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Predictive and prognostic biomarkers facilitate the selection of treatment strategies that can improve the survival of patients.
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play important roles in cancer progression, with
diagnostic and prognostic potential. However, few prognostic lncRNAs are reported for breast cancer, and little is known about
their functions that contribute to cancer pathogenesis. In this paper, we used weighted correlation network analysis (WGCNA)
to construct networks containing noncoding and protein-coding genes based on their expression in 1097 breast cancer patients.
The differentially expressed genes were significantly overlapped with gene modules regulating cell cycle and cell adhesion. The
cell cycle-related lncRNAs were consistently downregulated in breast cancer. One lncRNA, EIF3J-AS1, is significantly associated
with clinicopathological characteristics, including tumor size, lymph node metastasis, estrogen receptor (ER), and progesterone
receptor (PR) status. Kaplan–Meier survival analysis revealed that EIF3J-AS1, a downregulated lncRNA in breast tumor, is a
potential prognostic marker for breast cancer. EIF3J-AS1 may function in an estrogen-independent manner and could be
inhibited by the compound FDI-6. Therefore, integrating sparse gene coexpression network and clinicopathological features can
accelerate identification and functional characterization of novel prognostic lncRNAs in breast cancer.

1. Introduction

Breast cancer is a highly heterogeneous disease, which is
commonly divided into five subtypes, basal-like, HER2, lumi-
nal A, luminal B, and normal-like, using histopathological
status of either estrogen receptor (ER), human epidermal
growth factor receptor (HER2), or a gene expression-based
classifier (PAM50) [1]. The use of the mRNA-based prognos-
tic marker, comprised of multiple differentially expressed
genes, has been supported by clinical guidelines, which assists
the clinical treatment of breast cancer by integrating clinico-
pathological factors [2, 3].

Gene coexpression networks (GCNs) have been widely
used in the studies of cancer for the identification of prognos-
tic signature [4]. GCN from transcriptomic profiles facilitates
elucidating gene interactions and exploring regulatory mech-
anisms [5]. For each gene expression profile, it contains
expressions of tenths of thousands of genes in detected sam-
ples. The coexpression network is constructed based on the

pairwise gene correlation matrix. In the network, each node
represents one gene, while each edge represents a pair of
genes with highly correlated expression pattern. The large
coexpression network is not easy to interpret because of its
high dimensionality. Besides, there are few master regulatory
genes which basically control the state of the network [6]. It is
promising to decompose the sparse network into smaller
components [7, 8], which are also referred to as gene mod-
ules. GCN is quite sparse with only a few “hub” genes densely
connected to each other. For years, the scale-free network
model has been supported for biological networks [9]. For
example, sparse signal transduction networks follow the
scale-free properties. In E. coli and S. cerevisiae, the degree
distribution is P k = k−γ, r ≈ 2 [10], which implies that
majority of the molecules are involved in few interactions
and minority of them have many interactions [9, 11].

Long noncoding RNA (lncRNA), with length longer than
200 nt, has been regarded as the dark matter of the genome
for decades. However, with the development and application
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of next-generation sequencing (NGS), lncRNAs have been
found to have a myriad of molecular functions in diseases
including cancers [12]. LncRNAs such as HOTAIR and
MALAT1 had been reported as a prognostic marker for
breast cancer [13, 14]. Differential analysis and coexpression
network has been successfully applied to identify prognostic
lncRNAs in breast cancer [15]. Therefore, in this study,
weighted correlation network analysis (WGCNA) was used
to identify modules of highly correlated genes. Then, we
focus on those modules significantly enriched by differen-
tially expressed genes, which play important roles in breast
cancer. The deregulated lncRNAs were identified by integrat-
ing clinicopathological characteristics and further investi-
gated to determine their prognostic potential in biologically
meaningful modules.

