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THEORIES WITHOUT THE TREE PROPERTY OF THE SECOND KIND

ARTEM CHERNIKOV

Abstract. We initiate a systematic study of the class of theories without the tree property of

the second kind — NTP2. Most importantly, we show: the burden is “sub-multiplicative” in

arbitrary theories (in particular, if a theory has TP2 then there is a formula with a single variable

witnessing this); NTP2 is equivalent to the generalized Kim’s lemma and to the boundedness of

ist-weight; the dp-rank of a type in an arbitrary theory is witnessed by mutually indiscernible

sequences of realizations of the type, after adding some parameters — so the dp-rank of a 1-

type in any theory is always witnessed by sequences of singletons; in NTP2 theories, simple

types are co-simple, characterized by the co-independence theorem, and forking between the

realizations of a simple type and arbitrary elements satisfies full symmetry; a Henselian valued

field of characteristic (0, 0) is NTP2 (strong, of finite burden) if and only if the residue field

is NTP2 (the residue field and the value group are strong, of finite burden respectively), so in

particular any ultraproduct of p-adics is NTP2; adding a generic predicate to a geometric NTP2

theory preserves NTP2.

Introduction

The aim of this paper is to initiate a systematic study of theories without the tree property of

the second kind, or NTP2 theories. This class was defined by Shelah implicitly in [She90] in terms

of a certain cardinal invariant κinp (see Section 2) and explicitly in [She80], and it contains both

simple and NIP theories. There was no active research on the subject until the recent interest in

generalizing methods and results of stability theory to larger contexts, necessitated for example

by the developments in the model theory of important algebraic examples such as algebraically

closed valued fields [HHM08].

We give a short overview of related results in the literature. The invariant κinp, the upper

bound for the number of independent partitions, was considered by Tsuboi in [Tsu85] for the

case of stable theories. In [Adl08] Adler defines burden, by relativizing κinp to a fixed partial

type, makes the connection to weight in simple theories and defines strong theories. Burden in the

context of NIP theories, where it is called dp-rank, was already introduced by Shelah in [She05] and

developed further in [OU11, KOU, KSed]. Results about forking and dividing in NTP2 theories

were established in [CK12]. In particular, it was proved that a formula forks over a model if

and only if it divides over it (see Section 4). Some facts about ordered inp-minimal theories and
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groups (that is with κ1inp = 1) are proved in [Goo10, Sim11]. In [BY11, Theorem 4.13] Ben Yaacov

shows that if a structure has IP, then its randomization (in the sense of continuous logic) has

TP2. Malliaris [Mal12] considers TP2 in relation to the saturation of ultra-powers and the Keisler

order. In [Cha08] Chatzidakis observes that ω-free PAC fields have TP2.

A brief description of the results in this paper.

In Section 2 we introduce inp-patterns, burden, establish some of their basic properties and

demonstrate that burden is sub-multiplicative: that is, if bdn(a/C) < κ and bdn(b/aC) < λ, then

bdn(ab/C) < κ×λ. As an application we show that the value of the invariant of a theory κinp(T )

does not depend on the number of variables used in the computation. This answers a question of

Shelah from [She90] and shows in particular that if T has TP2, then some formula φ(x, y) with x

a singleton has TP2. It remains open whether burden in NTP2 theories is actually sub-additive.

In Section 3 we describe the place of NTP2 in the classification hierarchy of first-order theories

and the relationship of burden to dp-rank in NIP theories and to weight in simple theories. We

also recall some combinatorial “structure / non-structure” dichotomy due to Shelah, and discuss

the behavior of the SOPn hierarchy restricting to NTP2 theories.

Section 4 is devoted to forking (and dividing) in NTP2 theories. After discussing strictly

invariant types, we give a characterization of NTP2 in terms of the appropriate variants of Kim’s

lemma, local character and bounded weight relatively to strict non-forking. As an application we

consider theories with dependent dividing (i.e. whenever p ∈ S(N) divides over M ≺ N , there

some φ(x, a) ∈ p dividing over M and such that φ(x, y) is NIP) and show that any theory with

dependent dividing is NTP2. Finally we observe that the the analysis from [CK12] generalizes to

a situation when one is working inside an NTP2 type in an arbitrary theory.

A famous equation of Shelah “NIP = stability + dense linear order” turned out to be a powerful

ideological principle, at least at the early stages of the development of NIP theories. In this paper

the equation “NTP2 = simplicity + NIP” plays an important role. In particular, it seems very

natural to consider two extremal kinds of types in NTP2 theories (and in general) — simple types

and NIP types. While it is perfectly possible for an NTP2 theory to have neither, they form

important special cases and are not entirely understood.

In section 5 we look at NIP types. In particular we show that the results of the previous

section on forking localized to a type combined with honest definitions from [CS13] allow to omit

the global NTP2 assumption in the theorem of [KSed], thus proving that dp-rank of a type in

arbitrary theory is always witnessed by mutually indiscernible sequences of its realizations, after

adding some parameters (see Theorem 5.3). We also observe that in an NTP2 theory, a type is

NIP if and only if every extension of it has only boundedly many global non-forking extensions.
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In Section 6 we consider simple types (defined as those types for which every completion satisfies

the local character), first in arbitrary theories and then in NTP2. While it is more or less immediate

that on the set of realizations of a simple type forking satisfies all the properties of forking in simple

theories, the interaction between the realizations of a simple type and arbitrary tuples seems more

intricate. We establish full symmetry between realizations of a simple type and arbitrary elements,

answering a question of Casanovas in the case of NTP2 theories (showing that simple types are

co-simple, see Definition 6.7). Then we show that simple types are characterized as those satisfying

the co-independence theorem and that co-simple stably embedded types are simple (so in particular

a theory is simple if and only if it is NTP2 and satisfies the independence theorem).

Section 7 is devoted to examples. We give an Ax-Kochen-Ershov type statement: a Henselian

valued field of characteristic (0, 0) is NTP2 (strong, of finite burden) if and only if the residue

field is NTP2 (the residue field and the value group are strong, of finite burden respectively). This

is parallel to the result of Delon for NIP [Del81], and generalizes a result of Shelah for strong

dependence [She05]. It follows that valued fields of Hahn series over pseudo-finite fields are NTP2.

In particular, every theory of an ultra-product of p-adics is NTP2 (and in fact of finite burden).

We also show that expanding a geometric NTP2 theory by a generic predicate (Chatzidakis-Pillay

style [CP98]) preserves NTP2.

Acknowledgments. I am grateful to Itaï Ben Yaacov, Itay Kaplan and Martin Hils for multiple

discussions around the topics of the paper. I would also like to thank Hans Adler and Enrique

Casanovas for their interest in this work and for suggesting nice questions. Finally, I thank Ehud

Hrushovski and the referee for some corrections.

1. Preliminaries

As usual, we will be working in a monster model M of a complete first-order theory T . We will

not be distinguishing between elements and tuples unless explicitly stated.

Definition 1.1. We will often be considering collections of sequences (āα)α<κ with āα = (aα,i)i<λ

(where each aα,i is a tuple, maybe infinite). We say that they are mutually indiscernible over a

set C if āα is indiscernible over Cā 6=α for all α < κ. We will say that they are almost mutually

indiscernible over C if āα is indiscernible over Cā<α (aβ,0)β>α. Sometimes we call (aα,i)α<κ,i<λ

an array. We say that
(

b̄α
)

α<κ′ is a sub-array of (āα)α<κ if for each α < κ′ there is βα < κ such

that b̄α is a sub-sequence of āβα
. We say that an array is mutually indiscernible (almost mutually

indiscernible) if rows are mutually indiscernible (resp. almost mutually indiscernible). Finally, an

array is strongly indiscernible if it is mutually indiscernible and in addition the sequence of rows

(āα)α<κ is an indiscernible sequence.

The following lemma will be constantly used for finding indiscernible arrays.
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Lemma 1.2. (1) For any small set C and cardinal κ there is λ such that:

If A = (aα,i)α<n,i<λ is an array, n < ω and |aα,i| ≤ κ, then there is an array B =

(bα,i)α<n,i<ω with rows mutually indiscernible over C and such that every finite sub-array

of B has the same type over C as some sub-array of A.

(2) Let C be small set and A = (aα,i)α<n,i<ω be an array with n < ω. Then for any finite ∆ ∈

L(C) and N < ω we can find ∆-mutually indiscernible sequences
(

aα,iα,0 , ..., aα,iα,N

)

⊂ āα,

α < n.

Proof. (1) Let λ0 = κ + |T | + |C|, λn+1 = i(2λn )+ and let λ =
∑

n<ω λn. Now assume that

we are given an array A = (aα,i)α<n,i<λ, and let āα = (aα,i)i<λα
. By the Erdős-Rado theorem

(see e.g. [BY03, Lemma 1.2]) and the choice of λα’s we can find a sequence ā′n−1 =
(

a′n−1,i

)

i<ω

which is indiscernible over ā<n−1 and such that every finite subsequence of ā′n−1 has the same

type over ā<n−1 as some finite subsequence of ān−1. Next, as
∣

∣ā<n−2

⋃

ā′n−1

∣

∣ ≤ λn−3 it follows

by Erdős-Rado that we can find some sequence ā′n−2 =
(

a′n−2,i

)

i<ω
which is indiscernible over

ā<n−2ā
′
n−1 and such that every finite subsequence of it has the same type over ā<n−2ā

′
n−1 as some

subsequence of ān−2. Continuing in the same manner we get sequences ā′n−1, ā
′
n−2, . . . , ā

′
0 and it

is easy to check from the construction that they are mutually indiscernible and give rows of an

array satisfying (1).

(2) By a repeated use of the finite Ramsey theorem, see [CH12, Lemma 3.5(3)] for details. �

Lemma 1.3. Let (āα)α<κ be almost mutually indiscernible over C. Then there are (ā′α)α<κ,

mutually indiscernible over C and such that ā′α ≡Caα,0 āα for all α < κ.

Proof. By Lemma 1.2, taking an automorphism, and compactness (see [CH12, Lemma 3.5(2)] for

details). �

Definition 1.4. Given a set of formulas ∆, let R(κ,∆) be the minimal length of a sequence of

singletons sufficient for the existence of a ∆-indiscernible sub-sequence of length κ. In particular,

for finite ∆ we have:

(1) R (ω,∆) = ω — by infinite Ramsey theorem,

(2) R (n,∆) < ω for every n < ω — by finite Ramsey theorem,

(3) R(κ+,∆) ≤ iω (κ) for any infinite κ — by Erdős-Rado theorem.

Remark 1.5. Let (āi) be a mutually indiscernible array over A. Then it is still mutually indis-

cernible over acl(A).

Fact 1.6. (see e.g. [HP11]) Let p (x) be a global type invariant over a set C (that is φ(x, a) ∈ p if

and only if φ(x, σ(a)) ∈ p for any σ ∈ Aut(M /C)). For any set D ⊇ C, and an ordinal α, let the

sequence c̄ = 〈ci | i < α 〉 be such that ci |= p|Dc<i
. Then c̄ is indiscernible over D and its type over
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D does not depend on the choice of c̄. Call this type p(α)|D, and let p(α) =
⋃

D⊇C p
(α)|D. Then

p(α) also does not split over C.

Finally, we assume some acquaintance with the basics of simple (e.g. [Cas07]) and NIP (e.g.

[Adl08]) theories.

2. Burden and κinp

Let p(x) be a (partial) type.

Definition 2.1. An inp-pattern in p(x) of depth κ consists of (aα,i)α<κ,i<ω, φα(x, yα) and kα < ω

such that

• {φα(x, aα,i)}i<ω is kα-inconsistent, for each α < κ

•
{

φα(x, aα,f(α))
}

α<κ
∪ p(x) is consistent, for any f : κ→ ω.

The burden of p(x), denoted bdn(p), is the supremum of the depths of all inp-patterns in p(x).

By bdn(a/C) we mean bdn(tp(a/C)).

Obviously, p(x) ⊆ q(x) implies bdn(p) ≥ bdn(q) and bdn(p) = 0 if and only if p is algebraic.

Also notice that bdn(p) <∞ ⇔ bdn(p) < |T |+ by compactness.

First we observe that it is sufficient to look at mutually indiscernible inp-patterns.

Lemma 2.2. For p(x) a (partial) type over C, the following are equivalent:

(1) There is an inp-pattern of depth κ in p(x).

(2) There is an array (āα)α<κ with rows mutually indiscernible over C and φα(x, yα) for α < κ

such that:

• {φα(x, aα,i)}i<ω is inconsistent for every α < κ

• p(x) ∪ {φα(x, aα,0)}α<κ is consistent.

