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An increasing number of users have been attracted by location-based social networks (LBSNs) in recent years. Meanwhile,
user-generated content in online LBSNs like spatial, temporal, and social information provides an ever-increasing chance
to study the human behavior movement from their spatiotemporal mobility patterns and spawns a large number of
location-based applications. For instance, one of such applications is to produce personalized point of interest (POI)
recommendations that users are interested in. Different from traditional recommendation methods, the recommendations in
LBSNs come with two vital dimensions, namely, geographical and temporal. However, previously proposed methods do not
adequately explore geographical influence and temporal influence. Therefore, fusing geographical and temporal influences for
better recommendation accuracy in LBSNs remains potential. In this work, our aim is to generate a top recommendation
list of POIs for a target user. Specially, we explore how to produce the POI recommendation by leveraging spatiotemporal
information. In order to exploit both geographical and temporal influences, we first design a probabilistic method to initially
detect users’ spatial orientation by analyzing visibility weights of POIs which are visited by them. Second, we perform
collaborative filtering by detecting users’ temporal preferences. At last, for making the POI recommendation, we combine the
aforementioned two approaches, that is, integrating the spatial and temporal influences, to construct a unified framework. Our
experimental results on two real-world datasets indicate that our proposed method outperforms the current state-of-the-art POI
recommendation approaches.

1. Introduction

With the development of location acquisition and wireless
communication technologies, location-based social networks
(LBSNs) like Foursquare (https://foursquare.com/), Gowalla
(http://gowalla.com/), and Facebook Places (http://www.
facebook.com/about/location/) have been growing rapidly.
Because a location dimension is added to traditional social
networks, users can easily share their location and experi-
ence about the point of interests (POIs) through check-in
behaviors (see Figure 1 for an example), along with creating
the opportunity to make new friends or get better recom-
mendations. For instance, a user can use a mobile phone

to leave comments regarding a hotel on an online social
site. Other users can refer to the comments when they visit
the hotel in a later time. In a way, it expands these users’
social networks.

Unprecedented large-scale check-in data, which describes
a user’s mobile behavior in spatial, temporal, and content
aspects, provides us with opportunities to design absorbing
services to facilitate users’ travels and social interactions [1].
POI recommendation, one of such services, aims at recom-
mending new POI (point of interest) to users who have not
visited them before according to their personal preferences.
Several methods are proposed for POI recommendation. Ye
et al. recommended POIs using memory-based methods
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[2]. Cheng et al. improved the scalability leveraging model-
based methods [3–5]. Zhang et al. recommended each user
a list of restaurants by exploring users’ personal static
check-in preferences through geographical check-ins [6].
Considering social friends who tend to have similar check-
in behavior, some other researchers leverage the explicit
social friendships on LBSNs to improve location recom-
mendation services [7–9]. Among existing works, the tem-
poral patterns of a user’s check-in behaviors have not been
explored in depth.

Yuan et al. pointed out users’ activities are often time-
oriented [10]; that is, users’ mobile behavior exhibits vital
temporal patterns on LBSNs and is highly relevant to the
location property [11]. For example, a user may regularly
go to the office in the morning, go to a restaurant for lunch
at noon, and go to a pub at midnight. Therefore, the recom-
mendation results should be influenced by time. So far, some
researches consider the temporal influence when users visit
locations on their check-in behaviors, but they cannot sug-
gest the successive time for users to visit a recommended
POI. For instance, users present considerably different pat-
terns during weekdays and weekends. The temporal check-
in preferences of users to locations are reflected by these
weekday and weekend patterns [12]. Usually, most of the
researches make time-aware location recommendations by
suggesting properly visiting time on weekdays or weekends.
A few researches are based on the successive time.

In this paper, we focus on the problem of spatiotempo-
ral aware POI recommendation, namely, exploiting spatial
and temporal for POI recommendation, which aims at
returning a set of POIs for a user to visit at a specified time
in a day. We believe that this is a natural and useful exten-
sion to the conventional POI recommendation problem.
However, it is challenging and crucial to predict where a
man will visit at a given time point with complex temporal
and spatial information.

To exploit both geographical and temporal influences
for spatiotemporal aware POI recommendation, we propose
an approach incorporating spatial influence and temporal
influence. First, in order to exploit the spatial behavior, we
compute the user spatial orientation through the check-
in history. The simple method is to count the number of
visits during F-checkin (FC)/U-checkin (UC) and recom-
mend POIs based on the user’s spatial orientation. How-
ever, not all the POIs are the same in their impacts. We

further adopt a more effective model to compute the user
spatial orientation. Second, to exploit the temporal behav-
ior in POI recommendations, we also show a method inte-
grating temporal information. Intuitively, two users are
more likely to go to homologous POIs at the same time
if they show analogous temporal patterns. Thus, we perform
collaborative filtering by fusing the user’s temporal predilec-
tion to POIs. At last, for making the POI recommendation,
we combine the aforementioned two approaches, that is,
integrating the spatial and temporal preferences, to construct
a unified framework.

