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Abstract

A variant of realizability for Heyting arithmetic which validates Church’s thesis
with uniqueness condition, but not the general form of Church’s thesis, was introduced
by V. Lifschitz in [15]. A Lifschitz counterpart to Kleene’s realizability for functions
(in Baire space) was developed by van Oosten [19]. In that paper he also extended
Lifschitz’ realizability to second order arithmetic. The objective here is to extend it to
full intuitionistic Zermelo-Fraenkel set theory, IZF. The machinery would also work
for extensions of IZF with large set axioms. In addition to separating Church’s thesis
with uniqueness condition from its general form in intuitionistic set theory, we also
obtain several interesting corollaries. The interpretation repudiates a weak form of
countable choice, ACω,ω, asserting that a countable family of inhabited sets of natural
numbers has a choice function. ACω,ω is validated by ordinary Kleene realizability
and is of course provable in ZF. On the other hand, a pivotal consequence of ACω,ω,
namely that the sets of Cauchy reals and Dedekind reals are isomorphic, remains valid
in this interpretation.

Another interesting aspect of this realizability is that it validates the lesser limited
principle of omniscience.

MSC:03E25,03E35,03E70,03F25, 03F35,03F50,03F55,03F60
Keywords: Intuitionistic set theory, Lifschitz realizability, Church’s thesis, count-

able axiom of choice, lesser limited principle of omniscience

1 Introduction

In the constructive context, Church’s thesis refers to the viewpoint that quantifier combi-
nations ∀x∃y can be replaced by recursive functions getting y from x. Dragalin [8] pointed
out that there are two formal versions of Church’s thesis one could consider adding to
Heyting arithmetic HA:

CT0 ∀x∃y A(x, y) → ∃z∀x [z • x ↓ ∧A(x, z • x)]

CT0! ∀x∃!y A(x, y) → ∃z∀x [z • x ↓ ∧A(x, z • x)]
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(we write z•x for {z}(x)), and he posed the question whether the latter version is actually
weaker than the former. The question was answered affirmatively in 1979 by Vladimir Lif-
schitz [15]. He introduced a modification of Kleene’s realizability that validates CT0! but
falsifies instances of CT0. A Lifschitz counterpart to Kleene’s realizability for functions (in
Baire space) was developed by van Oosten [19]. In that paper he also extended Lifschitz’
realizability to second order arithmetic. The objective here is to extend Lifschitz’ realiz-
ability to full intuitionistic Zermelo-Fraenkel set theory, IZF. In addition to separating
Church’s thesis with uniqueness condition from its general form in intuitionistic set theory,
we also obtain several interesting corollaries. The interpretation repudiates a weak form
of countable choice, ACω,ω, asserting that a countable family of inhabited sets of natural
numbers has a choice function. ACω,ω is validated by ordinary Kleene realizability and is
of course provable in ZF.

Definition: 1.1 Before we can describe the pivotal features of Lifschitz’ notion of realiz-
ability we need to introduce some terminology. Variables n,m, l, i, j, k, l, e, d, f, g, p, q range
over numbers. We assume a bijective primitive recursive pairing function  : N × N → N

and inverses 1 and 2. The symbol • denotes partial recursive application, T is Kleene’s
predicate (so n • k ↓ iff ∃mT(n, k,m), read n • k is defined), and U the result-extracting
function. e • k ≃ l stands for ∃mT(e, k,m) and l = U(µm.T(n, k,m)), where µ is the
minimalization operator. If X is a set we write e•k ∈ X instead of ∃ l (e•k ≃ l ∧ l ∈ X).

If f is an n+ 1-ary partial recursive function, we use λx.f(x, k1, . . . , kn) to denote an
index (usually provided by the S-m-n theorem) of the function m 7→ f(m, k1, . . . , kn).

The main idea behind separating CT0 from CT0! is to find a property P of pairs of num-
bers so that if there is a unique n such that P (e, n) holds then there is an effective procedure
to find n from e, while in general there is no such procedure if {m | P (e,m)} contains
more than one element. Lifschitz singled out the property n ≤ 2e ∧ ∀m¬T(1e, n,m).

Lemma: 1.2 Letting

De := {n ≤ 2e | ∀m¬T(1e, n,m)} (1)

there is no index g of a partial recursive function such that, for all e,

De 6= ∅ ⇒ g • e ∈ De. (2)

Proof: This can be seen as follows. LetWf andWh be two disjoint, recursively inseparable
r.e. sets. There is a total recursive function F such that

∀n[F (n) • 0 ≃ f • n ∧ F (n) • 1 ≃ h • n],

letting F (n) := λx.H(n, x) where

H(n, x) ≃

{

f • n if x = 0
h • n if x > 0
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Then for all x, D(F (x),1) 6= ∅. As a result, if (2) held, g • (F (x), 1) ∈ D(F (x),1) and g
would provide a recursive separation of Wf and Wh. 2

If, on the other hand, we know that De is a singleton, then we try to compute (1e) •
0, (1e) • 1, . . . , (1e) • (2e) simultaneously and as soon as the (2e)− 1 many (guaranteed)
successes have been recorded we know that the remaining one failure is the unique element
of De.

1.1 Realizability for set theories

Realizability semantics for intuitionistic theories were first proposed by Kleene in 1945 [12].
Inspired by Kreisel’s and Troelstra’s [14] definition of realizability for higher order Heyting
arithmetic, realizability was first applied to systems of set theory by Myhill [18] and
Friedman [9]. More recently, realizability models of set theory were investigated by Beeson
[3, 5] (for non-extensional set theories) and McCarty [16, 17] (directly for extensional
set theories). Rathjen [22] adapted realizability to the context of constructive Zermelo-
Fraenkel set theory, CZF, and developed hybrids [23, 24] which combine realizability
for extensional set theory with truth in order to prove metamathematical properties of
intuitionistic set theories such as the disjunction and the numerical existence property.

The authors of the present paper had problems making up their mind as to whether
to present IZF as a pure system of set theory or to opt for a language with urelements as
it is done in Friedman’s and Beeson’s work (cf. [10, 5]). Both approaches have advantages
and disadvantages. The disadvantage of pure set theory is that the natural numbers
have to be encoded as finite ordinals, rendering the presentation of the basic parts of
Lifschitz’ realizability for atomic formulas, which are trivial in the arithmetic context,
very cumbersome. The disadvantage of having a sorted language with numbers and sets is
that realizability for those theories has never been worked out properly in the extensional
cases. In the end we went for the latter choice.

1.2 IZF with urelements

We will formalize IZF in a similar manner as in [5, chap.viii] by having two unary predi-
cates for natural numbers and for sets. We shall however eschew terms other than variables
and constants by avoiding symbols for primitive recursive functions. Instead we will have
symbols for primitive recursive relations. This makes the axiomatization of the arithmetic
part a bit awkward (albeit still a straightforward affair) but relieves us from the burden
of having to deal with complex terms in the realizability interpretation.

1.3 Logic and language

IZF is based on first-order intuitionistic predicate calculus with equality =. The language
consists of the following. A binary predicate ∈; unary predicates N and S (for numbers
and sets); for each natural number n a constant n̄ (but we omit the bar when n = 0);
a 2-place relation symbol SUC (for the successor relation), two 3-place relation symbols
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ADD,MULT (for the graphs of addition and multiplication), and further relation symbols
for all primitive recursive relations.

To alleviate the burden of syntax we shall use variables n,m, k, l, i, j to range over nat-
ural numbers, so ∃n . . . and ∀n . . . will be abbreviations for ∃x(N(x) ∧ . . .) and ∀x(N(x) →
. . .), respectively. ∃ !nA(n) is short for ∃nA(n) ∧ ∀n∀m[A(n) ∧ A(m) → n = m]. x /∈ y
stands for ¬(x ∈ y). x ⊆ y abbreviates ∀z(z ∈ x → z ∈ y). We use ∀x ∈ y . . . and
∃x ∈ y . . . for ∀x(x ∈ y → . . .) and ∃x(x ∈ y ∧ . . .), respectively.

Definition: 1.3 We list the axioms of IZF in groups:

A. Axioms on Numbers and Sets

1. ∀x¬(N(x) ∧ S(x))

2. ∀x∀y(x ∈ y → S(y))

3. N(n̄) for all natural numbers n.

B. Number-Theoretic Axioms

1. SUC(n̄, n+ 1) for all naturals n.

2. ∀n ∃ !mSUC(n,m)

3. ∀n∀m[SUC(n,m) → m 6= 0]

4. ∀m [m = 0 ∨ ∃n SUC(n,m)]

5. ∀n∀m∀k (SUC(m,n) ∧ SUC(k, n) → m = k)

6. ∀n∀m∃ !kADD(n,m, k)

7. ∀nADD(n, 0, n)

8. ∀n∀k∀m∀l∀i [ADD(n, k,m) ∧ SUC(k, l) ∧ SUC(m, i) → ADD(n, l, i)]

9. ∀n∀m∃ !kMULT(n,m, k)

10. ∀nMULT(n, 0, 0)

11. ∀n∀k∀m∀l∀i [MULT(n, k,m) ∧ SUC(k, l) ∧ ADD(m,n, i) → MULT(n, l, i)]

12. Defining axioms for all symbols of primitive recursive relations R. These are similar
to the above. We spare the reader the details.

13. A(0) ∧ ∀n∀m[A(n) ∧ SUC(n,m) → A(m)] → ∀nA(n)

C. Set-Theoretic Axioms

1. Extensionality. ∀x∀y(S(x) ∧ S(y) → [∀z(z ∈ x ↔ z ∈ y) → x = y])

2. Pairing. ∀x∀y(∃u[S(u) ∧ x ∈ u ∧ y ∈ u])

4



3. Union. ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ ∃y(y ∈ x ∧ z ∈ y))]

4. Separation. ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ z ∈ x ∧ A(z))]
(u not free in A(z))

5. Power set. ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ (S(z) ∧ z ⊆ x))]

6. Infinity. ∃u(S(u) ∧ ∀z[z ∈ u ↔ N(u)]).

7. ∈-induction. ∀x[∀y(y ∈ x→ A(y)) → A(x)] → ∀xA(x).

