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Abstract. In this paper we are applying certain strategy described by Negri and Von

Plato (Bull Symb Log 4(04):418–435, 1998), allowing construction of sequent calculi for

axiomatic theories, to Suszko’s Sentential calculus with identity. We describe two calculi

obtained in this way, prove that the cut rule, as well as the other structural rules, are

admissible in one of them, and we also present an example which suggests that the cut

rule is not admissible in the other.
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1. Introduction

The aim of this paper is to give a proof-search oriented account of Sentential
calculus with identity (SCI) of Suszko [1,8,10]. Our construction is based on a
multisuccedent, context-sharing sequent calculus for Classical propositional
logic (CPL) and is inspired by a strategy of obtaining sequent calculi for
extensions of CPL (see [4,7] for examples).

This strategy provides cut-free systems with admissible structural rules
and subformula property, provided the construction of non-logical rules fol-
lows certain restrictions.

Other proof-theoretic approaches to SCI have been made before. Michaels
[3] describes a sequent calculus with sequences of formulas instead of mul-
tisets. There are two SCI-specific rule schemas, differing in order of formula
occurrence. These rules make use of substitution of identical subformulas
and deriving classical equivalence from identity. A simplified account of this
approach is given in [12]. In this instance the system is purely right-sided,
with all sequents having empty antecedents. Wasilewska [13] provides a de-
cidability algorithm for SCI founded on this calculus. Another system, based
on the Rasiowa–Sikorski dual tableaux method, is presented in [2,9]. As in
the earlier cases, its rule for the identity connective involves use of substi-
tution. Following standard rules for identity in first-order logic, it allows
replacing some occurrences of a subformula with formulas identical to it.

Calculi described here, namely rG3SCI and lG3SCI, are both sound and
complete. System lG3SCI has admissible structural rules, the cut rule in
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particular (these properties make this system well-suited for efficient proof-
search procedures), but it is not the case with system rG3SCI. What differs
calculi introduced here from the existing systems mentioned above is that
our calculi do not make use of a substitution rule.

One of the most intriguing observations of this work is that the basic, non-
Fregean logic SCI fails to be fully compatible with the mentioned strategy,
due to the non-atomic character of SCI-axioms. We chose to apply it, as
it provides a proof-search oriented framework for constructing rules from
axioms and structural analysis, in particular cut elimination. However, in
this case the final calculi lack some properties normally obtained this way
such as the subformula property.

The main points of interest of this paper are as follows:

• After introducing the strategy from [4–6] in Section 2 and the logic SCI
in Section 3, we provide two sequent calculi for SCI in Section 4. First,
we describe lG3SCI, with left SCI-specific rules only. Next we present a
description of the right system rG3SCI.

• In Sections 4.1 and 4.2 we discuss the problem of admissibility of struc-
tural rules in lG3SCI and rG3SCI.

• In Section 5 we study some derivable rules, in particular we provide
derivations of the left and right substitution rules. This result brings a
tool for comparison with other formalizations of SCI.

2. From Axioms to Rules

There is a number of strategies of building sequent calculi or natural deduc-
tion systems for axiomatic theories based on a certain logic (see for example
[5–7,11]). The strategy we are interested in enables one to turn each axiom
of a given axiomatic system into a rule of a corresponding sequent calcu-
lus in such a way that all structural rules—the cut rule in particular—are
admissible in the generated calculus. The rules obtained correspond to the
initial axiom (where Pi and Qj are atomic):

P1 ∧ · · · ∧ Pm → Q1 ∨ · · · ∨ Qn (1)

in either of the following manners:
Q1, P1, . . . , Pm, Γ ⇒ Δ . . . Qn, P1, . . . , Pm, Γ ⇒ Δ

P1, . . . , Pm, Γ ⇒ Δ L

Γ ⇒ Δ, Q1, . . . , Qn, P1 . . . Γ ⇒ Δ, Q1, . . . , Qn, Pm

Γ ⇒ Δ, Q1, . . . , Qn
R
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Formulas specified in a conclusion of a left rule scheme or right rule
scheme are called principal formulas of a given rule scheme, while formulas
specified in premisses of a rule scheme are called active formulas of that rule
scheme. For future reference let us observe that if m = 0 in the general form
of an axiom 1, then 1 has the form Q1 ∨ · · ·∨Qn, and the corresponding left
rule