(3) There is an array (āα)α<κ with rows almost mutually indiscernible over C with the same

properties.

Proof. (1)⇒(2) is a standard argument using Lemma 1.2 and compactness, (2)⇒(3) is clear and

(3)⇒(1) is an easy reverse induction plus compactness. �

We will need the following technical lemma.

Lemma 2.3. Let (āα)α<κ be a mutually indiscernible array over C and b given. Let pα(x, aα,0) =

tp(b/aα,0C), and assume that p∞(x) =
⋃

α<κ,i<ω pα(x, aα,i) is consistent. Then there are (ā′α)α<κ

such that:

(1) ā′α ≡aα,0C āα for all α < κ

(2) (ā′α)α<κ is a mutually indiscernible array over Cb.
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Proof. It is sufficient to find b′ such that b′ ≡aα,0C b for all α < κ and (āα)α<κ is mutually

indiscernible over b′C (then applying an automorphism over C to conclude). Let b∞ |= p∞(x). By

Lemma 1.2, for any finite ∆ ∈ L(C), S ⊆ κ and n < ω, there is a ∆(b∞)-mutually indiscernible

sub-array
(

a′α,i
)

α∈S,i<n
of (āα)α∈S . Let σ be an automorphism over C sending

(

a′α,i
)

α∈S,i<n

to (aα,i)α∈S,i<n and b′ = σ(b∞). Then (aα,i)α∈S,i<n is ∆(b′)-mutually indiscernible and b′ |=
⋃

α∈S pα(x, aα,0), so b′ ≡aα,0C b. Conclude by compactness. �

Next lemma provides a useful equivalent way to compute the burden of a type.

Lemma 2.4. The following are equivalent for a partial type p(x) over C:

(1) There is no inp-pattern of depth κ in p.

(2) For any b |= p(x) and (āα)α<κ, an almost mutually indiscernible array over C, there is

β < κ and ā′ indiscernible over bC and such that ā′ ≡aβ,0C āβ.

(3) For any b |= p(x) and (āα)α<κ, a mutually indiscernible array over C, there is β < κ and

ā′ indiscernible over bC and such that ā′ ≡aβ,0C āβ.

Proof. (1)⇒(2): So let (āα)α<κ be almost mutually indiscernible over C and b |= p(x) given. Let

pα(x, aα,0) = tp(b/aα,0C) and let pα(x) =
⋃

i<ω pα(x, aα,i).

Assume that pα is inconsistent for each α, by compactness and indiscernibility of āα over C there

is some φα(x, aα,0cα) ∈ pα(x, aα,0) with cα ∈ C such that {φα(x, aα,icα)}i<ω is kα-inconsistent.

As b |= {φα(x, aα,0cα)}α<κ, by almost indiscernibility of (āα)α<κ over C and Lemma 2.2 we find

an inp-pattern of depth κ in p – a contradiction.

Thus pβ(x) is consistent for some β < κ. Then we can find ā′ which is indiscernible over bC

and such that ā′ ≡aβ,0C āβ by Lemma 2.3.

(2)⇒(3) is clear.

(3)⇒(1): Assume that there is an inp-pattern of depth κ in p(x). By Lemma 2.2 there is

an inp-pattern (āα, φα, kα)α<κ in p(x) with (āα)α<κ a mutually indiscernible array over C. Let

b |= p(x) ∪ {φα(x, aα,0)}α<κ. On the one hand |= φα(b, aα,0), while on the other {φα(x, aα,i)}i<ω

is inconsistent, thus it is impossible to find an ā′α as required for any α < κ. �

Theorem 2.5. If there is an inp-pattern of depth κ1 × κ2 in tp(b1b2/C), then either there is an

inp-pattern of depth κ1 in tp(b1/C) or there is an inp-pattern of depth κ2 in tp(b2/b1C).

Proof. Assume not. Without loss of generality C = ∅, and let (āα)α∈κ1×κ2
be a mutually indis-

cernible array, where we consider the product κ1 × κ2 lexicographically ordered. By induction on

α < κ1 we choose ā′α and βα ∈ κ2 such that:

(1) ā′α is indiscernible over b2ā
′
<αā≥(α+1,0).

(2) tp(ā′α/a(α,βα),0ā
′
<αā≥(α+1,0)) = tp(ā(α,βα)/a(α,βα),0ā

′
<αā≥(α+1,0)).
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(3) ā′≤α ∪ ā≥(α+1,0) is a mutually indiscernible array.

Assume we have managed up to α, and we need to choose ā′α and βα. Let D = ā′<αā≥(α+1,0).

As
(

ā(α,δ)
)

δ∈κ2
is a mutually indiscernible array over D (by assumption in the case α = 0 and

by (3) of the inductive hypothesis in the other cases) and there is no inp-pattern of depth κ2 in

tp(b2/D), by Lemma 2.4(3) there is some βα < κ2 and ā′α indiscernible over b2D (which gives

us (1)) such that tp(ā′α/a(α,βα),0D) = tp(ā(α,βα)/a(α,βα),0D) (which together with the inductive

hypothesis gives us (2) and (3)).

So we have carried out the induction. Now it is easy to see by (1), noticing that the first

elements of ā′α and ā(α,βα) are the same by (2), that (ā′α)α<κ1
is an almost mutually indiscernible

array over b2. By Lemma 1.3, we may assume that in fact (ā′α)α<κ1
is a mutually indiscernible

array over b2.

As there is no inp-pattern of depth κ1 in tp(b1/b2), by Lemma 2.4 there is some γ < κ1 and ā

indiscernible over b1b2 and such that ā ≡a′
γ,0

ā′γ ≡a(γ,βγ ),0
ā(γ,βγ). As (āα)α∈κ1×κ2

was arbitrary,

by Lemma 2.4(3) this implies that there is no inp-pattern of depth κ1 × κ2 in tp(b1b2). �

Corollary 2.6. “Sub-multiplicativity” of burden: If bdn(ai) < ki for i < n with ki ∈ ω, then

bdn(a0...an−1) <
∏

i<n ki.

In the case of NIP theories it is known that burden is not only sub-multiplicative, but actually

sub-additive, i.e. bdn (ab) ≤ bdn (a) + bdn (b) (by [KOU] and Fact 3.8). Similarly, burden is sub-

additive in simple theories because of the sub-additivity of weight and Fact 3.10. This motivates

the following conjecture:

Conjecture 2.7. Burden is sub-additive in NTP2 theories.

We also ask if burden is sub-additive in arbitrary theories.

Definition 2.8. For n < ω, we let κninp(T ) be the first cardinal κ such that there is no inp-pattern

(āα, φα(x, yα), kα) of depth κ with |x| ≤ n. And let κinp(T ) = supn<ω κ
n
inp(T ). Notice that

κminp ≥ κninp(T ) ≥ n for all n < m, just because of having the equality in the language, and thus

κinp(T ) ≥ ℵ0.

We can use Theorem 2.5 to answer a question of Shelah [She90, Ch. III, Question 7.5].

Corollary 2.9. κinp(T ) = κninp(T ) = κ1inp(T ), as long as κninp is infinite for some n < ω.

3. NTP2 and its place in the classification hierarchy

The aim of this section is to (finally) define NTP2, describe its place in the classification

hierarchy of first-order theories and what burden amounts to in the more familiar situations.
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Definition 3.1. A formula φ(x, y) has TP2 if there is an array (aα,i)α,i<ω such that {φ(x, aα,i)}i<ω

is 2-inconsistent for every α < ω and
{

φ(x, aα,f(α))
}

α<ω
is consistent for any f : ω → ω. Otherwise

we say that φ(x, y) is NTP2, and T is NTP2 if every formula is.

Lemma 3.2. The following are equivalent for T :

(1) Every formula φ(x, y) with |x| ≤ n is NTP2.

(2) κninp(T ) ≤ |T |+.

(3) κninp(T ) <∞.

(4) bdn(b/C) < |T |+ for all b and C, with |b| = n.

Proof. (1)⇒(2): Assume we have a mutually indiscernible inp-pattern (āα, φα(x, yα), kα)α<|T |+

of depth |T |+. By pigeon-hole we may assume that φα(x, yα) = φ(x, y) and kα = k. Then by

Ramsey and compactness we may assume in addition that (āα) is a strongly indiscernible array. If

{φ(x, aα,0) ∧ φ(x, aα,1)}α<n is inconsistent for some n < ω, then taking bα,i = anα,ianα+1,i...anα+n−1,i,
(
∧

i<n φ(x, yi), b̄α, 2
)

α<ω
is an inp-pattern. Otherwise {φ(x, aα,0) ∧ φ(x, aα,1)}α<ω is consistent,

then taking bα,i = aα,2iaα,2i+1 we conclude that
(

φ(x, y1) ∧ φ(x, y2), b̄α,
[

k
2

])

α<ω
is an inp-pattern.

Repeat if necessary.

The other implications are clear by compactness. �

Remark 3.3. (1) implies (2) is from [Adl07].

It follows from the lemma and Theorem 2.9 that if T has TP2, then some formula φ(x, y)

with |x| = 1 has TP2. From Lemma 7.1 it follows that if φ1(x, y1) and φ2(x, y2) are NTP2, then

φ1(x, y1) ∨ φ2(x, y2) is NTP2. This, however, is the only Boolean operation preserving NTP2 (see

Example 3.13).

Definition 3.4. [Adler] T is called strong if there is no inp-pattern of infinite depth in it. It is

clearly a subclass of NTP2 theories.

Proposition 3.5. If φ(x, y) is NIP, then it is NTP2.

Proof. Let (aα,j)α,j<ω be an array witnessing that φ(x, y) has TP2. But then for any s ⊆ ω, let

f(α) = 0 if α ∈ s, and f(α) = 1 otherwise. Let d |=
{

φ(x, aα,f(α))
}

. It follows that φ(d, aα,0) ⇔

α ∈ s. �

We recall the definition of dp-rank (e.g. [KOU]):

Definition 3.6. We let the dp-rank of p, denoted dprk(p), be the supremum of κ for which there

are b |= p and mutually indiscernible over C (a set containing the domain of p) sequences (āα)α<κ

such that none of them is indiscernible over bC.

Fact 3.7. The following are equivalent for a partial type p (x) (by Ramsey and compactness):
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(1) dprk (p) > κ.

(2) There is an ict-pattern of depth κ in p (x), that is (āi, ϕi (x, yi) , ki)i<κ such that p (x) ∪
{

ϕi

(

x, ai,s(i)
)}

i<κ
∪ {ϕi (x, ai,j)}s(i) 6=j<κ is consistent for every s : κ→ ω.

It is easy to see that every inp-pattern with mutually indiscernible rows gives an ict-pattern of

the same depth. On the other hand, if T is NIP then every ict-pattern gives an inp-pattern of the

same depth (see [Adl07, Section 3]). Thus we have:

Fact 3.8. (1) For a partial type p(x), bdn(p) ≤ dprk(p). And if p(x) is an NIP type, then

bdn(p) = dprk(p)

(2) T is strongly dependent ⇔ T is NIP and strong.

Proposition 3.9. If T is simple, then it is NTP2.

Proof. Of course, inp-pattern of the form (āα, φ(x, y), k)α<ω witnesses the tree property. �

Moreover,

Fact 3.10. [Adl07, Proposition 8] Let T be simple. Then the burden of a partial type is the

supremum of the weights of its complete extensions. And T is strong if and only if every type has

finite burden.

Definition 3.11. [Shelah] φ(x, y) is said to have TP1 if there are (aη)η∈ω<ω and k ∈ ω such that:

•
{

φ(x, aη|i)
}

i∈ω
is consistent for any η ∈ ωω

• {φ(x, aηi
)}i<k is inconsistent for any mutually incomparable η0, ..., ηk−1 ∈ ω<ω.

Fact 3.12. [She90, III.7.7, III.7.11] Let T be NTP2, q(y) a partial type and φ(x, y) has TP

witnessed by (aη)η∈ω<ω with aη |= q, and such that in addition
{

φ(x, aη|i)
}

i∈ω
∪ p(x) is consistent

for any η ∈ ωω. Then some formula ψ(x, ȳ) =
∧

i<k φ(x, yi) ∧ χ(x) (where χ(x) ∈ p(x)) has TP1,

witnessed by (bη) with bη ⊆ q(M) and such that
{

φ(x, bη|i)
}

i∈ω
∪ p(x) is consistent.

It is not stated in exactly the same form there, but immediately follows from the proof. See

[Adl07, Section 4] and [KKS12, Theorem 6.6] for a more detailed account of the argument. See

[KK11] for more details on NTP1.