8. Collection. ∀y ∈ x∃z A(x, z) → ∃u[S(u) ∧ ∀y ∈ x∃z ∈ uA(y, z)]

Remark 1.4 The theory IZF in [5] comes with the additional axiom ∀x[N(x) ∨ S(x)].
We could have adopted this axiom as well. The reason for not including it is that on the
one hand this axioms does not make the theory stronger but on the other hand it would
force us to define a more complicated realizability structure in which all objects carry a
label which tells one whether it denotes a set or a number. This would have to be done in
a hereditary way and would thus burden us with an extra layer of coding. A proof that
IZF+∀x[N(x)∨S(x)] can be interpreted in IZF using hereditarily labelled sets is sketched
in [5, VIII.1]. Moreover, the same techniques can also be used to interpret IZF in pure
IZF without urelements, IZF0 (cf. [5, VIII.1]). IZF0 has only the binary predicate ∈
(no N, no S and no symbols for primitive recursive relations). In IZF we define the pure
sets as those whose transitive closure contains only sets. Let Pure be the class of pure
sets. To every formula A of IZF0 we assign a formula APure of IZF which is obtained by
relativizing all quantifiers to Pure. Then the exact relationship between the two theories
is that

IZF0 ⊢ A⇔ IZF ⊢ APure.

2 The realizability structure

In what follows we shall be arguing informally in a classical set theory with urelements
where the urlements are the natural numbers (e.g. IZF plus classical logic). The unique
set of natural numbers provided by the Infinity axiom will be denoted by N.

Definition: 2.1 Ordinals are transitive sets whose elements are transitive also. We use
lower case Greek letters to range over ordinals. By recursion on α define

Vset
α =

⋃

β∈α

P(N × (Vset
β ∪ N)). (3)

Vset =
⋃

α

Vset
α . (4)

V(L) = N ∪ Vset (5)

where P(x) denotes the power set of x.
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Lemma: 2.2 (i) The hierarchy Vset is cumulative: if α ≤ β then Vset
α ⊆ Vset

β .

(ii) If x ⊆ V(L) and S(x) then x ∈ Vset.

(iii) Every x ∈ Vset is a set, i.e. S(x) holds.

(iv) ∀x ∈ V(L) [N(x) ∨ S(x)].

Proof: (i) is immediate by (3). For (iii) note that if x ∈ Vset then x ∈ P(N× (Vset
β ∪N))

for some β. So the claim follows from our rendering of the power set axiom which ensures
that P(y) consists only of sets. (iv) follows from (iii).

(ii): If x ⊆ N × V(L) then, using strong collection and (i), there is an α such that
x ⊆ N × Vset

α ∪ N, so x ∈ Vset
α+1, thus x ∈ Vset. For a more detailed proof see [22, Lemma

3.5]. 2

3 Defining Lifschitz realizability for set theory

We adopt the conventions and notations from Definition 1.1.

Definition: 3.1 Let a, ai, b ∈ V(L) and e ∈ N. Below R is a symbol for an n-ary primitive
recursive relation. Recall that De = {n ≤ 2e | ∀m¬T(1e, n,m)}.

We define a relation e 
L B between naturals e and sentences of IZF with parameters
from V(L). e • f 
L B will be an abbreviation for ∃k[e • f ≃ k ∧ k 
L B].

e 
L R(a1, . . . , an) iff a1, . . . , an ∈ N ∧ R(a1, . . . , an)

e 
L N(a) iff a ∈ N ∧ e = a

e 
L S(a) iff S(a) (iff a ∈ Vset)

e 
L a ∈ b iff De 6= ∅ ∧ (∀d ∈ De)∃c [〈1d, c〉 ∈ b ∧ 2d 
L a = c]

e 
L a = b iff (a, b ∈ N ∧ a = b) or (De 6= ∅ ∧ S(a) ∧ S(b) ∧

(∀d ∈ De)∀f, c [〈f, c〉 ∈ a → (1d) • f 
L c ∈ b] ∧

(∀d ∈ De)∀f, c [〈f, c〉 ∈ b → (2d) • f 
L c ∈ a])

e 
L A ∧B iff 1e 
L A ∧ 2e 
L B

e 
L A ∨B iff De 6= ∅ ∧ (∀d ∈ De)([1d = 0 ∧ 2d 
L A] ∨

[1d 6= 0 ∧ 2d 
L B])

e 
L ¬A iff (∀f ∈ N) ¬f 
L A

e 
L A→ B iff (∀f ∈ N) [f 
L A → e • f 
L B]

e 
L ∀xA iff De 6= ∅ ∧ (∀d ∈ De)(∀c ∈ V(L)) d 
L A[x/c]

e 
L ∃xA iff De 6= ∅ ∧ (∀d ∈ De)(∃c ∈ V(L)) d 
L A[x/c]

V(L) |= B iff (∃e ∈ N) e 
L B.

Notice that the definitions of e 
 a ∈ b and e 
L a = b fall under the scope of definition
by transfinite recursion.
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4 Recursion-theoretic preliminaries

Before we can prove the soundness of Lifschitz’ realizability for IZF we need to recall some
recursion-theoretic facts, mainly Lemmata 1–5 from Lifschitz’ paper [15]. Van Oosten has
carried out a detailed analysis of these results by singling out the extra amount of classical
logic one has to add to intuitionistic first-order arithmetic HA to prove them.

Definition: 4.1 MPpr is Markov’s principle for primitive recursive formulae A:

¬¬∃nA(n) → ∃nA(n).

BΣ0
2-MP is Markov’s principle for bounded Σ0

2-formulae:

¬¬∃n ≤ m∀k A(n, k, e) → ∃n ≤ m∀k A(n, k, e)

for A primitive recursive.

Lemma: 4.2 There is a total recursive function sg such that

HA ⊢ ∀n∀m(m ∈ Dsg(n) ↔ m = n).

Proof: [15, Lemma 2] and [19, Lemma 2.2]. 2

Lemma: 4.3 There is a partial recursive function φ such that

HA + MPpr ⊢ ∀e[∃n∀m(m ∈ De ↔ m = n) → φ(e) ↓ ∧φ(e) ∈ De].

Proof: [15, Lemma 1] and [19, Lemma 2.3]. 2

Lemma: 4.4 There is a partial recursive function Φ such that HA + MPpr + BΣ0
2-MP

proves that for all e and f whenever (∀g ∈ De) f • g ↓ then Φ(e, f) ↓ and

∀h[h ∈ DΦ(e,f) ↔ (∃g ∈ De)h = f • g].

Proof: [15, Lemma 4] and [19, Lemma 2.4]. 2

Lemma: 4.5 There is a total recursive function un such that HA + MPpr + BΣ0
2-MP

proves that
∀e∀h[h ∈ Dun(e) ↔ (∃g ∈ De)(h ∈ Dg)].

In other words, Dun(e) =
⋃

g∈De
Dg.

Proof: [15, Lemma 3] and [19, Lemma 2.5]. 2
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Lemma: 4.6 Let ~x = x1, . . . , xr and ~a = a1, . . . , ar. To each formula A(~x) of IZF (with
all free variables among ~x) we can effectively assign (a code of) a partial recursive function
χA such that, letting IZF′ := IZF + MPpr + BΣ0

2-MP,

IZF′ ⊢ (∀e ∈ N)(∀~a ∈ V(L))[De 6= ∅ ∧ ((∀d ∈ De) d 
L A(~a)) → χA(e) 
L A(~a)].

Proof: This is similar to [15, Lemma 5] and [19, Lemma 2.6]. However, due to the
vastly more complicated setting we are dealing with here, we provide a detailed proof. We
use induction on the buildup of A.

If A(~x) is of the form N(xi), define χA(e) := φ(e), where φ is from Lemma 4.3. To see
that this works note that De 6= ∅ and for all (∀d ∈ De) d 
L N(ai) entails that N(ai) and
De = {ai}, thus φ(e) = ai and φ(e) 
L N(ai) follow by Lemma 4.3.

If A(~x) is of either form S(xj) or R(~t) let χA(e) := 0.
If A(~x) is of the form xi = xj let χA(e) := un(e), where un stems from Lemma 4.5.

Note that un is a total recursive function. To see that this works assume that De 6= ∅
and for all (∀d ∈ De) d 
L ai = aj . Now, either ai, aj ∈ N or ai and aj are both sets. In
the former case we then have ai = aj and for any n ∈ N, n 
L ai = aj , so in particular
un(e) 
L ai = aj . If both ai and aj are sets, then un(e) 
L ai = aj holds owing to Lemma
4.5 and the definition of realizability in this case.

Let A(~x) be B(~x) ∧C(~x) and χB and χC be already defined. Let ∗1 and ∗2 be indices
for 1 and 2, respectively. Consider the set DΦ(∗

1
,e) = {1n | n ∈ De} with Φ as in

Lemma 4.4. If De is non-empty then so is DΦ(∗
1
,e). If every element of De realizes A(~a)

then every element of DΦ(∗
1
,e) realizes B(~a). Hence under these assumptions χB(Φ(∗1, e))

realizes B(~a). Similarly, χC(Φ(∗2, e)) realizes C(~a). Hence the claim follows with χA(e) :=
(χB(Φ(∗1, e)), χC(Φ(∗2, e))).

Let A(~x) be B(~x) → C(~x) and χB and χC be already defined. Let θ be a partial
recursive function such that (θ(m)) • k ≃ k • m. Assume that De 6= ∅. Suppose m 
L

B(~a). Then d • m ↓ and d • m 
L C(~a) for all d ∈ De. Thus, by Lemma 4.4, we have
DΦ(e,θ(m)) = {d•m | d ∈ De}. Moreover, DΦ(e,θ(m)) is non-empty (since De 6= ∅) and every
of its elements realizes C(~a), hence, by the inductive assumption, χC(Φ(e, θ(m))) realizes
C(~a). Thus we may define χA(e) := λm.χC(Φ(e, θ(m))).

In all the remaining cases χA(e) := un(e) will work owing to Lemma 4.5 and the defi-
nition of realizability in these cases. 2

The next result shows that our definition of realizability for arithmetic formulae coin-
cides with the one given by Lifschitz [15].

