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Neural network models have recently made significant achievements in solving vehicle scheduling problems. Adaptive ant colony
algorithm provides a new idea for neural networks to solve complex system problems ofmulticonstrained network intensive vehicle
routing models. The pheromone in the path is changed by adjusting the volatile factors in the operation process adaptively. It
effectively overcomes the tendency of the traditional ant colony algorithm to fall easily into the local optimal solution and slow
convergence speed to search for the global optimal solution. The multiconstrained network intensive vehicle routing algorithm
based on adaptive ant colony algorithm in this paper refers to the interaction between groups. Adaptive transfer and pheromone
update strategies are introduced based on the traditional ant colony algorithm to optimize the selection, update, and coordination
mechanisms of the algorithm further. Thus, the search task of the objective function for a feasible solution is completed by the
search ants. Through the division and collaboration of different kinds of ants, pheromone adaptive strategy is combined with
polymorphic ant colony algorithm. It can effectively overcome some disadvantages, such as premature stagnation, and has a
theoretical significance to the study of large-scale multiconstrained vehicle routing problems in complex traffic network systems.

1. Introduction

Network intensive vehicle service, which is an important part
of the complex urban public transport network system, is
an innovation representative of the shared economy model
in the era of Internet +. The Internet service platform has
been attracting increasing attention in the shared economy
era by creating a new commercial and management mode
to adapt the Internet economy. It is also perceived as a
representative of the development direction of the new
economy and business model. Moreover, optimizing the
network intensive vehicle scheduling model and improving
the scheduling efficiency, response speed, and cost savings
are important measures to improve the quality of network
intensive vehicle services. Thus, studies on supply-and-
demand information matching and of the path optimization
algorithm for developing network intensive vehicle services

are of great significance. However, the vehicle scheduling
problem on network intensive car rental is different from
that of the classic vehicle scheduling problem. In the classic
vehicle scheduling problem, the control center is assumed
to know all the information related to optimal scheduling
before the optimal scheduling instruction is executed, and
the information does not change over time. In the era of
Internet +, passenger demand information, such as location,
time of demand, quantity demanded, travel time, and service
time, is unknown and even dynamic before the path opti-
mization. Furthermore, new informationmay have arrived or
existing information may have changed. Therefore, dynamic
vehicle routing problems (DVRPs) are more prominent in
the network intensive vehicle scheduling problem. Moreover,
the supply-and-demand information of network intensive
vehicles is matched in real time seamlessly and dynamically
and does not require manual docking and transmission.This
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overcomes a problem that network booking taxi is forbidden
to parade showmanship on the road under the existing
management system. Therefore, the significant difference
between the network intensive and classic vehicle scheduling
problems is the continuous development of and change in the
demand type and quantity in the former based on the real-
time interaction through the Internet. In addition, real-
time dynamic resource scheduling is performed according
to the change in demand. However, the first principle of
passenger transport in network intensive vehicle scheduling
is to minimize the response time and relatively lessen the
cost factors. This is also an important feature that dis-
tinguishes it from the traditional transportation problem
and the vehicle routing problem (VRP). Network inten-
sive vehicle scheduling problem is a multiconstrained path
planning problem that integrates the dynamic network flow
problem with multiconditioned and multi-start-and-stop
points.

Studies on vehicle scheduling problem at home and
abroad have gradually deepened in recent years. Studies
on the target selection of modeling and consideration of
constraints are mostly based on the simple extension of the
traditional transportation problem and VRP. The single
starting point and demand problem is extended to mul-
tiple starting points and demand problems. Moreover, the
goal is extended from the single focus on cost minimiza-
tion to the multiple objective optimizations of efficiency
and cost [1–3]. Presently, no literature on the multicon-
strained path problem of network intensive vehicles has
been found, although some scholars have recently started to
introduce some particular constraints into vehicle schedul-
ing modeling. For instance, some scholars have estab-
lished many kinds of dynamic vehicle scheduling models
and designed concise and efficient heuristic algorithms for
goods distribution or emergency material transportation
vehicle scheduling problems [4–7]. Emergency material
transportation vehicle scheduling models consider mul-
titransport ways, multimaterials, multisupply points, and
multidemand points, as they suppose that the number of
vehicles, supply amount of materials and goods, and other
parameters are dynamic. However, the goal of emergency
material transportation is to minimize the total quantity
of the goods that are not satisfied in the transport cycle.
Although constraint is comprehensive in emergencymaterial
transportation vehicle scheduling models, vehicle scheduling
under a dynamic demand still adopts the optimization
method in a single cycle and limits the consideration of
global optimization in multiple cycles [6, 7]. Other scholars
similarly consider the vehicle dynamic scheduling problem
under a vehicle shortage hypothesis and introduce minimum
transportation time and cost into the goal. Nevertheless,
the improvement of the vehicle scheduling efficiency is still
limited to the optimal one in a single stage. The global
consideration of dynamic vehicle scheduling problem is inad-
equate [8, 9].Thus,many unsolved problems are elucidated in
the research on network intensive vehicle scheduling prob-
lem. Therefore, considering the characteristics of DVRP
with multiple constraints (DVRPMC), the construction and
exploration of a simple intelligent algorithm with excellent

performance are important for the construction of a network
intensive vehicle scheduling service system.

