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This study introduces visual cognition into Lithium-ion battery capacity estimation. The proposed method consists of four steps.
First, the acquired charging current or discharge voltage data in each cycle are arranged to form a two-dimensional image. Second,
the generated image is decomposed into multiple spatial-frequency channels with a set of orientation subbands by using non-
subsampled contourlet transform (NSCT). NSCT imitates the multichannel characteristic of the human visual system (HVS) that
provides multiresolution, localization, directionality, and shift invariance. Third, several time-domain indicators of the NSCT
coefficients are extracted to form an initial high-dimensional feature vector. Similarly, inspired by the HVS manifold sensing
characteristic, the Laplacian eigenmap manifold learning method, which is considered to reveal the evolutionary law of battery
performance degradation within a low-dimensional intrinsic manifold, is used to further obtain a low-dimensional feature vector.
Finally, battery capacity degradation is estimated using the geodesic distance on themanifold between the initial and themost recent
features. Verification experiments were conducted using data obtained under different operating and aging conditions. Results
suggest that the proposed visual cognition approach provides a highly accurate means of estimating battery capacity and thus offers
a promising method derived from the emerging field of cognitive computing.

1. Introduction

Lithium-ion (Li-ion) batteries, featuring high energy density
and light in weight, are becomingmore andmore popular for
various applications, especially in the field of aerospace and
electric vehicles [1–3]. Thus, the majority of existing studies
focus onways to improve the performance of Li-ion batteries.
Battery capacity, which is regarded as an important indicator
of the battery performance, is highly affected by various inter-
nal and external mechanisms such as ambient temperature,
aging, and usage patterns; these factors cause battery perfor-
mance to gradually fade over time. Therefore, available bat-
tery capacity needs to be accurately estimated for reliability
purposes and for the proper management of battery use [4].

Recent studies have reported a variety of approaches
to estimating the capacity of Li-ion batteries. Most of the
existing approaches are model-based methods, including
electrochemical [5], equivalent circuit-based [6], and analyt-
ical [7, 8] models.These models are mostly based on complex
physical and chemical processes that take into account the

dynamic behavior of batteries [9–11], and the estimation
performance is highly dependent on the accuracy of the
models. In particular, these types of models are usually
difficult to establish given the restrictions on acquisition of
knowledge of the electrochemical parameters, aging mech-
anisms, and properties of batteries [12]. Moreover, these
models are individually dependent on the specific type of
battery in terms of production processes, electrolytes, and
anode and cathodematerials. State-of-charge– (SOC–) open-
circuit-voltage– (OCV–) basedmethods for in-cycle capacity
estimation arewidely applied inmany real-world applications
[13, 14]. However, the SOC–OCV–based methods rely on
accurate SOC andOCV values, which are usually highly time
consuming to obtain [10, 15]. Regardless of which modelling
methods are used to model the battery state, the laboratory
determined battery charging and discharging characteristics
under different operating conditions are a source of knowl-
edge about battery behavior. In some applications, these
original data stored as discrete values are employed to create
a lookup table database on the charge status of the master
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battery. However, using this kind ofmethod for Li-ion battery
capacity estimation, amounts of experiments need to be per-
formed under various operating conditions for a whole life-
time to obtain battery capacities in different life states under
different operating conditions. Otherwise, database-based
method will have a low accuracy with a rough database. Tao
et al. [16] proposed a capacity estimation method for Li-ion
battery based on similarity recognition of online data curves,
which can be considered as an intelligent method based on
database. Even though this method achieves a high accuracy,
it takes a lot of time looking for the most similar data curve
contained in the database, which restricts its real application.

A new geometric-based method was proposed in [17];
this method differs from those aforementioned and appears
to be an extension of the traditional constant current-
constant voltage method [18]. It estimates battery capacity by
combining differential geometry and four geometric features
that are sensitive to capacity fade.The four geometric features
are extracted from the charging current (CC) and discharging
voltage (DV) curves, including the time duration of the
constant voltage (CV) curve, maximum radius of curvature
of the CV stage, area under the CV curve, and slope of the
voltage curve in the early stage of the discharge process.
Experimental results provided in their paper demonstrate the
effectiveness of the geometric-based method.

The nature of the geometric-based method aims to intro-
duce differential geometry theory and traditional geometric
features into battery capacity estimation. Inspired by thework
in [17], we attempt to introduce other leading-edge interdis-
ciplinary methods to battery capacity estimation, avoiding
complicated analyses of physical–chemical processes and
achieving an accurate cognition of degradation processes,
thereby further enhancing the effectiveness and accuracy of
battery capacity estimation.