2. Materials and Methods

2.1. Data Preprocessing. We downloaded the transcriptomic
expression profiles of TCGA breast cancer from TCGA
(https://tcga-data.nci.nih.gov/). The dataset contains primary
tumor and adjacent normal samples from primary andmetasta-
tic samples. Before constructing the gene coexpression network
(GCN), we first filtered out genes with FPKM <1 in more than
half of all the samples. The expression profiling contains the
expression value of 12,488 genes in 1202 samples from 1097
patients. In the TCGA BRCA cohort, the number of normal
samples is ~10% of the tumor samples.

2.2. Weighted Correlation Network Analysis (WGCNA).
WGCNA uses adjacency to measure the similarity between
two genes in the network, which is calculated based on the
correlation coefficient. In the network, similarity sij is defined
as the absolute correlation coefficient between the profiles of
genes i and j: sij = cor xi, xj For a traditional unweighted
network, adjacency aij is defined as follows:

aij =
1 if sij ≥ τ,
0 otherwise,

1

where τ is the hard (fixed) threshold parameter to weigh
the edges. However, the unweighted networks do not
accord with the continuous characteristics of the coexpres-
sion information, which will lead to loss of information.
Therefore, weighted networks fit the nature of the contin-
uous coexpression. The corresponding adjacency can be

defined as aij = sβij, where β ≥ 1. The threshold β = 10 is
chosen based on the approximate scale-free topology crite-
rion of the coexpression network. The adjacency aij is fur-
ther transformed to a topological overlap matrix (TOM),
which is a measure to evaluate how strongly two genes
are correlated to the same set of neighboring genes. Then,
1-TOM is used as a dissimilarity measure for hierarchical
clustering. In the clustering dendrogram, each branch rep-
resents one module, which compromises of genes with
highly similar expression pattern. In this way, modules
can be defined based on different branch-cutting methods,

for example, the dynamic tree cut methods [16]. For more
details, please refer to [17].

2.3. Identifying Differentially Expressed Genes. To identify the
differential genes, we only chose the matched tumor and nor-
mal samples from 112 patients, in order to avoid the bias caused
by unbalanced sample size in the TCGABRCA cohort. The raw
read counts were downloaded from TCGA (https://tcga-data
.nci.nih.gov/). R package DESeq [18] was used to identify differ-
entially expressed genes (DEGs) in breast cancer. The signifi-
cance P value was adjusted by Benjamini–Hochberg FDR.
The cutoff of significant P value was 0.05.

2.4. Gene Ontology Annotation and Enrichment Analysis.We
used the online web tool DAVID [19] v6.8 for functional
enrichment analysis. Gene Ontology (GO) defines concepts
used to describe gene functions along three aspects: biological
process (BP), molecular function (MF), and cellular compo-
nent (CC). When performing functional enrichment analysis
on the genes in each module, we considered GO terms of BP
branch. EASE score is a modified Fisher’s exact P value to
evaluate whether the interested genes are significantly
enriched in a specific gene function, which contains a lot of
genes to achieve this function. The smaller the P value is,
the more enriched the interested genes are. The Benjamini–
Hochberg false discovery rate (BH-FDR) was used for cor-
recting multiple comparisons. The enrichment threshold of
P value was set to 0.01.

2.5. Associating LncRNAs with Clinicopathological
Characteristics. The patients were divided into high and low
groups, according to the median expression level of candi-
date lncRNAs. The patients with the lncRNA expression level
larger than its median expression value were assigned into
the high group and vice versa. Chi-squared test was used to
associate gene expression with clinicopathological features.

2.6. Statistic Method for Cross-Dataset Validation and
Survival Analysis. The expression difference of candidate
lncRNAs is compared by Mann–Whitney U test in cancer
versus normal samples. Kaplan–Meier and Cox regression
analyses were utilized to assess the prognostic significance
of lncRNAs. The statistical analysis was performed using R.

