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PURE-STRATEGY EQUILIBRIA WITH NON-EXPECTED
UTILITY PLAYERS

ABSTRACT. A pure-strategy equilibrium existence theorem is extended to in-
clude games with non-expected utility players. It is shown that to guarantee the
existence of a Nash equilibrium in pure strategies, the linearity of preferences in
the probabilities can be replaced by the weaker requirement of quasiconvexity in
the probabilities.
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1. INTRODUCTION

A great deal of attention has been paid to non-expected utility
behavior, primarily to experimental evidence and models which
can accommodate the experimental evidence (see, for example,
Machina, 1987; Harless and Camerer, 1994). There have also been
efforts to apply expected utility in realistic choice situations, such
as in auctions (Chew, 1989; Karni and Safra, 1989; Neilson, 1994).
Bidding behavior in standard (i.e. expected utility) auction theory
is typically determined by a pure strategy equilibrium, and, indeed,
several authors have presented conditions which guarantee the exis-
tence of a pure strategy equilibrium in general games with expected
utility players (for example, Debreu, 1952; Glicksberg, 1952; Fan,
1952; Dasgupta and Maskin, 1986). As yet, however, and in spite of
the existence of the auction papers, there is no corresponding result
for non-expected utility players. This paper presents sets of con-
ditions guaranteeing the existence of pure strategy equilibria with
non-expected utility players. The existence of pure strategy equilib-
ria is important not only for auction theory, but for other situations in
which players have continuous strategy spaces, such as mechanism
design, Cournot oligopoly, and public good contribution games.

Other researchers have addressed the issue of the existence of
Nash equilibria, possibly in mixed strategies, in games with finite
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action spaces when players violate the expected utility hypothe-
sis. In contrast, our goal is to determine conditions under which
there exist pure-strategy equilibria in games with infinite, convex
action spaces.1 Crawford (1990) finds that in the former type of
game, if preferences are quasiconcave in the probabilities then a
Nash equilibrium exists, possibly in mixed strategies, but if prefer-
ences are quasiconvex in the probabilities, a Nash equilibrium may
not exist. To remedy this problem, he introduces the notion of an
equilibrium in beliefs. Cheng and Zhu (1995) analyze properties
of mixed strategy equilibria in a non-expected utility model which
assumes strict quasiconcavity in the probabilities when payoffs are
gains. Ritzberger (1996) examines the existence of equilibria when
player’s preferences satisfy the assumptions of one particular model,
expected utility with rank-dependent preferences. He demonstrates
that if players are risk averse, any Nash equilibrium must be a
pure-strategy equilibrium, because in the rank-dependent model
risk aversion and quasiconvexity in the probabilities are linked (see
Chew, Karni, and Safra, 1987).

We find that when the expected utility assumption is dropped
from the usual set of assumptions used to guarantee the existence
of pure- strategy equilibria, the game may no longer possess a Nash
equilibrium in pure strategies. The additional requirement which
restores the pure- strategy equilibrium existence result is that the
players’ preferences must be quasiconvex in the probabilities, which
is a weaker requirement than expected utility maximization. For
a narrow set of games, in which payoffs are deterministic mone-
tary amounts whenever all players use pure strategies, a completely
different restriction on preferences suffices: continuity and first-
order stochastic dominance preference can replace expected utility
maximization in the standard existence result.

In order to analyze a game in which players are not expected
utility maximizers, a more complicated description of the game is
needed. Specifically, the game must first be specified with monetary
payoffs, and the players’ preferences over probability distributions
must be specified separately. This is because when players are not
expected utility maximizers, the preference value from playing a
mixed strategy is not necessarily a linear combination of the prefer-
ence values from playing the component pure strategies. In Section
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2 we construct a monetary game, in which payoffs are probability
distributions over monetary prizes, and in Section 3 we complete the
game by considering preferences. It is also shown in Section 3 that
if preferences are continuous and quasiconvex in the probabilities,
best-response correspondences contain pure strategies. This fact is
used in Section 4 to prove a pure-strategy equilibrium existence
result. The result we extend is the Debreu–Glicksberg–Fan result.2

Section 5 considers the special case in which the monetary payoffs
are nonstochastic whenever players use pure strategies. The paper
concludes in Section 6 with a comparison with other theoretical re-
strictions on the quasiconcavity or quasiconvexity of non-expected
utility preferences.

