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Abstract

In this short survey article, I discuss Bell’s theorem and some strategies that
attempt to avoid the conclusion of non-locality. I focus on two that intersect
with the philosophy of probability: (1) quantum probabilities and (2) super-
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go theorems about quantum mechanics but are also of general philosophical
interest.
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1 Introduction

As early as the beginning of quantum mechanics, there have been numerous at-
tempts to prove impossibility results or “no-go” theorems about quantum mechan-
ics. They aim to show that certain plausible assumptions about the world are
impossible to maintain given the predictions of quantum mechanics, which can
and have been empirically confirmed. Some of them are more significant than
others. Arguably, the most significant is J. S. Bell’s (1964) celebrated theorem of
non-locality: given plausible assumptions, Bell shows that, in our world, events
that are arbitrarily far apart can instantaneously influence each other.

Bell’s theorem is most significant because its conclusion is so striking and its
assumptions so innocuous that it requires us to radically change how we think
about the world (and not just about quantum theory).

Before Bell’s theorem, the picture we have about the world is like this: physical
things interact only locally in space. For example, a bomb dropped on the surface
of Mars will produce immediate physical effects (chemical reactions, turbulences,
and radiations) in the immediate surroundings; the event will have (much milder)
physical effects on Earth only at a later time, via certain intermediate transmission
between Mars and the Earth. More generally, we expect the world to work in
a local way such that events arbitrarily far apart in space cannot instantaneously
influence one another. This picture is baked into classical theories of physics such
as Maxwellian electrodynamics and (apparently) in relativistic spacetime theories.

After Bell’s theorem, that picture is untenable. Bell proves that Nature is non-
local if certain predictions of quantum mechanics are correct. Many experimental
tests (starting with Aspect et al. (1982a) and Aspect et al. (1982b)) have been per-
formed. They confirm over and over again the predictions of quantum mechanics.
Hence, we should have extremely high confidence in the conclusion that Nature is
non-local: events that are arbitrarily far apart in space can instantaneously influence
each other. (In the relativistic setting, it amounts to the conclusion that events that
are space-like separated can influence each other.)

However, not everyone is convinced. In fact, there are still disagreements about
what Bell proved and how general the result is. Some disagreements can be traced
to misunderstandings about the assumptions in the proof. Others may be due to
more general issues about scientific explanations and the standards of theory choice.

There are many good articles and books about Bell’s theorem. (For example, see
Maudlin (2011, 2014), Goldstein et al. (2011), and Myrvold and Shimony (2019).) In
this short article, I would like to focus on two strategies that attempt to avoid the
conclusion of non-locality. They are about (1) quantum probabilities and (2) super-
determinism, both having to do, in some ways, with the philosophy of probability.
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First, I argue that solving the problem by changing the axioms of classical probability
theory is a non-starter, as Bell’s theorem only uses frequencies and proportions that
obey the rules of arithmetic. Moreover, this point is independent of any interpreta-
tion of probability (such as frequentism). Second, I argue that a super-deterministic
theory may end up requiring an extremely complex initial condition, one that de-
serves a much lower prior probability than its non-local competitors. Since both
issues can be appreciated without much technical background and have implica-
tions for other subfields of philosophy, I will try to present them in a non-technical
way that is accessible to non-specialists. The lessons we learn from them also apply
to the more recently proven theorem (2012) of Pusey, Barrett, and Rudolph about
the reality of the quantum state, which is in the same spirit as Bell’s theorem. (Their
theorem says that, under plausible assumptions, quantum states represent states of
reality rather than merely certain knowledge about reality.)

2 Bell’s Theorem

There are many versions of Bell’s theorem and Bell inequalities. For illustration,
in this section, we discuss a version of them by adapting a simple example involv-
ing perfect correlations discussed in Maudlin (2011)§1. (Another simple example,
involving perfect anti-correlations, can be found in Albert (1992)§3.)

Under certain physical conditions, the calcium atom can emit a pair of photons
that travel in opposite directions: left and right. We have labs that can realize such
conditions. In this situation, we can set up polarizers on the left and on the right, as
well as devices on both sides that detect photons that happen to pass through the
polarizers. If a photon is absorbed by a polarizer, then the photon detector placed
behind the polarizer will detect nothing. (Here we assume that the photon detectors
are 100% reliable. The idealization can be relaxed, and analyses have been done to
show that the differences do not change the conclusion we want to draw.) Further,
we can arrange the polarizers to be pointing in any direction on a particular plane.
Each direction is representable by a number between 0 and 180, corresponding to
the clockwise angle of the polarizer away from the vertical direction. Since either
polarizer receives exactly one incoming photon, we say that the pair of photons
agree if they either both passed or both got absorbed by the polarizers (so the
photon detectors on both sides clicked or neither did); they disagree if one passed
but the other got absorbed (so exactly one photon detector clicked).

When we carry out the experiments, say, by using 100,000 pairs of photons,
quantum mechanics predict that we would observe the following:

• Prediction 1: If the left polarizer and the right polarizer point in the same
direction, 100% of the pairs agree.

• Prediction 2: If the left polarizer and the right polarizer differ in direction by
30 degrees, 25% of the pairs disagree.
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• Prediction 3: If the left polarizer and the right polarizer differ in direction by
60 degrees, 75% of the pairs disagree.

(The situation is a bit simplified. In actual experiments, the empirical frequencies
will be approximately 25% and approximately 75% respectively and will increas-
ingly approach them as we carry out more trials.) In the end, these statistics will be
shown to clash with a plausible hypothesis of locality:

Locality Events arbitrarily far away cannot instantaneously influence each other.