3. Results

3.1. Gene Modules Identified Using WGCNAs. WGCNA was
used to construct the gene coexpression network (GCN)
based on the TCGA BRCA dataset. Only genes with
appreciable expression levels (FPKM> 1) in more than half
of the samples were considered for further analysis. The
gene expression profiles, comprising of 12,488 genes in
1202 samples, were log2 transformed and subjected to
WGCNA. As shown in Figure 1(a), power 10 was chosen
as the soft threshold to identify coexpressed gene modules
(for details, see Section 2.2). 16 gene modules were identified,
and module names were color-coded including blue, brown,
green, grey, red, turquoise, yellow, and black. As the “grey”
module was reserved for unassigned genes, we further
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focused on the other modules except the grey module. The
clustering dendrogram of genes is shown in Figure 1(b).

As shown in Figure 1(c), the turquoise, blue, and brown
modules were the top 3 modules containing the highest num-
ber of genes. We further checked the number of lncRNAs in
each module. There are 8 lncRNAs in the turquoise module.
And in the brown module, there are 6 lncRNAs, while 5 in
the red module (Figure 1(d)).

3.2. Modules Significantly Enriched in DEGs of Breast Cancer.
The dysregulation of important genes (protein-coding and
noncoding) plays important roles in tumorigenesis. We
would like to know how many genes are differentially
expressed in breast cancer. DESeq [18] was used to determine
the DEGs between cancer and normal breast tissue, from the
TCGA BRCA dataset. In total, 3032 DEGs were identified.
Among these DEGs, an lncRNA Xist has experimentally sup-
ported associations with human breast cancer [20, 21].

We further checked the dysregulated lncRNAs in the
coexpressed gene modules. For each module, we calculated
the number of DEGs. The hypergeometric test was used to
test if the DEGs are significantly enriched in the module.
From the P values, we found that the blue, yellow, red, and
black modules are significantly overlapped with DEGs (P <
0 05, Figure 2(a)). For genes in these four modules, the
expression heat map is shown in Figure 2(b). There are more
upregulated DEGs in cancer tissues than those in downregu-
lated ones. In our analysis, only 30 lncRNAs were included,
excluding those lncRNAs with low expression levels [22].
Among these lncRNAs in the four modules, 5 lncRNAs are
upregulated in cancer relative to normal tissue and 9
lncRNAs are downregulated (Figure 2(c)).

3.3. Genes in Modules Mainly Involved in Cell Cycle and Cell
Adhesion. The gene modules in the network are often
enriched with specific functions [23], which enable its
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Figure 1: Gene modules detected using the weighted correlation network analysis (WGCNA). (a) Scale-free topology index and mean
connectivity were used to determine the soft threshold. (b) Clustering dendrogram of genes. The dissimilarity of genes is based on the
topological overlap. The genes are assigned to different modules and modules are named using different colors. (c) Number of genes in
each module identified from WGCNA. The numbers in the parentheses represent the number of genes in each module. (d) Number of
lncRNAs in the modules containing more than 100 genes.
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Figure 2: Differential genes of breast cancer in the modules. (a) Overlapped genes of each module and DEGs. The genes in the blue, yellow,
red, and black modules are significantly overlapped with DEGs. (b) The expression heat map of DEGs in the blue, yellow, red, and black
modules. (c) Expression levels of 5 upregulated lncRNAs in cancer relative to normal tissue (up) and 9 downregulated lncRNAs (down).
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application in generating the hypothesis of biological
significance. Besides, the “coexpression” approach has been
used to understand the lncRNA function [24]. To test
whether the identified modules are biologically meaningful,
information from Gene Ontology (GO) and KEGG path-
way was used for function enrichment analysis. GO terms
with BH adjusted P value of <0.01 are regarded as
significant.