Lemma: 4.7 For every formula A(u, ~x) there are partial recursive functions ψ1 and ψ2

such that provably in IZF′ we have for all e ∈ N and ~a ∈ V(L):

(i) e 
L ∀x[N(x) → A(x,~a)] → ∀nψ1(e) • n 
L A(n,~a);

(ii) ∀n e • n 
L A(n,~a) → ψ2(e) 
L ∀x[N(x) → A(x,~a)];

(iii) e 
L ∃x[N(x) ∧ A(x,~a)] ↔ De 6= ∅ ∧ (∀d ∈ De)2d 
L A(1d,~a).
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Proof: (i). Suppose e 
L ∀x[N(x) → A(x,~a)]. Then De 6= ∅ and for all d ∈ De and
n ∈ N, d • n 
L A(n,~a). Thus, if we define fn such that fn • d ≃ d • n, we conclude
with the aid of Lemma 4.4 that for all n ∈ N and h ∈ DΦ(e,fn), h 
L A(n,~a). Hence, by
Lemma 4.6, (∀n ∈ N)χA(Φ(e, fn)) 
L A(n,~a). So we can define ψ1 by letting ψ1(e) :=
λn.χA(Φ(e, fn)).

(ii). Suppose ∀n e • n 
L A(n,~a). Then e 
L N(x) → A(x,~a) for all x ∈ V(L), hence
sg(e) 
L ∀x[N(x) → A(x,~a)], so ψ2(n) := sg(n) will work.

(iii). Suppose e 
L ∃x[N(x) ∧ A(x,~a)]. Then De 6= ∅ and for all d ∈ De there exists
c ∈ V(L) such that 1d 
L N(c) and 2d 
L A(c,~a). But 1d 
L N(c) entails that c = 1d,
thus 2d 
L A(1d,~a). The converse is obvious. 2

4.1 The soundness theorem for intuitionistic predicate logic with equal-

ity

Lemma: 4.8 There are ir, is, it, i0, i1 ∈ N such that for all x, y, z ∈ V(L),

1. ir 
L x = x.

2. is 
L x = y → y = x.

3. it 
L (x = y ∧ y = z) → x = z.

4. i0 
L (x = y ∧ y ∈ z) → x ∈ z.

5. i1 
L (x = y ∧ z ∈ x) → z ∈ y.

6. Moreover, for each formula A(v, u1, . . . , ur) of IZF all of whose free variables are
among v, u1, . . . , ur there exists iA ∈ N such that for all x, y, z1, . . . , zr ∈ V(L),

iA 
L x = y ∧ A(x, ~z) → A(y, ~z),

where ~z = z1, . . . , zr.

Proof: (1) Note that n 
L x = x holds for all n, x ∈ N. Let x ∈ N and a ∈ Vset
α .

Suppose e • 0 ↓ and e • 0 
L b = b holds for all b ∈ N ∪
⋃

β∈α Vset
β . Then we have

(∀〈f, b〉 ∈ a) sg((f, e•0)) 
L b ∈ a. There is a recursive function ℓ such that (ℓ(e•0))•f ≃
sg((f, e • 0)), and hence, by the foregoing,

(∀〈f, b〉 ∈ a) (1d) • f 
L b ∈ a

with d = (ℓ(e•0), ℓ(e•0)). As a result, sg((ℓ(e•0), ℓ(e•0))) 
L a = a. By the recursion
theorem there exists an e∗ such that

e∗ • 0 ≃ sg((ℓ(e∗ • 0), ℓ(e∗ • 0))).

By induction on α it therefore follows that e∗ • 0 
L a = a holds for all a ∈ Vset. So we
may put ir := e∗ •0. As ir 
L n = n (trivially) holds for all n ∈ N, too, we get ir 
L z = z
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for all z ∈ V(L).

(2): It is routine to check that

is := λe.Φ(e, λd.(2d, 1d)) 
L x = y → y = x,

with Φ from Lemma 4.4.

(3) and (4): We prove these simultaneously. Let TC(a) denote the transitive closure of
a. We employ (transfinite) induction on the ordering � which is the transitive closure of
the ordering �

1
on ordered triples:

〈x, y, z〉 �
1
〈a, b, c〉 iff (x = a ∧ y = b ∧ z ∈ TC(c)) ∨ (x = a ∧ y ∈ TC(b) ∧ z = c)

∨ (x ∈ TC(a) ∧ y = b ∧ z = c).

�-induction follows from the usual ∈-induction.
Now suppose a, b, c ∈ V(L) and inductively assume that for all 〈x, y, z〉 � 〈a, b, c〉,

e# • 0 
L (x = y ∧ y = z) → x = z (6)

e# • 1 
L (x = y ∧ y ∈ z) → x ∈ z. (7)

Suppose e 
L a = b ∧ b = c. Then 1e 
L a = b and 2e 
L b = c. Then either a, b, c ∈ N

and for any n ∈ N we have n 
L b = c, or a, b, c ∈ Vset
α . So let’s assume a, b, c ∈ Vset. Let

d ∈ D1e and d′ ∈ D2e. If 〈f, u〉 ∈ a, then (1d)•f 
L u ∈ b, and hence, for all g ∈ D(1d)•f

there exists v such that 〈1g, v〉 ∈ b and 2g 
L u = v. Moreover, (1d
′) • (1g) 
L v ∈ c.

As 〈u, v, c〉 � 〈a, b, c〉 we can employ (7) to conclude that

ℓ1(e
#, g, d′) := (e# • 1) • (2g, (1d

′) • (1g)) 
L u ∈ c.

Using Lemmata 4.4 and 4.6 repeatedly we get

ℓ2(e
#, f, d, d′) := χ1(Φ((1d) • f, λg.ℓ1(e

#, g, d′))) 
L u ∈ c

ℓ3(e
#, f, d) := χ2(Φ(2e, λd

′.ℓ2(e
#, f, d, d′))) 
L u ∈ c

ℓ∗(e#, e, f) := χ3(Φ(1e, λd.ℓ3(e
#, f, d))) 
L u ∈ c (8)

for appropriate partial recursive functions χi.
Similarly one distills a partial recursive function ℓ∗∗ such that for 〈f, u〉 ∈ c,

ℓ∗∗(e#, e, f) := χ3(Φ(2e, λd.ℓ3(e
#, f, d))) 
L u ∈ a. (9)

As a result of (8) and (9) we have with

℘1(e
#) := (λe.sg((λf.ℓ∗(e#, e, f), λf.ℓ∗∗(e#, e, f))),

℘1(e
#) 
L a = b ∧ b = c→ a = c. (10)

Next suppose e 
L a = b ∧ b ∈ c. Then 1e 
L a = b and 2e 
L b ∈ c. Hence
D2e 6= ∅ and for all d ∈ D2e there exists v such that 〈1d, v〉 ∈ c and 2d 
L b = v, thus
(1e, 2d) 
L a = b ∧ b = v. As 〈a, b, v〉 � 〈a, b, c〉 we can employ (6) to conclude

ℓ4(e
#, e, d) := (e# • 0) • (1e, 2d) 
L a = v.
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Letting ℓ4(e
#, e, d) := (1d, (e

# • 0) • (1e, 2d)), we thus have 〈1(ℓ4(e
#, e, d)), v〉 ∈ c and

2(ℓ4(e
#, e, d)) 
L a = v. Hence, by Lemma 4.4, Φ(1e, λd.ℓ4(e

#, e, d)) 
L a ∈ c. So the
upshot is that

℘2(e
#) := Φ(1e, λd.ℓ4(e

#, e, d)) 
L a = b ∧ b ∈ c→ a ∈ c. (11)

Finally we use the recursion theorem to find an index e# such that

e# • 0 ≃ ℘1(e
#)

e# • 1 ≃ ℘2(e
#).

With it := e# • 0 and i0 := e# • 1 the above shows that (3) and (4) are satisfied.

(5). Suppose e 
L a = b ∧ c ∈ a. Then 1e 
L a = b and 2e 
L c ∈ a. From the
latter we get that D2e 6= ∅ and for all d ∈ D2e there exists v such that 〈1d, v〉 ∈ a and
2d 
L c = v. Thus, D1e 6= ∅ and since 1e 
L a = b, it follows that for all h ∈ D1e,
(1h) • (1d) 
L v ∈ b, so that by (4),

ℓ5(d, h) := i0((2d, (1h) • (1d)) 
L c ∈ b.

Using Lemmata 4.4 and 4.6 repeatedly we get

ℓ6(e, d) := χ3(Φ(1e, λh.ℓ5(d, h)) 
L c ∈ b

ℓ7(e) := χ4(Φ(2e, λd.ℓ6(e, d))) 
L c ∈ b

for appropriate partial recursive functions χi. So we may put i1 := λe.ℓ7(e).

(6). This is shown by a routine induction on the complexity of A, the non-trivial atomic
cases being provided by (2)-(5). 2

Corollary: 4.9 There is a total recursive function θ such that for all a ∈ V(L),

(∀〈f, u〉 ∈ a) θ(f) 
L u ∈ a.

Proof: Let

θ(f) := sg((f, ir)). (12)

2

Theorem: 4.10 Let D be a proof in intuitionistic predicate logic with equality of a formula
A(u1, . . . , ur) of IZF all of whose free variables are among u1, . . . , ur. Then there is eD ∈ N

such that IZF′ proves
eD 
L ∀u1 . . .∀ur A(u1, . . . , ur).
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Proof: We use a standard Hilbert-type systems for intuitionistic predicate logic. The
proof proceeds by induction on the derivation. The correctness of axioms and rules per-
taining to the connectives ∧,¬,→ is exactly the same as for Kleene’s realizability. We have
also shown realizability of the equality axioms in Lemma 4.8. So it remains to address the
axioms and rules for ∨,∀,∃.

Axioms for ∨:
A → A ∨ B or A → B ∨ A. Suppose e 
L A. As Dsg((0,e)) = {(0, e)} by Lemma 4.2,

it follows that sg((0, e)) 
L A ∨ B and hence λe.sg((0, e)) 
L A → A ∨ B. Similarly,
λe.sg((1, e)) 
L A→ B ∨A.