2. THE MONETARY GAME

In this section we introduce the game to be analyzed. Unlike in
standard game theory, the payoffs are monetary payoffs instead of
utility payoffs. While utility payoffs make sense when players are
expected utility maximizers, they do not make much sense when
expected utility is violated. In particular, if players are expected
utility maximizers, the expected utility of a mixed strategy can be
calculated from the utility values of the pure strategies. When play-
ers are not expected utility maximizers, the preference value of a
mixed strategy cannot be calculated from the preference values of
pure strategies, in general. Since the utility values of pure strategies
do not contain enough information to fully characterize the game,
we proceed in two steps. In this section we describe a game with
monetary payoffs, called a monetary game.3 In the next section
preferences are added, forming a game in the standard sense.

There aren players, and letAi denote agenti’s (possibly fi-
nite) pure strategy set, with typical elementai ∈ Ai. Let A =
×i=1,... ,nAi denote the set of all possible pure strategy profiles.
For any elementa of A, we havea = (ai)i=1,... ,n. Also, define
a−i = (a1, . . . , ai−1, ai+1, . . . , an), and letA−i denote the set of
all a−i. Let P (Ai) denote the set of all probability measures over
Ai, and endow it with the topology of weak convergence. A mixed
strategy for playeri is a probability measureµi : Ai → P (Ai).
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Note that each pure strategyai corresponds to a degenerate mixed
strategy. Finally, letµ = (µ1, . . . , µn).

Assume that there is an interval[m,M] such that all monetary
payoffs, for any player, lie in this interval. LetD[m,M] denote the
set of probability distributions over monetary payments, and endow
D[m,M] with the topology of weak convergence. LetDn denote
the Cartesian product ofn copies ofD[m,M], and endowDn with
the product topology. Themonetary payoff functionis a mapping
β : A → Dn. Let βi denote theith component ofβ. Thenβi(a)
is the probability distribution of the payoffs for playeri when the
players utilize the pure strategy combinationa.

Having the payoff resulting from a pure strategy combination be
a probability distribution is somewhat unusual. When players are
expected utility maximizers and payoffs are given in utility values,
payoffs are always deterministic. Here, though, payoffs are in terms
of monetary amounts. These could be stochastic for several reasons.
For example, the payoffs from the game could be inherently risky,
such as when the payoffs are lottery tickets or assets with uncertain
values. More realistically, at the time the players make their choices,
there could be incomplete information, which makes the outcome
of the game uncertainex ante. When players make their bids in
an auction, for example, they do not know the types of the other
players, and theex antepayoff from the game is a random variable,
even when all the players use pure strategies and the value of the
prize is deterministic.

We have yet to define monetary payoffs in the event that players
use mixed strategies. Letπ : P (A) → D be the probability dis-
tribution over payoffs induced when the players follow the mixed
strategy combinationµ and when the monetary payoffs from actions
are given by the functionβ. Let δa denote the probability distribu-
tion over payoffs which arises when the pure strategy profilea is
played with probability one. Notice4 thatπ(δa) = β(a). Whenever
it can be done without confusion, we use the notationπ(a) to mean
π(δa).
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3. PREFERENCES AND BEST RESPONSES

To complete the description of the game, players’ preferences over
probability distributions must be specified. Each player has a pref-
erence functionVi : D[m,M] → R. A strategic form gamecan
now be described as an(n + 2)-tuple 0 = (A, β, Vi)i=1,... ,n. If
Vi is linear, the player is an expected utility maximizer, while if
Vi is nonlinear, the player is a non-expected utility maximizer. One
particular form of nonlinearity is of interest here: the quasiconcavity
or quasiconvexity of preferences.