Cognitive science is an interdisciplinary study that con-
sists of multiple research disciplines, including psychology,
artificial intelligence, philosophy, neuroscience, linguistics,
and anthropology. It includes research on intelligence and
behavior, especially focusing on how information is repre-
sented, processed, and transformed within nervous systems
and machines [19]. Cognitive science is a large field and
covers a wide array of topics relating to cognition such as
language processing, artificial intelligence, and visual and
auditory cognition. Among these topics, visual cognition has
become the focus of many studies in cognitive science and
is becoming a significant topic of interest in the twenty-first
century [20]. In recent years, countries around the world
have invested heavily to support research in visual cognition.
In the US, the Defense Advanced Research Projects Agency
launched a special research program in 2007 named “Cog-
nitive Computing,” under which visual cognition is a key
research target. In Japan, experts in the field of computer
vision have been brought into the “Brain Plan” over the
past decade to promote the interdisciplinary studies of brain
cognitive science and visual cognition. The National Natural
Science Foundation Committee of China initiated a major
research project in 2008 called “Cognitive Computing Based
on Visual and Auditory Information”; its purpose is to
establish a new computational method based on human

visual and auditory cognitive mechanisms, thereby providing
new ideas for image understanding and voice processing.
Today, computing methods based on visual cognition have
received extensive attention and are widely used in face
recognition [21], image fusion [22], texture classification [23],
and so forth. However, in the field of Li-ion battery capacity
estimation, methods based on visual cognition have rarely
been reported.Motivated by this, we attempt to transformCC
values and DV values into a two-dimensional image and thus
to further advance battery capacity estimation using a visual
cognition method.

Essentially, visual cognition is a kind of bionic science;
that is, it deals with the recognition of objects based on the
characteristics of the human visual system (HVS). One of
the well-known characteristics of the HVS is the multichan-
nel characteristic (MCC), meaning that there are multiple
spatial-frequency channels in the processing of pictorial
information in the HVS, each of which further involves dif-
ferent number of orientation components depending upon a
predetermined setting of series [24]. In this study, the authors
employ MCC to extract degradation feature information
from CC and DV data, which is the core of this study and
also the difference distinguishing our method from other
existing methods, including that in [17]. Another noted HVS
characteristic is themanifold sensing characteristic (MSC). In
2000, articles published in Science pointed out that (1) visual
information is stored as a manifold of stable neural-activity
patterns in the brain, and (2) manifold learning methods
can identify meaningful low-dimensional structures in high-
dimensional data [25–27]. Therefore, this study utilizes the
manifold learning to construct a low-dimensional intrinsic
manifold, which can not only reveal the capacity degradation
law that is contained in the extracted features but also reduce
the computation required. Therefore, this study attempts
to introduce visual cognition into Li-ion battery capacity
estimation in order to establish a systematic method for
capacity estimation based on MCC and MSC.

This paper is organized as follows: Section 2 describes the
two HVS properties of interest, namely, MCC and MSC, as
well as the corresponding computing methods derived from
them, primarily NSCT and the Laplacian eigenmap (LE).
Geodesic distance is also introduced, which is used in the
estimation of battery capacity. Section 3 presents the entire
method for battery capacity estimation based on visual cog-
nition, including descriptions of the experimental data, image
transformation, feature extraction, and capacity calculation.
Typical data fromNASAbattery data sets are utilized to verify
the proposed method; the results are reported in Section 4.
Finally, Section 5 concludes the paper.

2. Related Theories

2.1. MCC of the HVS and NSCT

2.1.1. MCC and Contourlet Transform. The HVS is a crucial
tool by which human beings understand and comprehend
the natural world. It has been verified that the HVS possesses
the ability to capture the essential information of a natural
scene using a minimal number of active visual cells [28].
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The receptive fields in the visual cortex are accordingly
characterized as being localized, oriented, and bandpass [29].
Therefore, it is suggested that, for an image representation
to be efficient, it should have the properties of being local,
directional, and of multiresolution.

The contourlet transform (CT) proposed by Do and Vet-
terli [28]matches theMCC of theHVSwell. It is composed of
a Laplacian pyramid (LP) and a directional filter bank (DFB),
where the LP is employed to capture the point discontinuities
and the DFB is utilized to link point discontinuities to linear
structures. The CT gives a flexible multiresolution, local, and
directional image expansion using contour segments; thus,
it can represent edges and other singularities along curves
very efficiently. Unfortunately, however, the CT lacks shift
invariance because of the downsampling and upsampling in
both the LP and the DFB. In particular, downsampling of a
filtered imagemay result in low-pass and high-pass frequency
aliasing. These shortcomings limit the use of CT in many
applications [22, 30].

2.1.2. NSCT Theory. To eliminate the frequency aliasing of
CT and enhance its directional selectivity and shift invari-
ance, da Cunha et al. [31] proposed a shift-invariant version
based on non-subsampled pyramid filter banks (NSPFBs)
and non-subsampled directional filter banks (NSDFBs), as
shown in Figure 1(a) [31, 32].