Example 3.13. Triangle-free random graph (i.e. the model companion of the theory of graphs

without triangles) has TP2.

Proof. We can find (aijbij)ij<ω such that R(aij , bik) for every i and j 6= k, and this are the only

edges around. But then {xRaij ∧ xRbij}j<ω is 2-inconsistent for every i as otherwise it would

have created a triangle, while
{

xRaif(i) ∧ xRbif(i)
}

i<ω
is consistent for any f : ω → ω. Note that
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the formula xRy is NTP2, thus demonstrating that a conjunction of two NTP2 formulas need not

be NTP2. �

A similar argument shows that the theory of a Kn-free random graph has TP2 for all n ≥ 3.

In fact it is known that the triangle-free random graph is rosy and 2-dependent (in the sense of

[She07]), thus there is no implication between rosiness and NTP2, and between k-dependence and

NTP2 for k > 1.

3.1. On the SOPn hierarchy restricted to NTP2 theories. We recall the definition of SOPn

for n ≥ 2 from [She96, Definition 2.5]:

Definition 3.14. (1) Let n ≥ 3. We say that a formula φ (x, y) has SOPn if there are (ai)i∈ω

such that:

(a) There is an infinite chain: |= φ (ai, aj) for all i < j < ω,

(b) There are no cycles of length n: |= ¬∃x0 . . . xn−1

∧

j=i+1( mod n) φ (xi, xj).

(2) φ (x, y) has SOP2 if and only if it has TP1.

(3) For a theory T , SOP ⇒ . . .⇒ SOPn+1 ⇒ SOPn ⇒ . . .⇒ SOP3 ⇒ SOP2 ⇒ TP.

(4) By Fact 3.12 we see that restricting to NTP2 theories, the last 2 items coincide.

The following are the standard examples showing that the SOPn hierarchy is strict for n ≥ 3:

Example 3.15. [She96, Claim 2.8]

(1) For n ≥ 3, let Tn be the model completion of the theory of directed graphs (no self-loops or

multiple edges) with no directed cycles of length ≤ n. Then it has SOPn but not SOPn+1.

(2) For odd n ≥ 3, the model completion of the theory of graphs with no odd cycles of length

≤ n, has SOPn but not SOPn+1.

(3) Consider the model companion of a theory in the language (<n,l)l≤n saying:

(a) x <n,m−1 y → x <n,m y,

(b) x <n,n y,

(c) ¬ (x <n,n−1 x),

(d) if l + k + 1 = m ≤ n then x <n,l y ∧ y <n,k z → x <n,m z.

It eliminates quantifiers.

However, all these examples have TP2.

Proof. (1) Let φ (x, y1y2) = xRy1 ∧ y2Rx. For i ∈ ω we choose sequencese (ai,jbi,j)j∈ω such that

|= R (ai,j , bi,k) and R (bi,j , ai,k) for all j < k ∈ ω, and these are the only edges around — it is

possible as no directed cycles are created. Now for any i, if there is c |= φ (x, ai,0bi,0)∧φ (x, ai,1bi,1),

then we would have a directed cycle c, bi,0, ai,1 of length 3 — a contradiction. On the other hand,
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given and i0 < . . . < in and j0, . . . , jn there has to be an element a |=
∧

α≤n φ (x, aiα,jαbiα,jα) as

there are no directed cycles created. Thus φ (x, y1y2) has TP2.

(2) and (3) Similar. �

This naturally leads to the following question:

Problem 3.16. Is the SOPn hierarchy strict restricting to NTP2 theories?

In [She90, Exercise III.7.12] Shelah suggests an example of a theory satisfying NTP2 +NSOP

which is not simple. However, his example doesn’t seem to work.

4. Forking in NTP2

In [Kim01, Theorem 2.4] Kim gives several equivalents to the simplicity of a theory in terms of

the behavior of forking and dividing.

Fact 4.1. The following are equivalent:

(1) T is simple.

(2) φ(x, a) divides over A if and only if {φ(x, ai)}i<ω is inconsistent for every Morley sequence

(ai)i<ω over A.

(3) Dividing in T satisfies local character.

In this section we show an analogous characterization of NTP2. But first we recall some facts

about forking and dividing in NTP2 theories and introduce some terminology.

Definition 4.2. (1) A type p(x) ∈ S(C) is strictly invariant over A if it is Lascar invariant

over A and for any small B ⊆ C and a |= p|B, we have that tp(B/aA) does not divide over

A (we can replace “does not divide” by “does not fork” C = M). For example, a definable

type or a global type which is both an heir and a coheir over M , are strictly invariant over

M .

(2) We will write a |⌣
ist

c
b when tp(a/bc) can be extended to a global type p(x) strictly invariant

over A.

(3) We say that (ai)<ω is a strict Morley sequence over A if it is indiscernible over A and

ai |⌣
ist

A
a<i for all i < ω.

(4) As usual, we will write a |⌣
u

c
b if tp(a/bc) is finitely satisfiable in c, a |⌣

d

c
b (a |⌣

f

c
b) if

tp(a/bc) does not divide (resp. does not fork) over c.

(5) We write a |⌣
i

c
b if tp(a/bc) can be extended to a global type p(x) Lascar invariant over

c. We point out that if a |⌣
i

c
b and (bi)i<ω is a c-indiscernible sequence with b0 = b, then

it is actually indiscernible over a.

(6) If T is simple, then |⌣
i
= |⌣

ist
. And if T is NIP, then |⌣

i
= |⌣

f
.
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(7) We say that a set A is an extension base if every type over A has a global non-forking

extension. Every model is an extension base (because every type has a global coheir). A

theory in which every set is an extension base is called extensible.

Strictly invariant types exist in any theory (but it is not true that every type over a model has

a global extension which is strictly invariant over the same model). In fact, there are theories in

which over any set there is some type without a global strictly invariant extension (see [CKS12]).

Lemma 4.3. Let p(x) be a global type invariant over A, and let M ⊃ A be |A|+-saturated. Then

p is strictly invariant over M .

Proof. It is enough to show that p is an heir over M . Let φ(x, c) ∈ p. By saturation of M , tp(c/A)

is realized by some c′ ∈M . But as p is invariant over A, φ(x, c′) ∈ p as wanted. �

One of the main uses of strict invariance is the following criterion for making indiscernible

sequences mutually indiscernible without changing their type over the first elements.

Lemma 4.4. Let (āi)i<κand C be given, with āi indiscernible over C and starting with ai. If

ai |⌣
ist

C
a<i, then there are mutually C-indiscernible

(

b̄i
)

i<κ
such that b̄i ≡aiC āi.

Proof. Enough to show for finite κ by compactness. So assume we have chosen ā′0, ..., ā
′
n−1, and lets

choose ā′n. As an |⌣
ist

C
a<n, there are ā′′0 ...ā

′′
n−1 ≡Ca0...an−1 ā

′
0...ā

′
n−1 and such that an |⌣

ist

C
ā′′<n.

As an |⌣
i

Cā′′
<n,6=j

ā′′j for j < n, it follows by the inductive assumption and Definition 4.2(5) that

ā′′j is indiscernible over anā
′′
6=j. On the other hand ā′′0 ...ā

′′
n−1 |⌣

f

C
an, and so by basic properties of

forking there is some ā′n ≡Can
ān indiscernible over ā′′0 , ..., ā

′′
n−1. Conclude by Lemma 1.3. �

Remark 4.5. This argument is essentially from [She09, Section 5].

We recall a result about forking and dividing in NTP2 theories from [CK12].

Fact 4.6. [CK12] Let T be NTP2 and M |= T .

(1) Every p ∈ S(M) has a global strictly invariant extension.

(2) For any a, φ(x, a) divides over M if and only if φ(x, a) forks over M , if and only if for

every (ai)i<ω, a strict Morley sequence in tp(a/M), {φ(x, ai)}i<ω is inconsistent.

(3) In fact, just assuming that A is an extension base, we still have that φ(x, a) does not divide

over A if and only if φ(x, a) does not fork over A.

4.1. Characterization of NTP2. Now we can give a method for computing the burden of a type

in terms of dividing with each member of an |⌣
ist

-independent sequence.

Lemma 4.7. Let p(x) be a partial type over C. The following are equivalent:

(1) There is an inp-pattern of depth κ in p(x).
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(2) There is d |= p(x), D ⊇ C and (aα)α<κ such that aα |⌣
ist

D
a<α and d 6 |⌣

d

D
aα for all α < κ.

Proof. (1)⇒(2): Let (āα, φα(x, yα), kα)α<κ be an inp-pattern in p(x) with (āα) mutually in-

discernible over C. Let qα(ȳα) be a non-algebraic type finitely satisfiable in āα and extending

tp (aα0/C). Let M ⊇ C (āα)α<κ be (|C|+ κ)+-saturated. Then qα is strictly invariant over M by

Lemma 4.3. For α, i < κ let bα,i |= qα ↾M(bα,j)α<κ,j<i
(bβ,i)β<α

. Let eα = bα,α. Now we have:

• eα |⌣
ist

M
e<α: as eα |= qα ↾e<αM .

• there is d |= p(x) ∪ {φα(x, eα)}α<κ: it is easy to see by construction that for any ∆ ∈

L(C) and α0 < ... < αn−1 < κ, if |= ∆(eα0 , ..., eαn−1), then |= ∆(aα0,i0 , ..., aαn−1,in−1)

for some i0, ..., in−1 < ω. By assumption on (āα)α<κ and compactness it follows that

p(x) ∪ {φα(x, eα)}α<κ is consistent.

• φα(x, eα) divides over M : notice that (bα,α+i)i<ω is an M -indiscernible sequence starting

with eα, as bα,α+i |= qα ↾M(bα,α+j)j<i
and qα is finitely satisfiable in M . As tp(b̄α) is

finitely satisfiable in āα, we conclude that {φα(x, bα,α+i)}i<ω is kα-inconsistent.

(2)⇒(1): Let d |= p(x), D ⊇ C and (aα)α<κ such that aα |⌣
ist

D
a<α and d 6 |⌣

f

D
aα for all α < κ

be given. Let φα(x, aα) ∈ tp(d/aαD) be a formula dividing over D, and let āα indiscernible over

D and starting with aα witness it. By Lemma 2.2 we can find a (ā′α)α<κ, mutually indiscernible

over D and such that ā′α ≡aαD āα. It follows that {φα(x, yα), ā′α}α<κ is an inp-pattern of depth

κ in p(x). �

Definition 4.8. We say that dividing satisfies generic local character if for every A ⊆ B and

p(x) ∈ S(B) there is some A′ ⊆ B with |A′| ≤ |T |+ and such that: for any φ(x, b) ∈ p, if b |⌣
ist

A
A′,

then φ(x, b) does not divide over AA′.

Of course, the local character of dividing implies the generic local character. We are ready to

prove the main theorem of this section.

Theorem 4.9. The following are equivalent:

(1) T is NTP2.

(2) T has absolutely bounded |⌣
ist

-weight: for every M , b and (ai)i<|T |+ with ai |⌣
ist

M
a<i,

b |⌣
d

M
ai for some i < |T |+.

(3) T has bounded |⌣
ist

-weight: for every M there is some κM such that given b and (ai)i<κM

with ai |⌣
ist

M
a<i, b |⌣

d

M
ai for some i < κM .

(4) T satisfies “Kim’s lemma”: for any M |= T , φ(x, a) divides over M if and only if

{φ(x, ai)}i<ω is inconsistent for every strict Morley sequence over M .

(5) Dividing in T satisfies generic local character.

Proof. (1) implies (2): Assume that there are M , b and (ai)i<|T |+ with ai |⌣
ist

M
a<i and b 6 |⌣

d

M
ai

for all i. But then by Lemma 4.7 bdn(b/M) ≥ |T |+, thus T has TP2 by Lemma 3.2.
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(2) implies (3) is clear.

(1) implies (4): by Fact 4.6(1)+(2).

(4) implies (3): assume that we have M , b and (ai)i<κ such that, letting κ = i(2|M|)+ ,

ai |⌣
ist

M
a<i and b 6 |⌣

d

M
ai for all i < κ. We may assume that dividing is always witnessed by

the same formula φ(x, y). Extracting an M -indiscernible sequence (a′i)i<ω from (ai)i<κ by Erdös-

Rado, we get a contradiction to (4) as {φ(x, a′i)}i<ω is still consistent, (a′i) is a strict Morley

sequence over M and φ(x, a′0) divides over M .

