO. The obtained optimal cost is 15447.34
$/hr. It can be seen that the generation values satisfy the
generation limit constraints and do not fall in the POZs.

Table 3 shows the comparison of the statistical results of
different algorithms. In the table, the results obtained by
BLPSO are compared with CLPSO, SLPSO, NPSO-LRS
[54], MTS [55], TS [55], SA [55], GAAPI [56], HCRO-DE
[42], DE [57], MABC [31], CBA [58], RDPSO [26], IRDPSO
[26], and ST-IRDPSO [26]. It can be seen that the minimum
and mean fuel costs obtained by BLPSO are similar to SLPSO
and less than all the other methods with the exceptions of

Table 9: Comparison of fuel costs and statistical results for test system 4 (38-unit system, PD = 6000 MW).

Algorithm Minimum cost ($/h) Mean cost ($/h) Maximum cost ($/h) Standard deviation Time (s)

New-PSO [67] 9516448.312 NA NA NA NA

PSO-TVAC [67] 9500448.307 NA NA NA NA

HS [68] 9,419,960 9,421,056 9,427,466 NA 10.02

HHSÂ [68] 9,417,325 9,417,336 9,417,466 NA 5.06

BBOÂ [41] 9417633.638 NA NA NA NA

DE/BBO [41] 9417235.786 NA NA NA NA

MsEBBO [35] 9417235.776 9417235.779 9417235.778 0.0032 NA

IDE [28] 9417235.786 9417235.786 9417235.786 6.00E-09 9.149

CLPSO 9418283.79 9419255.18 9420192.8 526.51 2.86

SLPSO 9418407.11 9419560.62 9425492.54 1312.2 3.53

BLPSO 9417208.19 9417234.16 9417235.9 5.23 2.89

NA means the data are not available in the literature.
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Figure 4: Convergence characteristics for test system 4.
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HCRO-DE [42]. In addition, the smaller value of standard
deviation indicates that BLPSO is consistent. It is also
important to note that the BLPSO is very efficient accord-
ing to the average computational time (0.50 s), which is
less than most of other methods. Figure 1 presents the
convergence characteristics obtained by CLPSO, SLPSO,
and BLPSO. From Figure 1, SLPSO has the fastest conver-
gence speed, and BLPSO has the second. Both BLPSO and
SLPSO can converge to the optimal cost after about 6000
functional evaluations.

5.2. Test System 2. This test system consists of 15 generators
meeting a load demand of 2630MW and includes transmis-
sion loss, POZ, and ramp-rate limits. The system data are
taken from [8, 59] and listed in Table S2. Table 4 presents
the optimal generations and the costs obtained. The
optimal cost obtained by BLPSO is 32587.33 $/hr, and the
generations satisfy the generation limit constraints.

Table 5 shows the comparison of the statistical results of
the BLPSO and other algorithms, including CLPSO, SLPSO,
CCPSO [60], HBMO [59], CIHBMO [59], FA [15], MsEBBO
[35], DEPSO [40], SWT-PSO [61], IA [62], IODPSO-G [63],
and IODPSO-L [63]. The minimum and mean fuel costs
obtained by BLPSO are the least of all methods with the
exceptions of HBMO [59]. The average computation time
of BLPSO (2.85 s) is also very small. The convergence charac-
teristics obtained by CLPSO, SLPSO, and BLPSO are plotted
in Figure 2. SLPSO has the fastest convergence speed in the

beginning, but it is surpassed by BLPSO and CLPSO in the
end. Only BLPSO can get the optimal cost in this case.

5.3. Test System 3. This test system consists of 20 generators
supplying a demand of 2500MW. Transmission losses are
included in this system. The cost coefficient and B coefficient
data are taken from [22, 64] and listed in Table S3. Table 6
presents the optimal generation values and fuel cost
obtained by the BLPSO. The optimal obtained fuel cost is
62456.58 $/hr. It is seen that the all the generation limit
constraints are satisfied.

Table 7 shows the comparison of the statistical results
of different algorithms. In the table, the results obtained
by BLPSO are compared with CLPSO, SLPSO, EHNN [65],
λ-iteration [64], HM [64], GSO [66], CQGSO [66], BBO
[22], BSA [22], and CBA [58]. It can be seen that the best fuel
cost obtained by BLPSO is the least of all methods, and the
mean fuel cost is the least of all methods with the sole excep-
tion of CBA [58]. In addition, the standard deviation and
average computation time of BLPSO are both very small.
Again, the BLPSO is efficient for this case. The convergence
characteristics obtained by CLPSO, SLPSO, and BLPSO are
plotted in Figure 3.

5.4. Test System 4. This test system consists of 38 generators,
and the demand of this system is 6000MW. The system data
are taken from [28, 41] and listed in Table S4. Table 8
presents the optimal generation values and cost obtained by

Table 10: Optimal generations and cost obtained by the CBA for test system 5 (110-unit system, PD = 5000 MW).