A ∨ B → ((A → C) → ((B → C) → C)). Suppose e 
L A ∨ B. Then De 6= ∅. Let
d ∈ De. Then 1d = 0 ∧ 2d 
L A or 1d 6= 0 ∧ 2d 
L B. Suppose f 
L A → C and
g 
L B → C. Define a partial recursive function f by

f(d, f ′, g′) =

{

f ′ • (2d) if 1d = 0
g′ • (2d) if 1d 6= 0

Then f(d, f, g) 
L C and hence λf.λg.f(d, f, g) 
L (A → C) → ((B → C) → C). With
the aid of Lemma 4.4 we can thus conclude that DΦ(e,λd.λf.λg.f(d,f,g)) 6= ∅ and for all
p ∈ DΦ(e,λd.λf.λg.f(d,f,g)) we have

p 
L (A→ C) → ((B → C) → C).

Let E := (A→ C) → ((B → C) → C). By Lemma 4.6 we can therefore conclude that

χE(Φ(e, λd.λf.λg.f(d, f, g))) 
L E.

As a result, λe.χE(Φ(e, λd.λf.λg.f(d, f, g))) 
L A ∨B → E.

Axioms and Rules for ∀:
If e 
L ∀xA(x,~a), then De 6= ∅ and (∀b ∈ V(L))(∀d ∈ De) d 
L A(b,~a), and hence, by

Lemma 4.6, χA(e) 
L A(b,~a) for all b ∈ V(L). Consequently,

λe.χA(e) 
L ∀xA(x,~a) → A(b,~a)

for all b,~a ∈ V(L).
We also have the rule: from B(~u) → A(x, ~u) infer B(~u) → ∀xA(x, ~u) if x is not free in

B(~u). Inductively we have a realizer h such that for all b,~a ∈ V(L),

h 
L B(~a) → A(b,~a).

Suppose d 
L B(~a). Then h • d 
L A(b,~a) holds for all b ∈ V(L), whence sg(h • d) 
L

∀xA(x,~a). As a result,
λd.sg(h • d) 
L B(~a) → ∀xA(x,~a)

for all ~a ∈ V(L).

Axioms and Rules for ∃:
If e 
L A(a) then sg(e) 
L ∃xA(x), thus λe.sg(e) 
L A(a) → ∃xA(x) for all a ∈ V(L).

12



Finally we have the rule: from A(x, ~u) → B(~u) infer ∃xA(x, ~u) → B(~u) if x is not free
in B(~u). Inductively we have a realizer g such that for all b,~a ∈ V(L),

g 
L A(b,~a) → B(~a).

Suppose e 
L ∃xA(x,~a). Then De 6= ∅ and for all d ∈ De exists c ∈ V(L) such that d 
L

A(c,~a). Consequently, (∀d ∈ De) g • d 
L B(~a). By Lemma 4.4 we then have DΦ(e,g) 6= ∅
and (∀g ∈ DΦ(e,g)) g 
L B(~a). Using Lemma 4.6 we arrive at χB(Φ(e, g)) 
L B(~a); whence
λe.χB(Φ(e, g)) 
L ∃xA(x,~a) → B(~a). 2

Lemma: 4.11 For every formula A(u, ~x) there are partial recursive functions Υ1, Υ2,
and Υ3 (depending solely on the formula) such that provably in IZF′ we have for all e ∈ N

and b,~a ∈ V(L):

(i) e 
L ∀x ∈ bA(x,~a) → ∀〈d, v〉 ∈ b Υ1(e) • d 
L A(v,~a);

(ii) ∀〈d, v〉 ∈ b e • d 
L A(v,~a) → Υ2(e) 
L ∀x ∈ bA(x,~a)];

(iii) 〈d, v〉 ∈ b ∧ e 
L A(v,~a)] → Υ(e, d) 
L ∃x ∈ bA(x,~a)].

Proof: (i). Suppose e 
L ∀x[x ∈ b → A(x,~a)]. Then De 6= ∅ and for all d′ ∈ De and
c ∈ V(L), d′ 
L c ∈ b → A(c,~a). Now, if 〈d, v〉 ∈ b, then θ(d) 
L v ∈ b by Corollary 4.9,
and hence ∀d′ ∈ De d′ • θ(d) 
L A(v,~a). There is then also a partial recursive function
θ′ such that ∀d′ ∈ De θ′(d) • d′ 
L A(v,~a), so that by Lemma 4.4, DΦ(e,θ′(d)) 6= ∅ and
∀h ∈ DΦ(e,θ′(d)) h 
L A(v,~a). Hence, using Lemma 4.6, χA(Φ(e, θ′(d))) 
L A(v,~a). Put
Υ1(e, d) := χA(Φ(e, θ′(d))).

(ii) Suppose ∀〈d, v〉 ∈ b e • d 
L A(v,~a). Assume f 
L c ∈ b. Then Df 6= ∅ and
∀h ∈ Df ∃v [〈1h, v〉 ∈ b ∧ 2h 
L c = v]. 〈1h, v〉 ∈ b ∧ 2h 
L c = v implies
e • 1h 
L A(v,~a), and furthermore with the help of Lemma 4.8(6), iA • (2h, e • 1h) 
L

A(c,~a). Therefore ∀h′ ∈ DΦ(f,λy.iA•(2y,e•1y)) h
′


L A(c,~a), and thus by Lemma 4.6,
χA(Φ(f, λy.iA • (2y, e • 1y))) 
L A(c,~a). Hence Υ2(e) 
L ∀x ∈ bA(x,~a ), where
Υ2(e) := sg(λf.χA(Φ(f, λy.iA • (2y, e • 1y)))).

(iii) Suppose 〈d, v〉 ∈ b and e 
L A(v,~a ). Then θ(d) 
L v ∈ b, thus (θ(d), e) 
L v ∈
b ∧ A(v,~a ), so that sg((θ(d), e)) 
L ∃x ∈ bA(x,~a ). Put Υ3(e, d) = sg((θ(d), e)). 2

5 The soundness theorem for IZF

Lemma: 5.1 There is a partial recursive function sub such that for all α, a ∈ Vset
α and

b ∈ Vset,
e 
L b ⊆ a→ ∃b∗ ∈ Vset

α sub(e) 
L b = b∗.
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Proof: Suppose a ∈ Vset
α , b ∈ Vset, and e 
L b ⊆ a. Then De 6= ∅. Let

b∗ := {〈(f ′, g′), u〉 | (∃〈f ′, x〉 ∈ b)[〈1g
′, u〉 ∈ a ∧ 2g

′

L x = u]}.

Clearly, b∗ ∈ Vset
α . With θ from Corollary 4.9 we have:

〈f, x〉 ∈ b → θ(f) 
L x ∈ b

→ (∀d ∈ De) d • θ(f) 
L x ∈ a

→ (∀d ∈ De) (Dd•θ(f) 6= ∅ ∧

(∀d′ ∈ Dd•θ(f))∃u [〈1d
′, u〉 ∈ a ∧ 2d

′

L x = u])

→ (∀d ∈ De) (∀d′ ∈ Dd•θ(f))∃u [〈(f, d′), u〉 ∈ b∗ ∧ 2d
′

L x = u]

→ (∀d ∈ De)(∀h ∈ DΦ(d•θ(f),λd′.((f,d′),2d′)))

∃u [〈1h, u〉 ∈ b∗ ∧ 2h 
L x = u]

→ (∀d ∈ De) Φ(d • θ(f), λd′.((f, d′), 2d
′)) 
L x ∈ b∗

→ (∀g ∈ DΦ(e,λd.Φ(d•θ(f),λd′.((f,d′),2d′)))) g 
L x ∈ b∗

→ χA(Φ(e, λd.Φ(d • θ(f), λd′.((f, d′), 2d
′)))) 
L x ∈ b∗

where the fifth and seventh arrow are justified by Lemma 4.4 and the last arrow follows
by Lemma 4.6 with A ≡ x1 ∈ x2.

Conversely, we have

〈h, u〉 ∈ b∗ → ∃x [〈1h, x〉 ∈ b ∧ 〈1(2h), u〉 ∈ a ∧ is((2(2h))) 
L u = x]

→ sg((1h, is((2(2h))))) 
L u ∈ b

with is from Lemma 4.8. The upshot of the foregoing is that with

ν(e, f) := χA(Φ(e, λd.Φ(d • θ(f), λd′.((f, d′), 2d
′)))) ,

µ(h) := sg((1h, is((2(2h))))) ,

sub(e) := sg(j(λf.ν(e, f), λh.µ(h)))

we have sub(e) 
L b = b∗. 2

Theorem: 5.2 For every axiom A of IZF, one can effectively construct an index e such
that

IZF′ ⊢ (ē 
L A).

Proof: We treat the axioms one after the other.

(Arithmetic axioms): There are several and they are very boring to validate. In view of
Lemma 4.7 it’s also obvious how to realize them. We do one case study. 0 
L SUC(n, n+1)
holds for all n ∈ N. Hence (n+ 1, 0) 
L N(n+ 1) ∧ SUC(n, n+ 1), thus

sg((n+ 1, 0)) 
L ∃k SUC(n, k),
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so ∀n e∗ • n 
L ∃k SUC(n, k) with e∗ is chosen such that e∗ • n = sg((n + 1, 0)). By
Lemma 4.7 we then have

ψ2(e
∗) 
L ∀n∃k SUC(n, k). (13)

Now suppose e 
L SUC(c, a) ∧ SUC(c, b). Then c, a, b ∈ N and c + 1 = a = b, thus
0 
L a = b and hence

sg(sg(sg(λu.0))) 
L ∀x∀y∀z [SUC(x, y) ∧ SUC(x, z) → y = z]. (14)

From (13) and (14) we obtain a realizer for the first number-theoretic axiom.

(Induction on N): Suppose

e 
L A(0) ∧ ∀x∀y[N(x) ∧ N(y) ∧ A(x) ∧ SUC(x, y) → A(y)].

Then D2e 6= ∅ and (∀d ∈ D2e) Dd 6= ∅. Moreover, if d ∈ D2e then for all h ∈ Dd,
h 
L N(x) ∧ N(y) ∧ A(x) ∧ SUC(x, y) → A(y) for all x, y ∈ V(L). Thus for all h ∈ Dun(2e)

(with un from Lemma 4.5) and all x, y ∈ V(L) we have

h 
L N(x) ∧ N(y) ∧ A(x) ∧ SUC(x, y) → A(y). (15)

Clearly, 1e 
L A(0). Now suppose n ∈ N and SUC(n,m) and we have an index e∗ such
that

(∀h ∈ Dun(2e)) e
∗ • (h, n) 
L A(n).