2. DVRPMC Description and
Mathematical Model

2.1. Problem Description. A network intensive vehicle sched-
uling problem is oriented to the personal travel mode.
Therefore, it should involve objective and subjective condi-
tions and is a typical vehicle routing problem with multiple
constraints, involving time, vehicle, traffic, safety, and so on.
As a result, a network intensive vehicle schedule problem,
that is, DVRPMC, should consider passenger priority in the
order of booking time, demand of vehicle pattern, billing
method, traffic conditions, time window, capacitance, safe
surveillance, and other conditions. This is to ensure that
network intensive scheduling is universal and practical. The
detailed problemdescription is as follows. (1)A car is assigned
to the passenger (i.e., customer point) according to the nearby
principle. (2) The nearest dispatch point (i.e., parking spot
of booking car) is selected from a total of 𝐾 callable vehicles
based on the time window limit to reach the customer point.
If the vehicle arrives in advance, it must wait to serve the
customer. (3) Different priorities are assigned according to
passenger booking time. The highest grade is 1, and the
lowest grade is R. High priority means that the passenger
has significant weight. Thus, all aspects of priority should be
satisfied. (4) Vehicles only consider passenger demands that
are less than or equal to their carrying capacities. (5) Each
passenger can select only one type of vehicle and charging
method pattern and is only serviced by the selected car.
(6) The passenger arrives at the target point and guides the
vehicle to the nearest scheduled point. (7) For a transport
service, the proper vehicle type, dispatch time, and path
can minimize the time cost and obtain the highest response
efficiency.

Information in DVRPMC changes over time. DVRPMC
should consider time factors. Time axis is introduced here.
The whole scheduling cycle (such as a working day) in a
dynamic scheduling environment is constructed as the time
axis. The time each new demand triggers a cycle is 𝑡. At 𝑡,
demand information is divided into four kinds according to
the state of the vehicle: (1) vehicles that have completed
the task, (2) vehicles in service or on the way to serve, (3)
vehicles that have responded to the service demand but do
not proceed to the demand spots, and (4) vehicles waiting for
new demands. A series of key points can be constructed on
the time axis to represent the dynamic problem, and a vehicle
scheduling system can arrange a scheduling plan according to
the identified key points. The following scheduling strategies
are adopted. (1) The vehicle from a certain scheduling point
returns to the nearest scheduling point at the end of the
delivery. (2) The fairness principle is followed to prevent
customer points from obtaining any vehicle service response.
Each customer service response shall not be lower than the
level of its own demand. (3)The goal of the network intensive
vehicle transport service is to minimize the response time,
that is, from the initial start of the demand to the time when
the vehicle reaches the demand point.
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Comparedwith traditional VRP, the essence ofDVRPMC
is to create a vehicle scheduling plan for each customer point
in the case of a known customer point distribution and
the real-time development of any customer point. Moreover,
many different vehicle models should be considered in
DVRPMC.Thus, dynamic model selection and path arrange-
ment are performed according to the passenger capacities of
the models, the effect on the path, and the model require-
ments of passengers.

2.2. Mathematical Model. The mathematical model needs to
satisfy the dynamic scheduling description. Therefore, the
analysis mechanics can be described as follows: Firstly, this
model is set to be𝑊(𝑡) = {𝑤(𝑡)𝑖, 𝑖 = 1, 2, 3, 4}, which refers to
the set of all key points at 𝑡 (Class 4). It is used to represent the
dynamic problem by constructing a series of key points on
the time axis. 𝑤(𝑡)1 refers to the completed transport task,
where the vehicle returned to the nearest scheduling point
(parking point). 𝑤(𝑡)2 refers to a passenger being served or
a vehicle on the way to the service. 𝑤(𝑡)3 refers to the vehicle
that responded to the service demand but is not yet at the cus-
tomer point. 𝑤(𝑡)4 represents a vehicle in waiting state. Class
2 in the implementation of the task cannot be changed. The
other three classes, as schedulable network intensive vehicles,
are recorded as 𝐾 ∈ 𝑊(𝑡) vehicles scheduled from the
scheduling point (parking point) to 𝑛 customers at 𝑡. Then,
the scheduling task can be represented by a weighted graph
𝐺(𝑡)(𝑉, 𝐸) at 𝑡, where 𝑉 = (0, 1, 2, . . . , 𝑛) refers to a set of
nodes, 0 refers to the scheduling point, 𝑛 nodes refer to
customer points, and 𝐸 = {𝑑𝑖𝑗, 𝑖, 𝑗 ∈ 𝑉} refers to a set
of paths from 𝑖 to 𝑗. Last, considering road conditions and
various factors, a coefficient of road condition 𝜆𝑖𝑗 is used to
represent the influence of road conditions on the scheduled
vehicles. For the standard path, 𝜆𝑖𝑗 = 1. If 𝜆𝑖𝑗 is better than
the standard path, 𝜆𝑖𝑗 < 1; otherwise, 𝜆𝑖𝑗 > 1. The coefficient
of the road condition is multiplied by the actual length of the
path between distribution points.𝑑𝑖𝑗 is equal to the equivalent
path length in consideration of the path influence. 𝐿 refers to
a feasible path. 𝑓(𝐿) refers to the cost corresponding to this
path, that is, objective function. 𝑞 refers to the quantity
booked by the passenger. 𝑄𝑘 refers to the maximum load of
vehicle𝐾. The importance of the priority of a customer point
is represented by weight 𝜎𝑖. The time window of passenger 𝑖
is [𝑎𝑖, 𝑏𝑖]. The model demand of passenger 𝑖 is 𝐺𝑖. The billing
method of passenger 𝑖 is 𝐹𝑖. 𝑡𝑘𝑖𝑗 refers to the travel time of
vehicle 𝐾 from the scheduling point to the customer point.
The time vehicle𝐾 served at the starting point of passenger 𝑖 is
𝑠𝑖. 𝑠𝑘𝑖 is a decision variable that represents themoment vehicle
𝐾 reaches customer point 𝑖.𝑋𝑘𝑖𝑗 is also a decision variable and
can be represented as follows:

𝑋𝑘𝑖𝑗 = {{{
1 vechicle 𝑘 from 𝑖 to 𝑗
0 others.

(1)

DVRPMC aims to determine a set of paths. The travel
time of each path should be minimal, and no vehicle should
exceed its carrying capacity 𝑄𝑘. A feasible solution under a

different priority, model demand, different billing method,
and road conditions is sought for highly efficient vehicle
scheduling at minimum cost.

First, considering the cost of vehicle scheduling,𝐶𝑘0 refers
to the fixed cost of using vehicle𝐾. 𝐶𝑘1 refers to the operating
cost of vehicle 𝐾 in the unit distance. 𝑉SP

𝑘 refers to the
travel speed of vehicle 𝐾 under standard road conditions.
Scheduling cost mainly includes the fixed cost of vehicle
𝐾 V𝐶𝑘0 and operating cost V𝐶𝑘1 . V𝐶𝑘0 = 𝐶𝑘0 ∑𝑋𝑘𝑖𝑗 (𝑖, 𝑗 =
0, 1, 2, . . . , 𝑛; 𝑛 ∈ 𝑘), and V𝐶𝑘1 = 𝐶𝑘1 ∑𝑋𝑘𝑖𝑗𝜆𝑖𝑗𝑑𝑖𝑗 (𝑖, 𝑗 =
0, 1, 2, . . . , 𝑛; 𝑛 ∈ 𝑘). Second, the cost for waiting for
customer 𝑠𝐶𝑘𝑖 is considered, and 𝑠𝐶𝑘𝑖 = 𝜇𝑠𝑘𝑖 . 𝜇 refers to the
wait cost in the unit of time. Finally, extra cost 𝐶𝑃𝑖 is incurred
if vehicle𝐾 arrives beyond the time window of the passenger.
To set 𝐶𝑃𝑖 linear increase

𝐶𝑃𝑖 = 𝑐1𝑖 max [(𝑎𝑖 − 𝑠𝑘𝑖 ) , 0] + 𝑐2𝑖 max [(𝑠𝑘𝑖 − 𝑏𝑖)] , (2)

where 𝑐1𝑖 refers to the wait cost of vehicle𝐾 in customer point
𝑖 with priority 𝑟 per unit time and 𝑐2𝑖 refers to the penalty per
unit time if vehicle 𝐾 arrives after the time window of the
customer with priority 𝑟.

Therefore, the minimum objective function can be repre-
sented as

min 𝑓 (𝐿) = 𝑘∑
𝑘=1

(V𝐶𝑘0 + V𝐶𝑘1 + 𝑠𝐶𝑘𝑖 ) + 𝑛∑
𝑖=1

𝐶𝑃𝑖 . (3)

Constraint conditions are as follows:
𝑛∑
𝑗=0

𝑛∑
𝑖=0

𝑋𝑘𝑖𝑗𝑞𝑗 ≤ 𝑄𝑘 𝑘 = 1, 2, . . . , 𝑘 (4)

𝑛∑
𝑖=0

𝑘∑
𝑘=1

𝑋𝑘𝑖𝑗 = 1 𝑗 = 0, 1, 2, . . . , 𝑛 (5)

𝑛∑
𝑗=1

𝑋𝑘0𝑗 = 1 𝑘 = 1, 2, . . . , 𝑘 (6)

𝑛∑
𝑖=1

𝑋𝑘𝑖0 −
𝑛∑
𝑗=1

𝑋𝑘0𝑗 = 0 𝑘 = 1, 2, . . . , 𝑘 (7)

𝑛∑
𝑖=1

𝑋𝑘𝑖0 = 1 𝑘 = 1, 2, . . . , 𝑘 (8)

𝑠𝑖 + 𝑠𝑘𝑖 + 𝑡𝑘𝑖𝑗 = 𝑠𝑘𝑗 (9)