Q1, Γ ⇒ Δ . . . Qn, Γ ⇒ Δ
Γ ⇒ Δ L

has no principal formulas and has Q1, . . . , Qn as active formulas. In the same
situation, the corresponding right rule scheme of the following form:

Γ ⇒ Δ, Q1, . . . , Qn
R

has no active formulas and has Q1, . . . , Qn as principal formulas.
If each axiom is transformed into a left (right) rule we obtain a left (right)

system. Moreover, each left system constructed with this method needs to
satisfy the following condition:

Definition 2.1. (Closure condition, [4]) If a system with nonlogical rules
has a rule, where a substitution instance in the atoms produces a rule of the
form:

Q1, P1, . . . , Pm−2, P, P,Γ ⇒ Δ . . . Qn, P1, . . . , Pm−2, P, P,Γ ⇒ Δ
P1, . . . , Pm−2, P, P,Γ ⇒ Δ R

then it also has to contain the rule:
Q1, P1, . . . , Pm−2, P,Γ ⇒ Δ . . . Qn, P1, . . . , Pm−2, P,Γ ⇒ Δ

P1, . . . , Pm−2, P,Γ ⇒ Δ R∗

Systems of rules for the theory of partial order are a perfect example of
applying the Negri strategy. They are based on the following axioms:

(refl) ∀x(x ≤ x)

(trans) ∀x, y, z(x ≤ y ∧ y ≤ z → x ≤ z)

These two rules are obtained by application of the left strategy:
x ≤ x,Γ ⇒ Δ

Γ ⇒ Δ
Lrefl

x ≤ z, x ≤ y, y ≤ z, Γ ⇒ Δ
x ≤ y, y ≤ z, Γ ⇒ Δ Ltrans

and the following two by the right strategy:

Γ ⇒ Δ, x ≤ x
Rrefl

Γ ⇒ Δ, x ≤ z, x ≤ y Γ ⇒ Δ, x ≤ z, y ≤ z

Γ ⇒ Δ, x ≤ z
Rtrans
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Note that the rule Lrefl has no principal formulas and Rrefl has no active
formulas.

Our main aim is to study sequent calculi for sentential calculus with iden-
tity (SCI), which was constructed according to the strategy just described.
The idea is that specific axioms of SCI cannot be transformed into the form
1, due to the requirement that all formulas in 1 have to be atomic. We have
decided to apply this strategy nevertheless and it has turned out that the
left system has all desired properties (the admissibility of the cut rule in
particular) whereas the cut rule is essential in the right system.

3. Hilbert-Style System for SCI

The language LSCI of the logic SCI is defined by the following BNF grammar,
where V = {p1, . . . , pn, . . .} is a countable set of propositional variables:

A,B ::= V | ⊥ | A ∧ B | A ∨ B | A → B | A ≈ B

The axiom system for SCI, HSCI, is obtained from any such system for CPL
expressed in a language with the connectives ⊥, ∧, ∨ and → by the addition
of the following axioms (⊗ ∈ {∧,∨,→,≈}):

(≈1) A ≈ A

(≈2) (A ≈ B) → ((A → ⊥) ≈ (B → ⊥))

(≈3) (A ≈ B) → (B → A)

(≈4) ((A ≈ B) ∧ (C ≈ D)) → ((A ⊗ C) ≈ (B ⊗ D))

If a formula A is provable in HSCI, we say it is a thesis of SCI.
In order to fit axiom ≈3 to the general axiom form 1, the axiom ≈3

can be restated by (A ≈ B) → (¬B ∨ A). But the problem of atomic
character of formulas involved in SCI-axioms still remains. Nevertheless, we
find it interesting to study calculi which emerged from an application of this
strategy to axiom systems which do not satisfy Negri’s conditions on general
axiom form.