The non-subsampled contourlet transform (NSCT), as
a representative method related to the MCC, can be used
to decompose an image (e.g., as transformed from a charge
current or discharge voltage curve) into multiple spatial-
frequency channels (a set of narrow-band frequencies), each
of which further involves different number of orientation
components depending upon a predetermined setting for
each channel.

In NSCT, the multiscale property is obtained from a
shift-invariant filtering structure that achieves a subband
decomposition similar to that of the LP. The process can
be implemented using two-channel non-subsampled two-
dimensional (2D) filter banks. Figure 1(b) illustrates the non-
subsampled pyramid decomposition with 𝐽 = 3 stages. Such
an expansion is conceptually similar to the one-dimensional
(1D) non-subsampled wavelet transform computed with the
à trous algorithm.The filters for the next stage are obtained by
upsampling the filters of the previous stage with the sampling
matrix:

𝐷 = 2𝐼 = [2 00 2] (1)

which gives the multiscale property without the need for
additional filter design. On the jth decomposition, the ideal
frequency support of the low-pass filter is [−(𝜋/2𝑗), (𝜋/2𝑗)]2.
Correspondingly, the ideal support of the high-pass filter is
the complement of the low-pass filter, namely, the region

[−(𝜋/2𝑗−1), (𝜋/2𝑗−1)]2 \ [−(𝜋/2𝑗), (𝜋/2𝑗)]2. The equivalent
filters of a J-level cascading NSPFB are given by

𝐻eq
𝑛 (𝑧) = {{{

𝐻1 (𝑧2𝑛−1𝐼)Π𝑛−2𝑗=0𝐻0 (𝑧2𝑗𝐼) , 1 ≤ 𝑛 ≤ 𝐽
Π𝑛−2𝑗=0𝐻0 (𝑧2𝑗𝐼) , 𝑛 = 𝐽 + 1, (2)

where 𝐻0(𝑧) and 𝐻1(𝑧) represent the low-pass filter and the
corresponding high-pass filter, respectively, at the first stage
[32].

The DFB is constructed by combining critically sampled
two-channel fan filter banks and resampling operations. This
results in a tree-structured filter bank that splits the 2D
frequency plane into directional wedges. By switching off the
downsamplers/upsamplers in each two-channel filter bank in
theDFB tree structure and upsampling the filters accordingly,
the NSDFB is obtained. In this manner, a tree composed of
two-channel NSDFBs can be obtained. Figure 1(c) illustrates
a four-channel decomposition [32].The upsampled fan filters𝑈𝑗(𝑧𝑄) (𝑗 = 0, 1) have checkerboard frequency support,
where 𝑄 is the quincunx matrix:

𝑄 = [1 −11 1 ] . (3)

The four-channel directional decomposition can be obtained
when filters 𝑈𝑗(𝑧𝑄) are combined with the fan filters𝑈𝑖(𝑧) (𝑖 = 0, 1). The equivalent filter in each channel𝑈𝑘(𝑧) (𝑘 = 0, 1, 2, 3) can be given as follows:

𝑈𝑘 (𝑧) = 𝑈𝑖 (𝑧) 𝑈𝑗 (𝑧𝑄) . (4)

After 𝐽-level NSCT decomposition, one low-pass sub-
band image and ∑𝐽𝑗=1 2𝑙𝑗 bandpass directional subband
images can be obtained, all of which have the same size as the
input image. Here, 𝑙𝑗 is the directional decomposition level at
the jth scale.

As described above, the core ofNSCT is the filter design in
the two-channel NSPFB and NSDFB. NSCT not only retains
the characteristics of CT but also has the important property
of shift invariance. Thus, this study employs NSCT to extract
features from the CC and DV values of a Li-ion battery.

2.2. MSC of the HVS and LE

2.2.1. MSC and Manifold Learning. As we look at an object
with conditions such as scale and illumination changing, the
signals carried from the eyes to the brain by the millions of
axons in the optic nerve are constantly in flux. Nevertheless,
we are able to recognize that these changing signals are
produced by the same object. This phenomenon was studied
by Seung and Lee, who proposed a hypothesis that a visual
memory is stored as a manifold of stable states or a continu-
ous attractor [25]. Images of the same object with changes in
scale, illumination, and other variable factors lie on a low-
dimensional manifold, whereas images of different objects
form different manifolds. From the perspective of cognitive
psychology, the cognitive process of object identification
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Figure 1: Schematic diagram of non-subsampled contourlet transform (a), three-stage non-subsampled pyramid decomposition (b), and
four-channel NSDFB constructed with two-channel fan filter bank (c).
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is the recognition of different low-dimensional manifolds
embedded in the high-dimensional visual information. That
is, the HVS has the ability to sense the manifold hidden
in the brain. This characteristic of the HVS is called MSC.
Similar to the MSC of the HVS, manifold learning can
find meaningful low-dimensional structures hidden within
high-dimensional observations; this is attracting increasing
attention from scholars.

