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The existing opinion dynamics models mainly concentrate on the impact of opinions on other opinions and ignore the effect of
the social similarity between individuals. Social similarity between an individual and their neighbors will also affect their opinions
in real life. Therefore, an opinion evolution model considering social similarity (social-similarity-based HK model, SSHK model
for short) is introduced in this paper. Social similarity is calculated using individual properties and is used to measure the social
relationship between individuals. By considering the joint effect of confidence bounds and social similarity in this model, the role of
neighbors’ selection is changed significantly in the process of the evolution of opinions. Numerical results demonstrate that the new
model can not only obtain the salient features of the opinion result, namely, fragmentation, polarization, and consensus, but also
achieve consensusmore easily under the appropriate similarity threshold. In addition, the improvedmodel with heterogeneous and
homogeneous confidence bounds and similarity thresholds are also discussed. We found that the improved heterogeneous SSHK
model could acquire opinion consensus results more easily than the homogeneous SSHKmodel and the classical models when the
confidence bound was related to the similarity threshold. This finding provides a new way of thinking and a theoretical basis for
the guidance of public opinion in real life.

1. Introduction

Over the past decades, opinion dynamics as a special type
of complex human behavior has attracted a great deal of
interest from researchers in different scientific fields [1].
Opinion dynamics, including opinion formation, spread, and
evolution, has great influence on politics [2], economics [3],
and society [4]. Existing studies have examined the inherent
mechanism of the spread of opinion by establishing several
opinion evolution models to forecast or influence public
opinion [5].

In the existing study of opinion dynamics, models can
be divided into discrete opinion models and continuous
models [6, 7]. Continuous opinion dynamics models are
considered more suitable for representing complex opinions
[7]. The most popular continuous opinion spreading models
are the Deffuant model and the Hegselmann–Krause (HK)
model [8–10], also known as bounded confidence models. In
these models, the confidence bound (also known as opinion

threshold or tolerance) is the main factor that influences
opinion consensus and drives stabilization [11]. Individuals
choose to communicate with neighbors according to the
bounded confidence principle, and they only communicate
with neighbors if their opinion distance is below the opinion
threshold, that is, the confidence bound, and then may
change their opinion [12, 13]. Liang et al. found that a
critical confidence bound value (0.5) is unaffected by network
topology; moreover, the opinion of the whole system reaches
a consensus when the confidence bound of all agents is above
the critical value [13–15]. On the contrary, when below the
threshold, it is difficult for the opinion to reach consensus.
In the Deffuant model, every agent can only communicate
with one of his neighbors at each time step, whereas every
agent can communicate with all his neighbors in the HK
model, which serves to alter the present situation of the social
network [16, 17].Themain outcomes of opinion evolution are
fragmentation, polarization, and consensus. The aim of the
present study is to determine how to make an opinion reach
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consensus. A significant amount of research has improved
the classical HK model by combining it with reality. Liang
et al. [13] proposed the use of a random or exponential
distribution to represent the confidence bound. Different
attributes or environments have disparate impacts on the
confidence bound of agents. Fu et al. [14] proposed amodified
Hegselmann–Krause model (MHK model) that considers
the self-belief parameter, indicating the persistence of an
individual’s opinion and the persistence of other agents’
opinion. It turns out that the self-belief parameter has great
influence on opinion consensus.

However, the classical HKmodel and these improvedHK
models only consider the influence of neighbors’ opinions
on an individual’s opinion in the process of communication.
Many studies have proved that the change in an individual’s
opinion is also influenced by the social attributes of other
agents [18–20]. Flache and Mäs [21] studied the effect of
demographic fault lines and the timing of contacts on team
cohesion, and their model is based on the assumption that
the influence of agent 𝑖 on agent 𝑗 is not directly correlated
with opinion, but with demographic similarity.Mäs et al. [22]
found that crisscrossing actors could help in overcoming con-
flicts even in groups with strong demographic fault lines, and
the time required for groupswith a strong personality to over-
come polarization is shorter than those with a weak personal-
ity. Taking this factor into account, the concept of social influ-
ence of individuals, namely, social power, is introduced into
the opinion evolution model. Social power is determined by
some features of network topology such as node degree and
betweenness centrality and follows a power-law distribution.
The simulation result shows that appropriate social power
distribution can enable opinions to converge easily [19, 20].
However, individuals in the social network are so complex
that the use of network topology to represent social power is
far from enough. Everyone has different social attributes and
resources and can be affected by different influences. Inmod-
els with similarity-biased influence, only sufficiently similar
individuals can interactwith each other to reduce opiniondif-
ferences, and similarity threshold depends on additional psy-
chological mechanisms (e.g., social identity, self-confidence)
[23]. Anyone can have the same social power on all the other
neighbors, ignoring the interaction between two individuals.