Bell shows that the conjunction of Locality and the predictions of quantum
mechanics leads to a contradiction. There are two parts in Bell’s argument. The
first part is based on the argument of Einstein et al. (1935), also known as the EPR
argument.

In the context of our example, the EPR argument can be summarized as follows.
First, the photon traveling to the left and the photon traveling to the right can be
separated arbitrarily far away. Second, we can always place a polarizer in the path
of the photon on the left and another in the path of the photon on the right. Third,
according to Prediction 1, if the two polarizers point in the same direction, the pair of
photons always agree, however far away they are from each other. Moreover, if we
first measure the photon on the left and find that it passed the polarizer on the left,
then we do not even need to measure the photon on the right if the polarizer on the
right points in the same direction; we know the result—it will pass the polarizer on
the right. Assume Locality: what happens to the photon on the (distant) left cannot
instantaneously influence the photon on the (distant) right. So there is already a fact
of the matter, before measurement, about the result on the right. Hence, Locality
implies that there are facts of the matter about the polarization direction of the
photon on the left and the photon on the right. In other words, their values of
polarizations are predetermined.

Here is another way to see this. Given Prediction 1, since there is no way to
“know” the directions of the two polarizers, the photons must already agree, even
inside the calcium atom, how they would react to the polarizers come what may.
That is, they must already agree whether to both pass or both get absorbed for
polarizers pointing to any particular angle. For example, they must “agree” how to
react when facing polarizers pointing at 0 degrees, when facing polarizers pointing
at 30 degrees, when facing polarizers pointing at 60 degrees, and so on. Otherwise
they would not be able to satisfy Prediction 1. However, such predetermined facts
are not included in the quantum mechanical description using a wave function. So
somehow these facts will be encoded in further parameters going beyond quantum
theory. Indeed, the EPR argument aims to show that Locality implies that quantum
mechanics is an incomplete description of Nature. (A famous example of a theory
that adds additional parameters is the de Broglie-Bohm theory, but it is manifestly
non-local in the particle dynamics. So it is not an example of the kind of local
completion of quantum mechanics that EPR look for. Nevertheless, the non-local
character of the de Broglie-Bohm theory was one of the motivations for Bell to
investigate the generality of non-locality. See Bell (1964)§1 and Bell (2001).)
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In short, what was shown by EPR and used in Part I of Bell’s argument is the
following:

Part I Locality & Quantum PredictionsÔ⇒ Predetermined Values

In Part II, Bell shows the following:

Part II Predetermined Values & Quantum PredictionsÔ⇒ Contradiction

We will see that predetermined values and quantum predictions lead to a contra-
diction with the laws of arithmetic (regarding addition, multiplication, and fraction).
Recall that there are facts of the matter about the polarization properties of the pair
of photons. But there are still two possibilities for each angle. For example, for
polarizers pointing at 30 degrees, there can be two alternatives: both pass and both
get absorbed. To simplify the example, we assume that the directions of the polar-
izers have only three choices (say, limited by the turning knobs on the devices): 0
degrees, 30 degrees, and 60 degrees. Then for each choice of the angle of polarizer,
there can be two possibilities for the pair: both pass (P) or both get absorbed (A).
For example, they may both instantiate P30, which means they will both pass if the
polarizer is pointing at a 30 degrees angle; they may both instantiate A60, which
means they will both get absorbed if the polarizer is pointing at a 60 degrees angle.
Since 23

= 8, there are exactly eight choices for the assignments of properties in the
two photons.

Eight Possible Assignments of Properties
Left Photon Right Photon Feature Percentage

(1) P0,P30,P60 P0,P30,P60 X α%
(2) A0,A30,A60 A0,A30,A60

(3) A0,P30,P60 A0,P30,P60 Y β%
(4) P0,A30,A60 P0,A30,A60

(5) P0,A30,P60 P0,A30,P60 Z γ%
(6) A0,P30,A60 A0,P30,A60

(7) P0,P30,A60 P0,P30,A60 W δ%
(8) A0,A30,P60 A0,A30,P60

To satisfy Prediction 1, different pairs of photons can choose exactly one of these
eight assignments. If a pair does not choose among these eight, then it can violate
experimental results.

The eight assignments can be put in four groups as indicated in the table. Let us
label the four groups with features X, Y, Z, and W, which we mention again in §3.
Now suppose we have a large number of pairs of photons emitted from a collection
of calcium atoms. (The larger the number, the closer empirical frequencies will
approach the predicted percentages.) Assuming Locality, each pair must adopt one
of the eight assignments listed above. Let α be the percentage of pairs that realizes
either (1) or (2); β be the percentage of pairs that realizes either (3) or (4); γ be the
percentage of pairs that realizes either (5) or (6); and δ be the percentage of pairs
that realizes either (7) or (8). By the laws of arithmetic,
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α + β + γ + δ = 100 (1)

Moreover, each percentage number must be non-negative. In particular,

γ ≥ 0 (2)

Therefore,

γ + δ + β + γ ≥ β + δ (3)

Unfortunately, this is inconsistent with the conjunction of Prediction 2 and Pre-
diction 3. According to Prediction 2, if the the angles of the polarizers on the two
sides differ by 30 degrees, then we find photon disagreement 25% of the time. We
run the large number of pairs of photons with the left polarizer pointing to 0 and
the right pointing to 30. By inspection of the table, we know that pairs realizing
assignments (1) and (2) will agree. So we know that α percent of the pairs agree.
Moreover, we know that pairs realizing assignments (7) and (8) will also agree. That
is another δ percent of pairs that agree. The only pairs that disagree will be those
realizing assignments (3), (4), (5), and (6). That is β + γ percent pairs that disagree.
Hence,

β + γ = 25 (4)