Manifold learning, also known as nonlinear dimensional-
ity reduction, is a widely accepted method that embeds high-
dimensional samples into low-dimensional feature space by
preserving some local or global geometric structures [33].
Many manifold learning approaches have been proposed,
such as isometric mapping [26], locally linear embedding
[27], Laplacian eigenmaps [34], and Hessian eigenmaps [35].
Among these approaches, the Laplacian eigenmap (LE) is a
kind of spectral graphmethod; this has received considerable
attention from the machine learning community. In this
study, the LE is employed to establish a low-dimensional
intrinsic manifold and carry out the dimensionality reduc-
tion.

2.2.2. Theory of LE. LE is a typical graph-based dimensional-
ity reduction technique.The basic mathematical notion of LE
can be summarized as follows.

Assume that a d-dimensional manifold 𝑀𝑑 (nominated
as output space) embedded in anm-dimensional space 𝛼𝑁 ∈𝑅𝑚 (nominated as input space, 𝑑 < 𝑚) can be described by a
function:

𝑓 : 𝐶 ⊂ 𝑀𝑑 󳨀→ 𝑅𝑚, (5)

where 𝐶 is a compact subset of𝑀𝑑 with open interior. A set
of data points 𝛼1, . . . , 𝛼𝑁, where 𝛼𝑖 ∈ 𝑅𝑚, are sampled with
noise from the intrinsic manifold𝑀𝑑; the relationship can be
represented as follows:

𝛼𝑖 = 𝑓 (𝛽𝑖) + 𝜉𝑖, 𝑖 = 1, . . . , 𝑁, (6)

where 𝜉𝑖 denotes noise. LE can be recognized as follows:
the original data set 𝛼𝑖’s in the higher dimensional manifold𝑅𝑚 are mapped (nonlinearly) to the data point 𝛽𝑖’s in the
estimation of the unknown lower dimensional manifold𝑀𝑑,
with 𝑑 < 𝑚 [36].

Given a set of 𝑁 multivariate observations, for arbitrary
point 𝐴 ∈ 𝑀𝑑 with 𝑘 nearest neighborhoods, a weighted
adjacency graph 𝐺 = (𝑉, 𝐸) can be constructed consisting of𝑁 nodes and a set of edges connecting neighboring points.
We consider the problem of mapping the weighted graph 𝐺
to a line such that the connected points stay as close together
as possible. Let y = (𝑦1, 𝑦2, . . . , 𝑦𝑁)𝑇 x = (𝑥1, 𝑥2, . . . , 𝑥𝑁)𝑇,
where 𝑥𝑖, 𝑦𝑖 ∈ 𝑅 is a coordinate value of the 𝑖th point in 𝑅𝑚
and𝑀𝑑. A reasonable map is to choose 𝑦𝑖’s ∈ 𝑅 to minimize∑(𝑦𝑖−𝑦𝑗)2𝑊𝑖𝑗 under the appropriate constraints. To avoid the
heavy penalties that can occur if the neighboring points 𝑥𝑖
and 𝑥𝑗 are mapped far apart, the minimization is an attempt

to ensure that if points 𝑥𝑖 and 𝑥𝑗 are close, then 𝑦𝑖 and 𝑦𝑗 will
be close as well. As a result, for any y, we have

1
2∑
𝑖,𝑗

(𝑦𝑖 − 𝑦𝑗)2𝑊𝑖𝑗 = y𝑇𝐿y, (7)

where 𝐿 = 𝐷 − 𝑊 is the Laplacian matrix, which is positive
semidefinite. Notably, 𝑊𝑖𝑗 is symmetric, and 𝐷𝑖𝑖 = ∑𝑗𝑊𝑖𝑗.
Thus, ∑𝑖,𝑗(𝑦𝑖 − 𝑦𝑗)2𝑊𝑖𝑗 can be written as

∑
𝑖,𝑗

(𝑦2𝑖 + 𝑦2𝑗 − 2𝑦𝑖𝑦𝑗)𝑊𝑖𝑗
= ∑𝑦2𝑖 𝐷𝑖𝑖 +∑𝑦2𝑗𝐷𝑗𝑗 − 2∑𝑦𝑖𝑦𝑗𝑊𝑖𝑗 = 2y𝑇𝐿y.

(8)

Therefore, the minimization problem reduces to finding
argminy𝑇𝐷y=1y𝑇𝐿y.