In our experiments on two real-world datasets, the pro-
posed method significantly outperforms state-of-the-art
algorithms. The major contributions of this paper are sum-
marized as follows:

(i) We focus on a new spatiotemporal aware POI rec-
ommendation problem, which aims at recommend-
ing specific POIs for a user.

(ii) We denote the concept behind FC/UC-oriented
users and present a probabilistic model to compute
such spatial alignments.

(iii) We develop POI recommendation methods that
exploit the two kinds of influences, the temporal
influence and the spatial influence. Moreover, we
fuse the spatial and temporal influences with a
framework to make the spatiotemporal aware POI
recommendation.

(iv) We evaluate the proposed POI recommendation
method by comprehensive experiments on two
real-world LBSN datasets collected from Foursquare
and Gowalla, respectively. Experimental results
show that our method outperforms the state-of-
the-art methods in POI recommendation.

The remaining of this paper is organized as follows: we
first introduce the preliminaries on POI recommendation
and denote the task of POI recommendation in Section 2.
We next present a more effective model computing the user
spatial orientation in Section 3. Then, we show an approach
incorporating temporal influence to exploit the temporal
behavior in POI recommendations in Section 4. We report
our experiments and results in Section 5, discuss related work
in Section 6, and conclude the study in Section 7.
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Aalborg, DK October 1, 2015, via Foursquare for iPhone

Figure 1: An example of check-in.
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2. Preliminaries and Problem Definition

In this section, we denote some important concepts and the
research problem of this paper.

2.1. Notation Definitions. In this work, we need to consider
the following entities: a set of LBSN users U = u1, u2,… ,
un , a set of locations (or POIs) L = l1, l2,… , lm , a set
of check-ins of all users visiting all locations in a LBSN
C = <ui, li, ti >

∣C∣
i , where cui ,li ,ti = <ui, li, ti > (also called

check-in or visit) describes user ui visiting location li at time
ti. Table 1 summarizes the key symbols used in this paper.

2.2. Problem Statement

Definition 1 (check-in). A check-in is a trituple <u, l, t >
which represents user u ∈U visiting location l ∈ L at a given
time t. Here, U and L are the sets of users and locations in
a LBSN, respectively.

Definition 2 (check-in set). A check-in set C = <ui, li,
ti >

∣C∣
i is a set of check-ins of all users visiting all locations

in a LBSN, where C denotes the number of check-ins in C.

Definition 3 (F-checkin). F-checkin FC = <ui, li, ti >
∣F∣
i is a

set of check-ins, where the location li of each check-in is
familiar to user ui and F denotes the number of check-
ins in C. Here, a location li is considered familiar to user ui
if one of the following two cases holds. Given a time-spent
ratio Δt and a check-in number n, li is familiar regarding Δ
t and n, if (1) TFu li ≥ Δt, namely, the time spent of u to li
is at least Δt and (2) the number of check-ins of u to li is at
least n.

Formally, we denote Du li as the set of days on which u
check in at li. By Du, we denote all the days on which user u
check in at any place. We say that the time spent of u at li is

the ratio TFu li = Du li / Du . Here, the larger the ratio, the
more familiar the user is with the location li.

Definition 4 (U-checkin). U-checkin UC = <ui, li, ti >
∣U ∣
i is

a set of check-ins, where the location li of each check-in is
unfamiliar to user ui and U denotes the number of check-
ins in C. Here, a location li is considered unfamiliar to user
ui if one of the following two cases holds. Given a time-
spent ratio Δt and a check-in number n, li is unfamiliar
regarding Δt and n, if (1) TFu li < Δt, namely, the time
spent of u to li is less than Δt or (2) the number of check-
ins of u to li is less than n.

Definition 5 (POI spatial orientation). We define each l j
(l j ∈ L) has a spatial orientation denoted as loj which is the
margin value ( −1, +1 ) between its probabilities to be visited
between F-checkin and U-checkin.

loj =
WF

j

N j
−
WU

j

N j
, 1

where WF
j and WU

j define the number of visits at l j between
F-checkin and U-checkin. Nj is the total number of visits.
If loj is more than zero, it will indicate an alignment toward
F-checkin, and if it is less than zero, it will show l j is visited
more during U-checkin.