(3) implies (1): Assume that ϕ (x, y) has TP2, let A = (āα)α<ω with āα = (aαi)i<ω be a strongly

indiscernible array witnessing it (so rows are mutually indiscernible and the sequence of rows is

indiscernible). Let M ⊃ A be some |A|+-saturated model, and assume that κM is as required by

(3). Let λ = i(2|M|)+ and µ =
(

22
λ
)+

. Adding new elements and rows by compactness, extend

our strongly indiscernible array to one of the form (āα)α∈ω+µ∗ with āα = (aαi)i∈λ. By all the

indiscernibility around it follows that āα |⌣
u

A
ā<α for all α < µ. As there can be at most 22

λ

global types from Sλ (M) that are finitely satisfiable in A, without loss of generality there is some

p (x̄) ∈ Sλ (M) finitely satisfiable in A and such that āα |= p (x̄) |Aā<α
.

By Lemma 4.3, p (x̄) is strictly invariant over M . We choose
(

b̄α
)

α<κM
such that b̄α |= p|Mb̄<α

.

By the choice of λ and Erdös-Rado, for each α < κM there is iα < λ and d̄α such that d̄α is an

M -indiscernible sequence starting with bαiα and such that type of every finite subsequence of it is

realized by some subsequence of b̄α. Now we have:

• dα0 |⌣
ist

M
d<α0 (as dα0 = bαiα and b̄α |⌣

ist

M
b̄<α),

• ϕ (x, dα0) divides over M (as d̄α is M -indiscernible and {ϕ (x, dαi)}i∈ω is inconsistent by

construction),

• {ϕ (x, dα0)}α<κM
is consistent (follows by construction).

Taking some c |= {ϕ (x, dα0)}α<κM
we get a contradiction to (3).

(5) implies (2): Let p(x) = tp(b/B) with B = M ∪
⋃

i<|T |+ ai. Letting A = M , it follows

by generic local character that there is some A′ ⊆ B with |A′| ≤ |T |, such that b |⌣
d

MA′ a for

any a ∈ B with a |⌣M
A′. Let i ∈ |T | be such that i > {j : aj ∈ A′}. Then ai |⌣

ist

M
A, but also

b 6 |⌣
d

MA′ ai (by left transitivity as A′ |⌣
d

M
ai and b 6 |⌣

d

M
ai) — a contradiction.

(1) implies (5): Let p (x) ∈ S (B) and A ⊆ B be given. By induction on i < |T |+ we try to

choose ai ∈ B and ϕi (x, ai) ∈ p such that ai |⌣
ist

A
a<i and ϕi (x, ai) divides over a<iA. But then

by Lemma 4.7 bdn(b/A) ≥ |T |+, thus T has TP2 by Lemma 3.2. So we had to get stuck, and

letting A′ =
⋃

ai witnesses the generic local character. �

Remark 4.10. (1) The proof of the equivalences shows that in (2) and (3) we may replace

a |⌣
ist

C
b by “tp(a/bC) extends to a global type which is both an heir and a coheir over C”.
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(2) From the proof one immediately gets a similar characterization of strongness. Namely, the

following are equivalent:

(a) T is strong.

(b) For every M , finite (or even singleton) b and (ai)i<ω with ai |⌣
ist

M
a<i, b |⌣

d

M
ai for

some i < ω.

(c) For every A ⊆ B and p(x) ∈ S(B) there is some finite A′ ⊆ B such that: for any

φ(x, b) ∈ p, if b |⌣
ist

A
A′, then φ(x, b) does not divide over AA′.

If we are working over a somewhat saturated model and consider only small sets, then we

actually have the generic local character with respect to |⌣
u

in the place of |⌣
ist

.

Lemma 4.11. Let (āi)i<κand C be given, āi starting with ai. If āi is indiscernible over ā<iC

and ai |⌣
i

C
a<i, then (āi)i<κ is almost mutually indiscernible over C.

Proposition 4.12. Let T be NTP2. Let M be κ-saturated, p(x) ∈ S(M) and A ⊂M of size < κ.

Then there is A ⊆ A′ ⊂M of size < κ such that for any φ(x, a) ∈ p, if a |⌣
i

A
A′ then φ(x, a) does

not fork over A′.

Proof. Assume not, then we can choose inductively on α < |T |+:

(1) āα ⊆M such that aα,0 |⌣
i

A
Aα and āα is Aα-indiscernible, Aα = A ∪

⋃

β<α āβ.

(2) φα(x, yα) such that φα(x, aα,0) ∈ p and {φα(x, aα,i)}i<ω is inconsistent.

(1) is possible by saturation of M . But then by Lemma 4.11, (āα)α<|T |+ are almost mutually

indiscernible. �

4.2. Dependent dividing.

Definition 4.13. We say that T has dependent dividing if givenM � N and p(x) ∈ S(N) dividing

over M , then there is a dependent formula φ(x, y) and c ∈ N such that φ(x, c) ∈ p and φ(x, c)

divides over M .

Proposition 4.14. (1) If T has dependent dividing, then it is NTP2.

(2) If T has simple dividing, then it is simple.

Proof. (1) In fact we will only use that dividing is always witnessed by an instance of an NTP2

formula. Assume that T has TP2 and let φ(x, y) witness this. Let TSk be a Skolemization

of T , φ(x, y) still has TP2 in TSk. Then as in the proof of Theorem 4.9, for any κ we can find

(bi)i<κ, a and M such that a |= {φ(x, bi)}i<κ, φ(x, bi) divides over M and tp (bi/b<iM)

has a global heir-coheir over M , all in the sense of TSk. Taking Mi = Sk(Mbi) |= T , and

now working in T , we still have that a 6 |⌣
d

M
Mi and Mi |⌣

ist

M
M<i (as tp(Mi/M<iM) still

has a global heir-coheir over M). But then for each i we find some di ∈ Mi and NTP2
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formulas φi(x, yi) ∈ L such that a |= {φi(x, di)} and φi(x, di) divides over M , witnessed

by d̄i starting with di. We may assume that φi = φ′, and this contradicts φ′ being NTP2.

(2) Similar argument shows that if T has simple dividing, then it is simple.

�

Of course, if T is NIP, then it has dependent dividing, and for simple theories it is equivalent to

the stable forking conjecture. It is natural to ask if every NTP2 theory T has dependent dividing.

4.3. Forking and dividing inside an NTP2 type.

Definition 4.15. A partial type p(x) over C is said to be NTP2 if the following does not exist:

(āα)α<ω, φ(x, y) and k < ω such that {φ(x, aαi)}i<ω is k-inconsistent for every α < ω and
{

φ(x, aαf(α))
}

α<ω
∪ p(x) is consistent for every f : ω → ω. Of course, T is NTP2 if and only if

every partial type is NTP2. Also notice that if p(x) is NTP2, then every extension of it is NTP2

and that q((xi)i<κ) =
⋃

i<κ p(xi) is NTP2 (follows from Theorem 2.5).

For the later use we will need a generalization of the results from [CK12] working inside a

partial NTP2 type, and with no assumption on the theory.

Lemma 4.16. Let p(x) be an NTP2 type over M . Assume that p(x) ∪ {φ(x, a)} divides over M ,

then there is a global coheir q(x) extending tp(a/M) such that p(x)∪ {φ(x, ai)}i<ω is inconsistent

for any sequence (ai)i<ω with ai |= q|a<iM .

Proof. The proof of [CK12, Lemma 3.12] goes through. �

Lemma 4.17. Assume that tp(ai/C) = p(x) for all i and that tp(ai/a<iC) has a strictly invariant

extension to p(M) ∪ C. Then there are mutually C-indiscernible
(

b̄i
)

i<κ
such that b̄i ≡aiC āi.

Proof. The assumption is sufficient for the proof of Lemma 4.4 to work. �

Lemma 4.18. Let p(x) over M be NTP2, a ∈ p(M), c ∈ M and assume that p(x) ∪ {φ(x, ac)}

divides over M . Assume that tp(a/M) has a strictly invariant extension p′(y) ∈ S(p(M)). Then

for any (ai)i<ω such that ai |= p′|a<iM , p(x) ∪ {φ(x, aic)}i<ω is inconsistent.

Proof. Let (ā0c) with a0,0 = a0 be an M -indiscernible sequence witnessing that p(x)∪ {φ(x, a0c)}

divides over M . Let āi be its image under an M -automorphism sending a0 to ai. By Lemma

4.4(2) we can find
(

b̄i
)

i<ω
mutually indiscernible over M and with b̄i ≡aiM āi. By the choice of

b̄i’s and compactness, there is some ψ(x) ∈ p(x) such that {ψ(x) ∧ φ(x, bi,jc)}j<ω is k-inconsistent

for all i < ω. It follows that p(x) ∪ {φ(x, aic)}i<ω is inconsistent as p is NTP2. �

We need a version of the Broom lemma localized to an NTP2 type.
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Lemma 4.19. Let p(x) be an NTP2 type over M and p′(x) be a partial global type invariant over

M . Suppose that p(x) ∪ p′(x) ⊢
∨

i<n φi(x, c) and each φi(x, c) divides over M . Then p(x) ∪ p′(x)

is inconsistent.

Proof. Follows from the proof of [CK12, Lemma 3.1]. �

Corollary 4.20. Let p(x) be an NTP2 type over M and a ∈ p(M). Then tp(a/M) has a strictly

invariant extension p′(x) ∈ S(p(M) ∪M).

Proof. Following the proof of [CK12, Proposition 3.7] but using Lemma 4.19 in place of the Broom

lemma. �

And finally,

Proposition 4.21. Let p(x) be an NTP2 type over M , a ∈ p(M)∪M and assume that {φ(x, a)}∪

p(x) does not divide over M . Then there is p′(x) ∈ S(p(M) ∪M) which does not divide over M

and {φ(x, a)} ∪ p(x) ⊂ p′(x).

Proof. By compactness, it is enough to show that if p(x)∪{φ(x, ac)} ⊢
∨

i<n φi(x, aici) with a, ai ∈

p(M) and c, ci ∈M , then p(x)∪{φi(x, aici)} does not divide overM for some i < n. As in the proof

of [CK12, Corollary 3.16], let
(

ajaj0...a
j
n−1

)

j<ω
be a strict Morley sequence in tp(aa0...an−1/M),

which exists by Lemma 4.20. Notice that
(

ajcaj0c0...a
j
n−1cn−1

)

j<ω
is still indiscernible over M .

Then p(x) ∪
{

φ(x, ajc)
}

j<ω
is consistent, which implies that p(x)∪

{

φi(x, a
j
i ci)

}

j<ω
is consistent

for some i < n. But then by Lemma 4.18, p(x) ∪ {φi(x, aici)} does not divide over M — as

wanted. �

5. NIP types

Let T be an arbitrary theory.

Definition 5.1. (1) A partial type p(x) over C is called NIP if there is no φ(x, y) ∈ L, (ai)i∈ω

with ai |= p(x) and (bs)s⊆ω such that |= φ(ai, bs) ⇔ i ∈ s.

(2) The roles of a’s and b’s in the definition are interchangeable. It is easy to see that any

extension of an NIP type is again NIP, and that the type of several realizations of an NIP

type is again NIP.

(3) p(x) is NIP ⇔ dprk(p) < |T |+ ⇔ dprk(p) <∞ (see Definition 3.6).

Lemma 5.2. Let p(x) be an NIP type.

(1) Let ā = (aα)α<κ be an indiscernible sequence over A with aα from p(M), and c be arbitrary.

If κ = (|aα|+ |c|)+, then some non-empty end segment of ā is indiscernible over Ac.
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(2) Let (āα)α<κ be mutually indiscernible (over ∅), with āα = (aαi)i<λ from p(M). Assume

that ā = (a0ia1i...)i<λ is indiscernible over A. Then (āα)α<κ is mutually indiscernible

over A.

Standard proofs of the corresponding results for NIP theories go through, see e.g. [Adl08].

5.1. Dp-rank of a type is always witnessed by an array of its realizations. In [KSed]

Kaplan and Simon demonstrate that inside an NTP2 theory, dp-rank of a type can always be

witnessed by mutually indiscernible sequences of realizations of the type. In this section we show

that the assumption that the theory is NTP2 can be omitted, thus proving the following general

theorem with no assumption on the theory.

Theorem 5.3. Let p(x) be an NIP partial type over C, and assume that dprk(p) ≥ κ. Then there

is C′ ⊇ C, b |= p(x) and (āα)α<κ with āα = (aαi)i<ω such that:

• aαi |= p(x) for all α, i

• (āα)α<κ are mutually indiscernible over C′

• None of āα is indiscernible over bC′.

• |C′| ≤ |C|+ κ.

Corollary 5.4. It follows that dp-rank of a 1-type is always witnessed by mutually indiscernible

sequences of singletons.