The constraint y𝑇𝐷y = 1 removes an arbitrary scaling
factor in the embedding.Matrix𝐷provides a naturalmeasure
on the graph vertex. The larger 𝐷𝑖𝑖 is, the more important
the vertex will be. In (7), 𝐿 is shown as a positive semidef-
inite matrix, and the vector y that minimizes the objective
function is given by the minimum eigenvalue solution to the
generalized eigenvalue problem 𝐿y = 𝜆𝐷y with an additional
constraint of orthogonality argmin y𝑇𝐷y=1,y𝑇𝐷1=0 y

𝑇𝐿y.
More generally, the embedding is given by the 𝑁 × 𝑑

matrix 𝑌 = [y1, y2, . . . , y𝑑], where the ith row, denoted by
𝑌𝑇𝑖 , provides the embedding coordinates of the ith vertex.
Similarly, we need to minimize

∑
𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩𝑌𝑖 − 𝑌𝑗󵄩󵄩󵄩󵄩󵄩2𝑊𝑖𝑗 = tr (𝑌𝑇𝐿𝑌) . (9)

This condition reduces to finding [37]

𝑌opt = argmin
𝑌𝑇𝐷𝑌=1

tr (𝑌𝑇𝐿𝑌) . (10)

2.2.3. Time Window for Mapping Updating. The fixed set
of data from high-dimensional space is mapped to low-
dimensional space by LE through the mapping 𝑔 = 𝑓−1.
Therefore, one can receive a corresponding low-dimensional
point through the mapping when given an arbitrary point
in the high-dimensional space. Considering in practice, new
data are often collected and new features can be obtained in
the 𝑅𝑚 space, we need to update the mapping provided by LE
to adjust to the new incoming data. Thus, a general method,
the so-called “time window,” is proposed, which can be set as
one incoming point or any other number of incoming points
with regard to a real-world application. When the number of
new incoming points reaches the fixed “time window,” a new
updated mapping is derived.

2.3. Geodesic Distance. Inmathematics, particularly differen-
tial geometry, a geodesic is a generalization of the notion of
a “straight line” to curved spaces [38]. If this connection is
the Levi-Civita connection induced by a Riemannian metric,
then the geodesics are (locally) the shortest path between
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Table 1: Typical data under different operating conditions.

Label number AT (∘C) CC (A) DC (A) EOD (V) IC (Ah) EOLC (%)
#5 24 1.5 2 2.7 1.8565 30
#7 24 1.5 2 2.2 1.8911 30
#29 43 1.5 4 2.0 1.8447 12.61
#54 4 1.5 2 2.2 1.1665 30
Note. AT, CC, DC, EOD, IC, and EOLC denote ambient temperature, charge current, discharge current, end-of-discharge, initial capacity, and end-of-life
criteria (ratio of faded capacity to initial capacity), respectively.

Euclidean distance
(a)

Geodesic distance
(b)

Figure 2: Comparison between Euclidean distance and geodesic
distance.

points in the space.Thus, the geodesic distance is expected to
unfold highly folded, twisted, or curved nonlinear manifolds
[39].

Figure 2(a) shows the shortest path measured by
Euclidean distance. According to this metric, two points on
opposite sides of the horseshoe appear to be deceptively close.
Figure 2(b) shows the shortest path measured by geodesic
distance. In this case, the two points on opposite sides of
the horseshoe are not neighbors according to the geodesic
distance [39].

In this study, the geodesic distance is adopted as the
geometrical metric of battery capacity on the manifold
constructed by LE.

3. Method for Estimation of Li-Ion Battery
Capacity Based on Visual Cognition

3.1. Description of the NASA Li-Ion Battery Experimental
Data. The data used in this study were obtained from a
custom-built battery setup at the NASA Ames Prognos-
tics Center of Excellence. The experiments were conducted
through three different operational profiles (charge, dis-
charge, and impedance) at ambient temperature (AT) con-
ditions. Charging is performed in a constant charge current
mode at 1.5 A until the battery voltage reaches 4.2 V and
continues in a constant voltage mode until the charge current
drops to 20mA. The discharge runs are stopped at different
end-of-discharges (EODs). The experiments are conducted
until the capacity decreases to specified end-of-life criteria
(EOLC).

To validate the efficiency of the proposed approach, the
typical data were selected (#5, #7, #29, and #54, which were
also used in [16, 17]) and described in Table 1. From Table 1,

it can be seen that these data have the same charge current
of 1.5 A but generally exhibit different ATs (24∘C, 43∘C, or
4∘C), discharge currents (DCs; 2 A or 4A), EODs (from 2.0V
to 2.7 V), initial capacities (ICs; from 1.1665Ah to 1.8911 Ah),
and EOLCs (30% or 12.61%).