𝜆𝑖𝑗𝑑𝑖𝑗 = 𝑉SP
𝑘 𝑡𝑘𝑖𝑗 (10)

𝑋𝑘𝑖𝑗 = {{{
1 vechicle 𝐾 from 𝑖 to 𝑗
0 others. (11)

Equation (3) refers to the objective function, which
represents the minimum scheduling cost. Equation (4) refers
to the sum of load capacities on a feasible path, which is not
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more than the maximum load of the vehicle. Equation (5)
refers to a vehicle (vehicle model and billing method that
satisfies the requirements) that is distributed once in each
customer point. Equations (6)–(8) refer to the subpath of
each vehicle. A vehicle starts from the scheduling point,
arrives at the customer point to provide transport service,
brings passengers to the objective point, and finally returns to
the scheduling point. Equation (9) indicates that if a vehicle
travels directly from node 𝑖 to 𝑗, the arrival time at node 𝑗 is
equal to the sum of the arrival time node 𝑖, service time, and
travel time from node 𝑖 to 𝑗. Equation (10) indicates that path
distance is equal to the product of standard speed and travel
time under the influence of road conditions. Equation (11)
refers to the decision variable𝑋𝑘𝑖𝑗, which is {0, 1}.
3. Design of Optimization
Algorithm of DVRPMC Based on
Adaptive Ant Colony Algorithm

Intelligent algorithms have made great achievements in
solving vehicle scheduling problems, especially for adaptive
ant colony algorithm.Adaptive ant colony algorithmprovides
not only a new idea for solving the complex combination
of optimization problems, but also a scientific perspective to
deal with VRPs with multiple constraints. The pheromone in
the path is changed by adaptively adjusting the volatile
factors in the operation process. It effectively overcomes the
tendency of the traditional ant colony algorithm to fall easily
into the local optimal solution and slow convergence speed
to search for the global optimal solution [10, 11]. Considering
DVRPMC, this paper proposes an adaptive ant colony algo-
rithm to introduce adaptive transfer and pheromone update
strategies based on a traditional ant colony algorithm to
optimize the selection, update, and coordinationmechanisms
of the algorithm further. Thus, considering the diversity of
the ant colony, a task with many constraint conditions is
provided to reconnaissance ants. Therefore, the search task
for the feasible solution for the objective function is com-
pleted by the search ants. Through the division and col-
laboration of different kinds of ants, pheromone adaptive
strategy is combined with polymorphic ant colony algorithm
to effectively overcome some disadvantages, including long
computing time and susceptibility to premature stagnation.

3.1. Principle and Implementation of Basic Ant Colony Algo-
rithm. Ant colony algorithm is proposed based on the
research on the real ant colony behavior in the natural world.
It is a kind of simulated evolutionary algorithm based on
population and belongs to the random search algorithm.
Dorigo et al. [12, 13] first proposed this method and made
full use of the similarities between the food search process
of an ant colony and the famous traveling salesman problem

(TSP) to determine the shortest path from the ant nest to the
food source through information exchange and cooperation
among individuals to solve the TSP [14–18].The principle and
the method of the basic algorithm are as follows.𝑀 ants are placed on 𝑁 nodes selected at random. An
ant selects the next node or cycle it has not yet visited based
on a criterion, 𝜏𝑖𝑗(𝑡), which is the concentration of residual
information on the path from node 𝑖 to node 𝑗 at 𝑡. This is the
information provided by the algorithm itself, and 𝜂𝑖𝑗 is the
initial information from node 𝑖 transferred to node 𝑗. This
initial information is provided with the problem to be solved.𝜂𝑖𝑗 = 1/𝑑𝑖𝑗 refers to an a priori value of node 𝑖 to 𝑗. Thus, the
probability that ant𝐾 at node 𝑖 selects node 𝑗 as the objective
node at 𝑡 is

𝑃𝑘𝑖𝑗 =
{{{{{{{

𝜏𝛼𝑖𝑗 (𝑡) 𝜂𝛽𝑖𝑗 (𝑡)
∑𝑛∈allowed𝑘 𝜏𝛼in (𝑡) 𝜂𝛽in (𝑡) , 𝑗 ∈ allowed𝑘

0 others,
(12)

supposing that 𝑗 ∈ 𝑁𝑘𝑖 .𝛼 is the relative importance of the residual information
and 𝛽 is the relative importance of the expected value.

𝑁𝑘𝑖 refers to all possible objective nodes. Nodes mean no
access. Each antmaintains a list tabu𝑘, which records all cities
it has visited up to the present, to avoid multiple visits to the
same node. 𝑃𝑘𝑖𝑗 refers to the probability that ant 𝐾 transfers
from node 𝑖 to node 𝑗.

After each ant has accessed all 𝑛 nodes (i.e., a cycle),
residual information must be updated and old information
must be weakened to prevent residual information from
inundating inspired information caused by excessive residual
information. New information on the ant access pathmust be
added to 𝜏𝑖𝑗.