This paper combines the joint influence of neighbors’
opinions and social attributes on an individual’s opinion.
Likewise, the opinion of some agents outside the confi-
dence bound, which can also communicate, is considered.
In Section 2, a social-similarity-based Hegselmann–Krause
model (SSHK) is proposed, by introducing social similarity
in selecting communicating neighbors. The simulation result
and analysis of the homogeneous (the confidence bound
and similarity threshold show equality) and heterogeneous
models (the confidence bound and similarity threshold show
inequality) are presented in Section 3. Section 4 presents a
discussion and the conclusion.

2. Method
2.1. Similarity-Based Social Relationship. The intimacy of a
social relationship between individuals can be described by

their social similarity. “Birds of a feather flock together” is
a saying which means that people of the same kind show
stronger interpersonal attraction. Interpersonal attraction is
a state of mutual dependence and is a positive form of
relationship. One of the most important principles of inter-
personal attraction is the similarity principle [20]. People
tend to make friends with and trust others who share the
same hobbies or the same social status as themselves [20].
Thus, similarity based on an individual’s social attributes is
introduced in this paper to describe social relationship. The
existing agent-based research on opinion evolution always
treats individuals as a simple node. Different social attributes
of people, such as age, gender, education level, wealth, and
geographical location, are relatively less studied in natural
science.These attributes are an integral part of the description
of unique individuals that cannot be neglected. Thus, this
paper introduces social attributes to the classical bounded
confidence model (HK model) to identify individuals.

The possible values of each social attribute are limited,
and the range of values of each social attribute is summarized
according to empirical analysis. To facilitate the modeling
calculation, each attribute value is simply quantified. There
are two kinds of quantitative methods—one is a certain
number of discrete values corresponding to the value of the
property, and the other quantifies social attributes as a range
of continuous values, and the social attributes themselves are
represented by a range of values. It is obvious that the latter
method has better representation effects, so that continuous
values are used to represent individual attributes. Each agent
will be assigned attributes forming an attribute set, including
age, gender, education level, economic status, and geographic
location according to the fifth population census data of
China. For example, age is a nonnegative integer represented
by a number between 0 and 100, and education level can be
expressed as a float number between 0 and 1, where 0 stands
for the lowest education level (illiteracy) and 1 stands for the
highest education level. Gender can be specified as male or
female, and geographic location can be represented by the
latitude and longitude of an individual’s residence.

Specifically, agent 𝑖 can be expressed as a set of values
{attr𝑖,1, attr𝑖,2, . . . , attr𝑖,𝑚}. Moreover, it can be seen as a node
in the𝑚-dimension of social attribute space.

The intimacy of the social relationship between individ-
uals can be described by their social similarity 𝑆𝑖,𝑗. Similarity
between node 𝑖 and node 𝑗 (𝑆𝑖,𝑗) is computed based on the
individual attribute vector. According to different types of
values, 𝑆𝑖,𝑗 is classified into identical similarity (𝑆1𝑖𝑗), degree
similarity (𝑆2𝑖𝑗), and reverse similarity (𝑆3𝑖𝑗). 𝑆1𝑖𝑗 is defined for
attributes with only two values. Here, only gender is included.
𝑆2𝑖𝑗 is defined for the attribute with a float number. Here, age
similarity (𝑆age𝑖𝑗 ), education similarity (𝑆edu𝑖𝑗 ), and economic
similarity (𝑆eco𝑖𝑗 ) are included. 𝑆3𝑖𝑗 is defined to measure the
geographical position. It is inversely proportional to the
distance between the two nodes, which is based on the
Hamming distance. Details of the above definitions can be
found in [24].
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By combining 𝑆1𝑖𝑗, 𝑆2𝑖𝑗, and 𝑆3𝑖𝑗, 𝑆𝑖𝑗 is calculated as