Unit Generation Unit Generation Unit Generation Unit Generation Unit Generation

1 2.4 23 68.9 45 660 67 70 89 82.7308

2 2.4 24 350 46 616.4766 68 70 90 89.7172

3 2.4 25 400 47 5.4 69 70 91 57.9161

4 2.4 26 400 48 5.4 70 360 92 100

5 2.4 27 500 49 8.4 71 400 93 440

6 4 28 500 50 8.4 72 400 94 500

7 4 29 200 51 8.4 73 105.0721 95 600

8 4 30 100 52 12 74 190.995 96 471.2608

9 4 31 10 53 12 75 90 97 3.6

10 64.6059 32 20 54 12 76 50 98 3.6

11 62.3474 33 80 55 12 77 160 99 4.4

12 36.3769 34 250 56 25.2 78 295.3172 100 4.4

13 56.6463 35 360 57 25.2 79 174.949 101 10

14 25 36 400 58 35 80 98.2904 102 10

15 25 37 40 59 35 81 10 103 20

16 25 38 70 60 45 82 12 104 20

17 155 39 100 61 45 83 20 105 40

18 155 40 120 62 45 84 200 106 40

19 155 41 156.791 63 185 85 325 107 50

20 155 42 220 64 185 86 440 108 30

21 68.9 43 440 65 185 87 13.9066 109 40

22 68.9 44 560 66 185 88 24.4992 110 20

Cost ($/hr) 197988.16
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BLPSO. The optimal cost is 9417208.19 $/hr. It is seen that
the generations satisfy the generation limit constraints.

The results obtained by BLPSO are compared with those
obtained by CLPSO, SLPSO, New-PSO [67], PSO-TVAC
[67], HS [68], HHS [68], BBO [41], DE/BBO [41], MsEBBO
[35], and IDE [28], as shown in Table 9. It can be seen that
the minimum and mean fuel costs obtained by BLPSO are
the least of all the methods. The average computation time
of BLPSO is 2.89 s, smaller than all methods, with the excep-
tion of CLPSO. The convergence characteristics obtained by
CLPSO, SLPSO, and BLPSO are plotted in Figure 4.

5.5. Test System 5. In order to study the performance of the
BLPSO on high-dimensional ED problems, a large system
with 110 generators is considered. The demand of this system
is 15,000MW, and the system data are taken from [69, 70]
and listed in Table S5. Table 10 presents the optimal
generation values and cost obtained by BLPSO. The
optimal cost is 197988.16 $/hr.

Table 11 shows the comparison of the statistical results of
BLPSO and other algorithms, including CLPSO, SLPSO, SAB
[71], SAF [71], SA [71], ORCCRO [72], BBO [72], DE/BBO
[72], and OIWO [69]. The minimum, mean, and maximum
fuel costs obtained by BLPSO are the least of all the methods.
Meanwhile, the smaller value of standard deviation indicates
that BLPSO is consistent. The average computation time of
BLPSO is also very small compared with other methods.
The convergence characteristics obtained by CLPSO, SLPSO,
and BLPSO are presented in Figure 5.

6. Conclusion

This paper has presented a biogeography-based learning par-
ticle swarm optimization (BLPSO) for solving the economic
dispatch (ED) problems, which is nonlinear, nonconvex,
and discontinuous in nature, with numerous equality and
inequality constraints. In the BLPSO, a biogeography-based
learning strategy is used to generate the learning exemplar
for each particle, in which particles learn more from high-
quality particles. The biogeography-based learning strategy
can provide a more effective balance between exploration
and exploitation for the BLPSO.

The BLPSO was applied to five test systems with various
constraints such as power balance, POZs, and ramp-rate
limits. Transmission losses have also been included in some
systems. The experimental results show that the fuel costs
obtained by BLPSO are either comparable or lower than
those reported by other methods. The application to a 110-
unit system shows that the BLPSO is also capable of handling
high-dimensional ED problems.

In the future, we are planning to extend the BLPSO to
solve other more complicated ED problems, such as
dynamical ED problems and environmental ED problems.
We are also interested in applying the BLPSO to other
optimization problems in energy field such as solar photo-
voltaic modeling [73].

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 5: Convergence characteristics for test system 5.

Table 11: Comparison of fuel costs and statistical results for test system 5 (110-unit system, PD = 15,000 MW).

Algorithm Minimum cost ($/h) Mean cost ($/h) Maximum cost ($/h) Standard deviation Time (s)

SAB [71] 206912.9057 207764.73 NA NA NA

SAF [71] 207380.5164 207813.37 NA NA NA

SA [71] 198352.6413 201595.19 NA NA NA

ORCCRO [72] 198016.29 198016.32 198016.89 NA 0.15

BBO [72] 198241.166 198413.45 199,102.59 NA 115

DE/BBO [72] 198231.06 198326.66 198,828.57 NA 132

OIWO [69] 197989.14 197989.41 197989.93 NA 31

CLPSO 198137.7 198200.37 198257.56 27.88 23.43

SLPSO 198240.4 198351.62 198602.16 96 22.59

BLPSO 197988.16 197988.18 197988.19 0 22.81

NA means the data are not available in the literature.
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