𝜏𝑖𝑗 (𝑡 + 𝑛) = 𝜌𝜏𝑖𝑗 (𝑡) + ∑
𝑘=1

𝜏𝑘𝑖𝑗. (13)

𝜌 refers to the reserve part of residual information. 1 −𝜌 refers to the weakened part of the residual information. 𝜌
must be less than 1 to prevent the unlimited accumulation of
information. Δ𝜏𝑘𝑖𝑗 refers to the residual information content
ant𝐾 left in the path from 𝑖 to 𝑗 in the access period 𝑡 to (𝑡+𝑛).

GambardeIIa and Dorigo et al. provided the Ant-Q
(Quantity) algorithm model based on the basic ant colony
algorithm [12]. Ant-Q algorithm is a reinforcement learning
algorithm based on the Cellular Computing paradigm. Ant-
Q’s results on the vehicle routing problem, which is concep-
tually similar to fuel reload, are better than other ant colony
optimization algorithms, such as Ant-C (Cycle) and Ant-D
(Density) or the genetic algorithm (GA).

Δ𝜏𝑖𝑗 = {{{
𝑄
𝐿𝑘 , the pheromone ant 𝐾 left in the period from 𝑡 to 𝑡 + 1
0 otherwise. (14)
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Otherwise, if ant 𝐾 selects the path (𝑖, 𝑗) in the period
from 𝑡 to (𝑡 + 𝑛), 𝑄 is a constant, and 𝐿𝑘 refers to the total
path length ant 𝐾 selected in this cycle. If it does not select
this path,

Δ𝜏𝑖𝑗 = 0. (15)

According to theAnt-Q algorithm concept, each step (i.e.,
from 𝑡 to (𝑡 + 1)) requires the update of the concentration of
residual information, but not the update of the residual infor-
mation concentration afterwaiting for all ants to complete the
access to all 𝑛 cities.Therefore, in theAnt-Q algorithmmodel,Δ𝜏𝑖𝑗 = 𝑄/𝑑𝑖𝑗, where 𝑑𝑖𝑗 refers to the distance from node 𝑖 to
node 𝑗 and𝑄/𝑑𝑖𝑗 is the concentration of residual information;
that is, the concentration of residual information increases
with the decrease of the distance to a city.

Therefore, the basic ant colony algorithm is mainly based
on the combination of the principle of positive information
feedback and a certain heuristic algorithm. This algorithm
employs the random selection strategy in the process of
constructing the solution.This selection strategy slows down
the evolution. The positive feedback principle is designed
to enhance the performance of the solution but is prone to
stagnation.This is the root of the deficiency of the ant colony
algorithm.Therefore, improving the selection strategy is nec-
essary; that is, the selection strategy should be adapted based
on the combination of deterministic and random selections.
The evolution to a certain algebra dynamically adjusts the
probability of deterministic selection in the search pro-
cess. Thus, the evolution direction is basically determined.
Dynamic adjustment at a particular time is based on the
amount of information on the path [5]. Therefore, adaptive
ant colony algorithm has increasingly attracted attention.
This algorithm shrinks the gap in the quantity of information
between the best and worst paths and appropriately enlarges
the probability of random selection to conduct a complete
search of the solution space with less than 𝑙 to overcome the
shortcomings of the basic ant colony algorithm effectively.

3.2. Principle and Design of Adaptive Ant Colony Algorithm.
Drawing lessons from the polymorphic ant colony method
of Yang et al. [1], this paper divides ants in the ant colony
algorithm into two types, namely, reconnaissance and search
ants, because of themulticonstrained and dynamic character-
istics of network intensive vehicle routing problems. Recon-
naissance ants complete local reconnaissance and search ants
complete global search.

Reconnaissance ants are endowed with multiconstrained
tasks by the polymorphic ant colony method. Each customer
point is regarded as the center to make local reconnaissance.
Furthermore, a reconnaissance element is used to mark the
reconnaissance result, in order to provide supplementary