𝑆𝑖𝑗 = [𝑊1,𝑊2,𝑊3] ⋅ [𝑆1𝑖𝑗, 𝑆2𝑖𝑗, 𝑆3𝑖𝑗]
𝑇 , (1)

where 𝑊1,𝑊2,𝑊3 are the weights of 𝑆1𝑖𝑗, 𝑆2𝑖𝑗, and 𝑆3𝑖𝑗,
respectively, as specified by experts. For the convenience of
calculation, the values of similarity are normalized within
[0, 1]. In Section 3, social attributes are simplified in this
version and two attributes of great importance on social
relationships in real life (geographic position and education
level) are considered here in order to facilitate the analysis; for
example, education level in developed areas will be generally
higher than that in developing areas. Geographic position
belongs to 𝑆3𝑖𝑗 and education level belongs to 𝑆2𝑖𝑗, and the
two attributes are closely related; for example, education
level in developed areas will be generally higher than that
in developing areas. Therefore, 𝑊1 is set to a value of 0, and
𝑊2,𝑊3are set to a level of 0.5, respectively.

2.2. Model. In the classical HK model, each agent selects
another agent whose opinion is limited in the confidence
bound as communication neighbors [12, 25]. An agent then
averages his and his neighbors’ opinion as his newopinion. Fu
[14] proposed an MHK model that considers self-confidence
based on the classical HK model. He uses a self-belief
parameter 𝜆 to represent the agent’s degree of retaining his
own opinion. Thus, 1 − 𝜆 is on behalf of the agent’s degree of
considering his neighbors’ opinion. Two extreme situations
are 𝜆 = 1, which represents an extremely stubborn agent
who only believes in his own opinions, and 𝜆 = 0, which
describes a fully open-minded agent who only has faith in his
neighbors’ opinions. The exchange rules of the MHK model
are as follows:

𝑥𝑖 (𝑡 + 1)

=
{{
{{
{

𝜆𝑖𝑥𝑖 (𝑡) +
(1 − 𝜆𝑖)󵄨󵄨󵄨󵄨󵄨𝑁𝑖 (𝑡)

󵄨󵄨󵄨󵄨󵄨
∑
𝑗∈𝑁𝑖

𝑥𝑗 (𝑡) , 𝑁𝑖 (𝑡) ̸= 𝜙

𝑥𝑖 (𝑡) , 𝑁𝑖 (𝑡) = 𝜙,

(2)

where the communication neighbor of agent 𝑖 is 𝑁𝑖(𝑡) =
{𝑗 | |𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)| ≤ 𝜀𝑖, 𝑗 ̸= 𝑖}, where 𝜀𝑖 is the
confidence bound and 𝜆𝑖 is his self-belief parameter. 𝜆 has an
influence on opinion convergence, which means that a small
𝜆 corresponds to a short converging time that a social system
requires.

Based on the MHKmodel, this paper proposes the SSHK
model, which introduces social similarity to represent the
social relationship between an agent and his neighbors. An
agent’s neighbors can be selected by their social similarity and
confidence bound.The SSHKmodel has𝑁 agents. Each agent
holds an opinion𝑥𝑖(𝑡) ∈ [0, 1] and has a social attribute set. At
each time step, each agent 𝑖 changes his opinion according to
formula (2).The selection of communication neighbors𝑁𝑖(𝑡)
is discussed in the following analysis.

The classical bounded confidencemodel shows that when
communicatingwith each other, the agentsmay be convinced
by their neighbors who share a similar opinion with him,

and every one may change his opinion toward his neighbors.
However, the agent also changes his opinion toward his close
or reliable neighbors regardless of his ownopinion, indicating
that people’s dependence on social relations and the objective
judgment of opinion in communicationmatter in the process
of opinion exchange. To consider the above two situations
simultaneously, social similarity between agents is introduced
to extend the confidence bound. A social similarity threshold
𝑠threshold is set here to represent social relations or trust
degree between agents. An agent considers the confidence
bound 𝜀 and similarity threshold 𝑠threshold when selecting
communication neighbors.