The preference functionVi is (strictly) quasiconcaveif Vi(λF +
(1 − λ)F ∗) > (>)min{Vi(F ), Vi(F ∗)} for all λ ∈ (0, 1), where
F, F ∗ ∈ D[m,M], F 6= F ∗, andλF + (1− λ)F ∗ is a probability
mixture ofF andF ∗. Vi is (strictly) quasiconvexif Vi(λF + (1−
λ)F ∗) 6 (<)max{Vi(F ), Vi(F ∗)} for all λ ∈ (0, 1). If Vi is both
quasiconcave and quasiconvex, it is said to satisfybetweenness.

In order to establish the existence of a pure-strategy equilibrium,
it is first necessary to establish that players can play pure strate-
gies as best responses to their opponents’ pure strategies. This has
not been an issue with expected utility players, because expected
utility maximizers satisfy betweenness. When a player’s prefer-
ences satisfy betweenness and that player is indifferent between
two or more pure strategies, he is also indifferent over all possi-
ble mixtures of those pure strategies. Consequently, the set of best
responses to a pure strategy combination must contain at least some
pure strategies when preferences satisfy betweenness. In contrast,
if a player’s preference function is strictly quasiconcave, the player
strictly prefers a mixture of indifferent pure strategies to the pure
strategies themselves. In this case, then, the set of best responses
to a pure strategy combination may not contain any pure strate-
gies. This implies that to guarantee the existence of a pure- strategy
equilibrium, preferences must be quasiconvex in the probabilities.

Formally, let

ψi(a−i) = {µi ∈ P (Ai)|Vi(πi(µi, a−i))
> Vi(πi(µ′i , a−i)) for all µ′i ∈ P (Ai)}

be the best-response correspondence for playeri. Note that this
correspondence is only defined when the other players use pure
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strategies. While it is possible to write a best-response correspon-
dence which applies when the other players use mixed strategies, it
is not needed for the remainder of this paper.

LEMMA 1. If Vi is continuous and quasiconvex,βi is continuous,
andAi is compact, thenψi(a−i) contains pure strategies for each
a−i ∈ A−i.

Proof. Suppose that there exists some profilea−i such that
ψi(a−i) contains no pure strategies. By the continuity ofVi and
βi and the compactness ofAi (and hence ofP (Ai))), ψi(a−i) is
nonempty. So,ψi(a−i) must contain a mixed strategyµi(ai). By
quasiconvexity, there exists anα in the support ofµi such that
Vi(πi(α, a−i)) > Vi(πi(µi, a−i)). Thus δα ∈ ψi(a−i), contra-
dicting the assumption of no pure strategies in the best-response
set. 2
The above discussion highlights how the betweenness assumption
has affected the standard way of thinking about mixed strategies.
When a player’s preferences satisfy betweenness, the player only
mixes if he is indifferent between the strategies he is mixing over.
Put another way, there must be indifference among pure strategies
before there can be a mixed strategy, and this fact has resulted in
a common way to compute mixed strategies: a player chooses a
mixed strategy to make his opponent indifferent between her pure
strategies. Without betweenness this intuition disappears: the op-
timal mixture may entail placing positive probability on two pure
strategies which arenot indifferent if preferences are quasiconcave.

4. PURE STRATEGY EQUILIBRIA

We now turn to the issue of whether or not the strategic form game
0 possesses a pure-strategy equilibrium. In particular, we are in-
terested in extending the standard results of Debreu, Glicksberg,
and Fan to the case of non-expected utility maximizing players.
Their result is that if all players are expected utility maximizers,
if pure strategy sets are non-empty, convex and compact, and if each
Vi(πi(a)) is continuous ina and quasiconcave inai, then the game
possesses a pure-strategy Nash equilibrium. Our main result is that
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the expected utility assumption of linearity in the probabilities can
be replaced by quasiconvexity in the probabilities.