Among those four modules, the red module has no
significantly enriched GO function and KEGG pathway.
The genes in the blue module are enriched in the GO
terms “cell division,” “DNA replication,” and “cell cycle”
(Figure 3(a)). As for the KEGG pathway, “cell cycle” and
“DNA replication” were the top enriched pathways
(Figure 3(b)). For genes in the yellow module, they are
enriched in the GO terms “signal transduction,” “cell
adhesion,” and “angiogenesis” (Figure 3(c)). As for the
KEGG pathway, “focal adhesion” and “signalling pathway”
were highly enriched (Figure 3(d)). Similar to the yellow
module, genes in the black module are enriched in the
GO terms “cell adhesion” and “collagen catabolic process”
(Figure 3(e)). The KEGG pathways “focal adhesion” and

“PI3K-Akt signalling pathway” were highly enriched by
genes in the black module (Figure 3(f)). The function sim-
ilarity of the yellow and black modules can be known
from the gene dendrogram from Figure 1(b). We also per-
formed the similarity comparisons of all the 16 modules
(Figure S1). From the clustering tree, the black module
and yellow module are in the same branch, which further
supports their similarity in gene functions.

3.4. Clinical Significance of Deregulated LncRNAs in Breast
Cancer. As the results showed (Figure 3), the genes in
the blue module are cell cycle-related while genes in the
black and yellow modules are related with cell adhesion
and signal transduction. We further explored the clinical
significance of the deregulated lncRNAs in these modules,
according to their relationship with clinicopathological
characteristics.

We divided the patients into high and low groups,
according to the median expression level of candidate
lncRNAs. As shown in Table 1, higher EIF3J-AS1 expression
group has more older patients (P = 0 016) and more lymph
node metastasis (P = 0 038). Low EIF3J-AS1 expression
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Figure 3: Biological function of DEGs in each module. (a) Gene Ontology and (b) KEGG pathway enrichment analysis for the blue module.
(c) Gene Ontology and (d) KEGG pathway enrichment analysis for the yellowmodule. (e) Gene Ontology and (f) KEGG pathway enrichment
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group has larger tumor size (P = 0 006) and more advanced
clinical stage and PR-negative patients (P = 0 002).

For LPP-AS2 (Table 2), low LPP-AS2 expression
group has larger tumor size (P = 0 008) and more lymph
node metastasis (P = 6 20e − 07), advanced clinical stage
(P = 7 86e − 06), and PR-negative patients (P = 0 002).

Another lncRNA in the blue module, CKMT2-AS1,
has higher expression in older patients (P = 0 016).
Lower CKMT2-AS1 expression group has larger tumor
size (P = 0 001) and more ER-negative (P < 2 20e − 16) and
PR-negative (P = 1 00e − 15) patients (Table S1). For
lncRNAs in the yellow and black modules, the lowMIR22HG
expression group has larger tumor size (P = 8 40e − 05)
and more ER-negative patients (P = 0 036) than the high
MIR22HG expression group (Table S2). Similarly, the low
FGF14-AS2 group has more lymph node metastasis (P =
0 0006) and more advanced clinical stage (P = 0 029) and
PR-negative patients (P = 0 029) than the high FGF14-AS2
expression group (Table S3), which is consistent with the
recent study [25]. However, the low LINC01614 expression
group has more ER-negative (P = 1 90e − 07) and PR-
negative patients (P = 2 30e − 6) than its high expression
group (Table S4). For other clinicopathological characteris-
tics such as tumor size, lymph node metastasis, and clinical

stage, there is no significant difference between the low and
high LINC01614 expression groups.

The blue module is enriched in cell cycle, which plays
important roles in cancer. Moreover, considering EIF3J-
AS1 and LPP-AS2 are significantly correlated with most of
the clinicopathological characteristics, we further validate
their expression and prognostic potential in breast cancer.