3.2. Image Transformation of CC or DV Values for
Visual Cognition

3.2.1. Image Transformation Method. The real state of an
arbitrary battery can be identified by charging or discharging
it. Consequently, the CC and DV curves obtained from
the charging and discharging processes can directly reflect
the real state of the battery. To discover the performance
degradation law contained in these curves, the CC and
DV curves for each cycle are transformed into an image
for the following visual cognition. First, the CC and DV
values over a lifetime of full cycles are uniformly normalized
according to the linear normalization equation: 𝑦 = (𝑥 −
MinValue)/(MaxValue − MinValue), where 𝑥 is the original
CC orDV value,𝑦 is the normalized value, andMinValue and
MaxValue are the minimum and maximum CC/DV values
over the lifetime of full cycles, respectively. The normalized
data points are then arranged into an 𝑀 × 𝑁 matrix, as
shown in Figure 3. If we consider the normalized amplitude
of each sample as a pixel value of an image, then the𝑀 × 𝑁
matrix becomes an 𝑀 × 𝑁 image. The following principles
are used to ensure the quality of the transformed images:(1) the transformed images should retain the most useful
information of each charge/discharge cycle; (2) the CC and
DV data that differ significantly from those of other cycles
should be eliminated; (3) the images built based on the CC
and DV data of each cycle should have the same size. To
adhere to these principles, the CC and DV data of each
charge/discharge cycle need to be selected and processed.

3.2.2. Data Selection and Processing. To some extent, the
quality of the image transformation directly affects the
visual cognition results. Therefore, appropriate selection and
processing of the CC and DV data are essential to ensure
high-quality transformed images.

Our experiments collect two kinds of CC/DV data con-
taining the most useful information: (1) CC data under
the constant voltage charging stage; (2) DV data during
the discharging process. The following data are discarded:
(A) abnormal data, (B) CC data under the constant current
charging stage, (C) sensitive voltage data from the early stages
of discharge, and (D) voltage recovery data; these are shown
in Figure 4.
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The difference in sampling rate (or sampling start time)
results in a different number of CC or DV data from each
cycle. This causes a problem on forming images of the same
size. We adopt an interpolation method to ensure the same
number of data points for each cycle. If an image is too
large, the computational load becomes excessive, whereas if
an image is too small, it cannot reflect the characteristics
of the specific charge/discharge cycle. To balance these
considerations, we select 𝑀 = 𝑁 = 64. Thus, each cycle
needs a total of 4096 data points to construct the image. If
we obtain 𝑖 (𝑖 < 4096) data points from a charge/discharge
cycle, then the other 4096 − 𝑖 data points are acquired by the
“spline” interpolation algorithm. Figure 4 shows an example
of the processed CC/DV data curves from battery #5.

3.3. Feature Extraction Based on NSCT and LE

3.3.1. NSCT-BasedMultichannel Feature Extraction. This sec-
tion describes a degradation feature extractionmethod based
on NSCT, which is the core of this study. By utilizing
NSCT, the transformed images from the CC/DV values are
decomposed into multiple spatial-frequency channels with a
set of orientation subbands. The subbands can be expressed
as follows:
{𝐶𝑖0 , 𝐶𝑖,𝑗} ,
𝑖, 𝑖0 = 1, . . . , 𝑛; 𝑖 ≤ 𝑖0; 𝑗 = 2, 4, 8, . . . , 𝑚; 𝑛 ∈ 𝑁, 𝑚 ∈ 2𝑁,

(11)

where i is the decomposition scale, j is the decomposition
direction, 𝐶𝑖0 represents the low-frequency coefficient, and𝐶𝑖,𝑗 represents the high-frequency coefficient of the jth
directional subband at the ith scale. In this study, 𝑖0 = 2
and 𝑗 = {2, 4}. That is, the decomposition scale is 2 and the
decomposition directions at each scale are 2 and 4.

The coefficients of the low-frequency subbands reflect the
outline information of the image, whereas the coefficients of
the high-frequency subbands reflect the detailed information.
Therefore, three time-domain indicators are extracted as
feature values; these are the mean value (𝜇) and the variance
value (𝜎) of the low-frequency subband coefficients as well
as the energy value (𝐸) of the high-frequency subband coef-
ficients. The equations for calculating these three indicators
are given as follows:

𝜇 = 1
𝑀 ×𝑁

𝑀∑
𝑥=1

𝑁∑
𝑦=1

𝑃 (𝑥, 𝑦) ,

𝜎 = 1
𝑀 ×𝑁

𝑀∑
𝑥=1

𝑁∑
𝑦=1

[𝑃 (𝑥, 𝑦) − 𝜇]2 ,

𝐸 = 1
𝑀 ×𝑁

𝑀∑
𝑥=1

𝑁∑
𝑦=1

[𝑃 (𝑥, 𝑦)]2 ,

(12)

where 𝑃(𝑥, 𝑦) represents each element of the coefficients and𝑀 ×𝑁 represents the size of the coefficient matrix. Thus, an
eight-dimensional feature vector of each image transformed
from a single charge/discharge cycle can be obtained as