information for a search ant, and select the next customer
point after arriving at this point. The local search method of
the reconnaissance ant colony places 𝑛 reconnaissance ants
in 𝑛 passenger demand points, and each reconnaissance ant
regards its location as the center from which to scout the
feasibility of 𝑛 − 1 points. The greater the feasibility, the
higher the reconnaissance element on the path.Moreover, the
reconnaissance element consists of three parts: (1) capacity-
constrained reconnaissance element with a weight coefficient
of 𝜔1, (2) time window matching reconnaissance element
with a weight coefficient of 𝜔2, and (3) reconnaissance ele-
ment in several points nearest to reconnaissance center (i.e.,
20 points are taken from 100 demand points) with a weight
coefficient of 𝜔3, and 𝜔1 +𝜔2 +𝜔3 = 1, where 0 < 𝜔1, 𝜔2, 𝜔3 <1. If the capacity constraint is satisfactory, the contribution
to the reconnaissance element is recorded as 𝜔1𝐶1. If it
is unsatisfactory, the contribution to the reconnaissance
element is 0. The matching factor of the time window in the
routing starting point determines the reconnaissance element
contributed by the time window matching degree 𝜔2𝜀𝑗𝑖𝐶2.
Matching factor 𝜀𝑗𝑖 = 𝐿([𝑎𝑗𝑖, 𝑏𝑗𝑖], [𝑎𝑖, 𝑏𝑖])/(𝑏𝑖 − 𝑎𝑖) refers to the
matching degree of the time window, and 𝑎𝑗𝑖 = 𝑎𝑗 + 𝑠𝑗 + 𝑡𝑗𝑖.𝐿([𝑎𝑗𝑖, 𝑏𝑗𝑖], [𝑎𝑖, 𝑏𝑖]) refers to the length of the overlapping parts
of the two time windows. Under a fixed value of [𝑎𝑗𝑖, 𝑏𝑗𝑖],𝜀𝑗𝑖 is high if the overlapping part is large. That is, point 𝑗,
which is the precursor of 𝑖, is reasonable from the angle of
the time window. Passenger priority factors are considered in
the search ant pheromone; that is, the factors are considered
in the objective function but are not considered in the
reconnaissance element. Moreover, to reduce the scout scope
of reconnaissance ants, the statistic result of Quan and Wen
[14] shows that the next node of a point is selected in several
points nearest to this point in the path optimization solution
without calculating all the remaining viable nodes. Thus, the
optimization process can be accelerated and the solution is
quite reliable, which can converge to the optimal solution
with the probability of approaching 1. The reconnaissance
result in ascending order is combined with the existing
prior knowledge (integrated with max(PC) [14]) to generate
another reconnaissance element, which is recorded as 𝜔3𝛿𝑖𝑗,
on the path from point 𝑖 to 𝑗. 𝛿𝑖𝑗 (𝑖, 𝑗 = 0, 1, 2, . . . , 𝑛−1; 𝑖 ̸= 𝑗)
is represented as follows:

𝛿𝑖𝑗 =
{{{{{

min𝑑𝑖𝑥𝑑𝑖𝑗 vechile 𝑘 from 𝑖 to 𝑗
0 otherwise,

(16)

where min 𝑑𝑖𝑥 refers to the nearest distance from city 𝑖 as
the center to other cities 𝑛 − 1. To synthesize the total
reconnaissance element of the above reconnaissance ants,

𝑆𝑖𝑗 =
{{{{{

𝜉1𝐶1 + 𝜉2𝜀𝑖𝑗𝐶2 + 𝜉3min(𝑑𝑖𝑥𝑑𝑖𝑗 ) 𝜀𝑗𝑖 ̸= 0 𝑗 and 𝑖 inmax (PC)
0 others.

(17)
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Considering the need for a certain pheromone on the
path at the initial moment, the amount of information of each
path at the initial moment is set as

𝜏𝑖𝑗 (0) = {{{
𝐶𝑆𝑖𝑗 𝑆𝑖𝑗 ̸= 0
𝐶 (min𝑑𝑖𝑥,max 𝑑𝑖𝑥) 𝑆𝑖𝑗 = 0, (18)

where min 𝑑𝑖𝑥 and max 𝑑𝑖𝑥 refer to the minimum and
maximumdistances frompoint 𝑖, as the center, to other points𝑛−1.𝐶 refers to the concentration of pheromone on each path
at the initial moment and is a constant. Through the recon-
naissance element trail marked by the reconnaissance ants,
research ants can make a directional search with the assis-
tance of the pheromone. This can improve efficiency and
determine the optimal solution.

The global search of the search ant colony draws lessons
from the concept of the Ant-Q algorithm of Dorigo et al.
[13] where the selection strategy is combined with the deter-
ministic and random selection [1, 4]: (1) 𝐾 is the number of
search ants, 𝜂𝑖𝑗 refers to the visibility of side (𝑖, 𝑗), and 𝜂𝑖𝑗 =1/𝑓(𝑑𝑖𝑗), which reflects the heuristic degree transfer from
node 𝑖 to 𝑗 and is different from 𝜂𝑖𝑗 = 1/𝑑𝑖𝑗 in the basic ant

colony algorithm model. The objective function is placed in
the global scope given the best visibility. It reflects the big-
picture thinking of ants and does not necessarily have to
select the closest point in a large probability as the next
point. However, each step of the ant must consider the
objective function of overall optimization. (2) 𝜏𝑖𝑗 refers to the
pheromone trail intensity of side (𝑖, 𝑗), 𝑃𝑘𝑖𝑗 refers to state
mobility probability of ant 𝐾 from node 𝑖 to node 𝑗, and 𝑗
refers to the node that is not yet visited.When each ant selects
the next node, two points should be considered while select-
ing the next service point under the premise of adhering to
the vehicle capacity and time window constraints. One is
visibility and the amount of information access to the next
service point. Second is priority conditions priority-of-small
time window and priority-of-shortest waiting time.