3.5. EIF3J-AS1 and LPP-AS2 Are Candidate Biomarkers in
Breast Cancer. As shown in Figure 2(c), EIF3J-AS1, LPP-
AS2, and CKMT2-AS1 are lowly expressed in tumor samples,
compared with their corresponding matched normal breast
tissues from the TCGA cohort. It suggests that these three
lncRNAs are candidate biomarkers in breast cancer. In
Figure 4, it demonstrated that the expressions of EIF3J-AS1
(Figure 4(a)), LPP-AS2 (Figure 4(b)), and CKMT2-AS1
(Figure 4(c)) are indeed significantly lower in tumor.

The dataset GSE31448 contains cancer and normal
mammary samples from 353 patients. Another dataset
GSE58135 also contains expression profiles of 140 normal
and tumor breast tissues. From Figures 4(d) and 4(e) and
Figure S2A-B, EIF3J-AS1 is lowly expressed in breast
tumor. LPP-AS2 is also lowly expressed in tumor tissues,
compared to normal breast tissues (Figures 4(f) and 4(g)).

Table 2: The relationship between LPP-AS2 and clinicopathological
features in the TCGA cohort.

Clinicopathological
characteristics

Low
expression

High
expression

X2 P
value

Age

≤60 301 299
0.56 0.46>60 243 266

Tumor size

<2 cm 117 159

9.62 0.0082–5 cm 341 296

>5 cm 85 88

Lymph node metastasis

N0 230 283

31.65
6.2e
− 07

N1 177 187

N2 87 32

N3 40 34

Distant metastasis

No 466 438
3.06 0.08

Yes 16 6

Clinical stage

I-II 370 434
19.97

7.9e
− 06III-IV 164 100

Estrogen receptor

Negative 124 116
0.65 0.42

Positive 387 412

Progesterone receptor

Negative 193 151
9.07 0.002

Positive 318 374

Table 1: The relationship between EIF3J-AS1 and clinicopathological
features in the TCGA cohort.

Clinicopathological
characteristics

Low
expression

High
expression

X2 P
value

Age

≤60 320 280
5.8 0.016>60 224 265

Tumor size

<2 cm 119 157

10.29 0.0062–5 cm 344 293

>5 cm 80 93

Lymph node metastasis

N0 274 239

8.41 0.038
N1 161 203

N2 65 54

N3 39 35

Distant metastasis

No 469 435 3.68e
− 29 1

Yes 11 11

Clinical stage

I-II 406 398
0.08 0.78

III-IV 130 134

Estrogen receptor

Negative 198 42
125.9

<2.2e
− 16Positive 327 472

Progesterone receptor

Negative 245 99
87.4

<2.2e
− 16Positive 278 414
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3.6. The LncRNA EIF3J-AS1 Is a Potential Prognostic Marker
in Breast Cancer. As validated in other datasets other than
TCGA, EIF3J-AS1 and LPP-AS2, lncRNAs in the blue
module, are candidate biomarkers in breast cancer. We
further determine their prognostic potency. Using an
online survival analysis tool for breast cancer [26], we
performed overall survival (OS) and relapse-free survival
(RFS) analysis for both EIF3J-AS1 and LPP-AS2. Patients
were divided into high- and low-expressed groups, using
its median expression value as the cutoff. As shown in
Figure 5(a), patients with high expression of EIF3J-AS1
have better OS (P = 0 0029). However, the low and high
LPP-AS2 expression groups do not exhibit significant dif-
ference in OS (Figure 5(b)). Further, we explored the
RFS for both lncRNAs. High expression of EIF3J-AS1 sug-
gests better RFS (Figure 5(c), P < 1 0e − 16). In contrast to
OS, there is significant RFS difference between high and
low LPP-AS2 expression groups (Figure 5(d), P = 0 003).