𝑓 = [𝜇, 𝜎, 𝐸1,1, 𝐸1,2, 𝐸2,1, 𝐸2,2, 𝐸2,3, 𝐸2,4] . (13)

3.3.2. LE-Based Intrinsic Manifold Establishment. An intrin-
sic manifold is established using the aforementioned LE
method. The degradation law governing the battery per-
formance is revealed by data lying on this intrinsic man-
ifold in the 𝑀𝑑 space, which is embedded in the high-
dimensional 𝑅𝑚 space. The 𝑅𝑚 space is constructed by the
eight-dimensional feature vectors extracted by NSCT from
the images transformed from the CC/DV data. The mapping
𝑔 = 𝑓−1 from 𝑅𝑚 to 𝑀𝑑 gives a 2D feature matrix in the
𝑀𝑑 space, where Li-ion battery capacity degradation can be
well described. The mapping 𝑔 = 𝑓−1 is established by an
analogous set of raw experimental data of full-cycle of lifetime
(ASL) for each of the four typical datasets. Given an arbitrary
point in 𝑅𝑚, the corresponding data point representing the
Li-ion battery capacity in 𝑀𝑑 can be obtained through the
mapping 𝑔 = 𝑓−1.
3.4. Capacity Estimation Based on Geodesic Distance. In this
study, the geodesic distance along the intrinsic manifold
between the initial point and the most recent point in the
degradation process is calculated to carry out the estimation
of battery capacity. Denote𝐶𝐴0 as the initial capacity, which is
typically not the rated capacity, and𝐶EOL as the capacity of the
final charge/discharge cycle of the ASL experimental data.We
denote the geodesic distance between the initial point and the
points on the intrinsic manifold𝑀𝑑 as geo𝑠, and the geodesic
distance between the initial point and the last point on the
intrinsic manifold of the ASL as geoEOL. The capacity of each
point in 𝑅𝑚 space can then be estimated as

𝐶𝐴 = 𝐶𝐴0 − geo𝑠
geoEOL

(𝐶𝐴0 − 𝐶EOL) . (14)

4. Results and Discussion

We use battery #5 to demonstrate the effectiveness of the
proposed approach. Figure 4 shows the original CC data
curves during the charging process (Figure 4(a)) and the DV
data curves during the discharging process (Figure 4(c)).

The corresponding processed curves derived from the
stable stage of battery #5 are shown in Figures 4(b) and 4(d).
Using the transformation scheme depicted in Figure 3, the
normalized data for each cycle of the charging/discharging
processes are transformed into an image. Figure 5 shows
examples of the transformed images from a single cycle of the
charging and discharging processes.

After the image transformation, the NSCT method is
employed to extract features from the transformed images,
thereby forming an eight-dimensional feature vector con-
structed by calculating the mean and variance of the low-
frequency subband coefficients and the energy of the high-
frequency subband coefficients. Through the mapping 𝑔 =
𝑓−1 from 𝑅𝑚 to 𝑀𝑑 established by LE, we construct the
intrinsic manifold in the 2D space 𝑀𝑑. This describes the
degradation law of battery capacity. Figure 6 shows the
intrinsic manifold of battery #5 embedded in the eight-
dimensional𝑅𝑚 space constructed by features extracted from
the DV data.
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Figure 5: Image transformation based on CC/DV data from a single charging/discharging cycle.

In this study, the capacity is estimated using either CC
or DV data based on the geodesic distance on the intrinsic
manifold, as calculated by (14). The estimated results for all
the demonstration data (batteries #5, #7, #29, and #54) under
the different operating conditions closely track the measured
capacity, as illustrated in Figure 7.

A comparison between the estimation results in this study
and those of the study in [16, 17] is given in Table 2 in terms of
the absolute error (AE), relative error (RE), and elapsed times
(ETs). AE and RE are calculated as follows:

AE = mean [abs (Estimated capacity
− Estimated capacity)] ,

RE

= abs (Estimated capacity − Estimated capacity)
Estimated capacity

.
(15)

Compared with [16], Table 2 shows that the proposed
method based on visual cognition has approximate estima-
tion accuracy with the similarity recognition method based
on database. Using CC data for capacity estimation, the AEs
and REs of batteries #7 and #29 based on the proposed
method are smaller than those reported in [16], while the
AEs and REs of batteries #5 and #54 are larger than those
in [16]. Using DV data for capacity estimation, the AEs and
REs of batteries #29 and #54 based on the proposed method
are smaller than those in [16], while the AEs and REs of
batteries #5 and #7 are larger than those in [16]. Even though
the average AEs and REs of the proposed method are slightly
larger than those in [16], however, the average ETs of the
proposed method are only 11.1975 s based on CC data and
11.095 s based on DV data, more than 20 times smaller than
those in [16], which makes the proposed visual cognition
method more practical for real-time capacity estimation.
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Table 2: Estimation accuracy of available capacity based on the proposed method.