In the process of neighbor selection, two constraints are
set up simultaneously: 𝑠𝑖,𝑗 < 𝑠threshold & |𝑥𝑖(𝑡)−𝑥𝑗(𝑡)| < 𝜀.The
selection rules are more demanding than the classical model,
which is not realistic.There is often a case where some agents
who share a strong social relationship or high social similarity
have contradicting opinions, and theymay also communicate
with each other and exchange opinions. Thus, the weighting
methods 𝑤𝑠 and 1 − 𝑤𝑠 are used to integrate the weights of
social similarity and the confidence bound simultaneously, to
represent different influences (𝑊𝑠 ∈ [0, 1]). Thus, the set of
neighbors of agent 𝑖 can be calculated as follows:

𝑁𝑖 (𝑡) = {𝑗 | [𝑤𝑠 ∗ (𝑆𝑖𝑗 − 𝑆threshold) + (1 − 𝑤𝑠)

∗ (󵄨󵄨󵄨󵄨󵄨𝑋𝑖 (𝑡) − 𝑋𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨 − 𝜀𝑖)] < 0, 𝑗 ̸= 𝑖} .

(3)

This paper ignores the influence of network topology
and assumes that the network is fully connected. Therefore,
each agent can communicate with all other agents in the
system. However, every agent can only communicate with
the neighbors calculated by formula (3) that are constrained
by 𝑠threshold and 𝜀. Social similarity is different from the
self-belief parameter. Self-belief is the description of the
agent’s own personal attribute and is the inherent nature of
an individual. Obviously, it does not change when facing
different neighbors. Since social similarity is used to describe
the relation and interaction between an individual and his
neighbors, the social similarity of the same agent changes
when facing different neighbors.

3. Simulation Analysis and Result

The SSHK model is studied using agent-based modeling and
simulation. The simulation result is averaged 100 times. The
system assumes a fully connected network of 𝑁 = 1000.
Opinion is a continuous value between 0 and 1, and the initial
opinion of each individual follows a uniform distribution
[14]. The agents are divided into three categories: a shaky
agent (𝜆 = 0.05) who is easily affected by neighbors’ opinions,
a mild agent (𝜆 = 0.4) who considers both his own and
his neighbors’ opinions, and a stubborn agent (𝜆 = 0.9)
who adheres to his own opinions and the impact of other
agents is weak. In the following research, two social attributes
(geographic position and education level) are chosen in order
to facilitate analysis and every agent has a two-dimensional
attribute {attr𝑖,1, attr𝑖,2}, such as geographic position and edu-
cation level. The similarity between agents can be calculated
by formula (1).
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Steady state is defined when the opinion of all agents no
longer changes; that is, the system is stable [13]. One impor-
tant observation indicator of opinion dynamics research is
the final number of opinions, Cluster 𝐹. When reaching
steady state, 𝐹 shows three different opinion states of frag-
mentation, polarization, and consensus. Fragmentation refers
to a situation where the whole population is divided into
a lot of subgroups and the opinions of these subgroups
are different. Polarization refers to a situation where the
whole population is divided into several subgroups, and the
opinions of these subgroups are different. If the difference
between two opinions is less than 10−4, they can be regarded
as the same opinion or an opinion cluster. Another observa-
tion indicator is simulation time 𝑇—the time that a system
requires to reach the steady state.

Homogeneous and heterogeneous models are discussed
in the following sections. A homogeneous model means that
the confidence bound and similarity threshold are equal. A
heterogeneous model means that the confidence bound and
similarity threshold are unequal.

3.1. Homogeneous SSHK Model. The homogeneous model is
studied in this section. The confidence bound is neglected to
analyze the impact of social similarity on opinion dynamics.
The influences of the confidence bound and social similarity
threshold are compared when they work simultaneously.The
SSHKmodel is verified by comparing it with the classical HK
and MHKmodel.

3.1.1. The Influence of Social Similarity. First, we assume that
𝑊𝑠 = 1; that is, we only study the effect of social similarity.
Different opinion evolution results are obtained by changing
the similarity from 0.01 to 0.1. A few representative results are
shown in Figure 1.

Figure 1 illustrates opinion evolution under different
conditions of social similarity. From the result, it can be
seen that opinion polarization cannot be achieved. Opinion
becomes fragmented when the social similarity threshold
is small (𝑠threshold = 0.01). As social similarity increases,
most opinions can converge to a single opinion while others
are in a decentralized state (𝑠threshold = 0.03). When the
similarity is large enough (𝑠threshold = 0.05 and 𝑠threshold =
0.1), opinion follows the rule of gradually converging and
finally coming to consensus.Thus, social similarity influences
opinion dynamics to achieve the consensual stability of opin-
ions with the increase in similarity threshold. This finding is
attributed to the similarity threshold, which does not directly
change opinions during communication, and is only used to
select communication neighbors. Similarity threshold has an
indirect impact on opinions, whereas the confidence bound
has a direct influence on opinions. Moreover, the similarity
threshold of several representative values of 0.01, 0.03, 0.05,
and 0.1 can be obtained.