Similar considerations apply when we set the left polarizer at 30 degrees and the
right at 60 degrees. Then,

γ + δ = 25 (5)

According to Prediction 3, if the the angles of the left and the right polarizers
differ by 60 degrees, in our example that is when one is pointing at 0 and the other
60, then pairs of photons disagree 75% of the time. All disagreements come from
photon pairs that realize assignments (3), (4), (7), and (8). Hence,

β + δ = 75 (6)

From the above three equations, since 50 is smaller than 75, we can conclude that

γ + δ + β + γ < β + δ. (7)

But equation (7) is inconsistent with equation (3). We have arrived at a contradiction.
Hence, the second part of Bell’s argument is established. Together, Part I and Part II
imply:

Locality & Quantum PredictionsÔ⇒ Contradiction

Since quantum predictions have been confirmed to an extremely high degree, we
should have very high confidence that Locality is refuted and that Nature is non-
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local. (Here we take quantum predictions to be statistical—regarding empirical
frequencies—rather than probabilistic.) Of course, we have made some implicit
assumptions in the derivation:

(A) The rules of inferences obey classical logic.

(B) The laws of arithmetic are true.

(C) Frequencies and proportions obey the laws of arithmetic.

(D) There are no conspiracies in nature.

Strictly speaking, it is only by assuming (A)—(D) can we derive the contradic-
tion from Locality and Quantum Predictions. We will return to these implicit as-
sumptions in the next two sections. (Another assumption is the idea that each
experimental outcome is unique and definite, which is denied in the Many-Worlds
interpretation. See §7 for further readings. One can label this as the fifth assump-
tion. However, this assumption is arguably already contained in our description
of Quantum Predictions about empirical frequencies. If experimental outcomes are
not definite, empirical frequencies wouldn’t even make sense unless we state them
in a different way, such as by pairing certain outcomes into a single branch and
using “branch-weighted” frequencies.)

In this section, we have presented one version of Bell inequalities (in equation
(3)) and explained how it is violated by the predictions of quantum mechanics (in
equation (7)). (Bell’s own version (1964) uses perfect anti-correlation and is stated in
terms of expectation values. Clauser et al. (1969) provides a generalization of Bell’s
result that allows imperfect correlations.)

3 Quantum Probabilities to the Rescue?

Perhaps due to the significance of Bell’s theorem, there have been many attempts that
try to avoid the conclusion of non-locality by identifying some other “weak link” in
the argument. (For some examples, see Further Readings in §7.) That is surprising,
since the other assumptions are quite innocuous and a priori, as illustrated by the
previous example.

One purported “weak link” is associated with the “implicit assumptions” about
classical probability theory. One might suspect that the derivations of Bell’s theorem
require substantive assumptions about the nature of probability. Probability is
notoriously difficult to understand. Hence, there may be room to revise our classical
theory of probability given empirical data. The suggestion is that, instead of rejecting
Locality, we can modify (or generalize) the classical axioms and algebraic structure
of Kolmogorov probability theory to avoid the contradiction. (For example, see Fine
(1982a), Fine (1982b) and Pitowsky (1989).)

However, the previous example serves as a counterexample. In the argument
of §2, assumptions of classical probability theory do not even occur. Nor do they
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implicitly play any essential role. All we ever needed were proportions and how they
arithmetically interact with each other (addition, multiplication, subtraction, and
division). For example, Predictions 1, 2, and 3 are formulated in terms of percentages
of pairs of photons. The four groups of possible assignment of properties receive
percentages α, β, γ, and δ. We call them “percentages,” which may remind readers of
probabilities. But in our argument they merely represent proportions. To say that α
percent of the pairs realize property assignments (1) or (2) is to say that the number
of pairs having those properties is exactly α per 100 pairs. If we have 100,000 pairs
in total in the collection, then that amounts to 1000 × α pairs.

Since the percentages α, β, γ, and δ represent proportions, it is in their nature that
they obey the laws of arithmetic, and their bearers (property assignments (1)-(8))
obey the rules of Boolean algebra. (Tumulka (2016) makes a similar point.) The fact
that we are assuming, in the conditional proof, they have hidden properties does
not matter at all. As such, proportions obey the axioms governing how we should
count a finite number of things, which obey the Kolmogorovian axioms, which
may also govern probabilities (according to some interpretations of probability).
Nevertheless, that does not make proportions subject to various interpretational
issues as probability does. Many other concepts also satisfy Kolmogorovian axioms,
including as mass, length, and volume of finite physical objects. Neither are they
subject to the interpretational controversies surrounding the concept of probabilities.
Probability faces a wide range of interpretational puzzles, and it is controversial
what its axioms ought to be. Still, there are no similar difficulties with concepts of
mass, length, volume, frequencies, or proportions.

Why is it in the nature of frequencies and proportions to obey the laws of
arithmetic or counting finite number of things? This may seem like a question
in the philosophy of mathematics. Fortunately, we do not need to settle those
controversies to answer that question for our purposes here. The discussion about
non-classical probability spaces and Bell’s theorem is sometimes highly technical,
and different proposals have been suggested to understand violations of the rules of
Boolean algebra and Kolmogorov axioms. For our purposes we can distill the central
intuitions using the concrete example of §2. Suppose we have a large collection of
photon pairs adequately prepared. Consider four features that each photon pair
can have—X, Y, Z, and W—that are mutually exclusive and jointly exhaustive, and
consider the following propositions:

(i) The percentage of photon pairs having exactly one of the four features is 100%.

(ii) The percentage of photon pairs having feature Z is non-negative.

(iii) The percentage of photon pairs having either Y or W is the sum of the per-
centage of photon pairs having Y and the percentage of photon pairs having
W.