Typically, soundness and completeness theorems for SCI are proven with
regard to algebraic semantics, as in [1,8]. The only difference in our treat-
ment of an algebraic semantics for SCI is that instead of a negation we use
⊥ constant, which forces a small change in the notion of an SCI-model.1

1If a negation symbol is present, then M = 〈U,∼,�,�,�, ◦, D〉 and we stipulate:

∼a ∈ D iff a /∈ D
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Definition 3.1. (SCI-model) An SCI model is a structure

M = 〈U, •,,�,�, ◦, D〉
where U is non-empty set, • ∈ U , D is a non-empty subset of U and the
following conditions are satisfied for arbitrary a, b ∈ U :

1. • /∈ D

2. a  b ∈ D iff a ∈ D or b ∈ D

3. a � b ∈ D iff a ∈ D and b ∈ D

4. a � b ∈ D iff a /∈ D or b ∈ D

5. a ◦ b ∈ D iff a = b

Definition 3.2. (SCI-valuation) Let v be a mapping from V to U . Then, v

is extended to a mapping from the set ForSCI to U , which fulfils the following
conditions:

1. v(⊥) = •
2. v(A ∨ B) = v(A)  v(B)

3. v(A ∧ B) = v(A) � v(B)

4. v(A → B) = v(A) � v(B)

5. v(A ≈ B) = v(A) ◦ v(B)

Let v be an SCI-valuation in a model M. A formula A is satisfied by v
in M iff v(A) ∈ D. A formula is true in M if it is satisfied by all valuations
in M; a formula is SCI-tautology iff it is true in all SCI models.

4. Sequent Calculi for SCI

Our SCI-calculi are based on a slight modification of G3cp, a system for
classical logic consisting of rules presented in Table 1. Calculus used here is
not identical with G3cp, as its axiom scheme allows A to be arbitrary and
in G3cp A must be atomic.2 Γ, Δ are finite multisets of formulas. We will
refer to sequents by φ, ψ, . . ..

Footnote 1 continued
It can be easily seen that these two conditions are equivalent. We can define ∼ as follows
∼a ::= a � •. Now assume ∼a ∈ D. Then a � • ∈ D and a /∈ D or • ∈ D. Since we have
• /∈ D we conclude that a /∈ D.

2However, it is easily showable that these calculi are equivalent through proving by
induction that any proof in our system can be transformed into a G3cp proof.
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Table 1. Rules of G3cp

A,Γ ⇒ Δ, A ⊥,Γ ⇒ Δ
⊥

A,B,Γ ⇒ Δ

A ∧ B,Γ ⇒ Δ
L∧

Γ ⇒ Δ, A Γ ⇒ Δ, B

Γ ⇒ Δ, A ∧ B
R∧

A,Γ ⇒ Δ B,Γ ⇒ Δ

A ∨ B,Γ ⇒ Δ
L∨

Γ ⇒ Δ, A,B

Γ ⇒ Δ, A ∨ B
R∨

Γ ⇒ Δ, A B,Γ ⇒ Δ

A → B,Γ ⇒ Δ
L→

A,Γ ⇒ Δ, B

Γ ⇒ Δ, A → B
R→

Table 2. Structural rules

Γ ⇒ Δ
A,Γ ⇒ Δ

Lw
Γ ⇒ Δ

Γ ⇒ Δ, A
Rw

A,A,Γ ⇒ Δ

A,Γ ⇒ Δ
Lctr

Γ ⇒ Δ, A,A

Γ ⇒ Δ, A
Rctr

Γ′ ⇒ Δ′, A A,Γ′′ ⇒ Δ′′

Γ′,Γ′′ ⇒ Δ′,Δ′′ cut

We refer to formulas specified in the premisses of a rule schema as active
formulas of that rule and to these specified in the conclusion as principal
formulas of this rule.

We use the notions of derivation height, cut-height and formula weight in
a manner described in [7]. By height of a derivation we mean the maximal
number of successive applications of the logical rules of G3cp. The structural
rules from Table 2. are admissible and height-preserving.

Definition 4.1. (Height of derivation) A sequent of one of the following
forms: (i) A, Γ ⇒ Δ, A (ii) ⊥, Γ ⇒ Δ has a derivation of height 0. If a
sequent φ has a derivation D of height n, then the following derivation:

D....
φ

ψ
R

has height n + 1, where R is a one-premiss rule. If sequents φ′ and φ′′

have derivations D′,D′′ of heights n and m respectively, then the following
derivation:

D′
....
φ′

D′′
....