3.1.2. The Mutual Influence of Similarity and Confidence
Bound. The reasonable value of 𝑤𝑠 and the influences of
social similarity thresholds as well as confidence bounds are
compared in this section.

The influence of 𝑤𝑠 is analyzed based on the differ-
ences between the confidence bound and different similarity
threshold. By simulating the HK, MHK, and SSHK models,
the following representative confidence bound values can
be obtained: 𝜀 = 0.05 (opinion fragmentation), 𝜀 = 0.2
(opinion polarization), and 𝜀 = 0.3 (opinion consensus). The
values are used in the following simulation. Since opinion
objectives affect relationships between people more than
social similarities, extreme similarity weights are ignored in
the model (𝑤𝑠 = 0.9∼1).

Based on the assumption that most individuals are gen-
erally objective, we assume that the weight of the confidence
bound is greater than the weight of the similarity (𝑤𝑠 = 0.3
and 𝑠threshold = 0.1); specifically, the confidence bound and
similarity play a role in opinion evolution simultaneously.
We analyze the effect of weights under different confidence
bounds and similarity thresholds and obtain the most appro-
priate weight value. Since the sum of the weight of the
confidence bound and similarity is 1, we only discuss the
weight of the similarity and analyze the influence of the
different weights on opinion evolution. Figure 2 shows the
effect of the similarity threshold on the opinion numbers
under several different similarity thresholds.

The similarity threshold is small (𝑆threshold < 0.1). When
the weight of similarity is small (𝑊𝑠 < 0.3), that is, when
the weight of the confidence bound is large, the final state of
opinion is completely determined by the confidence bound.
When𝑤𝑠 > 0.6 and the confidence bound is small (𝜀 = 0.05),
the simulation result is opinion fragmentation. When the
confidence bound ismoderate (𝜀 = 0.2), opinion polarization
can be obtained, and a large enough trust radius (𝜀 = 0.3) can
ensure that some of the views will achieve convergence.

The similarity threshold is large (𝑆threshold > 0.1).
An opinion reaches consensus when 𝑖 is very small, and
the stability of the opinion increases with the increase in
the similarity threshold. When 𝑊𝑠 > 0.8, irrespective of
the value of 𝜀, the opinion will not achieve polarization
and fragmentation. Therefore, the opinion is not entirely
determined by the similarity, and the confidence bound is still
relevant. It is noteworthy that when 𝑊𝑠 > 0.8, an opinion
can achieve consensus even when the confidence bound is
very small; this is because the SSHK model increases the
communication opportunities of agents outside the confi-
dence bound,making it easier for thewhole system to achieve
consensus.

It can be seen that when the weight of similarity is
at the intermediate value (𝑊𝑠 = 0.3∼0.7), the confidence
bound and the similarity have joint effects, and the state
of opinion is relatively random; for example, when 𝑤𝑠 =
0.3, 𝑠threshold = 0.03, and 𝜀 = 0.3, the opinion achieves
polarization rather than consensus and fragmentation. As
can be seen from Figure 2, when the weight of similarity is
between 0.3 and 0.7, the confidence bound and the similarity
work together. In theory, when the weight of the confidence
bound is large, the opinion is mainly determined by the
confidence bound, and when the weight of the similarity is
large, the opinion is mainly determined by the similarity.
Moreover, the appropriate weight can make these two factors
work simultaneously. Taking into account the fact that the
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Figure 1: Opinion evolution results of the SSHK model by changing the social similarity with different 𝑠threshold (𝑊𝑠 = 1).
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Figure 2: Opinion evolution result under the mutual influence of social similarity and the confidence bound of different 𝑤𝑠 (the dark gray,
white, and light gray areas represent opinion consensus, opinion polarization, and opinion fragmentation, resp.).

confidence bound should play the dominant role in opinion
evolution in the following study, we still choose the value of
the previous hypothesis; that is, 𝑤𝑠 = 0.3.