Definition 6 (user spatial orientation). We denote that each
ui (ui ∈U) has a spatial orientation defined as uoi which is
the margin value ( −1, +1 ) between probabilities of her
F-checkin and U-checkin visits.

uoi = AvgFi −AvgUi , 2

where AvgFi and AvgUi are probabilities for ui to visit
locations during F-checkin and U-checkin, respectively.
If uoi is greater than 0, it will reflect ui’s spatial preference
toward F-checkin, and if it is less than 0, it indicates that
she is more interested in U-checkin.

2.3. Problem Definition. Given a check-in set C, a user u, and
a time interval T , our aim is to detect the probability of user u
visiting location l ∈ L at time interval T , defined as P l ∣ u,
T , C , then return a top-k list of locations with the maximum
probability for u at time interval T .

3. Spatial Patterns of Users

In this section, we setup observations based on primary def-
initions. We verify that certain POIs and users are aligned
toward either F-checkin or U-checkin.

3.1. Absolute User Spatial Orientation Observation.We setup
observations to perceive that certain users can be oriented
toward F-checkin or U-checkin. We use threshold N to
reflect the extent of alignment.

Table 1: Symbols.

Symbol Description

U Set of all users

u A user and u ∈U

L Set of all POIs

l A POI and l ∈ L

T A time interval

D Set of all days

D A day and D ∈D

<u, l, t > Check-in that depicts user u visiting
location l at time t

C Collection of check-ins of all users
visiting all locations

FC
Set of check-ins, where the location l
of each check-in is familiar to user u

UC
Set of check-ins, where the location l
of each check-in is unfamiliar to user u

3Complexity



3.1.1. Absolute POI Spatial Orientation. For each l j visited by
a set of users Uj, we calculate l

o∗
j as an absolute rate of spatial

F-checkin/U-checkin deviation. We select locations which
have been visited by at least 5 users ( ∀l j ∈ L ∣ Uj > 5 ).

lo∗j =
∑ui∈U j

lFi,j − lUi,j

U j

, 3

where lFi,j and l
U
i,j are the probabilities of each ui ∈U j to visit l j

during F-checkin and U-checkin. Overall, lFi,j and lUi,j can be
calculated using the following equations, where the first part
of the equation is the TF value of F-checkin (or U-checkin)
in user ui’s location history and the second part denotes the
IDF value of the user spatial orientation.

lFi,j =
WF

i,j

Wi,j
× lg

U j

ui lij ∈ FC
,

lUi,j =
WU

i,j

Wi,j
× lg

U j

ui lij ∈UC

4

Here, Wi,j is the total number of times that user ui has
visited l j, and Uj is the total number of users visiting l j.
Similarly, WF

i,j and WU
i,j record the visits performed exclu-

sively during F-checkin and U-checkin. ui lij ∈ FC
and ui lij ∈UC record the number of users exclusively
visiting l j during F-checkin and U-checkin.

3.1.2. Absolute User Spatial Orientation Observation. For
each user ui with Li, we compute uo∗i as her average rate of
absolute spatial F-checkin/U-checkin deviation. We select
users who have visited at least 5 POIs ( ∀ui ∈U ∣ Li > 5 ).
The following equation illustrates relevant probability which
reflects to what extent each user is spatially oriented:

uo∗i =
∑l j∈Li l

o
i,j

Li
, 5

where loi,j is l j’s absolute POI spatial orientation limited to
ui’s visits.

If uo∗i is less than N (20%), we can ensure that ui is not
oriented toward F-checkin or U-checkin. However, we find
67.6% and 59.3% of users in Foursquare and Gowalla have
an absolute spatial deviation more than the N . Also, more
than 15% of users are highly aligned toward F-checkin or
U-checkin (uo∗i > 48%).

Based on the observations conducted in LBSN, we can
conclude that spatial influences exist for users.

3.2. Spatial Orientation Efficient Model. In this section, we
present a more effective model to compute the user spa-
tial orientation. First, we obtain users’ spatial orientation
toward F-checkin or U-checkin. Therefore, we compute
the POI spatial orientation for each location (l j ∈ L) visited

by ui. We detect positive or negative impacts using the
following equations:

l
F
i,j = lFi,j − ζ ,

l
U
i,j = lUi,j − ζ ,

6

where ζ ∈ 0, 1 serves as a separator of FC/UC margins.
We assume that the POI with higher probability to be vis-
ited by a user (visiting score) should play a more signifi-
cant role in the computation of her spatial orientation.
We compute the visiting score for each location (l j) using
the method [2] which comprises three influential factors of
user preference, social influence, and geographical influence.
To calculate the visiting score, we first remove each l j from
Li, then obtain the probability (ci,j) of ui to visit l j consider-
ing all three factors. We normalize the score utilizing the
following equation:

ĉi,j =
ci,j −Minci

Maxci −Minci
, 7

where Maxci = argmax Ci,k and Minci = argmin Ci,k (∀lk ∈
Li). Further, we use the following equation to capture the
final F-checkin orientation probability for each l j ∈ Li:

PrFi,j = ĉi,j ∗ l
F
i,j =

ci,j −Minci
Maxci −Minci

∗ lFi,j − ζ 8

Similarly, the U-checkin orientation probability can be
computed as follows:

PrUi,j = ĉi,j ∗ l
U
i,j =

ci,j −Minci
Maxci −Minci

∗ lUi,j − ζ 9

The higher ĉi,j is, the more likely this location will be
visited by ui and will be more influential on ui’s spatial
orientation. Finally, the user spatial orientation is captured
through the following equation.

ûoi = ÂvgFi − ÂvgUi , 10

where ÂvgFi and ÂvgUi are respective FC/UC average ratios:

ÂvgFi =
∑l j∈LiPr

F
i,j

Li
,

ÂvgUi =
∑l j∈LiPr

U
i,j

Li

11

For the value of ÂvgFi − ÂvgUi , if it is more than zero, it
will indicate that the user is aligned toward F-checkin and,
if it is less than zero, it will show U-checkin orientation.

3.3. Spatial Orientation-Based Recommendation. In this sec-
tion, we present the framework to produce a ranked list of
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candidate POIs for each user disregarding the extent of her
spatial orientation. Leveraging check-in history, our method
can suggest Top@Num appealing locations for each user.
This method mainly considers users’ preference on POIs.
By inferring possible categories of the next check-in POI,
irrelevant POIs can be filtered (i.e., only POIs in the corre-
sponding categories are considered); in other words, the
method can reliably predict users’ preference.

After obtaining users’ spatial orientation, we further infer
categories for each location in F-checkin or U-checkin. We
associate each location l = <lat, long > with a set of categories
of venues that are within a 100-meter radius of the location;
that is, cate l = v ⋅ cate ∣ distance v, l ≤ 100m , where v
represents the venue.

In order to show our method, we further define the set of
categories associated with a location l as Cgl. Assuming the
last visited location l̂, a likely category ĉg can be found
for l̂. Then, a category cg that is likely to be followed
after ĉg can be determined. At last, a predicted location
l that is likely for the category cg can be found. In order
to associate a probability with each value of l, we define
the following equation:

PCG l = 〠
cg,ĉg

P l ∣ cg ⋅ α ∗ Pg cg ∣ ĉg + 1 − α

∗ Pu cg ∣ ĉg ⋅ P ĉg ∣ l̂ ,
12

where Pg cg ∣ ĉg and Pu cg ∣ ĉg represent the probability
of the user visiting a location of category cg after visiting
one of the categories ĉg, as estimated by the global check-in
history across all users, and the user’s own check-in history,
respectively. α is a balance parameter that controls the rel-
ative weighting of Pu and Pg. P l ∣ cg and P ĉg ∣ l̂ can be
calculated as follows:

P l ∣ cg =
Ncl

∑locN loc
,

P ĉg ∣ l̂ =
Ncl
Nl

,
13

where Ncl represents the number of venues of category cg
close to l, Nl represents the total number of venues close
to l, and N loc represents the number of venues of category
cg close to loc.

4. Leveraging Temporal Influence

In this section, we first show the baseline user-based CF
method. We then present the method of incorporating
time influence in the user-based CF. At last, we propose
a unified framework.

4.1. User-Based Collaborative Filtering. For a user, the CF
method first computes the similarity between this user and
other users and then generates a POI prediction through
the weighted combination of other users’ check-in records
on the POI. Specifically, if user ui has visited (or checked

in) l, we set cui ,l = 1; otherwise, cui ,l = 0. Assuming a user uj,
the score that uj will visit a POI l which she has not visited
before is obtained using the following equation:

ĉuj,l =
∑ui∈U/uj

wuj ,ui cui ,l
∑ui∈U/uj

wuj ,ui
, 14

where wuj,ui is the similarity between user uj and ui. The sim-

ilarity between two users wuj,ui can be calculated by various

measures. In all these measures, cosine similarity is a widely
applied measure for implicit data. In this work, we also adopt
cosine similarity.

4.2. Incorporating Temporal Influence. As reported in [2],
check-ins constituting spatiotemporal traces follow strong
periodic patterns. For example, people tend to check in res-
taurants at lunchtime and people often go to places of leisure
and tourism on weekends, go to work, and study places dur-
ing weekdays. In this work, days first can be divided into two
subsets which are the weekday set (Dd) and the weekend
set (De), where D = Dd ,De . Then, a day can be split into
multiple equal time slots based on the hour. Further, we
express the behavior of a user at a specific time by a set of
check-ins that the user has done at that time. We use cu,t,D,l
to represent the check-in activity of a user u, at a POI l at time
slot t of a day D. Here, if user u has checked in POI l at time t
of a day D, we set cu,t,D,l = 1; otherwise, cu,t,D,l = 0.