(iv) The sum of percentage of photon pairs having the property (Y or Z) and the
percentage of photon pairs having the property (Z or W) is well defined—a
non-negative number.
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Can these propositions be false? In particular, can they fail in the following ways?

(i’) The percentage of photon pairs having exactly one of the four features is 115%.

(ii’) The percentage of photon pairs having feature Z is −5%.

(iii’) The percentage of photon pairs having either Y or W is less than the sum of
the percentage of photon pairs having Y and the percentage of photon pairs
having W.

(iv’) The sum of percentage of photon pairs having the property (Y or Z) and the
percentage of photon pairs having the property (Z or W) does not exist.

It is a priori that propositions (i)—(iv) cannot be false while propositions (i’)—(iv’)
cannot be true. Propositions such as (i)—(iv) are sufficient to prove the violation of
a Bell inequality (equation (3)) in §2. They are not dependent on any substantive
theory or axioms about probabilities, because they are about proportions and not
about probabilities. We do not need to appeal to assumptions about the nature of
probabilities to prove that Nature is non-local.

A potential misunderstanding is that, to say the thing we just said, we must
be endorsing a particular interpretation of probability—frequentism, according to
which probabilities boil down to long-run frequencies. But that is a mistake. We can
make judgments about those eight propositions without endorsing any particular
interpretation of probability. To evaluate them, we do not have to settle the debate
among subjectivism, frequentism, and the propensity interpretations. For example,
one can be a subjective Bayesian about probabilities and still accept that frequencies,
percentages, and proportions obey propositions (i)—(iv). One can even adopt the
view that the actual axioms governing real probabilities are non-Kolmogorovian and
involving non-Boolean algebra without denying that frequencies and proportions
obey the rules of arithmetic. (Moreover, the actual evidence we use to support
quantum theory consists in empirical frequencies, which obviously obey the classical
probability axioms.)

However, not everyone would agree with our assessment. Fine (1982a,b) and
Pitowsky (1989) seem to suggest it remains possible to save locality by revising clas-
sical probability theory. (See Malament (2006) for a clear introduction to this project.
Feintzeig (2015) demonstrates further mathematical constraints.) The project has
led to important and beautiful mathematical results that can shed light on the math-
ematical structures of impossibility theorems. Nevertheless, if the above analysis is
correct, then the project of avoiding non-locality by revising probability axioms is
a non-starter; it cannot get off the ground, no matter how ingenious or elegant the
models of non-classical probability spaces are. No matter what changes we make
to classical probability theory, they do not affect the conclusion of non-locality. The
argument for non-locality does not rely on classical probability theory. We only
need to use rules for counting relative frequencies and proportions.

Quantum probability (as an alternative to classical probability) is related to
quantum logic (as an alternative to classical logic). Some people who want to keep
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classical logic may nonetheless be open to revise the axioms of probability to make
room for locality. But as we just discussed, it is the axioms governing frequencies
and proportions that need to be revised if one goes that route. Since they obey the
axioms of arithmetics, and since the latter are closely related to logic, it is hard to see
how to pursue this route without also revising logic in some way. (See Wilce (2017)
for a survey of quantum logic and quantum probability theory.)

Therefore, we cannot save Locality by changing the axioms governing classical
probability theory. Which probability theory is correct is an important question in
the philosophy of probability but it is irrelevant to the question whether Nature is
non-local.

4 Escape with Super-Determinism?

Another purported “weak link” in Bell’s argument is associated with the assump-
tion of statistical independence. The strategy is to allow systematic violations of
statistical independence in favor of “super-deterministic” theories. (This is some-
times labeled as “conspiratorial theories.”) In this section we will try to understand
what the strategy is and what difficulties it faces.

In §2, we assumed that the direction of the polarizer can be set independently
of the collection of incoming photon pairs. We can, for example, use a mechanical
device that randomly selects (say, based on certain digits of π) among the three
choices—pointing at 0 degrees, 30 degrees, and 60 degrees. That assumption—
statistical independence—seems fundamental to scientific experimentation. An-
other way to see it is in terms of random sampling. Given any collection of photon
pairs adequately prepared, and after the experimental set up is completed, we can
perform random sampling on the collection and obtain a sub-collection that reflects
the same statistical profile as the overall collection and any other sub-collection
so randomly chosen. That is, if the sub-collection is such that 25% of them would
disagree when pairs of photons pass through polarization filters that differ by 30 de-
grees, then the whole collection (and other randomly chosen sub-collection) would
also have that property. In other words, the choice of the sub-collections can be
made statistically independent of the experimental setup. Statistical independence
enables us to apply the conjunction of Prediction 1, Prediction 2, and Prediction 3 to
the collection as a whole (and to each sub-collection) and to deduce equations (4),
(5), and (6), from which we derive a contradiction with inequality (3).

Without assuming statistical independence, the inference is not valid. We can
construct an example in which the quantum predictions are all satisfied during
experiments but there is no contradiction. Suppose we have 100,000 photon pairs
to start with. Each photon pair realizes one of the eight assignments listed in the
table. Suppose further that α = β = γ = δ = 25. We have three experimental setups:

(A) Left polarizer at 0 degrees, right polarizer at 30 degrees.

(B) Left polarizer at 30 degrees, right polarizer at 60 degrees.
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(C) Left polarizer at 0 degrees, right polarizer at 60 degrees.