It is noteworthy that when 𝑤𝑠 is not very small and
𝑠threshold is large, even if the confidence bound is small,
the opinion can reach consensus, as shown in the black
region in Figure 2. Since the model increases the exchange
opportunities of the agents whose opinion difference is larger

than the confidence bound, it is easier for the whole system
to achieve consensus.

The influence of the similarity threshold in different
confidence bounds is also studied. The results are shown in
Figure 3.

In Figure 3(a), the final opinion number gradually
decreases (𝜀 = 0.05) with the increase in 𝑠threshold.The opinion
state changes from fragmentation to polarization with the
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Figure 3: Influence of the similarity threshold on opinion evolution results under different confidence bounds.

increase in 𝑠threshold (𝜀 = 0.2) (Figure 3(b)). The opinion state
changes from polarization to consensus with the increase
in 𝑠threshold (𝜀 = 0.3) (Figure 3(c)). The opinion result of
fragmentation-polarization-consensus with the joint effects
of social similarity and the confidence bound can be obtained
by changing 𝑠threshold. Therefore, social similarity also affects
opinion dynamics.

3.1.3. Model Validation. To verify the feasibility of the SSHK
model, we compare it with that of the classical HK andMHK
models. The opinion distributions of the three models with
different confidence bounds are shown in Figure 4.

Figure 4 demonstrates that the final opinion states of the
three models are the same (i.e., fragmentation, polarization,
or consensus). The main feature of the opinion result of
the three models is opinion fragmentation when 𝜀 = 0.05,
polarization when 𝜀 = 0.2, and consensus when 𝜀 = 0.3.
Regardless of how 𝜀 changes, the classical HKmodel requires
the shortest time to reach consensus, and the SSHK model
requires the longest time to achieve a stable state when 𝜀 is
small (𝜀 = 0.05). The MHK model shows exactly the same
result as the HK model, whereas the opinion result of the
SSHK model is different from that of the MHK model. The
differences are discussed below. Figure 5 shows the difference
between the SSHK model (𝑠threshold = 0.1, 0.2) and the MHK

model when 𝜀 = 0.05. Table 1 compares the stable time (𝑇)
and the opinion cluster number (𝐹) and the relative size of
the largest cluster𝑁max.

In Figure 5(a) of the MHK model, the agent number of
every opinion cluster is almost the same, which is the same
as that of Figure 5(c). However, in Figure 5(b) of the SSHK
model, some opinion clusters contain a significantly larger
agent number, whereas others only have a few agents. The
agent number of the maximum opinion cluster is almost
the same in the two models (Table 1). When the similarity
threshold increases from 0.1 to 0.2, the opinion number
of the SSHK model is significantly less than the opinion
number of the MHK model. The increase in the similarity
threshold enables the agent outside the confidence bound
to communicate with others. The opinion easily reaches
consensus.

Table 1 shows that the stable time 𝑇 of the SSHK model
with 𝑠threshold = 0.1 is longer than that of the MHKmodel. By
contrast, the stable time of the SSHK model with 𝑠threshold =
0.2 is almost as long as that of the MHK model. This
is possibly because the appropriate 𝑠threshold increases the
communication times of the agent outside the confidence
bound and enables the opinion to reach consensus easily.The
communication times of agents outside the confidence bound
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Figure 4: Opinion evolution results in the classical HK model, MHK model, and SSHK model with different confidence bounds (𝑤𝑠 = 0.3,
𝑠threshold = 0.1).
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Figure 5: Comparison of opinion evolution results in the MHKmodel and SSHK model (𝑤𝑠 = 0.3, 𝑠threshold = 0.1, 0.2) when 𝜀 = 0.05.



8 Complexity

Table 1: Comparison of stable time (𝑇), opinion cluster number (𝐹),
and the relative size of the largest cluster 𝑁max in the MHK model
and SSHK model (𝑤𝑠 = 0.3) when 𝜀 = 0.05.

MHK SSHK
𝑠threshold = 0.1

SSHK
𝑠threshold = 0.2

F 7 7 4
T 143 440 155
𝑁max 224 243 274

1 11 21 31 41 51 61 71 81 91 101
Time
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Figure 6: Communication times of agents outside the confidence
bound in the SSHK model with 𝑠threshold = 0.1 and 𝑠threshold = 0.2.

of 𝑠threshold = 0.1 and 𝑠threshold = 0.2 are compared in Figure 6
to verify the assumption.