To make time-aware POI recommendations by consider-
ing the temporal influence, the user-based CF model can be
extended from the two aspects: (a) computing the similarity
between two users utilizing the temporal factor; (b) only the
historical check-ins at time t in the repository are considered
during recommendations.

By fusing the temporal factor, (14) can be updated as
follows:

ĉtuj ,t,D,l =

∑ui∈U/uj
wt

uj,ui cui ,t,Dd ,l

∑ui∈U/uj
wt

uj ,ui
, if Dd ∈D

d ,

∑ui∈U/uj
wt

uj ,ui cui ,t,De ,l

∑ui∈U/uj
wt

uj,ui
, if De ∈D

e,

15

where wt
uj,ui is the temporal behavior similarity between uj

and ui. Next, we will describe the computation of the tem-
poral behavior similarity wt

uj ,ui .

We estimate the similarity between two users based on
their temporal behaviors over all time. To be specific, if two
users always visit the same POIs at the same time slot, the
similarity between these two users will be high. Further, we
extend the cosine similarity measure to compute the similar-
ity between uj and ui as follows:

wt
uj,ui =

∑T
t=1∑

L
k=1cuj,t,D,lk cui ,t,D,lk

∑T
t=1∑

L
k=1c

2
uj ,t,D,lk

∑T
t=1∑

L
k=1c

2
ui ,t,D,lk

16
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4.3. A Unified Framework. Given a user u, time t, and a can-
didate POI l, we can calculate a score P l ∣ Li that user u will
check in l at t using the method incorporating spatial influ-
ence. Similarly, we can also compute a score ĉtuj ,t,D,l leveraging

the method incorporating temporal influence.
We compute the final recommendation score for POI

l using linear interpolation to weight the two scores. Spe-
cifically, we calculate the combined score that user ui will
check in POI l at time slot t utilizing the following equa-
tion, where β is a tuning parameter:

cui ,t,l = β ∗ PCG l + 1 − β ∗ ĉtuj ,t,D,l 17

Through this framework, we compute the check-in
score for each candidate POI and generate the top Num
list of recommended POIs for each user.

Here, the computing cost consists of the calculation of
spatial orientation-based recommendation and incorporat-
ing temporal influence. The training time for the spatial
orientation-based recommendation scales linearly with the
number of venue category Ncl. For the calculation of incor-
porating temporal influence, the time complexity is O U 2

where ∣U ∣ is the number of observing users. Then, the time
complexity can be estimated as O Ncl + U 2 .

5. Experiments

In this section, we systematically evaluate the performance of
the proposed method and compare our method with the
state-of-the-art methods on two real-world datasets. First,
we describe the experimental setting, then compare the per-
formance of these methods, and finally study the effect of
percentages of training data, the effect of numbers of check-
in POIs of users, and the effect of the length of the time slot.

5.1. Experimental Setup

5.1.1. Dataset. Our experiments are conducted based on
the two datasets from real-world LBSNs, Foursquare and
Gowalla. Foursquare check-in data is within Singapore
between August 2010 and July 2011, provided by Yuan
et al. [10]. Gowalla check-in data was made in Austin
between November 2009 and October 2010 [7]. Each
check-in contains user, time, and POI ID information. For
both datasets, we removed users who have checked in fewer
than 5 POIs and then removed POIs fewer than 5 users
checked in. After preprocessing, the Foursquare dataset
has 194,108 check-ins made by 2321 users at 5596 POIs,
and the Gowalla dataset contains 201,525 check-ins made
by 4630 users at 6176 POIs. Relevant statistics are shown
in Table 2.

In order to estimate the performance of our proposed
method, we split the Foursquare dataset and the Gowalla
dataset into two nonoverlapping sets: a training set and a test
set, respectively. Here, the proportion of training data is
tested on 70% and 80%, respectively. For example, training
data 70%means we randomly select 70% of the observed data
for each user as the training data to predict the remaining

30% data. The random selection was carried out 5 times inde-
pendently, and we report the average results. The hyperpara-
meters are tuned on the training dataset.