The search ant colony is tasked to conduct a global search.
At each customer point, reconnaissance element and the
pheromone at each side select the next service point until they
find and mark the best route. The formula for the probability
𝑃𝑘𝑖𝑗 of the search ant colony 𝑘 (𝑘 = 1, 2, . . . , 𝑛) that transfers
from 𝑖 to 𝑗 at 𝑡 during the movement is as follows:

𝑃𝑘𝑖𝑗 =
{{{{{{{

𝑄1 𝜏𝛼𝑖𝑗𝜂𝛽𝑖𝑗
∑𝑥∈𝑎𝑘 𝜏𝛼𝑖𝑗𝜂𝛽𝑖𝑗

+ 𝑄2 𝜃𝑗/ (𝑠𝑘𝑗 − 𝑎𝑘𝑗  + 𝑠𝑘𝑗 − 𝑏𝑘𝑗 )∑𝑥∈𝑎𝑘 𝜃𝑥/ (𝑠𝑘𝑥 − 𝑎𝑘𝑥 + 𝑠𝑘𝑥 − 𝑏𝑘𝑥 ) 𝑗 ∈ 𝑎𝑘
0 others,

(19)

where 𝑎𝑘 refers to the set of the service points and destinations
that ant 𝐾 is allowed to select for the next step; 𝛼 and 𝛽
parameters reflect the relative importance the pheromone
ants accumulated during the movement and heuristic infor-
mation provided that the ants select the path, respectively;𝑄1 and 𝑄2 are weight coefficients that satisfy 0 ≤ 𝑄1 ≤ 1,0 ≤ 𝑄2 ≤ 1, 𝑄1 + 𝑄2 = 1, and 0 ≤ 𝜃𝑗 ≤ 1, which refers to
the taboo list (tabu𝑘) each ant creates, where 𝑘 = 1, 2, . . . , 𝐾
(𝐾 refers to the sum of search ant colony) for recording the
nodes that ant𝐾 has visited at 𝑡 and the ants are forbidden to
visit again in this cycle. The tabu list is cleared at the end of
the cycle.

3.3. Adaptive Information Update Strategy. Traveling ants
often cause blockage and stagnation. Ant colony algorithm
easily leads to premature and local convergences. To solve
this problem and improve the global convergence of ant
colony algorithm and search speed, many studies proposed
different strategies to update existing information [19–25];
for example, in the standard ant colony algorithm, when
information is updated and as long as the ant is traversed,
selecting the path can update the information on the path.
This enhances the information on the path for optimal fitness
and weakens the information on other paths; the other
algorithms based on level change enable the ant to set several
paths with relatively good fitness, and the degree of excellence
of its solution determines the magnitude of information.

These algorithms presented above are different. They mainly
update the amount of information using the increasing or
decreasing proportion of the fixed amount of information
and ignore the distribution features of the solution. They
improve the characteristics of the ant colony algorithm to a
certain extent and are used to treat small-scale problems.This
paper proposes a new adaptive information update strategy
for solving the large-scale problems, which starts from the
distribution state of the solution.

In large-scale problems, the existence of a volatile coef-
ficient reduces the amount of information on the path that
has never been searched to be close to 0, which lowers the
search ability of the algorithmon these paths. If the amount of
information on a path is large, the amount of information on
these paths is increased, and the chance that the path that has
been searched is selected again is high. Moreover, the global
search ability of the algorithm is influenced. A fixed changing
volatile coefficient can improve the global search ability but
reduces the convergence speed of the algorithm. Therefore,
an adaptive method for changing 𝜏 is proposed to update the
pheromone. The formula is as follows [11]:

𝜏𝑖𝑗 (𝑡 + 1) = (1 − 𝜌) 𝜏𝑖𝑗 + Δ𝜏𝑖𝑗; (20)

while 𝜏 < 𝜏min,

𝜏𝑖𝑗 (𝑡 + 1) = (1 − 𝜌)1+𝜙(𝑚) 𝜏𝑖𝑗 (𝑡) + Δ𝜏𝑖𝑗; (21)
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while 𝜏 > 𝜏max,

𝜏𝑖𝑗 (𝑡 + 1) = (1 − 𝜌)1−𝜙(𝑚) 𝜏𝑖𝑗 (𝑡) + Δ𝜏𝑖𝑗, (22)

where 𝜙(𝑚) is a function proportional to the number of
convergences 𝑚. If the number of convergences 𝑚 is higher,𝜙(𝑚) is larger, as denoted by the equation below:

𝜙 (𝑚) = Continuous convergence times 𝑚
𝑐 , (23)

where 𝑐 is a constant. The distribution of the solution
adaptively updates the amount of information to dynamically
adjust the intensity of information on each path, causing
the moderate concentration or scattering of ants to avoid
premature convergence and local convergence and improving
global search ability. The adaptive information update strat-
egy adaptively updates the amount of information based on
the distribution of the solution. Thus, it dynamically adjusts
the intensity of information on each path, increases the diver-
sity of the solution space, improves the global search ability,
and prevents premature convergence and local convergence.

4. Case Analysis

The DVRPMC optimal model and algorithm based on ant
colony algorithm have many constrained conditions and
parameters. To verify the performance of the algorithm,
the customer point priority, service time of customer point,
coefficient of road condition, vehicle wait cost, and other con-
strained conditions have not yet been considered in this case
analysis.The objective function in themodel is also simplified
as the path distance. In this case analysis, 15 customer points
were distributed in a square region in the edge length of
8 km. Table 1 illustrates the customer points’ coordinates
and related demand for passenger capacity, respectively. The
region has two scheduling points (parking points). The coor-
dinates are (−2, −2) and (3, 3), which own five and eight vehi-
cles, respectively. The maximum passenger capacity of each
vehicle is four.