From the collection of 100,000 photon pairs, we choose three sub-collections—(a),
(b), and (c)—each with exactly 100 photon pairs. It turns out that, when we send
(a) through (A), 25% of them disagree; when we send (b) through (B), 25% of them
disagree; when we send (c) through C, 75% of them disagree. (As before, this is an
idealization. The fractions get closer to these numbers when we run the trials with
more pairs.) This can be realized in the following way. In (a), 25 pairs are of type (3)
and the rest are of type (1); in (b), 25 pairs are of type (5), and the rest are of type (1);
in (c), 75 pairs are of type (7) and the rest are of type (1). That is, sub-collection (a)
has exactly the kind of statistical profile required to be in agreement with quantum
predictions for experiment (A); sub-collection (b) for (B); and the sub-collection
(c) for (C). Hence, each sub-collection has the “right” statistical profile matching
the experimental setup it goes through, but none of them has the statistical profile
required by the conjunction of the three predictions. Moreover, none of the sub-
collections is statistically similar with any other sub-collection. Still, the outcomes
of experiments are consistent with quantum predictions. The problem is that the
sampling is not random. Somehow, the choice of which photon pairs to send to
which experimental setup is correlated with the choice of the experimental setup
itself. In this case, equations (4)—(6) do not hold for the entire collection or any
particular sub-collection, and γ + δ + β + γ is larger than or equal to β + δ without
contradicting quantum predictions. In this case, 100 ≥ 50; no contradictions exist
between outcomes of actual experiments and the assumption of Locality.

Such a violation of statistical independence would seem to require some extraor-
dinary conspiracies in Nature. Not only does this have to be true for these particular
setups, which is incredible already, we need there to be similar conspiracies for ev-
ery such experimental setup, done by anyone, anywhere, and anytime. No matter
where, when, and who to carry out the experiment, the strategy requires that no
matter what random sampling method we use, the photon pairs with the “right”
statistical profile should always find themselves at the “right” experimental setup.
The randomization can be done by a deterministic device that decides, based on
the digits of π, which photon pair goes into which sub-collection. The randomiza-
tion can also use other mundane methods, such as the rolling of dice, flipping of
coin, and the English letters in Act V of Hamlet. No matter what randomization
method is used in experiment, the superdeterministic theory will require violations
of statistical independence in such a way that the sub-collections will be statistically
dissimilar to each other, rendering equations (4)—(6) false of each sub-collection
and the entire collection. Nature conspires to hide its locality from us.

Such extraordinary features may be difficult to achieve in any realistic physical
theories. Are there any physical theories that can do this? I am not aware of any
worked out theory at the moment. However, some initial steps have been taken
to investigate possible dynamics and toy models of superdeterminism. ’T Hooft
(2014) provides an illustration. Hossenfelder and Palmer (2020) provide an up-to-
date overview and some philosophical discussions. (Friederich and Evans (2019)
review some “retrocausal” models that use backward-in-time causal influences.)
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Superdeterminism faces many objections. An important criticism focuses on the
fact that endorsing violations of statistical independence would be bad for science
in one way or another. After all, the assumption of statistical independence is
integral to ordinary statistical inferences. Shimony et al. (1976) argue that rejecting
statistical independence would undermine the scientific enterprise of discovery by
experimentation:

In any scientific experiment in which two or more variables are sup-
posed to be randomly selected, one can always conjecture that some
factor in the overlap of the backwards light cones has controlled the
presumably random choices. But, we maintain, skepticism of this sort
will essentially dismiss all results of scientific experimentation. Unless
we proceed under the assumption that hidden conspiracies of this sort
do not occur, we have abandoned in advance the whole enterprise of
discovering the laws of nature by experimentation.

Similarly, Maudlin (2019) suggests that rejecting it would make it impossible to do
science:

If we fail to make this sort of statistical independence assumption,
empirical science can no longer be done at all. For example, the observed
strong robust correlation between mice being exposed to cigarette smoke
and developing cancer in controlled experiments means nothing if the
mice who are already predisposed to get cancer somehow always end
up in the experimental rather than control group. But we would regard
that hypothesis as crazy.

These objections based on scientific methodology seem quite compelling to many
people.

Recently, Hossenfelder and Palmer (2020) argue that there are multiple mistakes
in this type of criticism. One of the mistakes is “the idea that we can infer from
the observation that Statistical Independence is useful to understand the properties
of classical systems, that it must also hold for quantum systems. This inference is
clearly unjustified; the whole reason we are having this discussion is that classical
physics is not sufficient to describe the systems we are considering” (emphasis
original). We may have justification for applying statistical independence to classical
systems such as experimental setups involving mice and cigarette smoke. But it does
not logically entail that we have justification for applying it to quantum systems of
photons and electrons. (What kind of justification do they mean here? I think they
mean both epistemic and pragmatic justifications but the text is ambiguous.)

Their response does not seem to address the worry about scientific methodology.
Statistical independence is not the kind of principles we try to empirically justify.
Rather, it is part of the inductive principles that we presuppose in order to do
science. That is, statistical independence is a precondition for empirical investigation
by experimentation. It is not clear what would be an experiment that confirms
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or disconfirms it, and we may need to assume statistical independence to draw
conclusions from the very experiment itself. It may be impossible to empirically
justify statistical independence, but that does not suggest there is a problem for
applying it in the first place. This follows from a more general observation that even
if we cannot empirically justify induction, we are justified in using induction to learn
about the world. (See Henderson (2020) on Hume’s problem of induction.) Hence,
their response does not seem to answer the objections of Shimony et al. (1976) and
Maudlin (2019).

Nevertheless, their response raises an interesting possibility. It is certainly log-
ically consistent for a defender of superdeterminism to maintain that while small
microscopic systems (such as electrons and photons) violate statistical indepen-
dence, large macroscopic systems (such as mice) do not violate it for all practical
purposes. That is, we may have reasons to think that the violations of statistical
independence may be suppressed when we reach the macroscopic level. Hence, it
is logically consistent for one to claim that statistical independence is false about
microscopic systems but for all practical purposes true of macroscopic systems.
In short, in ordinary situations when we experiment with mice, we can still use
statistical independence; but we should not assume statistical independence when
experimenting with electrons and photons (and other microscopic systems).