We will use the following result from [CS13, Proposition 1.1]:

Fact 5.5. Let p(x) be a (partial) NIP type, A ⊆ p(M) and φ(x, c) given. Then there is θ(x, d)

with d ∈ p(M) such that:

(1) θ(A, d) = φ(A, c),

(2) θ(x, d) ∪ p(x) → φ(x, c).

We begin by showing that the burden of a dependent type can always be witnessed by mutually

indiscernible sequences from the set of its realizations.

Lemma 5.6. Let p(x) be a dependent partial type over C of burden ≥ κ. Then we can find
(

d̄α
)

α<κ
witnessing it, mutually indiscernible over C and with d̄i ⊆ p(M) ∪ C.

Proof. Let λ be large enough compared to |C|. Assume that bdn(p) ≥ κ, then by compactness

we can find
(

b̄α, φα(x, yα), kα
)

i<n
such that b̄α = (bαi)i<λ, {φα(x, bαi)}α<κ is kα-inconsistent and

p(x) ∪
{

φα(x, bαf(α))
}

i<n
is consistent for every f : κ→ λ, let af realize it. Set A = {af}f∈λκ ⊆

p(M).
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By Fact 5.5, let θαi(x, dαi) be an honest definition of φα(x, bαi) over A (with respect to p(x)),

with dαi ∈ p(M). As λ is very large, we may assume that θαi = θα.

Now, as θα(x, dαi) ∪ p(x) → φα(x, bαi), it follows that there is some ψα(x, c) ∈ p such that

letting χα(x, y1y2) = θα(x, y1) ∧ ψα(x, y2), {χ(x, dαicα)}i<ω is kα-inconsistent.

On the other hand,
{

χα(x, dαf(α)cα)
}

α<κ
∪ p(x) is consistent, as the corresponding af realizes

it. Thus this array still witnesses that burden of p is at least κ. �

We will also need the following lemma.

Lemma 5.7. Let p(x) be an NIP type over M |= T

(1) Assume that a ∈ p(M) ∪ M and φ(x, a) does not divide over M , then there is a type

q(x) ∈ S(p(M) ∪M) invariant under M -automorphisms and with φ(x, a) ∈ q.

(2) Let p′(x) ⊃ p(x) be an M invariant type such that p(ω) is an heir-coheir over M . If (ai)i<ω

is a Morley sequence in p′ and indiscernible over bM with b ∈ p(M), then tp(b/MI) has

an M -invariant extension in S(p(M) ∪M).

Proof. (1) As NIP type is in particular an NTP2 type, by Lemma 4.21 we find a type q(x) ∈

S(p(M)) which doesn’t divide over M and such that φ(x, a) ∈ q. It is enough to show that q(x) is

Lascar-invariant over M . Assume that we have an M -indiscernible sequence (ai)i<ωin p(M) such

that φ(x, a0) ∧ ¬φ(x, a1) ∈ q. But then {φ(x, a2i) ∧ φ(x, a2i+1)}i<ω is inconsistent, so q divides

over M — a contradiction. Easy induction shows the same for a0 and a1 at Lascar distance n.

(2) By Lemma 4.18 and (1). �

Now for the proof of Theorem 5.3. The point is that first the array witnessing dp-rank of our

type p(x) can be dragged inside the set of realizations of p by Lemma 5.6. Then, combined with

the use of Proposition 5.7 instead of the unrelativized version, the proof of Kaplan and Simon

[KSed, Section 3.2] goes through working inside p(M).

Problem 5.8. Is the analogue of Lemma 5.6 true for the burden of an arbitrary type in an NTP2

theory?

We include some partial observations to justify it.

Proposition 5.9. The answer to the Problem 5.8 is positive in the following cases:

(1) T satisfies dependent forking (so in particular if T is NIP).

(2) T is simple.

Proof. (1): Recall that if bdn(p) ≥ κ, then we can find (bi)i<κ, a |= p and M ⊇ C such that

a 6 |⌣
d

M
bi and bi |⌣

ist

M
b<i. Notice that p(x) still has the same burden in the sense of a Skolemization

T Sk. Choose inductively Mi ⊇ M ∪ bi such that Mi |⌣
ist

M
b<i, let Mi = Sk(M ∪ bi). Let φ(x, bi)
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witness this dividing with φ(x, y) an NIP formula, we can make b̄i mutually indiscernible. Now

the proof of Lemma 5.6 goes through.

(2): Let p(x) ∈ S(A), a |= p(x) and let (bi)i<κ independent over A, with a 6 |⌣A
bi. Without

loss of generality A = ∅. Consider tp(a/b0) and take I = (ai)i<|T |+ such that a⌢I is a Morley

sequence in it. By extension and automorphism we may assume b>0 |⌣ab0
I, together with a |⌣b0

I

implies b>0 |⌣b0
I, thus b>0 |⌣ I (as b>0 |⌣ b0).

Assume that I is a Morley sequence over ∅, then by simplicity ai |⌣ b0 for some i, contradicting

ai ≡b0 a and a 6 |⌣ b0. Thus by indiscernibility a 6 |⌣ a<n for some n, while {a<n} ∪ b>0 is an

independent set.

Repeating this argument inductively and using the fact that the burden of a type in a simple

theory is the supremum of the weights of its completions (Fact 3.10) allows to conclude. �

5.2. NIP types inside an NTP2 theory. We give a characterization of NIP types in NTP2

theories in terms of the number of non-forking extensions of its completions.

Theorem 5.10. Let T be NTP2, and let p(x) be a partial type over C. The following are equiva-

lent:

(1) p is NIP.

(2) Every p′ ⊇ p has boundedly many global non-forking extensions.

Proof. (1)⇒(2): A usual argument shows that a non-forking extension of an NIP type is in fact

Lascar-invariant (see Lemma 5.7), thus there are only boundedly many such.

(2)⇒(1): Assume that p(x) is not NIP, that is there are I = (bi)i∈ω such that such that for any

s ⊆ ω, ps(x) = p(x)∪{φ(x, bi)}i∈s∪{¬φ(x, bi)}i/∈s is consistent. Let q(y) be a global non-algebraic

type finitely satisfiable in I. Let M ⊇ IC be some |IC|+-saturated model. It follows that q(ω) is

a global heir-coheir over M by Lemma 4.3. Take an arbitrary cardinal κ, and let J = (ci)i∈κ be a

Morley sequence in q over M . We claim that for any s ⊆ κ, ps(x) does not divide over M . First

notice that ps(x) is consistent for any s, as tp(J/M) is finitely satisfiable in I. But as for any

k < ω, (ckicki+1...ck(i+1)−1)i<ω is a Morley sequence in q(k), together with Fact 4.6 this implies

that ps(x)|c0...ck−1
does not divide over M for any k < ω, thus by indiscernibility of J , ps(x) does

not divide over M , thus has a global non-forking extension by Fact 4.6.

As there are only boundedly many types over M , there is some p′ ∈ S(M) extending p, with

unboundedly many global non-forking extensions. �

Remark 5.11. (2)⇒(1) is just a localized variant of an argument from [CKS12].

6. Simple types

6.1. Simple and co-simple types. Simple types, to the best of our knowledge, were first defined

in [HKP00, §4] in the form of (2).
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Definition 6.1. We say that a partial type p(x) ∈ S(A) is simple if it satisfies any of the following

equivalent conditions:

(1) There is no φ(x, y), (aη)η∈ω<ω and k < ω such that: {φ(x, aηi)}i<ω is k-inconsistent for

every η ∈ ω<ω and {φ(x, aη↾i)}i<ω ∪ p(x) is consistent for every η ∈ ωω.

(2) Local character: If B ⊇ A and p(x) ⊆ q(x) ∈ S(B), then q(x) does not divide over AB′

for some B′ ⊆ B, |B′| ≤ |T |.

(3) Kim’s lemma: If {φ(x, b)} ∪ p(x) divides over B ⊇ A and (bi)i<ω is a Morley sequence in

tp(b/B), then p(x) ∪ {φ(x, bi)}i<ω is inconsistent.

(4) Bounded weight: Let B ⊇ A and κ ≥ i(2|B|)
+ . If a |= p(x) and (bi)i<κ is such that

bi |⌣
f

B
b<i, then a |⌣

d

B
bi for some i < κ.

(5) For any B ⊇ A, if b |⌣
f

B
a and a |= p(x), then a |⌣

d

B
b.

Proof.

(1)⇒(2): Assume (2) fails, then we choose φα(x, bα) ∈ q(x) kα-dividing over A ∪ Bα, with

Bα = {bβ}β<α ⊆ B, |Bα| ≤ |α| by induction on α < |T |+. Then w.l.o.g. φα = φ

and kα = k. Now construct a tree in the usual manner, such that {φ(x, aηi)}i<ω is

inconsistent for any η ∈ ω<ω and {φ(x, aη|i)}i<ω ∪ p(x) is consistent for any η ∈ ωω.

(2)⇒(3): Let I = (|T |+)∗, and (bi)i∈I be Morley over B in tp(b/B). Assume that a |= p(x) ∪

{φ(x, bi)}i∈I . By (2), tp(a/(bi)i∈IB) does not divide over B(bi)i∈I0 for some I0 ⊆ I,

|I0| ≤ |T |. Let i0 ∈ I, i0 < I0. Then (bi)i∈I0 |⌣
f

B
bi0 , and thus φ(x, bi0) divides over

BI0 - a contradiction.

(3)⇒(4): Assume not, then by Erdös-Rado and finite character find a Morley sequence over B

and a formula φ(x, y) such that |= φ(a, bi) and φ(x, bi) divides over B, contradiction

to (3).

(4)⇒(5): For κ as in (4), let I = (bi)i<κ be a Morley sequence over B, indiscernible over Ba and

with b0 = b. By (4), a |⌣
d

B
bi for some i < κ, and so a |⌣

d

B
b by indiscernibility.

(5)⇒(1): Let (bη)η∈ω<ω witness the tree property of φ(x, y), such that {φ(x, bη|i)}i<ω ∪ p(x) is

consistent for every η ∈ ωω. Then by Ramsey and compactness we can find (bi)i≤ω

indiscernible over a, |= φ(a, bi) and φ(x, bi) divides over b<iA. Taking B = A∪{bi}i<ω

we see that a 6 |⌣
d

B
bω, while bω |⌣

f

B
a (as it is finitely satisfiable in B by indiscernibility)

- a contradiction to (5).

�

Remark 6.2. Let p(x) ∈ S(A) be simple.

(1) Any q(x) ⊇ p(x) is simple.

(2) Let p(x) ∈ S(A) be simple and C ⊆ p(M). Then tp(C/A) is simple.
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Proof. (1): Clear, for example by (1) from the definition.

(2): Let C = (ci)i≤n, and we show that for any B ⊇ A, if b |⌣
f

B
C, then C |⌣

d

B
b by induction on

the size of C. Notice that b |⌣
f

Bc<n
cn and cn |= p, thus cn |⌣

d

Bc<n
b. By the inductive assumption

c<n |⌣
d

B
b, thus c≤n |⌣

d

B
b. �

We give a characterization in terms of local ranks.

Proposition 6.3. The following are equivalent:

(1) p(x) is simple in the sense of Definition 6.1.

(2) D(p,∆, k) < ω for any finite ∆ and k < ω.

Proof. Standard proof goes through. �

Lemma 6.4. Let p(x) ∈ S(A) be simple, a |= p(x) and B ⊇ A arbitrary. Then a |⌣
f

B0
B for some

|B0| ≤ |T |+.

Proof. Standard proof using ranks goes through. �

It follows that in the Definition 6.1 we can replace everywhere “dividing” by “forking”.

Lemma 6.5. Let p(x) ∈ S(A) be simple. If A is an extension base, then {φ(x, c)} ∪ p(x) forks

over A if and only if it divides over A.

Proof. Assume that {φ(x, c)} ∪ p(x) does not divide over A, but {φ(x, c)} ∪ p(x) ⊢
∨

i<n φi(x, ci)

and each of φi(x, ci) divides over A. As A is an extension base, let (cic0,i...cn−1,i) be a Morley

sequence in tp(cc0...cn−1/A). As p(x)∪{φ(x, c)} does not divide over A, let a |= p(x)∪{φ(x, ci)},

but then p(x) ∪ {φi(x, ci,j)}j<ω is consistent for some i < n, contradicting Kim’s lemma. �

Problem 6.6. Let q(x) be a non-forking extension of a complete type p(x), and assume that q(x)

is simple. Does it imply that p(x) is simple?