Data Items #5 #7 #29 #54 Maximum Average

CC
AEs (%) 2.30 2.51 0.90 3.18 3.18 2.222
REs (%) 1.51 1.56 0.53 3.38 3.38 1.745
ETs (s) 16.16 15.86 3.59 9.18 16.16 11.1975

CC
[16]

AEs (%) 2.19 3.70 5.04 2.66 3.70 3.3975
REs (%) 1.42 2.23 2.90 2.71 2.90 2.315
ETs (s) 401 291 11 189 401 223

DV
AEs (%) 2.85 2.77 1.30 2.28 2.85 2.300
REs (%) 1.76 1.69 0.75 2.43 2.43 1.658
ETs (s) 15.70 15.41 3.82 9.45 15.70 11.095

DV
[16]

AEs (%) 1.21 1.94 1.49 2.37 2.37 1.7525
REs (%) 0.77 1.15 0.87 2.48 2.48 1.3175
ETs (s) 460 387 10 53 460 227.5

CC + DV
[17]

AEs (%) 4.48 2.42 1.85 3.71 4.48 3.115
REs (%) 2.93 1.49 1.06 3.84 3.84 2.330
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Figure 6:The intrinsicmanifold of battery #5 that reveals the battery
performance degradation.

Compared with [17], it can be seen from Table 2 that
the proposed capacity estimation method based on visual
cognition generally exhibits better performance than the
geometric-based method [17]. The AEs and REs for batteries
#5, #29, and #54 are smaller than those reported in [17], with
the AE and RE of battery #7 being slightly higher. Notably,
the excess part of the AE and RE of battery #7 is relatively
small, because the estimation accuracy of battery #7 in [17] is
already very high. Using visual cognition based on CC data,
themaximumand average of theAEs are reduced by 1.3% and
0.8925%, respectively; those of the REs are reduced by 0.46%
and 0.585%, respectively. Similarly, using visual cognition
based on DV data, the maximum and average of the AEs
are reduced by 1.63% and 0.815%, and those of the REs are
reduced by 1.41% and 0.6725%.

The estimation results presented in Figure 7 and Table 2
demonstrate that the proposed visual cognition-based capac-
ity estimation method is highly effective with either CC or

DV data in a very short time. That is, one can choose either
CC or DV curves with which to estimate the battery capacity
in real time with high accuracy.

5. Conclusions

This study proposes a novel method for estimating the
capacity of Li-ion batteries based on visual cognition. The
proposed approach transforms the collected CC or DV data
from each charge/discharge cycle into an image. NSCT is
then employed to extract features from the transformed
image. After that, taking inspiration from the HVS manifold
sensing characteristic, we utilize the LE method to establish
the intrinsic manifold embedded in the high-dimensional
NSCT coefficients, fromwhich the degradation law of battery
performance can be revealed. The geodesic distance on the
intrinsic manifold is adopted to estimate the battery capacity.

The proposed visual cognition-based capacity estimation
method can use either CC or DV data. Verification experi-
ments were conducted using data collected from the NASA
battery data sets. The results demonstrate that the proposed
method can be used to perform the capacity estimation using
either CC or DV data with high accuracy under different
operating and aging conditions. In addition, the proposed
method avoids the need to study complex electrochemical
mechanisms, establish models, or conduct lengthy testing,
which makes it a promising practical method for battery
capacity estimation. However, further research should be
conducted to ascertain the following:

(1) the optimal number of CC/DV data for image trans-
formation;

(2) the choice of decomposition scale and decomposition
direction in the NSCT method;

(3) the intrinsic dimensionality of the manifold con-
structed by LE.
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Figure 7: Capacity estimation results of typical data under various conditions based on CC/DV values.
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Glossary

AE: Absolute error
ASL: An analogous set of full-cycle of lifetime
AT: Ambient temperature
CC: Charging current
CT: Contourlet transform
CV: Constant voltage
DC: Discharge current
DFB: Directional filter bank
DV: Discharging voltage
EOD: End of discharge
EOLC: End-of-life criterion
HVS: Human visual system
IC: Initial capacity
LE: Laplacian eigenmap
LP: Laplacian pyramid
MCC: Multichannel characteristic
MSC: Manifold sensing characteristic
NSCT: Non-subsampled contourlet transform
NSDFB: Non-subsampled directional filter bank
NSFB: Non-subsampled filter bank
NSPFB: Non-subsampled pyramid filter bank
RE: Relative error.
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