In Figure 6, the communication times increased slightly
up to 1700 when 𝑠threshold = 0.1. When 𝑠threshold = 0.2, the
communication times increased tomore than 10000. It can be
demonstrated that, as 𝑠threshold increases, the chance of com-
munication between agents outside the confidence bound is
improved and the opinion cluster number is decreased to
achieve consensus.This result verifies the assumption that the
introduction of the social similarity mechanism enables the
communication of agents outside the confidence bound and
affects opinion evolution.

The communication times of agents outside the confi-
dence bound have significantly decreased and are reduced to
0 after Step 50.This finding can be attributed to opinions that
gradually converge to a few clusters with great differences in
time and are constrained by the confidence bound to only
allow agents with similar opinions to communicate.

3.2. Heterogeneous SSHK Model. Usually, the confidence
bound and social similarity threshold of each agent are

different. Therefore, the SSHK model of the heterogeneous
confidence bound and social similarity threshold is studied
in this section. Moreover, the heterogeneous model is then
compared with the homogeneous model.

Given that the power-law distribution phenomenon
widely exists, the heterogeneous confidence bound and social
similarity threshold in this paper follow it. The power-law
distribution 𝑝(𝑥) = 𝑥−𝑎 is influenced by the scaling exponent
𝛼 and minimum value 𝑥min [13].

Each individual may be affected by his neighbors’ opin-
ions and social relations. These two effects are different and
related. The three relation types are as follows:

(1) The confidence bound and social similarity threshold
have a positive correlation. When making a decision,
the agent is easily affected by both his neighbors’
opinions and their social relationships.

(2) The confidence bound and social similarity threshold
have a negative correlation. The psychology of agents
is extreme. They change their opinions because of
communication with their neighbors or their social
relationships.

(3) The confidence bound and social similarity threshold
are not correlated. The effects of these factors on
agents are random.

In Figure 7, the influence of the above correlation types on
opinion evolution is reflected by 𝐹 (opinion cluster number).

FromFigure 7, it can be seen that no correlation shows the
most opinion numbers when the confidence bound is small
(confidence bound = 0.05), followed by negative correlation,
and the opinion numbers of positive correlation are slightly
less than those of the negative correlation. Moreover, the
opinion numbers of the no correlation type are greater than
those of both the positive and negative correlation types. It
can be concluded that no correlation obtains the greatest
number of opinions regardless of the value of the trust radius
and the similarity threshold.

In Figure 8, the influence of the above correlation types
on opinion evolution is reflected by 𝑇 (stable time).

It can be seen from Figure 8 that the effect of correlation
between the confidence bound and the similarity threshold
on opinion numbers is consistent with the stable time. No
correlation requires the longest stable time, followed by
negative correlation and positive correlation. Positive and
negative correlations reach consensus in the shortest amount
of time with no significant difference between them when
the confidence bound is small. As the confidence bound
increases, it can be seen that the positive correlation type
shares exactly the same result as the negative correlation, and
the stable times of these two correlation types are much less
than that of the no correlation.

Combining the opinion cluster numbers and stable time,
it can be concluded that the result obtained by opinion
evolution is always the worst in any case when the similarity
threshold and the confidence bound are irrelevant; that is,
it achieves most opinion cluster numbers and takes the
longest time to stabilize. However, as long as there is a
correlation between the two factors, whether positive or
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Figure 9: Comparison of 𝐹 (opinion cluster number) on the heterogeneous SSHK model and homogeneous SSHK model with the negative
correlation between the confidence bound and social similarity threshold. Every result is averaged 100 times.

negative correlation, the results are not significantly different.
The results are the same when the confidence bound is not
small.

The homogeneous and heterogeneous models are now
compared. The heterogeneous model (𝛼 = 3 and 𝛼 = 12)
represents different heterogeneity. A small scaling exponent
corresponds to a distribution that is more heterogeneous.
Given that the correlation between the confidence bound
and social similarity threshold may affect the opinion con-
vergence in the study, no correlation and negative correlation
are selected in the heterogeneous model.

First, the homogeneous model is compared with the
heterogeneous model with negative correlation between the
confidence bound and social similarity threshold. The result
is shown in Figure 9.