5.1.2. Evaluation Metrics. A POI recommendation algo-
rithm is to compute a ranking score for each candidate
POI (i.e., POI that the user has not visited) and returns
the top-N highest ranked locations as recommendations
to a target user. To study the effectiveness of the proposed
methods, we are interested in the following: (1) how many
previously hold-off locations are recommended to the users
among the total number of recommended locations and (2)
how many previously hold-off locations are recommended
to the users among the total number of hold-off locations.
More specifically, we examine two metrics: namely, preci-
sion@Num and recall@Num (defined by pre@Num and
rec@Num, resp.), where Num is the size of the next POI
candidate list, following the work [13, 14]. Given a user u
and a time t, the precision and recall for time slot t are
calculated as follows:

pre Num t =
∑u∈U Top Num u, t ∩ L u, t

∑u∈U Top Num u, t
,

rec Num t =
∑u∈U Top Num u, t ∩ L u, t

∑u∈U L u, t
,

18

where Top Num u, t is a set of locations recommended
to user u that u has not visited in the training set. L u, t
is a set of locations that has been visited by u in the test-
ing set.

The overall precision and recall are calculated by aver-
aging the precision and recall values over all time slots,
respectively.

pre Num =
1
T
〠
t∈T

pre Num t ,

rec Num =
1
T
〠
t∈T

rec Num t

19

As suggested in [2, 10], both the Foursquare and
Gowalla datasets have very low density, so recommenda-
tion methods show relatively low precision and recall
values. In addition, the POIs in the test set of each user
may represent only a small portion of POIs that the user
may be interested in. Therefore, the low precision and
recall obtained in our experiment are common and rea-
sonable. In this work, we focus on the relative improve-
ments we obtained comparing with baseline methods,
instead of the absolute values.

Table 2: Dataset statistics (after preprocessing).

Dataset
Number of
check-ins

Number of users Number of POIs

Foursquare 194,108 2321 5596

Gowalla 201,525 4630 6176

6 Complexity



5.1.3. Recommendation Methods. Recommendation methods
used in the experiments are as follows:

(i) User-based CF (UBCF): the basic user-based col-
laborative filtering.

(ii) USG: it takes advantage of three modules of user-
based CF, social influence, and geographical influ-
ence, where 0 < α < 1 and 0 < β < 1 [2].

(iii) LRT: by leveraging the temporal influence, it
separately learns the user check-in preferences
to locations at each time slot from the check-in
user-location matrix at the corresponding time
slot only based on matrix factorization with the
temporal regularization term [11].

(iv) UTE-SE: it is the time-aware user-based CF incor-
porating geographical influence [10].

(v) STELLAR: it proposes a spatial-temporal latent
ranking method to explicitly model the interactions
among users, POI, and time, which is based on a
ranking-based pairwise tensor factorization frame-
work with a fine-grained modeling of user-POI,
POI-time, and POI-POI interactions [15].

(vi) FPMC: it presents a fourth-order tensor
factorization-based ranking approach to produce
the interesting locations for users [16].

(vii) TRM: it puts forward a unified probabilistic gen-
erative model, which simultaneously detects the
semantic, temporal, and spatial patterns of users’

check-in activities, to help users make a decision
to visit the places they are interested in [17].

(viii) TICRec: it is a probabilistic framework to use tem-
poral influence correlations for location recom-
mendations in location-based social networks [18].

5.2. Impact of Parameter β. In our method, the parameter β is
an important factor to control the balance between geo-
graphical influence and temporal influence affecting the loca-
tion recommendation performance. Figure 2 shows the
impact of β of both the Foursquare and the Gowalla datasets
on pre 10 and rec 10. From Figure 2(a), we can see that in
both Foursquare and Gowalla, the pre 10 of our proposed
method shows a fluctuant trend with the increase of β. It is
worth noting that the pre 10 for our proposed method
quickly decreases on the Foursquare dataset when β reaches
0.6, while the pre 10 for our proposed method on the
Gowalla dataset shows a stable tendency when the value of
β is greater than 0.6. In terms of rec@10 (Figure 2(b)), we eas-
ily obtain a similar conclusion. Therefore, we conclude that
our proposed method performs better when the value of
β is 0.6. In other words, the obtained results indicate that
geographical influence plays a more important role than tem-
poral influence in personalized POI recommendation.

5.3. Impact of Parameter n. In our method, the parameter
n (Definition 3) is a vital factor affecting the location recom-
mendation performance. Figure 3 shows the impact of n of
both the Foursquare and the Gowalla datasets on pre@10
and rec@10. From Figure 3, we can see that with the increase
of the parameter n, the pre@10 and rec@10 of our proposed
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Figure 2: Impact of parameter β.
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method on both datasets are trending upward. It is worth
noting that the pre@10 and rec@10 for our proposed method
show a stable tendency when the parameter n reaches 14.
Therefore, we take the parameter n = 14 as an optimal value
in the following experiments.