That is of course logically consistent. But we may ask what reasons do we have
for thinking that it is true in the superdeterministic theory? One might appeal
to decoherence as the mechanism for suppressing certain quantum effects from
manifesting in the macroscopic domain (for more on decoherence, see Crull’s article
in this volume). But decoherence does not fit naturally in a superdeterministic
theory. For one thing, decoherence is primarily about the behaviors of quantum
states (represented by wave functions). However, typically a superdeterministic
theory (such as the type favored by Hossenfelder and Palmer (2020)) does not
regard the quantum states to be objective and does not postulate quantum states in
the fundamental ontology. Moreover, it is unclear how decoherence can suppress
violations of statistical independence. Decoherence explains the dynamical features
that certain “branches” of the wave function do not interfere much with each other.
Although the possibility is interesting, there is much work to be done to demonstrate
its plausibility in a superdeterministic framework.

I would like to raise a different worry about superdeterminism. We may worry
that superdeterminism of this sort is unlikely to result in a simple fundamental
theory. (Here, by “unlikely” I mean unlikely in the epistemic sense: unlikely given
what we know so far and absent any explicit empirically adequate models that show
otherwise.) The constraints on empirical frequencies are so severe that it is hard
to see how it can be written down in any simple formula. (See Kronz (1990) for a
related argument. See Lewis (2006) for a discussion of Kronz’s argument as well
as a new “measurement problem” for superdeterminism.) In order for the local
theory to be compatible with the predictions of quantum mechanics, it would have
to radically constrain the state space of the local theory so that only a very small
class of histories will be allowed. (Such a constraint can be a joint effect of some
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lawlike initial conditions and the dynamical laws.) Not all arrangements of the local
parameters will be permitted—otherwise one cannot guarantee perfect agreement
with quantum predictions. What kind of constraints? They will have to encode as
much information as the setup and non-local correlations. For example, they would
need to entail that an experiment done today using randomization method based
on the digits of π will somehow still result in statistically dissimilar sub-collections
in such a way that produce the desired outcomes of experiments done at arbitrarily
far away locations. Similarly it will be the case for randomization based on the
letters of Act V of Hamlet, the Chinese characters in the Analects, or the hexagrams of
I Ching. No matter what randomization method we choose, the superdeterministic
mechanism must ensure that the chosen sub-collection is somehow just the right
one for a particular experimental setup. Since the randomization methods seem to
have nothing in common, it is hard to see how the constraints on initial conditions
and dynamics can be simple at all. These give us reasons to think that they will be
quite complicated.

A defender of superdeterminism may reply that there is a simple formula: just
write down the usual Born rule of quantum mechanics and demand that the su-
perdeterministic theory more or less respects that. It is not clear how to state the
Born rule as a simple law in terms of objects accepted on superdeterminism. As
mentioned earlier, typically a superdeterministic theory (such as the type favored by
Hossenfelder and Palmer (2020)) does not postulate quantum states (represented by
wave functions) in the fundamental ontology. After all, a non-separable quantum
state may lead to non-local dynamics. However, the Born rule is stated in terms of
the quantum state. Respecting the Born-rule statistics (or something close to it) is
certainly a nice goal when trying to construct a local superdeterministic theory with
a well-defined ontology and dynamics. The goal is simple (respect the Born rule
where it is valid), but it does not follow that the underlying theory will be simple.

Because of the lack of simplicity, the constraints we need to impose in a su-
perdeterministic theory will not look lawlike. Hence, such a theory can be quite
complex and difficult to compete with other candidate theories that are far simpler.
For example, ’T Hooft (2014)’s Cellular Automaton Interpretation requires the se-
lection of an initial state of the universe, which may be extremely detailed and not
at all simple. Here I take simplicity as a hallmark of fundamental laws of nature.
A superdeterministic theory will likely postulate an extremely complicated initial
condition (or complicated dynamical laws) that looks nothing like a fundamental
law.

Hence, this problem of superdeterminism boils down to a violation of a familiar
constraint on fundamental laws of nature. A fundamental law should not be too
complex. When we evaluate competing theories we are judging them (in part) by
the relative complexities of the fundamental laws. Among competing observation-
ally equivalent theories, the more complex a theory is the lower prior probability we
should assign to it. This corresponds to an objective Bayesian way of thinking about
probabilities. However, complexity and simplicity come in degrees. Now, simplic-
ity and complexity are notoriously vague. But they are indispensable theoretical
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tools when we confront observationally equivalent theories. For our purpose here,
one can plug in any reasonable notion of simplicity and complexity for evaluating
scientific theories.