3.7. Coexpressed Genes of EIF3J-AS1 Participate in G2/M
Phase of Cell Cycle. To dissect the possible mechanism of
lncRNAs in breast cancer, we further constructed the subnet-
work of the three lncRNAs and their coexpressed genes in the
blue module. As shown in the network (Figure 6(a)), EIF3J-
AS1 and LPP-AS2 shared coexpressed genes. Using TANRIC

[27], we have identified 812 of these genes showing strong
correlations with lncRNA EIF3J-AS1 across the TCGA breast
cancer dataset. 54 genes of them have also interacted with
EIF3J-AS1 in the GCN of the blue module. As our results
showed (Figure 3(a)), the genes in the bluemodule participate
in cell cycle. Therefore, we further found that seven genes
(PTTG1, CDC20, BUB1, TTK, CDC45, PLK1, and CCNE1)
are known cell cycle genes (NanoString Technologies) and
are DEGs in the TCGA cohort. The expression of these seven
cell cycle genes is highly correlated with that of EIF3J-AS1.

To elaborate the role of EIF3J-AS1 in cell cycle, we
mapped its coexpressed genes to the KEGG pathway “cell
cycle.” CCNE1 and CDC45 participate in the G1 and S
phases of cell cycle, while the other five genes are involved
in the G2/M phase (Figure 6(b)). We speculate that EIF3J-
AS1 regulates the later phase of cell cycle, based on the
location of its coexpressed genes in the pathway “cell
cycle.” Cell cycle assays revealed significantly higher pro-
portions of cells in the G2/M phase, suggesting a cell cycle
arrest at the G2/M phase by CKI in MCF7 cells [28].
From Figure S3, we found that downregulated genes after
5FU (Figure S3A) or CKI treatment (Figure S3B-C) were
significantly overlapped with DEGs in the blue module.
This also supports our conclusion that coexpressed genes of
EIF3J-AS1 participate in the G2/M phase of cell cycle.
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3.8. EIF3J-AS1 May Function in an Estrogen-Independent
Manner and Could Be Inhibited by FDI-6. As shown in
Figure S2E, EIF3J-AS1 is significantly differentially expressed
between ER+ and TNBC patients. Estrogen is the most
important regulator of breast cancer. We next check EIF3J-
AS1 expression after E2 treatment based on a public dataset
(accession ID: GSE62789). Figure 7(a) shows that the
expression of EIF3J-AS1 decreased after E2 treatment at
early time points. At later time points, its expression level
increased gradually. siRNA experiments (Figure 7(b)) of
ERa (accession ID: GSE53532) demonstrated that EIF3J-
AS1 expression increased after siERa. From E2 treatment

and siERa experiments, EIF3J-AS1 may function in an
estrogen-independent manner.

FOXM1 and CCNB1 are coexpressed with EIF3J-AS1
and are included in the blue module. FDI-6 was used as
an inhibitor of FOXM1, according to a pubic dataset
(GSE58626). EIF3J-AS1 immediately decreased with FDI-
6 treatment: the fold change is around 1.5 (Figure 7(c)).
The expression reduction is also expected for its coex-
pressed genes CCNB1 (Figure 7(d)). Therefore, we specu-
late that FDI-6 may be a candidate compound that can
inhibit EIF3J-AS1 expression, which provides clues for fur-
ther functional assay on EIF3J-AS1.
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Figure 5: Prognostic potential of EIF3J-AS1 and LPP-AS2. (a) According to the Kaplan–Meier plot, patients with high EIF3J-AS1 expression
have better overall survival. (b) Patients with high LPP-AS2 expression do not have different overall survival, compared to patients with low
LPP-AS2 expression. (c) Patients with high EIF3J-AS1 expression have better relapse-free survival. (d) Patients with high LPP-AS2 expression
have better relapse-free survival.
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4. Discussion

LncRNAs have been reported as key players of many impor-
tant signalling pathways in cancer, including p53 pathway,
hypoxia signalling and epithelial-mesenchymal transition
(EMT), telomere maintenance, and hormone receptor signal-
ling [12]. The expression of lncRNAs is reported to be spe-
cific to tissue and cancer types, which enables lncRNAs as
favorable candidate biomarkers for cancer. For example,
lncRNA SChLAP1 is cancer- and prostate-specific expressed
and is a candidate prognostic marker [29]. Coexpression of
lncRNA and protein-coding genes has been utilized to pre-
dict the function of uncharacterized lncRNAs [30]. Due to
the inherent sparsity of the gene coexpression network,
WGCNA was applied to identify the highly connected com-
ponents (gene modules) from the network. Therefore, the

functions of lncRNAs can be predicted based on their coex-
pressed protein-coding genes in the module.