Then (n,m) 
L N(n) ∧ N(m), so ((n,m), e∗ • (h, n)) 
L (N(n) ∧ N(m)) ∧ A(n), and
finally (((n,m), e∗ • (h, n)), 0) 
L ((N(n) ∧ N(m)) ∧ A(n)) ∧ SUC(n,m). From the
latter we get

l#(e∗, n, h) := h • (((n,m), e∗ • (h, n)), 0) 
L A(m).

We suppressed m in l# since m is computable from n (m = n+ 1). Now choose e∗ by the
recursion theorem in such a way that e∗ • (h, 0) = 1e and

e∗ • (h, k + 1) ≃ l#(e∗, k, h).

If we inductively assume that e∗ • (h, n) ↓ for all h ∈ Dun(e) then the foregoing showed
that e∗ • (h,m) ↓ for all h ∈ Dun(e). Hence (∀g ∈ DΦ(un(e),λh.e∗•(h,m))) g 
L A(m) by
Lemma 4.4 and thus with

l⋄(e,m) =

{

1e if m = 0
χA(Φ(un(e), λh.e∗ • (h,m))) if m 6= 0

(using Lemma 4.6) we have l⋄(e,m) 
L A(m) for all m ∈ N. As a result,

λm.l⋄(e,m) 
L N(a) → A(a)

holds for all a ∈ V(L) since d 
L N(a) implies d = a. Thus

sg(λm.l⋄(e,m)) 
L ∀x(N(x) → A(x)),
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and hence

λe.sg(λm.l⋄(e,m)) 
L A(0) ∧ ∀n∀m[A(n) ∧ SUC(n,m) → A(m)] → ∀nA(n).

(Extensionality): Let a, b ∈ V(L). Also suppose that S(a) ∧ S(b) and

e 
L ∀x(x ∈ a ↔ x ∈ b).

Then (∀d ∈ De)(∀u ∈ V(L)) d 
L (u ∈ a ↔ u ∈ b). Thus for all d ∈ De we have

(∀〈f, y〉 ∈ a) (1d) • θ(f) 
L y ∈ b

(∀〈f, y〉 ∈ b) (2d) • θ(f) 
L y ∈ a

with θ defined as in Corollary 4.9. Letting ψ(d) := (λf.(1d) • θ(f), λf.(2d) • θ(f)) we
therefore have

(∀〈f, y〉 ∈ a) (1(ψ(d))) • f 
L y ∈ b

(∀〈f, y〉 ∈ b) (2(ψ(d))) • f 
L y ∈ a.

Thus, by Lemma 4.4, Φ(e, λx.ψ(x))↓, DΦ(e,λx.ψ(x)) 6= ∅ and every h ∈ DΦ(e,λx.ψ(x)) is of the
form (λx.ψ(x)) • d = ψ(d) for some d ∈ De. Thus Φ(e, λx.ψ(x)) 
L a = b. Furthermore,

λf.λe.Φ(e, λx.ψ(x)) 
L S(a) ∧ S(b) → (∀x(x ∈ a ↔ x ∈ b) → a = b)

and hence

sg(sg(λf.λe.Φ(e, λx.ψ(x)))) 
L ∀u∀y[S(u) ∧ S(y) → (∀x(x ∈ u ↔ x ∈ y) → u = y)].

(Pair): Let u, v ∈ V(L). Put a = {〈0, u〉, 〈0, v〉}. Then a ∈ Vset and θ(0) 
L u ∈ a and
θ(0) 
L v ∈ a, whence (0, (θ(0), θ(0))) 
L S(a)∧u ∈ a∧ v ∈ a, so sg((0, (θ(0), θ(0)))) 
L

∃y[S(y) ∧ u ∈ y ∧ v ∈ y].

(Union): For each u ∈ V(L), put

Un(u) = {〈(f, h), y〉 | ∃x(〈f, x〉 ∈ u ∧ 〈h, y〉 ∈ x)}.

Then Un(u) ∈ Vset. Suppose

e 
L ∃x(x ∈ u ∧ z ∈ x).

Then
(∀d ∈ De)(∃x ∈ V(L)) [1d 
L x ∈ u ∧ 2d 
L z ∈ x].

Fix d ∈ De and x∈V(L) such that 1d 
L x ∈ u ∧ 2d 
L z ∈ x. Then

(∀f ∈ D1d)∃w [〈1f, w〉 ∈ u ∧ 2f 
L x = w] .
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Letting q(f, d) := i1 • (2f, 2d) with i1 from Lemma 4.8 we get

(∀f ∈ D1d)∃w [〈1f, w〉 ∈ u ∧ q(f, d) 
L z ∈ w]

and hence

(∀f ∈ D1d)∃w [ 〈1f, w〉 ∈ u ∧ ∃v(〈1(q(f, d)), v〉 ∈ w ∧ 2(q(f, d)) 
L z = v ].

Since 〈(1f, 1(q(f, d))), v〉 ∈ Un(u), we arrive at

(∀f ∈ V1d) l(f, d) 
L z ∈ Un(u),

where l(f, d) := sg(((1f, 1(q(f, d))), 2(q(f, d)))). As a result,

(∀h ∈ DΦ(1d,λf.l(f,d)) 
L z ∈ Un(u),

hence
χA(Φ(1d, λf.l(f, d))) 
L z ∈ Un(u)

where A is the formula x0 ∈ x1. Since the latter holds for all d ∈ De we get

(∀g ∈ DΦ(e,λd.χA(Φ(1d,λf.l(f,d))))) 
L z ∈ Un(u)

so
χA(Φ(e, λd.χA(Φ(1d, λf.l(f, d))))) 
L z ∈ Un(u).

The upshot is that sg((0, sg(λe.χA(Φ(e, λd.χA(Φ(1d, λf.l(f, d)))))))) realizes ∃w[S(w) ∧
∀z(∃x(x ∈ u ∧ z ∈ x) → z ∈ w)] from which one gets a realizer for the union axiom via
realizers for the separation axioms.

(Infinity): Let M := {〈n, n〉 | n ∈ N}. Then M ∈ Vset and S(M). Suppose e 
L z ∈ M .
Then De 6= ∅ and

(∀d ∈ De)∃n[〈1d, n〉 ∈M ∧ 2d 
L z = n].

Note that 〈1d, n〉 ∈ M and 2d 
L z = n with n ∈ N entail that 1d = z = n. We then
also (trivially) have 1d 
L N(z). Invoking Lemma 4.4 we have DΦ(e,λd.1d) = {n}. Thus,
by Lemma 4.3, φ(Φ(e, λd.1d)) ↓ and φ(Φ(e, λd.1d)) 
L N(z).

Conversely, if e 
L N(z), then e = z ∧ 〈z, z〉 ∈M , so θ(e) 
L z ∈M .
The upshot is that sg((λx.φ(Φ(x, λd.1d)), λx.θ(x))) 
L ∀u(u ∈M ↔ N(u)). Hence

sg((0, sg((λx.φ(Φ(x, λd.1d)), λx.θ(x))))) 
L ∃z[S(z) ∧ ∀u(u ∈ z ↔ N(u))].

(Powerset): Let a ∈ Vset
α . It suffices to find a realizer for the formula

∃y[S(y) ∧ ∀x(S(x) ∧ x ⊆ a→ x ∈ y)]

since realizability of the power set axiom follows then with the help of Separation. Define

Vα := {〈q, b〉 | b ∈ Vset
α ∧ q ∈ N ∧ q 
L ∀x(x ∈ b→ x ∈ a)}.
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Then Vα ∈ Vset. Suppose b ∈ Vset and e 
L b ⊆ a. Then sub(e) 
L b = b∗ for some
b∗ ∈ Vset

α by Lemma 5.1. Thus, as 〈1(sub(e)), b∗〉 ∈ Vα, we have

sg((1(sub(e)), sub(e))) 
L b ∈ Vα.

Thus sg(λf.sg((1(sub(2f)), sub(2f)))) 
L ∀x(S(x) ∧ x ⊆ a → x ∈ Vα) and conse-
quently

sg((0, sg(λf.sg((1(sub(2f)), sub(2f)))))) 
L ∃y[S(y) ∧ ∀x(S(x) ∧ x ⊆ a→ x ∈ y)].

(Set Induction): Suppose ē 
L ∀x[∀y(y ∈ x→ A(y)) → A(x)]. Then Dē 6= ∅ and

(∀d ∈ Dē)(∀x ∈ V(L)) d 
L ∀y(y ∈ x→ A(y)) → A(x). (16)

Let a ∈ V(L). Suppose there is an index e∗ such that for all 〈f ′, b〉 ∈ a and d ∈ Dē we
have e∗ • d↓ and e∗ • d 
L A(b). Assume f 
L y ∈ a. Then Df 6= ∅ and

∀d′ ∈ Df ∃b (〈1d
′, b〉 ∈ a ∧ 2d

′

L y = b).

Using Lemma 4.8, we can explicitly engineer an index îA such that for all d ∈ Dē and
d′ ∈ Df we have

îA((e∗ • d, 2d
′)) 
L A(y).

Fix d ∈ Dē. Then (λx.̂iA((e∗ • d, 2x))) • d
′

L A(y) holds for all d′ ∈ Df , and hence

∀h ∈ DΦ(f,λx.̂iA((e∗•d,2x)))
h 
L A(y)

using Lemma 4.4, so that with the aid of Lemma 4.6 we have

χA(Φ(f, λx.̂iA((e∗ • d, 2x)))) 
L A(y).

As a consequence we have

λf.χA(Φ(f, λx.̂iA((e∗ • d, 2x)))) 
L y ∈ a→ A(y),

so
l∗(e∗, d) := sg(λf.χA(Φ(f, λx.̂iA((e∗ • d, 2x))))) 
L ∀y[y ∈ a→ A(y)].