In fact, some good physical theories do constrain initial states in order to explain
certain wide-spread regularities. For example, in a universe with wide-spread tem-
poral asymmetries, we postulate a low-entropy initial condition. That is now called
the Past Hypothesis (Albert (2000)). We ought to subject the Past Hypothesis to the
constraint of simplicity because it is a candidate fundamental law. It is a candidate
fundamental law because it underlies many nomological generalizations such as
the Second Law of Thermodynamics and does not seem to be further explained
by the dynamics. (This will no longer be true if Carroll and Chen (2004)’s model
can successfully explain time’s arrow.) Fortunately, we have reasons to think that
the Past Hypothesis is not extremely complex. Indeed, it can be specified in terms
of simple macroscopic variables (the values of the pressure, density, volume, and
energy of the early universe). In certain frameworks, it can even be specified in sim-
ple microscopic variables, such as Penrose (1979)’s Weyl Curvature Hypothesis or
Ashtekar and Gupt (2016)’s initial condition for Loop Quantum Cosmology. In the
density-matrix-realist framework, the Past Hypothesis can be replaced by the Initial
Projection Hypothesis (Chen (2018)) that pins down a unique quantum microstate
of the universe. It is interesting that a simple postulate about the initial condition of
the universe can explain the wide-spread temporal asymmetries. Part of the reason
is due to the structure of state space: there is an asymmetry of macrostate volumes
(or dimensions) that emerges as a result of simple dynamics; it is part of the an-
swer to the problem of time’s arrow. Moreover, the Past Hypothesis explanation is
perfectly compatible with statistical independence.

We have good reasons to think that superdetermistic theories, in contrast, will
postulate something much more complicated than the Past Hypothesis as an initial
condition. If such a superdeterministic theory is devised, we should also interpret
its initial condition as a fundamental law of nature. (At the very least, it should be
given a fundamental axiomatic status in the theory since it is not derived from other
laws of the theory.) The wide-spread violations of Bell-type inequalities cry out for
explanations. In such a superdeterministic theory, the initial condition is supposed
to do the work of explaining why arbitrarily far away events are correlated with
each other. We see no reason at all why such a theory (and especially its constraint
on the state space) will be simple enough. At least we do not have any evidence that
it will be simpler than the competing non-superdeterministic and non-local theories
that are already on the market, such as Bohmian mechanics and GRW theory (see
the survey articles by Tumulka and Lewis in this volume).

Hence, there are significant differences between the superdeterministic theory
that constrains its initial states to explain Bell-type correlations and a regular quan-
tum theory that constrains its initial states (by the Past Hypothesis) to explain
temporal asymmetries. However, these are differences in degrees and not of kind.
If a superdeterministic theory aims to recover all quantum predictions, then it would
be observationally equivalent to Bohmian mechanics and more or less equivalent to
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some versions of GRW theory. But we have good reasons to think that Bohmian me-
chanics and GRW theory are far simpler than the superdeterministic theory. Hence,
the superdeterministic theory should receive much lower prior probability than
either Bohmian mechanics or GRW theory.

Nevertheless, that does not mean we should assign 0 credence to superdeter-
minism. Instead, I think we should follow Bell (1977) and be open-minded in a
qualified way:

Of course it might be that these reasonable ideas about physical ran-
domizers are just wrong – for the purpose at hand. A theory may appear
in which such conspiracies inevitably occur, and these conspiracies may
then seem more digestible than the non-localities of other theories. When that
theory is announced I will not refuse to listen, either on methodological
or other grounds. (my emphasis)

If one constructs an empirically adequate superdeterministic theory that is simpler
than a non-local theory such as Bohmian mechanics or GRW theory, we should be
be open to assign much higher credence in it. At the moment, no such theory is
available.

5 Conclusion

In this short survey article, I introduced Bell’s theorem by discussing a simple
example. I focused on two strategies that attempt to avoid the conclusion of non-
locality: (1) changing the axioms of classical probability theory and (2) embracing
superdeterminism and allowing systematic violations of statistical independence.
Both have to do in some way with the philosophy of probability. Neither seems
promising. Nevertheless, understanding these ideas can help us come to a deeper
understanding of Bell’s theorem, its significance, and the relevance (or irrelevance)
of the nature of probability.

6 Note Added

The article was completed in July 2020. Since then, an admirably clear article written
by G. S. Ciepielewski, E. Okon, and D. Sudarsky (2020) has been posted on arXiv.
Here I comment on some of its features that are relevant to the point I made in
§4. They present a superdeterministic model that exactly reproduces the quantum
predictions with a set of strikingly simple dynamical laws and initial condition laws.
The theory simulates the whole universe locally, by adding a copy of the universe (an
internal space) at each point in physical space, and by stipulating a “pre-established
harmony” that at t0 the copies of the universe look exactly the same at different
points in physical space. How things move in physical space derive from how
things move in the internal spaces. In the internal spaces, things move according
to Bohmian dynamics. Since each internal space occupies only a point in physical
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space, the fundamental dynamics is local from the perspective of physical space. As
the authors acknowledge, their model shares features with Leibniz’s Monadology.
Hence, I think it is appropriate to call it Leibnizian quantum mechanics (LQM).

(More precisely, the idea of LQM is to (1) take a Bohmian universe of N particles
moving in physical space represented by R3, (2) at each point x in physical space
add an internal “configuration space” ofR3N, (3) replace the universal wave function
in Bohmian mechanics with a continuous infinity of wave functions, each defined
separately in an internal space and each obeying the Schrödinger equation, (4)
remove the N particles in physical space from the fundamental ontology, (5) in
each internal space, add a point representing the actual configuration in the internal
space, whose history depends on the wave function defined in the internal space
via a guidance equation, (6) specify a mass density in physical space from the
configurations in the internal spaces, and (7) define a simple set of initial condition
laws for the “pre-established harmony”: the initial configurations are the same in
all internal spaces and the initial wave functions are the same in all internal spaces,
which can be expressed by two simple differential equations.)