Among the deregulated lncRNAs, antisense lncRNAs are
a class of long noncoding transcripts from the antisense
strand of protein-coding genes. They can function as positive
or negative regulators of its paired genes [31]. In the TCGA
breast cancer cohort, the expression level of LPP-AS2 is pos-
itively correlated with its protein-coding gene LPP (r = 0 52).
In colorectal cancer, LPP-AS2 has been reported to be
repressed by MYC, which is a proto-oncogene-regulating cell
proliferation through cell cycle [32]. LPP-AS2 and EIF3J-AS1
are significantly associated with clinicopathological charac-
teristics, such as tumor size, lymph node metastasis, and PR
status, which highlight their potency in clinical application.

The seven genes highly correlated with EIF3J-AS1 are
deregulated in cancer, and some are reported as prognostic
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Figure 6: Coexpression network of EIF3J-AS1, LPP-AS2, and CKMT2-AS1. (a) The coexpression network was constructed for differentially
expressed lncRNAs and their coexpressed genes in the blue module. Node size is proportional to the number of coexpressed genes. (b) The
pink background genes are the seven coexpressed genes of EIF3J-AS1 in the KEGG pathway “cell cycle.”
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markers of breast cancer. According to the results from
survival analysis, high CDC20 expression and high PTTG1
indicated aggressive pathological course of breast cancer,
particularly TNBC [33]. BUB1 expression is correlated with
a poor clinical prognosis in patients with breast cancer [34].
High expression of BUB1 was associated with better OS of
low-grade breast cancers [35]. TTK is upregulated in several
cancers, especially in TNBC. TTK was also associated with
aggressive subgroups, has poor survival, and is a therapeutic
target [36]. Moreover, inhibiting TTK has been proposed as a
novel strategy for cancer treatment, including TNBC [37].
PLK1 regulates the phosphorylation of RAD51, which pro-
motes the genome stability in breast cancer [38]. PLK1 is

hopefully a target gene in ER-positive breast cancer patients
that have acquired resistance to estrogen deprivation therapy
[39]. Inhibition of PLK1 is a promising therapeutic approach
for patients suffering triple-negative breast cancer (TNBC)
[40]. The expression of CCNE1, one cell growth-related gene,
has been reduced by the lncRNA LINC00152 via knockdown
experiments [41]. Based on the in vitro experiments from
public datasets, we speculate that EIF3J-AS1 may function
in an estrogen-independent manner. EIF3J-AS1 could be
inhibited by the compound FDI-6. Therefore, experiments
like overexpression and RNA interference (RNAi) of EIF3J-
AS1 are needed to further elaborate its regulation of cell cycle
via its target genes.
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Figure 7: Functional study of EIF3J-AS1 via in vitro experiments from public datasets. (a) EIF3J-AS1 was downregulated after E2 treatment
in breast cancer cell line MCF7. (b) EIF3J-AS1 was upregulated after siERa experiments in MCF7. (c) The expression of EIF3J-AS1 decreased
after FDI-6 treatment. (d) CCNB1 is coexpressed with EIF3J-AS1. The expression of CCNB1 decreased after FDI-6 treatment.
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This study constructed and analyzed sparse gene coex-
pression network based on transcriptomic profiles of the
TCGA breast cancer cohort. It identified a prognostic
lncRNA that participates in cell cycle process via its coex-
pressed genes.
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