TheVRP standard case library of Solomon andDesrosiers
[26] is used for detection. The Solomon and Desrosiers case
library is divided into three categories: Class C, Class R, and
Class RC. The customer points in Class C are distributed in
cluster types.The customer points inClass R are distributed at
random.The customer points in Class RC are the mixed-half
cluster type. This case analysis is conducted in the hardware
environment of Intel Pentium IV 3.0 with 1 G memory. VC
language is used for the programming of the algorithm and
to calculate R and C.The result is compared with the optimal
solution from several existing algorithms. The parameters of
the algorithm are 𝛼 = 1, 𝛽 = 2, and 𝜌 = 0.8. The iteration
number is 50.The results of 10 times the calculation are shown
in Table 2.

Table 2 shows that the optimal solutions of RC and R
are mostly in the twenties. The calculation time is not more
than 16 s in the hardware environment of Intel Pentium IV
3.0 with 1 Gmemory.Thus, the optimal solution convergence
is faster than that of the standard ant colony algorithm. To

Table 1: Coordinates of customer points and demand for passenger
capacity (DPC).

Number Coordinates DPC
(1) 0, −1.3 2
(2) 0, 1.5 1
(3) −2.1, −2.1 3
(4) 3.9, 3.1 4
(5) −2.8, −1.1 2
(6) −2.3, 0.2 1
(7) 2.1, 0 1
(8) 1.9, −1 3
(9) 0.96, −3.2 3
(10) −2.5, −1.7 2
(11) −2.98, 1.4 1
(12) 1.97, 0.9 4
(13) 2.0, 1.9 2
(14) −2.9, −1.7 2
(15) −3.8, 2.4 2

compare the calculation results, standard genetic, adaptive
genetic, and ant colony optimal adaptive algorithms are used
to stimulate the case study. The obtained parameters in the
case of 10 search times for the Class RC are shown in Table 3.

To compare the calculation results, the average number
of vehicles in Table 3 up to two digits after the decimal
point is taken. The calculation result shows that, in Class
RC, the DVRPMC calculation results of the average number
of vehicles and traveling distances are the best. Thus, the
calculation result of the adaptivemulticonstrained ant colony
algorithm is stable with short traveling distance and high
calculation efficiency.

5. Conclusion

In the context of neural network analysis, this paper ana-
lyzes the existing ant colony algorithm and proposes a
multiconstrained network intensive vehicle routing optimal
model and algorithm based on the adaptive ant colony
algorithm. Drawing lessons from the adaptive polymorphic
ant colony algorithm, the adaptive multiconstrained network
intensive vehicle ant colony algorithm in this paper is
used to collaboratively solve the problems through different
types of ants. It overcomes the shortcomings of the tradi-
tional ant colony algorithm of having one ant colony with
low algorithm efficiency. The ant colony can exchange
planning information during the problem-solving process
and maintain diversity in the search process because of
the interaction among populations. Therefore, through the
further use of the adaptive information update strategy, the
algorithm of introducing the interaction among populations
performs better than the traditional algorithm. Finally, this
paper conducts a simulation experiment using specific exam-
ples. The experimental result shows that the adaptive multi-
constrained ant colony algorithmhas better solving efficiency
and results than the standard ant colony algorithm. There-
fore, for large-scale DVRPMC in network intensive vehicle
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Table 2: Experimental results.

Number RC R
Optimal solution Iteration number Optimal solution Iteration number

(1) 1526 18 1488 20
(2) 1577 25 1501 19
(3) 1456 21 1401 32
(4) 1411 19 1389 29
(5) 1511 24 1435 33
(6) 1523 30 1367 35
(7) 1489 33 1478 28
(8) 1456 31 1501 21
(9) 1501 29 1459 34
(10) 1531 20 1347 27

Table 3: Comparison of the calculation results of various algo-
rithms.

Parameters RC
SGA ASGA DVRPMC

Number of vehicles 4.98 4.25 3.32
Iteration number 43.2 45.6 27.8
Traveling distance 1582.47 1475.60 1409.70

scheduling, the adaptive multiconstrained and colony algo-
rithm has significant superiority. Through the division and
collaboration of different kinds of ants, pheromone adaptive
strategy is combined with polymorphic ant colony algorithm;
the algorithm given in this paper can effectively overcome
some disadvantages, such as premature stagnation, and has
a theoretical significance to the study of large-scale multi-
constrained vehicle routing problems in complex traffic net-
work systems. The established general mathematical model
can be used in future studies, involving verifying further
its result and efficiency in the case study of simulation under
different passenger priorities, different road conditions, spa-
tiotemporal traffic networks, and other cases’ study of the
optimal routing search method of real-time network inten-
sive vehicle scheduling in a dynamic environment intensively.
Furthermore, the algorithm provided in this paper should be
significant for the further study on routing problem in the
dynamic environment of a spatial and temporal complexity
traffic network.
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