5.4. Performance Comparison. In this section, we will discuss
the results to summarize our findings. Figures 4 and 5 illus-
trate the performance comparison for the Foursquare and
Gowalla datasets. From Figure 4(a), it can be clearly seen
that our proposed method significantly outperforms other
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Figure 3: Impact of parameter n.
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Figure 4: Performance comparison on the Gowalla dataset.
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prediction methods. In terms of precision, our method
achieves a 0.286–3.61% average improvement compared
with the other eight methods. Here, UBCF does not outper-
form any other seven methods under any measure. The
possible reason is that UBCF mainly considers users’ pref-
erences, and ignores other important features, like social
influence, geographical influence and temporal influence.
Compared to USG and LRT, UTE-SE method always
exhibits better results. This is because UTE-SE exploits
the time information and the geographical information,
while the other two methods only consider the time infor-
mation. Compared to UTE-SE, STELLAR performs better.
This is because STELLAR depicts the temporal effect with
a latent feature, which gets rid of the sparse problem. Also,
compared with STELLAR, FPMC, TRM, and TICRec, our
method improves the average precision by 0.287%, 0.285%,
0.284%, and 0.283%, respectively. The main reason is that
these methods ignore an important factor, spatial orienta-
tion. In terms of recall (in Figure 4(b)), our method achieves
a 3.97–22.87% average improvement compared with the
other eight methods. Because of the space limit, the similar
analysis is shown in Figure 5. In addition, we observe that
all methods perform much better on the Gowalla dataset
than on the Foursquare dataset, even though it is sparser.
The reason lies in Foursquare data which contains much
less POIs.

5.5. Effect of Percentages of Training Data. Figures 6 and 7
describe the recommendation accuracy of UBCF, USG,
LTR, UTE-SE, STELLAR, and our method with respect to
varying the percentages of training data. As shown, with

the rise of the percentage of the training data, the preci-
sion and recall of all methods steadily increase. The possi-
ble reason is that the training data set becomes denser as
the percentage of the training data rises, which is helpful
for recommendation methods to learn users’ preferences
on POIs.

5.6. Effect of Numbers of Check-In POIs of Users. Figures 8
and 9 depict the recommendation accuracy regarding the
change of the number of check-in (or visited) locations of
users in the training set. For example, a measure at “Check
in-n = 5” is averaged on all users who have checked in five
locations in the training set. With the increase of the number
of visited locations of users, our method can more accurately
estimate the time probability density and predict the visiting
probability of new locations for these users at the corre-
sponding hour through using more check-in data. As a
whole, the precision and recall incline accordingly.

5.7. Effect of the Length of Time Slot. Figures 10 and 11 depict
the recommendation accuracy when varying the length of
time slots. The length of time slot controls the time granular-
ity of time-aware POI recommendations. Intuitively, a
smaller length of time slot indicates that the recommenda-
tion results will be more time-specific. Here, we only com-
pare the methods considering temporal influence to focus
on the effect of the length of time slot. As shown, we observe
that, with the increasing of the time slot length, the precision
of all methods gradually increases, but the recall inclines.
The possible reason is that on the one hand, increasing the
length of the time slot makes the data denser, benefitting
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Figure 5: Performance comparison on the Foursquare dataset.
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for recommendation methods to estimate the accurate vis-
iting probability of users to locations and, on the other
hand, the larger length of time slots brings in a larger
number of ground truth locations. Due to the number of

recommendations (i.e., Num) unchanged, recall values
are decreasing with increasing the length of time slot. More
importantly, for all lengths of time slots, our method consis-
tently outperforms the state-of-the-art baseline methods.
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Figure 6: Effect of percentages of training data on the Gowalla dataset.
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Figure 8: Effect of numbers of check-in locations of users on the Gowalla Dataset.
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Figure 10: Performance of the varying length of time slot on the Gowalla dataset.
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However, with the increase of the length of time slot, the
amount of improvement gradually decreases. The main
reason is that increasing the length of time slot reduces
the temporal influence.

6. Related Work

In recent years, there have already been a reasonable amount
of researches in location-based social networks due to the
new characteristics of spatial-temporal-social information
embedded in the check-in data and the prevalence of various
interesting real-world applications [19–26]. We summarize
the existing location recommendations into four categories:
collaborative filtering, social influence, geographical influ-
ence, and temporal influence.

6.1. Collaborative Filtering. Some studies supply POI rec-
ommendations by using the conventional collaborative fil-
tering techniques based on users’ check-in data [27–29],
travel tour data [30, 31], GPS trajectory data [32–35], or
text data [36]. Cheng et al. [37] provided a large-scale
quantitative analysis and modeling of over 22 million
check-ins of location-sharing service users. Zheng et al. [34]
studied location-and-activity recommendation using GPS
data, where activities could be various human behaviors:
shopping, watching movies, and so on. Also, some researches
derived users’ similarity by employing their residence as an
input of the conventional collaborative filtering method
[38–41]. However, these studies have not leveraged the social
influence, geographical influence, or temporal influence.