The authors themselves acknowledge that their model is not a serious competitor
to realist non-local quantum theories such as standard Bohmian mechanics. Nev-
ertheless, we may wonder what the principled grounds are for its rejection. First,
suppose we understand each internal space of LQM as representing the configura-
tion space of some internal 3-dimensional space at a point in physical space. Then,
“inside” each internal space, there are N particles moving according to the usual
Bohmian dynamics. If Alice lives in a world described by LQM, there are infinitely
many exact copies of her, of which all except one are made out of particles moving
in internal spaces. Hence, if Alice’s self-locating credence is not too biased towards
the exceptional one (that she is made out of particles moving in physical space), she
would reason that most likely she lives in an internal space, whose dynamics is non-
local. Second, it may be unclear what the fundamental physical space of LQM is.
One could stipulate that it is just the physical space. However, if one is sympathetic
to Albert (1996)’s point that it is something to be inferred and not stipulated, one
runs into a difficulty. In the standard Bohmian case, one can adopt Chen (2017)’s
criterion and infer that the fundamental physical space is the 3-dimensional physical
space. But in LQM, Chen’s criterion suggests it is the internal 3-dimensional spaces
that should be regarded as physically fundamental, since it is the smallest space that
allows a natural definition of the “multi-field.” Hence, on some conception, inside
the physically fundamental spaces, the dynamics is still non-local.

Finally and most importantly, even though LQM does not require overly com-
plex initial condition laws or dynamical laws, its ontological additions make it much
more complex than standard versions of Bohmian mechanics and GRW theory. LQM
requires the addition of infinitely many more “universes” in addition to the phys-
ical space (and to whatever other standard internal spaces we need to postulate).
The strictly additional universes, though “small,” are exact copies of the physical
space including all of its minute details. Unlike the “emergent” universes in the
Everettian many-worlds interpretation, the infinitely many universes in LQM have
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a fundamental status. However, there is no such need to enlarge the ontology on
standard Bohmian mechanics or GRW. The only advantage of a superdeterministic
theory is its locality, which could be an advantage for seeking a fully relativistic the-
ory. Unfortunately, in the case of LQM, it is local but it still requires a preferred rest
frame, which disqualifies it from being fully relativistic. Locality without relativity
does not compensate for the increase in complexity. The complexity of LQM lies
not in its “nomology” (laws) but in its ontology. Hence, LQM is not an empirically
adequate theory that is overall simpler and more attractive than a non-local theory
such as Bohmian mechanics or GRW theory. The final point of §4 still stands.

Nevertheless, LQM is a rare example of an explicit superdeterministic model
of the universe that reproduces the exact predictions of quantum mechanics. It
adds a great deal of clarity for understanding the relative costs and benefits of
maintaining locality and rejecting statistical independence. One may try to avoid
complicating the laws by complicating the ontology instead; but either way one has
to complicate some part of the theory. That could well be a generic feature of any
superdeterministic theory that attempts to avoid the charge of non-locality.

7 Further readings

For discussions of the issue of “realism” in Bell’s proof, see T. Norsen, “Against
‘realism”’, Foundations of Physics, 37(3):311-340, 2007, T. Maudlin, “What Bell did”,
Journal of Physics A: Mathematical and Theoretical, 47(42):424010, 2014, and R. Tu-
mulka, “The assumptions of Bell’s proof”, in M. Bell and S. Gao (eds.), Quantum
Nonlocality and Reality: 50 Years of Bell’s Theorem (Cambridge University Press, 2016).
For discussions of non-locality, superluminal signaling, and relativistic invariance,
T. Maudlin’s Quantum non-locality and relativity: Metaphysical intimations of modern
physics (Wiley, 2011) is a landmark monograph on the topic; for collapse models that
demonstrate the compatibility of Lorentz invariance and non-locality, see R. Tu-
mulka, “A relativistic version of the Ghirardi-Rimini-Weber model”, Journal of Sta-
tistical Physics, 125(4): 821-840, 2006, and D. Bedingham et al., “Matter density and
relativistic models of wave function collapse”, Journal of Statistical Physics, 154(1-2):
623-631, 2014. For discussions of locality and non-locality in the many-worlds inter-
pretation of quantum mechanics, see D. Wallace, The Emergent Multiverse: Quantum
theory according to the Everett interpretation (Oxford University Press, 2012), and V.
Allori et al., “Many worlds and Schrödinger’s first quantum theory”, British Journal
for the Philosophy of Science, 62(1):1-27, 2010. For discussions of parameter indepen-
dence and outcome independence, see J. P. Jarrett, “On the physical significance of
the locality conditions in the Bell arguments”, Noûs, 18(4) 569-589, 1984, A. Shimony,
“Search for a worldview which can accommodate our knowledge of microphysics”,
in J. T. Cushing and E. McMullin (eds.), Philosophical Consequences of Quantum Theory
(University of Notre Dame Press, 1989), 62-76, R. Healey, “Chasing quantum causes,
how wild is the goose?” Philosophical Topics, 20(1):181-204, 1992, and T. Maudlin’s
Quantum non-locality and relativity: Metaphysical intimations of modern physics, Ch.4.
For discussions of causation and causal explanations, see J. S. Bell, “Bertlmann’s
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socks and the nature of reality,” Le Journal de Physique Colloques, 42(C2): C2-41, 1981,
M. L. Redhead, “Nonfactorizability, stochastic causality, and passion-at-a-distance”,
in J. T. Cushing and E. McMullin (eds.), Philosophical Consequences of Quantum The-
ory (University of Notre Dame Press, 1989), 145-153, R. Healey, “Chasing quantum
causes, how wild is the goose?”, and T. Maudlin’s Quantum non-locality and relativ-
ity: Metaphysical intimations of modern physics, Ch.5. For a survey of experimental
tests and certain loophole-free tests of Bell’s inequalities, see §4-§5 of W. Myrvold
and A. Shimony, “Bell’s theorem”, Stanford Encyclopedia of Philosophy (2019). For a
discussion of related matters from a relativity-centered perspective, see Chapter 2d
by W. Myrvold in this volume.
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