PROPOSITION 1. Consider a strategic-form game0. If, for each
i = 1, . . . , n,

(i) the pure strategy setsAi are nonempty, compact, and convex,
(ii) the preference functionVi is quasiconvex, and
(iii) Vi(πi(a)) is continuous ina and quasiconcave inai ,

then there exists a pure-strategy Nash equilibrium.
Proof.SinceVi(πi(ai, a−i)) is quasiconcave inai , ψi is convex-

valued. Continuity ofVi(πi(a)) coupled with compactness ofAi
implies thatψi is nonempty, compact-valued and upper hemicontin-
uous.

Now letRi(a−i) = {ai ∈ Ai|Vi(πi(ai, a−i)) > Vi(πi(a
′
i, a−i))

for all a′i ∈ Ai}. That is,Ri is the best-response correspondence
restricted to pure strategies. BecauseVi is quasiconvex in the prob-
abilities,Ri is nonempty by Lemma 1. Quasiconvexity ofVi also
implies that if µi ∈ ψi(a−i) then ai ∈ supp(µi) implies that
ai ∈ Ri(a−i). Sinceψi is compact-valued, convex-valued and up-
per hemicontinuous, so isRi . Finally, the Cartesian productR ≡
×i=1,... ,nRi : A → 2A is therefore upper hemicontinuous, non-
empty, compact, and convex. SinceA is compact and convex, the
Kakutani fixed point theorem can be applied, and there exists an
a∗ ∈ A such thata∗ ∈ R(a∗). Then we havea∗i ∈ Ri(a∗−i), which
implies thatVi(πi(a∗i , a∗−i)) > Vi(πi(ai, a

∗−i)) for all ai ∈ Ai.
Consequently,a∗ is a pure-strategy Nash equilibrium. 2
When players maximize rank-dependent expected utility, as in
Chew, Karni, and Safra (1987) and Quiggin (1993), quasiconvex-
ity of preferences is linked to risk aversion. In particular, the rank-
dependent expected utility model states that there exist strictly in-
creasing, continuous functionsu : R → R andg : [0, 1] → [0, 1]
with g onto such that

V (F ) =
∫
u(x) d(g ◦ F)(x).

Chew, Karni, and Safra (1987) establish that the preference function
V exhibits risk aversion if and only if bothu andg are concave.
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Chew (1985) shows that ifg is concave thenV must be quasiconvex
over probability distributions (see also the discussion in Quiggin,
1993, pp. 120–121). Thus, when players maximize rank-dependent
expected utility, condition (b) in Proposition 1 can be replaced by
risk aversion:

COROLLARY 1. Consider a strategic-form game0 with rank-
dependent expected utility-maximizing players. If, for eachi =
1, . . . , n,

(i) the pure strategy setsAi are nonempty, compact and convex,
(ii) the preference functionVi is risk averse, and
(iii) Vi(πi(a)) is continuous ina and quasiconcave inai ,

then there exists a pure-strategy Nash equilibrium.

5. DETERMINISTIC GAMES

In one special case it is possible to exploit the structure already
built into the monetary game, namely the distinction between the
payoff functionβi and the preference functionVi . The special case
arises when the payoff functionβi(a) yields a deterministic mone-
tary value (i.e. a degenerate distribution over payoffs) for every pure
strategy combinationa ∈ A and everyi = 1, . . . , n. To see why
this makes a difference, consider what must happen for a player
to respond to a pure strategy combination with a mixed strategy.
Since the payoffs from pure strategies are deterministic money val-
ues, the payoff from the mixed strategy is a probability mixture of
money values. For the player to strictly prefer the mixed strategy,
so that no pure strategy equilibrium exists, it must be the case that
the probability mixture is preferred to the monetary amounts over
which the player mixes. This violates stochastic dominance prefer-
ence, though. If the player exhibits first order stochastic dominance
(FOSD) preference, the player prefers the highest payoff in the mix-
ture to the mixture. Accordingly, Proposition 1 can be modified to
replace the quasiconvexity of preferences with first order stochastic
dominance preference.