Consequently, in view of (16), (∀d ∈ Dē) d • l∗(e∗, d) ↓ and

(∀d ∈ Dē) d • l∗(e∗, d) 
L A(a). (17)

With the help of the recursion theorem we can explicitly cook up an index e∗ such that

e∗ • n ≃ n • l∗(e∗, n)
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for all n ∈ N. In view of the foregoing, it follows by set induction on a ∈ V(L) that for all
d ∈ De, e

∗•d 
L A(a). Hence, by Lemma 4.4, DΦ(e,λd.e∗•d) 6= ∅ and for all h ∈ DΦ(e,λd.e∗•d)

and all a ∈ V(L) we have h 
L A(a). Thus Φ(e, λd.e∗ • d) 
L ∀xA(x). Hence

λe.Φ(e, λd.e∗ • d) 
L ∀x[∀y(y ∈ x→ A(y)) → A(x)] → ∀xA(x).

(Separation): Given a ∈ V(L) we seek a realizer e such that

e 
L ∃z[S(z) ∧ ∀u(u ∈ z → u ∈ a ∧ A(a)) ∧ ∀u(u ∈ a ∧ A(u) → u ∈ z)]. (18)

e will not depend on a nor on other parameters occurring in A. Let

b = {〈(f, g), x〉 | 〈f, x〉 ∈ a ∧ g 
L A(x)}. (19)

Then b is a set by separation in the background universe, and also b ∈ Vset.
Assume e 
L u ∈ b. Then De 6= ∅ and for every d ∈ De there exists x such that

〈1d, x〉 ∈ b ∧ 2d 
L u = x. By definition of b, 1d = (f, g) for some f, g ∈ N such
that 〈f, x〉 ∈ a and g 
L A(x). From 2d 
L u = x and θ(f) 
L x ∈ a we deduce
q(d, f) := i0((2d, θ(f))) 
L u ∈ a with the help of Lemma 4.8(4). As g 
L A(x) we
get p(d, g) := iA′((2d, g)) 
L A(u) from Lemma 4.8, where A′ is obtained from A by
replacing parameters from V(L) with free variables. Thus, from the above we conclude
that

(q(d, f), p(d, g)) 
L u ∈ a ∧ A(u). (20)

We can write l(d) := (q(d, f), p(d, g)) solely as a partial recursive function of d since
f = 1(1d)) and g = 2(1d)). Thus (20) yields (∀d ∈ De) l(d) 
L u ∈ a ∧ A(u), whence
(∀h ∈ DΦ(e,λd.l(d))) 
L u ∈ a ∧ A(u) by Lemma 4.4, so

χB(Φ(e, λd.l(d))) 
L u ∈ a ∧ A(u) (21)

by Lemma 4.6 for an appropriate formula B. (21) yields

e∗ := sg(λe.χB(Φ(e, λd.l(d)))) 
L ∀u(u ∈ b→ u ∈ a ∧ A(u)). (22)

Conversely, assume e 
L u ∈ a ∧ A(u). Then 1e 
L u ∈ a and 2e 
L A(u). Thus, for
all d ∈ D1e there exists x such that 〈1d, x〉 ∈ a and 2d 
L u = x. Then, by Lemma 4.8,
l1(d, e) := iA0

((2d, 2e)) 
L A(x) for a suitable formula A0. So 〈(1d, l1(d, e)), x〉 ∈ b,
which together with 2(d) 
L u = x yields

l2(d, e) := ((1d, l1(d, e)), 2d) 
L u ∈ b.

Consequently, by Lemma 4.4,

(∀h ∈ DΦ(1e,λd.l2(d,e)))h 
L u ∈ b,

thus χC(Φ(1e, λd.l2(d, e))) 
L u ∈ b by Lemma 4.6, where C ≡ x1 ∈ x2. Hence

e∗∗ := sg(λe.χC(Φ(1e, λd.l2(d, e)))) 
L ∀u[u ∈ a ∧ A(u) → u ∈ b]. (23)
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Finally, by (22) and (23), we arrive at (18) with e := sg((0, (e∗, e∗∗))).

(Collection): Suppose

e 
L ∀u(u ∈ a→ ∃y B(u, y)). (24)

Then De 6= ∅ and

(∀d ∈ De)(∀u ∈ V(L)) d 
L (u ∈ a→ ∃y B(u, y)). (25)

Fix d ∈ De. If 〈f, x〉 ∈ a then θ(f) 
L x ∈ a, so d • θ(f) 
L ∃yB(x, y). Consequently,
(∀h ∈ Dd•θ(f))(∃y∈V(L))h 
L B(x, y). Therefore, using Collection in the background
universe, there exists a set C ⊆ V(L) such that

(∀d ∈ De)(∀〈f, x〉 ∈ a)(∀h ∈ Dd•θ(f))(∃y ∈ C)h 
L B(x, y). (26)

Let

C∗ = {〈((d, f), h), y〉 | d ∈ De ∧ y ∈ C ∧ ∃x(〈f, x〉 ∈ a ∧ h 
L B(x, y))}. (27)

C∗ is a set by Separation. Also C∗ ∈ Vset. Now assume that d ∈ De and e′ 
L u ∈
a. Then, for all d′ ∈ De′ there exists x such that 〈1d

′, x〉 ∈ a and 2d
′


L u = x.
Moreover, by (25), for all h ∈ Dd•θ(1d′) there exists y ∈ C such that h 
L B(x, y).
Whence 〈l3(d, d

′, h), y〉 ∈ C∗, where l3(d, d
′, h) := ((d, 1d

′), h). From 2d
′

L u = x and

h 
L B(x, y) we also obtain iB′((2d
′, h)) 
L B(u, y) by Lemma 4.8 for an appropriate

formula B′. Since θ(l3(d, d
′, h)) 
L y ∈ C∗, we have

l4(d, d
′, h) := (θ(l3(d, d

′, h)), iB′((2d
′, h))) 
L y ∈ C∗ ∧ B(u, y), (28)

so sg(l4(d, d
′, h)) 
L ∃y(y ∈ C∗ ∧ B(u, y)), hence, using Lemmata 4.4, 4.5 and 4.6 repeat-

edly with appropriate formulas D and E,

l5(d, d
′) := χD(Φ(d • θ(1d

′), λh.sg(l4(d, d
′, h)))) 
L ∃y(y ∈ C∗ ∧ B(u, y)),

l6(d, e
′) := χE(Φ(e′, λd′.l5(d, d

′))) 
L ∃y(y ∈ C∗ ∧ B(u, y)). (29)

As we established (29) under the assumption e′ 
L u ∈ a, we get

λe′.l6(d, e
′) 
L u ∈ a→ ∃y(y ∈ C∗ ∧ B(u, y)).

Thus, by Lemmata 4.4 and 4.6, we have

l7(e) := χF (Φ(e, λd.λe′.l6(d, e
′))) 
L u ∈ a→ ∃y(y ∈ C∗ ∧ B(u, y)) (30)

for an appropriate formula F . Finally, by repeatedly applying Lemma 4.2, we see that

sg(l7(e)) 
L ∀u[u ∈ a→ ∃y(y ∈ C∗ ∧ B(u, y))]

sg((0, sg(l7(e)))) 
L ∃z(S(z) ∧ ∀u[u ∈ a→ ∃y(y ∈ z ∧ B(u, y))])

λe.sg((0, sg(l7(e)))) 
L ∀u[u ∈ a→ ∃y B(u, y)] →

∃z(S(z) ∧ ∀u[u ∈ a→ ∃y(y ∈ C∗ ∧ B(u, y))]).
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2

Since BΣ0
2-MP is Lifschitz realizable by [19, Lemma 3.2] and MPpr is also Lifschitz

realizable as will be shown in Lemma 6.5, it follows that the soundness theorem 5.2 can
be extended to IZF′.

Theorem: 5.3 For every axiom A of IZF′, one can effectively construct an index e such
that

IZF′ ⊢ (ē 
L A).

The first large set axiom proposed in the context of constructive set theory was the
Regular Extension Axiom, REA, which Aczel introduced to accommodate inductive defi-
nitions in CZF (cf. [2]).

Definition: 5.4 A is inhabited if ∃xx ∈ A. An inhabited set A is regular if A is transitive,
and for every a ∈ A and set R ⊆ a×A if ∀x ∈ a∃y (〈x, y〉 ∈ R), then there is a set b ∈ A
such that

∀x ∈ a∃y ∈ b (〈x, y〉 ∈ R) ∧ ∀y ∈ b ∃x ∈ a (〈x, y〉 ∈ R).

In particular, if R : a→ A is a function, then the image of R is an element of A.
The Regular Extension Axiom, REA, is as follows: Every set is a subset of a regular

set.
A set I is said to be inaccessible if I is a transitive set such that the following are

satisfied:

1. N ∈ I;

2. ∀a, b ∈ I {a, b} ∈ I;

3. ∀a ∈ I
⋃

a ∈ I;

4. ∀a ∈ I P(a) ∈ I, where P(a) = {x | x ⊆ a};

5. ∀c∀a ∈ I [∀x ∈ a∃y ∈ I 〈x, y〉 ∈ c→ ∃z ∈ I ∀x ∈ a∃y ∈ z 〈x, y〉 ∈ c ].

We will write inac(I) to convey that I is an inaccessible set, and Inac for the statement
∀x∃I [x ∈ I ∧ inac(I)].

Theorem: 5.5 One can add large set axioms to IZF′ such as axioms asserting the ex-
istence of regular sets, inaccessible sets, Mahlo sets and other large sets. Such largeness
notions have been considered in [21] and [2]. It would then turn out that these axioms are
validated in V(L), too, if they hold in the background universe. We shall be content with
stating one of these examples rigorously:

IZF′ + Inac proves that V(L) |= Inac.
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Proof: We will demonstrate the latter result. So our background theory will be IZF′ +
Inac. The proof is a modification of [22, Theorem 6.2]. Let a ∈ V(L). By Inac there
exists an inaccessible set I such that a ∈ I. Let

A := I ∩ V(L),

C := {〈0, x〉 : x ∈ A}.

A is a set by separation, and since A ⊆ V(L), C is a set belonging to V(L). Let κ :=
⋃

{x ∈ A | x is an ordinal}. One easily verifies that A = Vset
κ ∪ N. I being inaccessible it

is clear from Theorem 5.2 that A realizes all theorems of IZF. In the main, we have to go
through the proof of Theorem 5.2 to ascertain that the witnesses for set existence axioms
of IZF can be found in C. We shall do a few examples.