Unlike stability or NIP, it is possible that φ(x, y) does not have the tree property, while

φ∗(x′, y′) = φ(y′, x′) does. This forces us to define a dual concept.

Definition 6.7. A partial type p(x) overA is co-simple if it satisfies any of the following equivalent

properties:

(1) No formula φ(x, y) ∈ L(A) has the tree property witnessed by some (aη)η∈ω<ω with

aη ⊆ p(M).

(2) Every type q(x) ∈ S(BA) with B ⊆ p(M) does not divide over AB′ for some B′ ⊆ B,

|B′| ≤ (|A|+ |T |)+.
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(3) Let (ai)i<ω ⊆ p(M) be a Morley sequence over BA, B ⊆ p(M) and φ(x, y) ∈ L(A). If

φ(x, a0) divides over BA then {φ(x, ai)}i<ω is inconsistent.

(4) Let B ⊆ p(M) and κ ≥ i(2|B|+|A|)+ . If (bi)i<κ ⊆ p(M) is such that bi |⌣
f

AB
b<i and a

arbitrary, then a |⌣
d

AB
bi for some i < κ.

(5) For B ⊆ p(M), if a |= p and a |⌣
f

AB
b, then b |⌣

d

AB
a.

Proof. Similar to the proof in Definition 6.1. �

Remark 6.8. It follows that if p(x) is a co-simple type over A and B ⊆ p(M), then any q(x) ∈

S(AB) extending p is co-simple (while adding the parameters from outside of the set of solutions

of p may ruin co-simplicity).

It is easy to see that T is simple ⇔ every type is simple ⇔ every type is co-simple. What is

the relation between simple and co-simple in general?

Example 6.9. There is a co-simple type over a model which is not simple.

Proof. Let T be the theory of an infinite triangle-free random graph, this theory eliminates quan-

tifiers. Let M |= T , m ∈M and consider p(x) = {xRm}∪{¬xRa}a∈M\{m} - a non-algebraic type

over M . As there can be no triangles, if a, b |= p(x) then ¬aRb. It follows that for any A ⊆ p(M)

and any B, B 6 |⌣
d

M
A ⇔ B ∩ A 6= ∅. So p(x) is co-simple, for example by checking the bounded

weight (Definition 6.7(4)).

For each α < ω, take
(

b′α,ib
′′
α,i

)

i<ω
such that b′α,iRb

′′
α,j for all i 6= j, and no other edges

between them or to elements of M . Then
{

xRb′α,i ∧ xRb
′′
α,i

}

i<ω
is 2-inconsistent for every α,

while p(x) ∪
{

xRb′α,η(α) ∧ xRb
′′
α,η(α)

}

α<ω
is consistent for every η : ω → ω. Thus p(x) is not

simple by Definition 6.1(1). �

However, this T has TP2 by Example 3.13.

Problem 6.10. Is there a simple, non co-simple type in an arbitrary theory?

6.2. Simple types are co-simple in NTP2 theories. In this section we assume that T is NTP2

(although some lemmas remain true without this restriction). In particular, we will write |⌣ to

denote non-forking/non-dividing when working over an extension base as they are the same by

Fact 4.6(3).

Lemma 6.11. Weak chain condition: Let A be an extension base, p(x) ∈ S(A) simple. Assume

that a |= p(x), I = (bi)i<ω is a Morley sequence over A and a |⌣A
b0. Then there is an aA-

indiscernible J ≡Ab0 I satisfying a |⌣A
J .

Proof. Let a |= φ(x, b0), then {φ(x, b0)} ∪ p(x) does not divide over A.
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Claim. {φ(x, b0) ∧ φ(x, b1)} ∪ p(x) does not divide over A.

Proof. As p(x) satisfies Definition 6.1(3), (b2ib2i+1)i<ω is a Morley sequence overA and {φ(x, bi)}i<ω∪

p(x) is consistent. �

By iterating the claim and compactness, we conclude that
⋃

i<ω p(x, bi) does not divide over

A, where p(x, b0) = tp(a/b0). As A is an extension base and forking equals dividing, there is

a′ |=
⋃

i<ω p(x, bi) satisfying a′ |⌣A
I. By Ramsey, compactness and the fact that a′bi ≡A ab0 we

find a sequence as wanted. �

Remark 6.12. If fact, in [BC] we demonstrate that in an NTP2 theory this lemma holds over

extension bases with I just an indiscernible sequence, not necessarily Morley.

Lemma 6.13. Let A be an extension base, p ∈ S(A) simple. For i < ω, Let āi be a Morley

sequence in p(x) over A starting with ai, and assume that (ai)i<ω is a Morley sequence in p(x).

Then we can find b̄i ≡Aai
āi such that (b̄i)i<ω are mutually indiscernible over A.

Proof. W.l.o.g. A = ∅.

First observe that by simplicity of p, {ai}i<ω is an independent set.

For i < ω, we choose inductively b̄i such that:

(1) b̄i ≡ai
āi

(2) b̄i is indiscernible over a>ib̄<i

(3) a>i+1b̄≤i |⌣ ai+1

(4) a≥i+1 |⌣ b̄≤i

Base step: As a>0 |⌣ a0 and tp(a>0) is simple by Remark 6.2 and Lemma 6.11, we find an

a>0-indiscernible b̄0 ≡a0 ā0 with a>0 |⌣ b̄0.

Induction step: Assume that we have constructed b̄0, ..., b̄i−1. By (3) for i − 1 it follows that

a>ib̄<i |⌣ ai. Again by Remark 6.2 and Lemma 6.11 we find an a>ib̄<i-indiscernible sequence

b̄i ≡ai
āi such that a>ib̄<i |⌣ b̄i.

We check that it satisfies (3): As all tuples are inside p(M), we can use symmetry, transitivity

and |⌣
d
= |⌣

f
freely. And so, a>i+1ai+1b̄<i |⌣ b̄i ⇒ a>i+1b̄<i |⌣ai+1

b̄i + a>i+1b̄<i |⌣ ai+1(as

a>i+1 |⌣ ai+1 and b̄<i |⌣a≥i+1 by (4) for i − 1) ⇒ a>i+1b̄<i |⌣ b̄iai+1 ⇒ a>i+1b̄<i |⌣ b̄i
ai+1 +

b̄i |⌣ ai+1 ⇒ a>i+1b̄≤i |⌣ ai+1.

We check that it satisfies (4): As a>ib̄<i |⌣ b̄i ⇒ a>i |⌣ b̄<i
b̄i + a>i |⌣ b̄<i by (4) for i − 1 ⇒

a>i |⌣ b̄≤i.

Having chosen (b̄i)i<ω we see that they are almost mutually indiscernible by (1) and (2). Con-

clude by Lemma 1.3. �



THEORIES WITHOUT THE TREE PROPERTY OF THE SECOND KIND 25

Lemma 6.14. Let T be NTP2, A an extension base and p(x) ∈ S(A) simple. Assume that φ(x, a)

divides over A, with a |= p(x). Then there is a Morley sequence over A witnessing it.

Proof. As A is an extension base, let M ⊇ A be such that M |⌣
f

A
a. Then φ(x, a) divides over M .

By Fact 4.6(1), there is a Morley sequence (ai)i<ω over M witnessing it (in particular (ai)i<ω ⊆

p(M)). We show that it is actually a Morley sequence overA. Indiscernibility is clear, and we check

that ai |⌣A
a<i by induction. As ai |⌣M

a<i, a<i |⌣M
ai by simplicity of tp(a<i/M). Noticing

that M |⌣A
ai, we conclude a<i |⌣A

ai, so again by simplicity ai |⌣A
a<i. �

Proposition 6.15. Let T be NTP2, A an extension base and p(x) ∈ S(A) simple. Assume that

a |= p and a |⌣
f

A
b. Then b |⌣

d

A
a.

Proof. Assume that there is φ(x, a) ∈ L(Aa) such that |= φ(b, a) and φ(x, a) divides over A. Let

(ai)i<ω be a Morley sequence over A starting with a. Assume that {φ(x, ai)}i<ω is consistent. Let

ā0 be a Morley sequence witnessing that φ(x, a0) k-divides over A (exists by Lemma 6.14), and let

āi be its image under an A-automorphism sending a0 to ai. By Lemma 6.13, we find ā′i ≡aiA āi,

such that (ā′i)i<ω are mutually indiscernible. But then we have that {φ(x, ai,η(i))}i<ω is consistent

for any η ∈ ωω, while {φ(x, ai,j)}j<ω is k-inconsistent for any i < ω — contradiction to NTP2.

Now let (ai)i<ω be a Morley sequence over A starting with a and indiscernible over Ab. Then

clearly b |= {φ(x, ai)}i<ω for any φ(x, a) ∈ tp(b/aA), so by the previous paragraph b |⌣
d

A
a. �

Lemma 6.16. Let p(x) be a partial type over A. Assume that p(x) is not co-simple over A. Then

there is some M ⊇ A, a |= p(x) and b such that a |⌣
u

M
b but b 6 |⌣

d

M
a.

Proof. So assume that p(x) is not co-simple over A, then there is an L(A)-formula φ(x, y) and

(aη)η∈ω<ω ⊆ p(M) witnessing the tree property. Let T Sk be a Skolemization of T , then of course

φ(x, y) and aη still witness the tree property. As in the proof of (5)⇒(1) in Definition 6.7, working

in the sense of T Sk, we can find an Ab-indiscernible sequence (ai)i<ω+1 in p(x) such that φ(x, ai)

divides over Aa<i and b |= {φ(x, ai)}i<ω+1. Let I = (ai)i<ω and Sk(AI) = M |= T . It follows

that aω |⌣
u

M
b (by indiscernibility) and that b 6 |⌣

d

M
aω (as M ⊆ dcl(Aa<ω)) — also in the sense of

T , as dividing is witnessed by an L-formula φ (x, y). �

Theorem 6.17. Let T be NTP2, A an arbitrary set and assume that p(x) over A is simple. Then

p(x) is co-simple over A.

Proof. If p(x) over A is not co-simple over A, then by Lemma 6.16 we find some M ⊇ A, a |= p

and b such that a |⌣
u

M
b, but b 6 |⌣

d

M
a. As M is an extension base, it follows by Proposition 6.15

that tp(a/M) is not simple, thus p(x) is not simple by Remark 6.2(1) — a contradiction. �

Corollary 6.18. Let T be NTP2 and p(x) ∈ S(A) simple.
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(1) If a |= p(x) then a |⌣A
b⇔ b |⌣A

a

(2) Right transitivity: If a |= p(x), B ⊇ A, a |⌣A
B and a |⌣B

C then a |⌣A
C.

6.3. Independence and co-independence theorems.

In [Kim01] Kim demonstrates that if T has TP1, then the independence theorem fails for types

over models, assuming the existence of a large cardinal. We give a proof of a localized and a dual

versions, showing in particular that the large cardinal assumption is not needed.

Definition 6.19. Let p(x) be (partial) type over A.

(1) We say that p(x) satisfies the independence theorem if for any b1 |⌣
f

A
b2 and c1 ≡

Lstp
A c2 ⊆

p(M) such that c1 |⌣
f

A
b1 and c2 |⌣

f

A
b2, there is some c |⌣

f

A
b1b2 such that c ≡b1A c1 and

c ≡b2A c2.

(2) We say that p(x) satisfies the co-independence theorem if for any b1 |⌣
f

A
b2 and c1 ≡Lstp

A

c2 |= p such that b1 |⌣
f

A
c1 and b2 |⌣

f

A
c2 , there is some c |= p such that b1b2 |⌣

f

A
c and

c ≡Ab1 c1, c ≡Ab2 c2.

Of course, both the independence and the co-independence theorems hold in simple theories,

but none of them characterizes simplicity.

Proposition 6.20. Let T be NTP2 and p(x) is a partial type over A.

(1) If every p′(x) ⊇ p with p′(x) ∈ S(M), M ⊇ A satisfies the co-independence theorem, then

it is simple.

(2) If p(x) satisfies the independence theorem, then it is co-simple.

Proof. (1) Our argument is based on the proof of [Kim01, Proposition 2.5]. Without loss of

generality A = ∅. Assume that p is not simple, then by Fact 3.12 there are some formula φ(x, y) ,

(aη)η∈ω<ω such that:

•
{

φ(x, aη|i)
}

i∈ω
∪ p(x) is consistent for every η ∈ ωω.

• φ(x, aη) ∧ φ(x, aη′ ) is inconsistent for any incomparable η, η′ ∈ ω<ω.

By compactness we can find a tree with the same properties indexed by κ<κ, for a cardinal κ large

enough. Let T Sk be some Skolemization of T , and we work in the sense of T Sk.