Formally, the strategic-form game0 is deterministicif β(a) is
a degenerate distribution inDn for everya ∈ A. Examples of de-
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terministic games include price- or quantity-setting games between
oligopolists and many coordination games.

LEMMA 2. If the strategic-form game0 is deterministic,Vi is con-
tinuous and exhibits FOSD preference,βi is continuous, andAi is
compact, thenψi(a−i) contains pure strategies for eacha−i ∈ A−i .

Proof. Suppose that there exists some profilea−i such that
ψi(a−i) contains no pure strategies. By the continuity ofVi and
βi and the compactness ofAi (and hence ofP (Ai))), ψi(a−i)
is nonempty. Soψi(a−i) must contain a mixed strategyµi(ai).
Let α be the element in the support ofµi which maximizes
βi(α, a−i). By FOSD preference,Vi(πi(α, a−i)) > Vi(πi(µi, a−i)),
so δα ∈ ψi(a−i). Since there are no pure strategies in the best-
response set,µi cannot be in the best-response set either, providing
a contradiction. 2
Lemma 2 establishes that in a deterministic game, FOSD prefer-
ence guarantees that best-response correspondences contain pure
strategies at every point. It is straightforward to adapt the proof of
Proposition 1 to establish the following:4

PROPOSITION 2. Consider a deterministic strategic-form game
0. If, for eachi = 1, . . . , n,

(i) the pure strategy setsAi are nonempty, compact, and convex,
(ii) the preference functionVi is continuous and exhibits FOSD
preference, and

(iii) βi(a) is continuous ina and quasiconcave inai,

then there exists a pure-strategy Nash equilibrium.

The conditions placed on the preference ordering in Proposition 4
are weaker than many of the conditions commonly assumed in the
non-expected utility literature. For example, a common set of as-
sumptions is that preferences are smooth, as in Machina (1982), and
that all local utility functions are strictly increasing. Together these
imply condition (ii) of Proposition 2. Because stronger restrictions
on preferences are commonly assumed, the main restriction on the
game is the restriction on the monetary payoff functions, that is, con-
dition (iii) and the requirement that all payoffs from pure strategy
combinations be nonstochastic.
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6. CONCLUSION

This paper demonstrates that the expected utility requirement in
standard pure-strategy equilibrium existence theorems can be re-
placed with quasiconvexity in the probabilities. We now turn to
the issue of the validity of the quasiconvexity assumption. Exper-
imental evidence on quasiconvexity vs. quasiconcavity is mixed,
although Camerer and Ho (1994) find support for a complicated
pattern with preferences tending toward quasiconvexity over gains
and quasiconcavity over losses. The literature contains several the-
oretical papers pointing to the advantages of assuming one over the
other. Crawford (1990) examines the existence of Nash equilibria
in games with finite pure-strategy spaces. He finds that existence
is guaranteed if preferences are quasiconcave in the probabilities,
but that a different solution concept is needed if preferences are not
quasiconcave. This result is, not surprisingly, exactly the opposite
of ours. When the pure-strategy space is finite, players must be will-
ing to mix to convexify the best-response correspondence. When a
pure-strategy equilibrium is desired, though, one wants players to
be either indifferent or averse to mixing.
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NOTES

1. Of course, previous results governing the existence of (possibly mixed-
strategy) Nash equilibria in games with nonexpected utility players extend
to our setting of convex action spaces.

2. The methods used in this paper can also be used to extend other pure-strategy
equilibrium existence results, such as those of Dasgupta and Maskin (1986).

3. Crawford (1990) also analyzes monetary games, although he does not use this
term.

4. Proposition 2 is a generalization of Lemma 1 in Ritzberger (1996).
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