For Pair suppose that 〈0, u〉, 〈0, v〉 ∈ C. Put a := 〈0, {〈0, u〉, 〈0, u〉}〉. Then a ∈ C

since {〈0, u〉, 〈0, u〉} ∈ A. As θ(0) 
L u ∈ a, θ(0) 
L v ∈ a, and θ(0) 
L a ∈ C we have
(θ(0), (0, (θ(0), θ(0)))) 
L a ∈ C ∧ (S(a) ∧ u ∈ a ∧ v ∈ a). Thus q 
L ∃y ∈ C[S(y) ∧ u ∈
y ∧ v ∈ y], where q := sg((θ(0), (0, (θ(0), θ(0))))). Hence using 4.11(ii) twice we arrive
at

Υ2(λx.Υ2(λx.q)) 
L ∀u ∈ C∀v ∈ C∃y ∈ C[S(y) ∧ u ∈ y ∧ v ∈ y] .

(Union): For each 〈0, u〉 ∈ C, put

Un(u) = {〈(f, h), y〉 | ∃x(〈f, x〉 ∈ u ∧ 〈h, y〉 ∈ x)}.

Then Un(u) ∈ Vset ∩ A and thus 〈0,Un(u)〉 ∈ C. By the same proof as in Theorem 5.2
we find a realizer s such that s 
L ∀z(∃x(x ∈ u ∧ z ∈ x) → z ∈ Un(u)). Hence by
Lemma 4.11(ii) we have Υ2(λx.q) 
L ∀u ∈ C∀z[∃x(x ∈ u ∧ z ∈ x) → z ∈ Un(u)]. Thus
sg((θ(0),Υ2(λx.q))) 
L ∃y ∈ C∀z[∃x(x ∈ u ∧ z ∈ x) → z ∈ Un(u)].

(Powerset): Let 〈0, a〉 ∈ C. Then a ∈ Vset
α for some α ∈ κ. Define

Vα := {〈q, b〉 | b ∈ Vset
α ∧ q ∈ N ∧ q 
L ∀x(x ∈ b→ x ∈ a)}.

Then Vα ∈ A and hence 〈0,Vα〉 ∈ C. Then proceed as in the proof of Theorem 5.2.
The remaining axioms are also dealt with by similar adaptations of the proof of The-

orem 5.2. So the upshot is that we find r (not depending on a) such that r 
L inac(C),
and therefore also a realizer for Inac. 2

6 Church’s thesis in V(L)

Lemma: 6.1 (IZF′) V(L) |= CT0!.

Proof: Note that according to Lemma 4.7 our realizability for arithmetic formulae is the
same as in [15]. As a result, the same proof as in [15, Lemma 3] will do. 2
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Lemma: 6.2 V(L) 6|= CT0. More precisely, let ē, ẽ ∈ N be indices of two disjoint recur-
sively inseparable r.e. sets, i.e. X = {m | ∃mT(ē, n,m)} and Y = {m | ∃mT(ẽ, n,m)} are
disjoint and recursively inseparable. Let A(n) := ∀m¬T(ē, n,m), B(n) := ∀m¬T(ẽ, n,m)
and C(n, k) := (A(n) ∧ k = 0) ∨ (B(n) ∧ k = 1). Then

V(L) 6|= ∀n∃k C(n, k) → ∃d∀nC(n, d • n).

Proof: The proof is the same as in [15, section 4]. First one shows that V(L) |=
∀n∃k C(n, k). Next one shows that from e∗ 
L ∃d∀nC(n, d • n) one would be able to
engineer a recursive separation of X and Y above, which is impossible. 2

The foregoing Lemmata also show that a “binary” version of number choice is not
provable in IZF. Let ACω,2 be the statement that whenever (Ai)i∈N is family of inhabited
sets Ai with Ai ⊆ {0, 1}, then there exists a function F : N →

⋃

i∈N
Ai such that ∀i F (i) ∈

Ai.

Corollary: 6.3 V(L) 6|= ACω,2. In particular, IZF does not prove ACω,2.

Proof: We argue in V(L). We have ∀n∃k C(n, k) with C as in the proof of Lemma 6.2.
Then with An := {k ∈ {0, 1} | C(n, k)}, An ⊆ {0, 1} and An is inhabited. Thus if ACω,2

were to hold in V(L) we would get a function F : N →
⋃

n∈N
An such that ∀nF (n) ∈ An.

Since ∀n∃!kF (n) = k, CT0! implies the existence of an index d such that ∀nF (n) = d •n,
and hence ∃d∀nC(n, d • n). This contradicts Lemma 6.2. 2

The presentation axiom, PAx, was considered by Aczel [1] and Blass [6]. In category
theory it is also known as the existence of enough projective sets. More details about PAx

can be found in [2]. Since PAx implies countable choice we can infer the following result:

Corollary: 6.4 V(L) does not model the presentation axiom.

Recall MPpr from Definition 4.1.

Lemma: 6.5 (IZF′) V(L) |= MPpr.

Proof: Assume e 
L ¬¬∃nA(n) where A(n) is of the form R(n,~k ) with R primitive re-
cursive and ~k ∈ N. Then ¬¬∃f f 
L ∃nA(n), and thus by Lemma 4.7, ¬¬∃f 
L A(1f),
thus ¬¬∃f A(1f). Using MPpr in the background universe we have ∃nA(n). Then, with
r := µn.A(n), we have sg((r, 0)) 
L ∃nA(n). Whence λe.sg((r, 0)) realizes this instance
of MPpr. 2
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7 More classical and non-classical principles that hold in

V(L)

The next definitions lists several interesting principles that are validated in V(L).

Definition: 7.1 1. UP, the Uniformity Principle, is expressed by the schema:

∀x [S(x) → ∃nA(x, n)] → ∃n ∀x[S(x) → A(n, x)].

2. Unzerlegbarkeit, UZ, is the schema

∀x[S(x) → (A(x) ∨ B(x))] → ∀x(S(x) → A(x)) ∨ ∀x(S(x) → B(x))

for all formulas A,B.

Lemma: 7.2 (IZF′) V(L) |= UP ∧ UZ.

Proof: Suppose e 
L ∀x [S(x) → ∃nA(x, n)]. Then De 6= ∅. Since 0 
L S(a) holds for all
a ∈ Vset, we have

(∀d ∈ De)(∀a ∈ Vset)1d • 0 
L ∃y[N(y) ∧ A(a, y)].

Let d ∈ De and a ∈ Vset. If f ∈ D1d•0 then there exists y ∈V(L) such that f 
L

N(y) ∧ A(a, y), thus 1f = y and 2f 
L A(a, 1f). Hence

(∀f ∈ D1d•0)(∀a ∈ Vset)2f 
L A(a, 1f),

and so

(∀f ∈ D1d•0)λx.2f 
L ∀x[S(x) → A(x, 1f)]

(∀f ∈ D1d•0)(1f, λx.2f) 
L N(1f) ∧ ∀x(S(x) → A(x, 1f)),

l(d) := Φ(1d • 0, λf.(1f, λx.2f)) 
L ∃y[N(y) ∧ ∀x(S(x) → A(x, y))],

where we used Lemma 4.4 in the last step. Finally, by applying Lemmata 4.3 and 4.5 we
arrive at

χA′(Φ(e, λd.l(d))) 
L ∃y[N(y) ∧ ∀x(S(x) → A(x, y))]

for an appropriate formula A′. Hence, with e∗ := λe.χA′(Φ(e, λd.l(d))),

e∗ 
L ∀x [S(x) → ∃nA(x, n)] → ∃y[N(y) ∧ ∀x(S(x) → A(x, y))].

As to Lifschitz realizability of UZ, note that ∀x[S(x) → (A(x) ∨ B(x))] implies
∀x[S(x) → ∃n[(n = 0 ∧ A(x)) ∨ (n 6= 0 ∧ B(x))]. The latter yields

∃n ∀x[S(x) → [(n = 0 ∧ A(x)) ∨ (n 6= 0 ∧ B(x))]

via UP, and hence ∀x(S(x) → A(x)) ∨ ∀x(S(x) → B(x)). Thus UZ is a consequence of
UP. Therefore V(L) |= UZ. 2
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A classically valid principle considered in connection with intuitionistic theories is the
Principle of Independence of Premisses, IP, which is expressed by the schema

(¬A→ ∃xB(x)) → ∃x(¬A→ B(x)),

where A has to be assumed to be a closed formula.

Lemma: 7.3 Assuming classical logic in V , V(L) |= IP.

Proof: (1). Assume e 
L ¬¬∃nA(n) where A(n) is of the form R(n,~k) with R primitive
recursive and ~k ∈ N. Then ¬¬∃f f 
L ∃nA(n), and thus by Lemma 4.7, ¬¬∃f 
L A(1f),
thus ¬¬∃f A(1f). Using MPpr in the background universe we have ∃nA(n). Then, with
r := µn.A(n), we have sg((r, 0)) 
L ∃nA(n). Whence λe.sg((r, 0)) realizes this instance
of MPpr.

(2). Assume that e 
L ¬A→ ∃xB(x). Then, if g 
L ¬A, 0 
L ¬A and e • 0 
L ∃xB(x).
Therefore, De•0 6= ∅ and for all d ∈ De•0 there is an a ∈ V(L) such that d 
L B(a), and
therefore λu.d 
L ¬A→ B(a). Hence, if A is not realized,

Φ(e • 0, λd.λu.d) 
L ∃x(¬A→ B(x)).

On the other hand, should A be realized, then ¬A is never realized, so λu.u would realize
this instance of IP. 2

8 The reals in V(L)

By Lemma 6.1 the Cauchy reals in V(L) are the recursive reals. A well-known consequence
of ACω,2 is that the sets of Cauchy reals and Dedekind reals are isomorphic. As it turns
out, the notions of Cauchy real and Dedekind real coincide in V(L) despite the failure of
ACω,2.

Definition: 8.1 A Dedekind cut is a pair (L,U) of subsets of Q, satisfying:

(i) q ∈ L↔ ∃r ∈ L q < r

(ii) q ∈ U ↔ ∃r ∈ U r < q

(iii) q ∈ L ∧ r ∈ U → q < r

(iv) ∀n ∃q ∈ L∃r ∈ U r − q < 1
2n (locatedness)

Call (L,U) a strong real if there exists f : Q2 → N such that

∀q, r (q < r → [[f(q, r) = 0 ∧ q ∈ L] ∨ [f(q, r) 6= 0 ∧ r ∈ U ]]). (31)
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Van Oosten showed that in the so-called Lifschitz topos [20, IV. Proposition 2.5] the
two notions of reals agree.