6.2. Social Influence. Intuitively, friends of LBSNs tend to
have more common interests. Inspired by that, social influ-
ence has been widely used to enhance POI recommendation
in LBSNs [8, 42–45]. By inferring the social relations, the
similarity between users can be derived and integrated into
the collaborative filtering methods.

6.3. Geographical Influence. In [46], the authors mentioned
that geographical influence can be used to improve the POI
recommendation by clustering the check-in behavior of
users. In order to detect how to use geographical influence
for enhancing the performance of POI recommendations,
some researchers leveraged the geographical influence of
users to compute their similarity weights [2, 8, 47, 48]. In
[8], Gao et al. obtained the social correlations of check-in
behavior in LBSNs by using a geosocial correlation model.
In [2], the authors analyzed the spatial clustering phenome-
non shown in the user check-in behavior of LBSNs in order
to study the geographical influence. They first found that
the geographical influence plays a vital role in user check-in
behaviors, then used power law distribution to model it.
Finally, they designed a collaborative filtering method by fus-
ing geographical influence with naive Bayesian. Meanwhile,
some works studied the geographical influence of POIs.
Cheng et al. presented a fused matrix factorization method
that combines users’ social information with the geographi-
cal influence of users’ check-ins [3]. In [44], Bao et al. pre-
sented a new approach that considers users’ preference and
specified geopositions and can recommend a list of POIs

(such as exhibition halls and places of interest) for a given
user. Cheng et al. [49] focused on the problem of successive
personalized POI recommendation. In order to solve this
problem, they developed a novel matrix factorization method
considering both personalized Markov chain and localized
regions. A geotopic model is proposed in the literature [41],
which assumes that a user is more likely to go to a place that
is closer to the locations visited by her. Also, other works
modeled the distance between two locations visited by the
same user as a common distribution for all users, for exam-
ple, a power-law distribution or a multicenter Gaussian
model [46, 50, 51].

6.4. Temporal Influence. A number of time-aware recom-
mendation techniques have been proposed to enhance the
recommendation performance. In [52], authors designed a
model tracking the time changing behavior throughout the
life span of the data, which can make better distinctions
between transient effects and long-term patterns. Gao et al.
[53] presented a general framework to exploit and model
temporal cyclic patterns and their relationships with spatial
and social data. In [54], the authors examined the temporal
dynamics of urban activity, which indicates that when study-
ing urban dynamics, we need to consider both space and time
dimensions. In [11], Gao et al. put forward a novel location
recommendation framework based on the temporal proper-
ties of user movement observed from a real-world LBSN
dataset. In [14], the authors presented the Geographical-
Temporal influences Aware Graph (GTAG) to model the
check-in behaviors of users and a graph-based preference
propagation algorithm for POI recommendation on the
GTAG. The proposed methods exploited both the geograph-
ical and the temporal influences in an integrated manner.
Yuan et al. [10] showed a unified framework exploiting both
the temporal influence and the spatial influence, which are
specific for the time-aware POI recommendation.

In addition, a few research works fused geographical
and temporal influences for better recommendation accu-
racy in LBSNs [14, 55, 56]. In [55], they leveraged matrix
factorization to generate POI recommendation and pro-
posed a novel attempt to integrate both geographical and
temporal influences into matrix factorization. Liu et al.
[56] extended recurrent neural networks (RNN) and pro-
posed a novel method called spatial-temporal recurrent
neural networks (ST-RNN), which can capture time inter-
val and geographical distance information. However, they
ignored a vital factor, that is, spatial orientation.

7. Conclusion

A large amount of historical movement data of users in
LBSNs inspires the POI recommendation service. In this
work, we utilize temporal influence and spatial influence to
construct a unified framework, which generates location rec-
ommendations in location-based social networks (LBSNs).
We first show a new method that utilizes the spatial influ-
ence for POI recommendations. Then, we propose a new
approach exploring the temporal influence. Lastly, we com-
bine these two approaches through a unified framework.
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We perform extensive experiments over two real-world
LBSN datasets, the Foursquare dataset and the Gowalla data-
set. The experimental results show that our proposed method
outperforms all the baseline methods.

In the future, we will study two directions of location rec-
ommendations to extend our method. First, we will continue
to study how to take advantage of both spatial influence and
temporal influence and explore the novel usage of such infor-
mation. Second, we will detect how to incorporate the cate-
gory information of locations into the unified location
recommendation framework.
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