Claim. There is a sequence (cidi)i∈ω satisfying:

(1) {φ(x, ci)}i∈ω ∪ p(x) is consistent.

(2) ci, di start an infinite sequence indiscernible over c<id<i.

(3) φ(x, di) ∧ φ(x, dj) is inconsistent for any i 6= j ∈ ω.

Proof. By induction we choose si 6= ti ∈ κ, ci = as1...si−1si and di = as1...si−1ti for some si 6= ti ∈ κ

such that there is a c<id<i-indiscernible sequence starting with as1...si−1si , as1...si−1ti (exists by
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Erdős-Rado as κ is large enough), so we get (2). From the assumption on (aη)η∈κ<κ we get (1)

as s0 ⊳ s0s1 ⊳ s0s1s2 ⊳ . . . lie on the same branch in the tree order and (3) as s0 . . . si−1ti and

s0 . . . si−1si are incomparable in the tree order. �

By compactness and Ramsey we can find a and (cidi)i≤ω+1 indiscernible over a, satisfying

(1)–(3) and such that a |= p(x) ∪ {φ(x, ci)}.

Let M = Sk(cidi)i<ω , a model of T Sk. Then we have cω+1 |⌣
u

M
a and dω |⌣

u

M
cω+1 by indis-

cernibility. As cωdω start an M -indiscernible sequence, there is σ ∈ Aut(M /M) sending cω to

dω. Let a′ = σ(a), then a′ ≡Lstp
M a, dω |⌣

u

M
a′ (as cω |⌣

u

M
a by indiscernibility) and φ(a′, dω). But

φ(x, cω+1) ∧ φ(x, dω) is inconsistent by (3)+(2). As φ is an L-formula, M is in particular an L-

model and |⌣
u in the sense of T Sk implies |⌣

u in the sense of T , we get that the co-independence

theorem fails for p′ = tpL(a/M) in T .

(2) Similar. �

Now we will show that in NTP2 theories simple types satisfy the independence theorem over

extension bases. We will need the following fact from [BC].

Fact 6.21. Let T be NTP2 and M |= T . Assume that c |⌣M
ab, b |⌣M

a, b′ |⌣M
a, b ≡M b′. Then

there exists c′ |⌣M
ab′ and c′b′ ≡M cb, c′a ≡M ca.

Proposition 6.22. Let T be NTP2 and p(x) a simple type over M |= T . Then it satisfies

the independence theorem: assume that e1 |⌣M
e2, di |⌣M

ei, d1 ≡M d2 |= p(x). Then there is

d |⌣M
e1e2 with d ≡eiM di.

Proof. First we find some e′1 |⌣M
d2e2 and such that e′1d2 ≡M e1d1 (Let σ ∈ Aut(M /M) be such

that σ(d1) = d2, then σ(e1)d2 ≡M e1d1. By simplicity of tp(d1/M) and the assumption we get

e1 |⌣M
d1, which implies that σ(e1) |⌣M

d2. Let e′1 realize a non-forking extension to d2e2). Then

we also have d2 |⌣M
e′1e2 (by transitivity and symmetry using simplicity of tp(d2/M)).

Applying Fact 6.21 with a = e2, b = e′1, b
′ = e1, c = d2 we find some d |⌣M

e1e2, de1 ≡M

d2e
′
1 ≡M d1e1 and de2 ≡M d2e2 — as wanted. �

We conclude with the main theorem of the section.

Theorem 6.23. Let T be NTP2 and p(x) a partial type over A. Then the following are equivalent:

(1) p(x) is simple (in the sense of Definition 6.1).

(2) For any B ⊇ A, a |= p and b, a |⌣
f

A
b if and only if b |⌣

f

A
a.

(3) Every extension p′(x) ⊇ p(x) to a model M ⊇ A satisfies the co-independence theorem.

Proof. (1) is equivalent to (2) is by Definitions 6.1 and Corollary 6.18.

(1) implies (3): By Proposition 6.22 and Corollary 6.18.

(3) implies (1) is by Proposition 6.20. �
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Problem 6.24. Is every co-simple type simple in an NTP2 theory?

We point out that at least every co-simple stably embedded type (defined over a small set) is

simple. Recall that a partial type p(x) defined over A is called stably embedded if for any φ(x̄, c)

there is some ψ(x̄, y) ∈ L(A) and d ∈ p(M) such that p(M)n ∩ φ(x̄, c) = p(M)n ∩ ψ(x̄, d). If p(x)

happens to be defined by finitely many formulas, it is easy to see by compactness that ψ(x̄, y) can

be chosen to depend just on φ(x̄, y), and not on c. But for an arbitrary type this is not true.

Proposition 6.25. Let T be NTP2. Let p(x) be a co-simple type over A and assume that p is

stably embedded. Then p(x) is simple.

Proof. Assume p(x) is not simple, and let (aη)η∈ω<ω , k and φ(x, y) witness this. We may assume

in addition that (aη) is an indiscernible tree over A (that is, ss-indiscernible in the terminology of

[KKS12], see Definition 3.7 and the proof of Theorem 6.6 there).

By the stable embeddedness assumption, there is some ψ(x, z) ∈ L(A) and b ⊆ p(M) such that

ψ(x, b) ∩ p(M) = φ(x, a∅) ∩ p(M). It follows by the indiscernibility over A that for every η ∈ ω<ω

there is bη ⊆ p(M) satisfying ψ(x, bη) ∩ p(M) = φ(x, aη) ∩ p(M).

As {φ(x, a∅i)}i<ω is k-inconsistent, it follows that {ψ(x, b∅i)}i<ω ∪ p(x) is k-inconsistent, thus

{ψ(x, b∅i)}i<ω ∪ {χ(x)} is k-inconsistent for some χ(x) ∈ p by compactness and indiscernibility.

Again by the indiscernibility over A we have that {ψ(x, bηi)}i<ω ∪ {χ(x)} is k-inconsistent for

every η ∈ ω<ω. It is now easy to see that ψ′(x, z) = ψ(x, z) ∧ χ(x) and (bη)η∈ω<ω witness that

p(x) is not co-simple over A. �

Remark 6.26. If p(x) is actually a definable set, the argument works in an arbitrary theory since

instead of extracting a sufficiently indiscernible tree (which seems to require NTP2), we just use

the uniformity of stable embeddedness given by compactness.

7. Examples

In this section we present some examples of NTP2 theories. But first we state a general lemma

which may sometimes simplify checking NTP2 in particular examples.

Lemma 7.1.

(1) If (āα, φα,0(x, yα,0) ∨ φα,1(x, yα,1), kα)α<κ is an inp-pattern, then (āα, φα,f(α)(x, yα,f(α)),

kα)α<κ is an inp-pattern for some f : κ→ {0, 1}.

(2) Let (āα, φα(x, yα), kα)α<κ be an inp-pattern and assume that φα(x, aα0) ↔ ψα(x, bα) for

α < κ. Then there is an inp-pattern of the form
(

b̄α, ψα(x, zα), kα
)

α<κ
.

7.1. Adding a generic predicate. Let T be a first-order theory in the language L. For S(x) ∈ L

we let LP = L ∪ {P (x)} and T 0
P,S = T ∪ {∀x (P (x) → S(x))}.
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Fact 7.2. [CP98] Let T be a theory eliminating quantifiers and ∃∞. Then:

(1) T 0
P,S has a model companion TP,S, which is axiomatized by T together with

∀z̄
[

∃x̄φ(x̄, z̄) ∧ (x̄ ∩ aclL(z̄) = ∅) ∧
∧

i<n S(xi) ∧
∧

i6=j<n xi 6= xj

]

→

[

∃x̄φ(x̄, z̄) ∧
∧

i∈I P (xi) ∧
∧

i/∈I ¬P (xi)
]

for every formula φ(x̄, z̄) ∈ L, x̄ = x0...xn−1 and every I ⊆ n. It is possible to write it in

first-order due to the elimination of ∃∞.

(2) aclL(a) = aclLP
(a)

(3) a ≡LP b ⇔ there is an isomorphism between LP structures f : acl(a) → acl(b) such that

f(a) = b.

(4) Modulo TP,S, every formula ψ(x̄) is equivalent to a disjunction of formulas of the form

∃z̄φ(x̄, z̄) where φ(x̄, z̄) is a quantifier-free LP formula and for any ā, b̄, if |= φ(ā, b̄), then

b̄ ∈ acl(ā).

Theorem 7.3. Let T be geometric (that is, the algebraic closure satisfies the exchange property,

and T eliminates ∃∞) and NTP2. Then TP is NTP2.

Proof. Denote a |⌣
a

c
b ⇔ a /∈ acl(bc) \ acl(c). As T is geometric, |⌣

a is a symmetric notion of

independence, which we will be using freely from now on.

Let (āi, φ(x, y), k)i<ω be an inp-pattern, such that (āi)i<ω is an indiscernible sequence and āi’s

are mutually indiscernible in the sense of LP , and φ an LP -formula.

Claim. For any i, {aij}j<ω is an |⌣
a
-independent set (over ∅) and aij /∈ acl(∅).

Proof. By indiscernibility and compactness. �

Let A =
⋃

i<ω āi.

Claim. There is an infinite A-indiscernible sequence (bt)t<ω such that bt |= {φ(x, ai0)}i<ω for all

t < ω.

Proof. First, there are infinitely many different bt’s realizing {φ(x, ai0)}i<ω, as {φ(x, ai0)}0<i<ω ∪

{φ(x, a0j)} is consistent for any j < ω and {φ(x, a0j)}j<ω is k-inconsistent. Extract an A-

indiscernible sequence from it. �

Let pi(x, ai0) = tpL(b0/ai0).

Claim. For some/every i < ω, there is b |=
⋃

j<ω pi(x, aij) such that in addition b /∈ acl(A).

Proof. For any N < ω, let

qNi (x0...xN−1, ai0) =
⋃

n<N

pi(xn, ai0) ∪ {xn1 6= xn2}n1 6=n2<N
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As b0...bN−1 |=
⋃

i<ω q
N
i (x0...xN−1, ai0) and T is NTP2, there must be some i < ω such that

⋃

j<ω q
N
i (x0...xN−1, aij) is consistent for arbitrary large N (and by indiscernibility this holds for

every i). Then by compactness we can find b |=
⋃

j<ω pi(x, aij) such that in addition b /∈ acl(A). �

Work with this fixed i. Notice that b0ai0 ≡L baij for all j ∈ ω.

Claim. The following is easy to check using that |⌣
a satisfies exchange.

(1) acl(A) ∩ acl(aijb) = acl(aij).

(2) acl(aijb) ∩ acl(aikb) = acl(b) for j 6= k.

Now we conclude as in the proof of [CP98, Theorem 2.7]. That is, we are given a coloring P

on āi. Extend it to a Pi-coloring on acl(aijb) such that aijb realizes tpLP
(ai0b0), and by the claim

all Pi’s are consistent. Thus there is some b′ such that b0ai0 ≡LP b′aij for all j ∈ ω, in particular

b′ |= {φi(x, aij)} — a contradiction. �

Example 7.4. Adding a (directed) random graph to an o-minimal theory is NTP2.

Problem 7.5. Is it true without assuming exchange for the algebraic closure? Is κinp preserved?

So in particular, is strongness preserved?

7.2. Valued fields. In this section we are going to prove the following theorem:

Theorem 7.6. Let K̄ = (K,Γ, k, v : K → Γ, ac : K → k) be a Henselian valued field of charac-

teristic (0, 0) in the Denef-Pas language. Let κ = κ1inp(k)× κ1inp(Γ). Then κ1inp(K) < R(κ+ 2,∆)

for some finite set of formulas ∆ (see Definition 1.4). In particular:

(1) If k is NTP2, then K̄ is NTP2 (If K was TP2, then by Lemma 3.2 we would have

κ1inp (K) = ∞ > iω

(

|T |+
)

> R
(

|T |+ + 2,∆
)

. Every ordered abelian group is NIP

by [GS84], thus κinp(Γ) ≤ |T |. But then the theorem implies κ1inp (k) > |T |+, so k has

TP2).

(2) If k and Γ are strong (of finite burden), then K̄ is strong (resp. of finite burden). The

argument is the same as for (1) using Definition 1.4(1),(2).

Example 7.7. (1) Hahn series over pseudo-finite fields are NTP2.

(2) In particular, let K =
∏

p primeQp/U with U a non-principal ultra-filter. Then k is

pseudo-finite, so has IP by [Dur80]. And Γ has SOP of course. It is known that the

valuation rings of Qp are definable in the pure field language uniformly in p (see e.g.