Theorem: 8.2 In V(L) the set of Cauchy reals is order-isomorphic to the set of Dedekind
reals.

Proof: The proof utilizes [25, Ch.5 Proposition 5.10] saying that the collection of strong
Dedekind reals is order-isomorphic to the collection of Cauchy reals. Thus it remains to
show that in V(L) every Dedekind real is strong. So assume

e 
L (L,U) is a Dedekind real. (32)

We will assume that the rationals are coded as natural numbers, more specifically we will
assume that the property of being a rational number, the ordering between rationals and
their distance relation are primitive recursive. From e we have to construct (an index of)
a recursive function f : Q2 → N such that (31) holds. From e we can compute an index ẽ
such that

∀n ẽ • n 
L ∃r ∈ L ∃r′ ∈ U r′ − r < 2−n

↔ ∀n [Dẽ•n 6= ∅ ∧ ∀d ∈ Dẽ•n 2d 
L (1d ∈ L ∧ ∃r′ ∈ U r′ − r < 2−n)]

↔ ∀n [Dẽ•n 6= ∅ ∧ ∀d ∈ Dẽ•n (1(2d) 
L (1d ∈ L) ∧ D2(2d) 6= ∅

∧ ∀h ∈ D2(2d) 2h 
L (1h ∈ U ∧ 1h− 1d < 2−n))].

Now, given p, q ∈ Q with p < q we can compute a natural number n0 such that 2−n0 < q−p
2 .

In view of the above we then either have

∀d ∈ Dẽ•n0
p ≤ 1d (33)

and thus V(L) |= p ∈ L, or else there exists d0 ∈ Dẽ•n0
such that 1d0 < p. Let us assume

that the latter case obtains. Pick h0 ∈ D2(2d0). Let d ∈ Dẽ•n0
and h ∈ D2(2d). We then

have 1h0 − 1d0 < 2−n0 , 1h− 1d < 2−n0 . As V(L) |= 1d ∈ L and V(L) |= 1h0 ∈ L, we
must have 1d < 1h0, so that

1h < 1d+ 2−n0 < 1h0 + 2−n0 < 1d0 + 2 · 2−n0 < 1d0 + (q − p) < p+ (q − p) = q,

and hence V(L) |= q ∈ U . As a result we have

∀d ∈ Dẽ•n0
∀h ∈ D2(2d) 1h < q . (34)

We are now lucky since the sentences in (33) and (34) are Σ0
1 and at least one of them

must be true. So we can define a recursive function f by simultaneously searching for a
witness for (33) and for (34). If we find a witness for (33) before we find one for (34), let
f(p, q) = 0, and if it is the other way round let f(p, q) = 1. 2

Of course, in the proof of the previous Theorem we used a certain amount of classical logic
beyond that available in IZF′. But we leave it to the reader to spell out the details.
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9 The lesser limited principle of omniscience

Recall the following two principles under the names given to them by Bishop:

Definition: 9.1 The limited principle of omniscience, LPO: If f : N → {0, 1}, then
either there exists n ∈ N such that f(n) = 1, or else f(n) = 0 for each n ∈ N.

The lesser limited principle of omniscience, LLPO: If f : N → {0, 1} such f(n) = 1 holds
for at most one n, then either f(2n) = 0 for each n ∈ N, or else f(2n + 1) = 0 for each
n ∈ N.

LPO is incompatible with CT0! (see Corollary 9.3). Albeit being incompatible with CT0

and thus invalidated in the usual Kleene-type realizability models, LLPO turns out to be
compatible with CT0!.

Lemma: 9.2 (i) (IZF′) V(L) |= LLPO.

(ii) (IZF′) V(L) 6|= LPO.

Proof: (i) First we use the fact that the principle Σ0
1-LLPO from [4] is Lifschitz realizable.

This is the principle

¬[∃nP (n,~k ) ∧ ∃mQ(m,~l )] → [∀n¬P (n,~k ) ∨ ∀n¬Q(n,~l )]

where P,Q are primitive recursive and ~k,~l are parameters from N. It was observed in
[4, Theorem 3.14] that LLPO is Lifschitz realizable since it is a consequence of BΣ0

2-MP
and the latter is Lifschitz realizable by [19, Lemma 3.2]. One sees that Σ0

1-LLPO is a

consequence of BΣ0
2-MP and MPpr (Lemma 6.5) as follows, letting P ′(n) := P (n,~k ) and

Q′(n) := Q(n,~l ):

¬∃l′ ≤ 1∀n [(l′ = 0 ∧ ¬P ′(n)) ∨ (l′ = 1 ∧ ¬Q′(n))]

→ ¬∀n¬P ′(n) ∧ ∀n¬Q′(n)

→ ¬¬∃nP ′(n) ∧ ¬¬∃nQ′(n)

→ ∃nP ′(n) ∧ ∃nQ′(n)

using MPpr in the last step. As a result, with the aid of BΣ0
2-MP we obtain

¬[∃nP ′(n) ∧ ∃nQ′(n)] → ¬¬∃l′ ≤ 1∀n [(l′ = 0 ∧ ¬P ′(n)) ∨ (l′ = 1 ∧ ¬Q′(n))]

¬[∃nP ′(n) ∧ ∃nQ′(n)] → ∃l′ ≤ 1∀n [(l′ = 0 ∧ ¬P ′(n)) ∨ (l′ = 1 ∧ ¬Q′(n))]

¬[∃nP ′(n) ∧ ∃nQ′(n)] → ∀n¬P ′(n) ∨ ∀n¬Q′(n).

Now assume that f : N → {0, 1} such f(n) = 1 holds for at most one n. Using CT0! there
exists an index e of a recursive function such that ∀n e•n = f(n). Let P (n, e) and Q(e, n)
be the primitive recursive predicates defined by ∃l ≤ n ∃l′ ≤ n [T (e, 2l, l′) ∧ U(l′) = 1]
and ∃l ≤ n ∃l′ ≤ n [T (e, 2l + 1, l′) ∧ U(l′) = 1], respectively, with T being Kleene’s
T -predicate and U the result extracting primitive recursive function. We then have
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¬[∃nP (n, e) ∧ ∃nQ(n, e)]. In view of the above we conclude with the aid of BΣ0
2-MP

that ∀n¬P (n, e) ∨ ∀n¬Q(n, e), whence ∀n f(2n) = 0 or ∀n f(2n + 1) = 0. We will thus
reach the desired conclusion if we can show that BΣ0

2-MP is Lifschitz realizable. This fol-
lows from [19, Lemma 3.2] since instances of the latter scheme are BΣ0

2-negative formulas.

(ii) Assume LPO. Let fe(n) be 1 if T (e, e, n) holds and 0 otherwise. With LPO we get
∀n fe(n) = 0 ∨ ∃n fe(n) = 1, whence e• e ↓ ∨ e• e ↑. Thus ∀e∃!k [(k = 0 ∧ e• e ↓) ∨ (k =
1 ∧ e • e ↑)]. In the presence of CT0! we would thus find a total recursive function ρ such
that ∀e [(ρ(e) = 0 ∧ e • e ↓) ∨ (ρ(e) = 1 ∧ e • e ↑)]. So ρ would solve the halting problem.
As the unsolvability of the halting problem can be demonstrated in HA it follows that
LPO is not Lifschitz realizable. 2

Since V(L) |= LLPO it might be instructive to recall why LLPO and CT0 are incom-
patible: Take two disjoint recursively inseparable r.e. sets We and Wd. For each n define a
function gn as follows: gn(2k) = 1 if T (e, n, k) ∧ ∀k′ < k¬T (e, n, k′) ∧ ∀k′′ ≤ k¬T (d, n, k′′)
holds and gn(2k) = 0 otherwise; gn(2k+1) = 1 if T (d, n, k) ∧ ∀k′ < k¬T (d, n, k′) ∧ ∀k′′ ≤
k¬T (e, n, k′′) holds and gn(2k+ 1) = 0 otherwise. Then, using Σ0

1-LLPO (a consequence
of LLPO), we have

∀n [∀k gn(2k) = 0 ∨ ∀k gn(2k + 1) = 0].

Thus in the presence of CT0 there would exist a recursive function ℓ such that

∀n [(ℓ(n) = 0 ∧ ∀k gn(2k) = 0) ∨ (ℓ(n) = 1 ∧ ∀k gn(2k + 1) = 0)], (35)

providing the recursive separation Wd ⊆ {n | ℓ(n) = 0} and We ⊆ {n | ℓ(n) = 1}.

Corollary: 9.3 CT0 refutes LLPO.

Corollary: 9.4 The combination LLPO and ACω,2 yields the existence of non-computable
functions.

Proof: The function ℓ in (35) exists with the help of LLPO and ACω,2, and ℓ is non-
computable. 2

On account of V(L) being a model LLPO, there are several well-known mathematical
principle that also hold in V(L). Perhaps, the best known consequence of LLPO is the
“weak” linearity of the reals, i.e., ∀x, y ∈ R(x ≤ y ∨ y ≤ x). The latter can be proved
with the help of LLPO for Cauchy reals with a modulus of continuity (cf. [25, 5.2.2]) and
(crucially) without appealing to any choice principles. Therefore it holds in V(L) for the
Dedekind reals, too.

In a paper by Ishihara [11] it is shown that the following are “constructively” equivalent:
LLPO, König’s lemma, the fan theorem, the Hahn-Banach Theorem and the minimum
principle, i.e., every real valued uniformly continuous function on a compact metric space
attains its minimum. However, the notion of constructivism in [11] assumes the axiom
of countable choice (and perhaps dependent choices) as a basic principle. Indeed, neither
König’s lemma nor the (decidable) fan theorem (see [25, 4.7.2] for a definition) hold in
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V(L) as follows from the incompatibility of both principles with CT!. For a proof of the
latter fact just take Kleene’s primitive recursive 01-tree from [13, Lemma 9.8] (alternatively
consult [25, 4.7.6]) which has arbitrarily long paths but has no infinite recursive path.

Corollary: 9.5 V(L) 6|= Decidable Fan Theorem.
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