Figure 9(a) shows that when the scaling exponent is small
(𝛼 = 3, 𝜀 = 0.05), the final opinion cluster number of
the heterogeneous SSHK model is more than that of the
homogeneous model, whereas the opinion number of the
heterogeneous SSHK model (𝛼 = 12, 𝜀 = 0.05) is less than
that of the homogeneous model. Therefore, heterogeneity
may not always promote opinion consensus compared to a
homogeneous model. When the confidence bound increase
is not small (𝜀 = 0.2 and 𝜀 = 0.3), the heterogeneous
model always facilitates opinion convergence, whereas the
homogeneous model cannot. It can be concluded that the
heterogeneous model obtains a better opinion consensus
result than the homogeneous model, except when the scaling
exponent and confidence bound are small enough.

The homogeneous model is now compared with the
heterogeneous model of no correlation in Figure 10.

In Figures 10(a) and 10(b), when the confidence bound
is small, the model with the smaller scaling exponent (𝛼 = 3)
obtainsmore opinion cluster numbers than the homogeneous
model. However, the homogeneous model shows a larger 𝐹
value than that in the model with a larger scaling exponent
(𝛼 = 12). Figure 9(c) shows the approximate result.

In conclusion, compared with the homogeneous model,
the heterogeneous model can lead to decreasing opinion
cluster numbers and promote the opinion to achieve con-
sensus. This finding is related to the distribution of the
confidence bound and social similarity threshold as well as
their correlations.

4. Conclusion

This paper proposed an improved SSHK model based on a
classical bounded confidence model by introducing social
similarity between agents into the MHK model, simultane-
ously considering the influence of neighbors’ opinions and
their social relationships as well. The SSHK model considers
the special situation that a small number of agents outside
the confidence bound have the chance to exchange opinions.
The homogeneous and heterogeneous SSHK models are also
studied and compared in this paper. The result shows that
the new model also obtains the main features of the opinion
result, namely, fragmentation, polarization, and consensus.
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Figure 10: Comparison of𝐹 (opinion cluster number) on the heterogeneous SSHKmodel and homogeneous SSHKmodel with no correlation
between the confidence bound and social similarity threshold. Every result is averaged 100 times.

By studying the homogeneous SSHK model, it can be
concluded that the new model can easily achieve consensus
under an appropriate social similarity threshold compared to
the classical models; that is, social similarity also influences
opinion dynamics [15]. The increase in the social similarity
threshold changes the opinion from fragmentation to con-
sensus. Moreover, the decrease in social similarity threshold
hardly enables the opinion to reach consensus. When the
influences of the confidence bound and social similarity are
compared, the former shows a stronger effect on opinion
convergence than the latter. Further, the comparison result of
the SSHK model with the HK and MHK models reveals that
the SSHK model can more easily reach consensus, because
agents outside the confidence bound can communicate and
exchange opinions.

The heterogeneous model with the influence of corre-
lation between the confidence bound and social similarity
threshold is discussed and compared with the homogeneous
model. Compared to the homogeneous model, the hetero-
geneous model promotes the opinion to reach consensus.
When the confidence bound is related to social similarity
threshold, the heterogeneous model enables the opinion
to converge easily, especially when the confidence bound
and social similarity threshold are positively correlated. This
finding suggests that opinion consensus is easily reached
when individuals treat the influence of neighbors’ opin-
ions and social relationships as equal. Opinion is easier to
converge when all individuals are in extreme conditions;
that is, they are only affected by neighbors’ opinions, or

they are only influenced by social relationships. However,
opinion is difficult to predict and reaching consensus is
difficult when there is no correlation. Thus, the correlation
between the confidence bound and social similarity threshold
influences the state of opinion stability. This finding may
provide a theoretical basis and method for the control or
guidance of public opinion. Some agents with a positive or
negative correlation between similarity threshold and the
confidence boundmay join and lead the community to reach
an agreement.

In summary, regardless of the nature of the results (i.e.,
reality or experimental), social similarity between individuals
also influences the opinion evolution result. The impact of
social relationships between individuals on opiniondynamics
cannot be ignored. Introducing the social relationship and
social attributes of individuals into the opinion evolution
model makes the model more realistic. Moreover, the intro-
duction of these concepts provides a theoretical framework
for the opinion dynamics model, which considers complex
individual social attributes and relationships. This study
ignores the influence of network topology. The influence of
complex social networks and heterogeneous individual social
attributes on public opinion evolution needs further research.
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