[Ax65]), thus the valuation ring is definable in K in the pure field language, so K has

both IP and SOP in the pure field language. By Theorem 7.6 it is strong of finite burden,

even in the larger Denef-Pas language. Notice, however, that the burden of K is at least

2 (witnessed by the formulas “ac(x) = y”, “v(x) = y” and infinite sequences of different

elements in k and Γ.
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Corollary 7.8. [She05] If k and Γ are strongly dependent, then K is strongly dependent.

Proof. By Delon’s theorem [Del81], if k is NIP, then K is NIP. Conclude by Theorem 7.6 and

Fact 3.8. �

We start the proof with a couple of lemmas about the behavior of v(x) and ac(x) on indiscernible

sequences which are easy to check.

Lemma 7.9. Let (ci)i∈I be indiscernible. Consider function (i, j) 7→ v(cj − ci) with i < j. It

satisfies one of the following:

(1) It is strictly increasing depending only on i (so the sequence is pseudo-convergent).

(2) It is strictly decreasing depending only on j (so the sequence taken in the reverse direction

is pseudo-convergent).

(3) It is constant (we’ll call such a sequence “constant”).

Contrary to the usual terminology we do not exclude index sets with a maximal element.

Lemma 7.10. Let (ci)i∈I be an indiscernible pseudo-convergent sequence. Then for any a there

is some h ∈ Ī ∪ {+∞,−∞} (where Ī is the Dedekind closure of I) such that (taking c∞ such that

I ⌢ c∞ is indiscernible):

For i < h: v(c∞ − ci) < v(a− c∞),v(a− ci) = v(c∞ − ci) and ac(a− ci) = ac(c∞ − ci).

For i > h: v(c∞ − ci) > v(a− c∞), v(a− ci) = v(a− c∞) and ac(a− ci) = ac(a− c∞).

Notice that in fact there is a finite set of formulas ∆ such that these lemmas are true for

∆-indiscernible sequences. Fix it from now on, and let δ = R(κ + 2,∆) for κ = κk × κΓ with

κk = κ1inp(k) and κΓ = κ1inp(Γ).

Lemma 7.11. In K, there is no inp-pattern
(

φα(x, yα), d̄α, kα
)

α<δ
with mutually indiscernible

rows such that x is a singleton and φα(x, yα) = χα(v(x−y), yΓα)∧ρα(ac(x−y), y
k
α), where χα ∈ LΓ

and ρα ∈ Lk.

Proof. Assume otherwise, and let dαi = cαid
Γ
αid

k
αi where cαi ∈ K corresponds to y, dΓαi ∈ Γ

corresponds to yΓα and dkαi ∈ k corresponds to ykα. By the choice of δ, there is a ∆-indiscernible

sub-sequence of (cα0)α<δ of length κ+ 2. Take a sub-array consisting of rows starting with these

elements – it is still an inp-pattern of depth κ + 2 – and replace our original array with it. Let

c−∞ and c∞ be such that c−∞ ⌢ (cα0)α<κ ⌢ c∞ is ∆-indiscernible and
(

d̄α
)

α<κ
is a mutually

indiscernible array over c−∞c∞ (so either find c∞ by compactness if κ is infinite, or just let it be

cκ−1,0 and replace our array by
(

d̄α
)

α<κ−1
). Let a |= {φα(x, dα0)}α<κ+1.

Case 1. (cα0) is pseudo-convergent. Let h ∈ {−∞}∪ κ+1∪ {∞} be as given by Lemma 7.10.
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Case 1.1. Assume 0 < h. Then v(a− c00) = v(c∞ − c00), ac(a− c00) = ac(c∞ − c00). But then

actually c∞ |= φ(x, d00), and by indiscernibility of the array over c∞, c∞ |= {φ(x, d0i)}i<ω — a

contradiction.

Case 1.2 : Thus v(a− cα0) = v(a− c∞), ac(a− cα0) = ac(a− c∞) and v(a− c∞) < v(c∞ − cα0)

for all 0 < α < κ+ 1.

Let χ′
α(x

′, eΓαi) := χα(x
′, dΓαi) ∧ x′ < v(c∞ − cαi) with eΓαi = dΓαi ∪ v(c∞ − cαi). Finally, for

α < κΓ let fΓ
αi =

⋃

β<κk
eκk×α+β,i and pα(x

′, fΓ
αi) =

{

χ′
β(x

′, eΓκk×α+β,i)
}

β<κk

. As
(

fΓ
αi

)

is a

mutually indiscernible array in Γ,
{

pα(x
′, fΓ

α0)
}

α<κΓ
is realized by v(a − c∞) and κ1inp(Γ) = κΓ,

there must be some α < κΓ and aΓ ∈ Γ such that (unwinding) aΓ |=
{

χ′
β(x

′, eΓκk×α+β,i)
}

β<κk,i<ω
.

Analogously letting χ′
β(x

′, ekβi) := ρκk×α+β(x
′, dkκk×α+β,i), noticing that (ekβi)β<κk,i<ω is an

indiscernible array in k and κk = κinp(k), there must be some aρ ∈ k and β < κk such that

aρ |= {χ′
β(x

′, ekβi)}i<ω .

Finally, take a′ ∈ K with v(a′ − c∞) = aΓ ∧ ac(a′ − c∞) = aρ and let γ = κk × α + β. As

aΓ < v(c∞ − cγi) it follows that v(a′ − cγi) = v(a′ − c∞) and ac(a′ − cγi) = ac(a′ − c∞). But then

a′ |= {φγ(x, dγi)}i<ω — a contradiction.

Case 2: (cα0 ) is decreasing — reduces to the first case by reversing the order of rows.

Case 3: (cα0 ) is constant.

If v(a−cα0) < v(c∞−cα0) (= v(cβ0−cα0) for β 6= α) for some α, then v(a−cα0) = v(a−cβ0) =

v(a− c∞) for any β, and ac(a− cα0) = ac(a− c∞) for all α’s and it falls under case 1.2.

Next, there can be at most one α with v(a−cα0) > v(c∞−cα0) (if also v(a−cβ0) > v(c∞−cβ0)

for some β > α then v(c∞−cβ0) = v(cβ0−cα0) = v(a−cβ0) > v(c∞−cβ0), a contradiction). Throw

the corresponding row away and we are left with the case v(a− cα0) = v(c∞ − cα0) = v(a − c∞)

for all α < κ. It follows by indiscernibility that v(a − c∞) = v(c∞ − cαi) for all α, i. Notice that

it follows that ac(a− cα0) 6= ac(c∞ − cα0) and ac(a− cα0) = ac(a− c∞) + ac(c∞ − cα0).

Let ρ′α(x
′, ekαi) := ρα(x

′ − ac(c∞ − cαi), d
k
αi) ∧ x

′ 6= ac(c∞ − cαi) with ekαi = dkαi ∪ ac(c∞ − cαi).

Notice that ac(a−c∞) |=
{

ρ′α(x
′, ekα0)

}

and that
(

ekαi
)

is a mutually indiscernible array in k. Thus

there is some α < κ and ak |=
{

ρ′α(x
′, ekαi)

}

i<ω
.

Take a′ ∈ K such that v(a′ − c∞) = v(a − c∞) ∧ ac(a′ − c∞) = ak. By the choice of ak we

have that v(a′ − c∞) = v(a − c∞) = v(c∞ − cαi) and that ac(a′ − c∞) 6= ac(c∞ − cαi), thus

v(a′ − cαi) = v(a− c∞) and ac(a′ − cαi) = ak + ac(c∞ − cαi). It follows that a′ |= {φα(x, dαi)}i<ω

— a contradiction. �

Lemma 7.12. In K, there is no inp-pattern
(

φα(x, yα), d̄α, kα
)

α<δ
such that x is a singleton and

φα(x, yα) = χα(v(x− y1), ..., v(x− yn), y
Γ
α)∧ ρα(ac(x− y1), ..., ac(x− yn), y

k
α), where χα ∈ LΓ and

ρα ∈ Lk.
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Proof. We prove it by induction on n. The base case is given by Lemma 7.11. So assume that

we have proved it for n − 1, and let
(

φα(x, yα), d̄α, kα
)

α<δ
be an inp-pattern with φα(x, yα) =

χα(v(x − y1), ..., v(x − yn), y
Γ
α) ∧ ρα(ac(x − y1), ..., ac(x− yn), y

k
α) and dαi = c1αi...c

n
αid

Γ
αid

k
αi.

So let a |= {φα(x, dα0)}α<δ. Fix some α < δ.

Case 1: v(a− c1α0) < v(cnα0 − c1α0).

Then v(a− c1α0) = v(a− cnα0) and ac(a− c1α0) = ac(a− cnα0). We take

φ′α(x, d
′
αi) =

(

χα(v(x − c1αi), ..., v(x− c1αi), d
Γ
αi) ∧ v(x− c1α0) < v(cnαi − c1αi)

)

∧ρα(ac(x− c1αi), ..., ac(x− c1αi), d
ρ
αi)

and d′αi = dαi ∪ v(cnαi − c1αi).

Case 2: v(a− c1α0) > v(cnα0 − c1α0).

Then v(a− cnα0) = v(cnα0 − c1α0) and ac(a− cnα0) = ac(cnα0 − c1α0). Take

φ′α(x, d
′
αi) =

(

χα(v(x − c1αi), ..., v(c
n
α0 − c1α0), d

Γ
αi) ∧ v(x − c1α0) > v(cnαi − c1αi)

)

∧ρα(ac(x − c1αi), ..., ac(c
n
α0 − c1α0), d

ρ
αi)

and d′αi = dαi ∪ v(cnαi − c1αi) ∪ ac(c
n
α0 − c1α0).

Case 3: v(a − cnα0) < v(cnα0 − c1α0) and Case 4: v(a − cnα0) > v(cnα0 − c1α0) are symmetric to

the cases 1 and 2, respectively.

Case 5: v(a− c1α0) = v(a− cnα0) = v(cnα0 − c1α0).

Then ac(a− cnα0) = ac(a− c1α0)− ac(cnα0 − c1α0). We take

φ′α(x, d
′
αi) =

(

χα(v(x− c1αi), ..., v(c
n
α0 − c1α0), d

Γ
αi) ∧ v(x− c1α0) = v(cnαi − c1αi)

)

∧
(

ρα(ac(x− c1αi), ..., ac(c
n
α0 − c1α0), d

ρ
αi) ∧ ac(x− c1α0) 6= ac(cnαi − c1αi)

)

and d′αi = dαi ∪ v(cnαi − c1αi) ∪ ac(c
n
α0 − c1α0).

In any case, we have that {φ′α(x, d
′
αi)}i<ω is inconsistent, {φβ(x, dβ,0)}β<α ∪ {φ′α(x, d

′
α0)} ∪

{φβ(x, dβ0)}α<β<δ is consistent, and
(

d̄β
)

β<α
∪
{

d̄′α
}

∪
(

d̄β
)

α<β<δ
is a mutually indiscernible

array. Doing this for all α by induction we get an inp-pattern of the same depth involving strictly

less different v(x− yi)’s — contradicting the inductive hypothesis. �

Finally, we are ready to prove Theorem 7.6.

Proof. By the cell decomposition of Pas [Pas89], every formula φ(x, c̄) is equivalent to one of

the form
∨

i<n(χi(x) ∧ ρi(x)) where χi =
∧

χi
j(v(x − cij), d̄

i
j) with χi

j(x, d̄
i
j) ∈ L(Γ) and ρi =

∧

ρij(ac(x − cij), ē
i
j) with ρij(x, ē

i
j) ∈ L(k). By Lemma 7.1, if there is an inp-pattern of depth κ

with x ranging over K, then there has to be an inp-pattern of depth κ and of the form as in
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Lemma 7.12, which is impossible. It is sufficient, as Γ and k are stably embedded with no new

induced structure and are fully orthogonal. �

Problem 7.13.

(1) Can the bound on κ1inp(K) given in Theorem 7.6 be improved? Specifically, is it true that

κ1inp (K) ≤ κ1inp (k)× κ1inp (Γ) in the ring language?

(2) Determine the burden of K =
∏

p prime Qp/U in the pure field language. In [DGL11]

it is shown that each of Qp is dp-minimal, so combined with Fact 3.8 it has burden 1.

Note that K is not inp-minimal in the Denef-Pas language, as the residue field is infinite,

so {v(x) = vi}, {ac(x) = ai} shows that the burden is at least 2. However, Hrushovski

pointed out to me that the angular component is not definable in the pure ring langauge,

thus the conjecture is that every ultraproduct of p-adics is of burden 1 in the pure ring

(or RV ) language.
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