φ′′

ψ
R′
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Table 3. Left rules for identity

A ≈ A,Γ ⇒ Δ

Γ ⇒ Δ
L1

≈
A ≈ B,Γ ⇒ Δ, B A ≈ B,A,Γ ⇒ Δ

A ≈ B,Γ ⇒ Δ
L2

≈

(A ⊗ B) ≈ (C ⊗ D), A ≈ C,B ≈ D,Γ ⇒ Δ

A ≈ C,B ≈ D,Γ ⇒ Δ
L3

≈

(A ⊗ A) ≈ (B ⊗ B), A ≈ B,Γ ⇒ Δ

A ≈ B,Γ ⇒ Δ
L3∗

≈

has height max(m,n) + 1, where R′ is a two-premiss rule.

By �n φ we mean that the sequent φ is derivable with height no greater
than n. By �nφ

�mψR we mean that the sequent φ is derivable with height no
greater than n and an application of the rule R gives us ψ, which is derivable
with height no greater than m.

The notions of cut-height and formula weight defined below are used in
proving admissibility of structural rules and they follow the definitions from
[7].

Definition 4.2. (Cut-height) The cut-height of an application of the cut
rule in a derivation D is the sum of heights of derivations of two premisses
of cut.

Definition 4.3. (Formula weight) Weight is a function from the set of all
formulas to the set of natural numbers, which fulfils the following conditions:

1. w(⊥) = 0,

2. w(pi) = 1, for each propositional variable pi,

3. w(A ⊗ B) = w(A) + w(B) + 1, where ⊗ ∈ {≈,∨,∧,→}.

4.1. Left Strategy

Following the presented strategy, we obtain a set of left rules listed below. It
is worth noticing that none of these rules are directly obtained from axiom
(≈2). In the absence of negation as a primitive connective, axiom (≈2) is
provable with the use of rules L3

≈ and L1
≈ (in a sense it is a particular case

of congruence). The rule L3∗
≈ is required to fulfil the closure condition with

regard to the rule L3
≈. They differ from the other rules, as they are in fact

schemas of four different rules each, depending on the connective represented
by ⊗. We will call these rules variants of L3

≈ and L3∗
≈ respectively.
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Soundness and completeness Let v be an SCI-valuation in a model M. A
sequent Γ ⇒ Δ is sound under a v iff a formula

∧
Γ → ∨

Δ is satisfied under
v, where

∧
and

∨
denotes conjunction of all formulas from the antecedent

and disjunction of all formulas from the consequent respectively. A sequent
is valid, when it is sound under every SCI-valuation in each model M. A
rule is sound iff soundness of the premisses of that rule entails soundness of
the conclusion of that rule.

Theorem 4.4. (Soundness) If a sequent Γ ⇒ Δ is provable in lG3SCI, then
it is SCI-valid.

Proof. A sequent Γ ⇒ Δ is sound under a SCI-valuation v in a given model
M iff a corresponding formula of the form

∧
Γ → ∨

Δ is true under v in
this model. This denotational interpretation makes it easy to check that
each rule of lG3SCI preserves validity of sequents. Then by induction on the
length of proof of the sequent Γ ⇒ Δ it is easy to show that it is SCI-valid.

Theorem 4.5. (Simulation for lG3SCI) If A is provable in HSCI then the
sequent ⇒ A is provable in lG3SCI.

Proof. We want to show that lG3SCI is able to simulate a Hilbert-style
system for SCI, i.e. all axioms are provable in a sequent system and the
modus ponens rule is derivable in it. Its derivation uses cut in an essential
way:

⇒ A

⇒ A → B

A ⇒ B,A B, A ⇒ B

A → B, A ⇒ B
L→

A ⇒ B
cut

⇒ B
cut

All SCI-specific axioms are provable. Let us consider axiom (≈1):

A ≈ A ⇒ A ≈ A
⇒ A ≈ A

L1
≈

In the case of axiom (≈2) a proof has the following form:

⊥ ≈ ⊥, A ≈ B, (A → ⊥) ≈ (B → ⊥) ⇒ (A → ⊥) ≈ (B → ⊥)
⊥ ≈ ⊥, A ≈ B ⇒ (A → ⊥) ≈ (B → ⊥)

L3
≈

⊥ ≈ ⊥ ⇒ (A ≈ B) → ((A → ⊥) ≈ (B → ⊥))
R→

⇒ (A ≈ B) → ((A → ⊥) ≈ (B → ⊥))
L1

≈
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The following derivation is a proof of axiom (≈3):

A ≈ B,B ⇒ A,B A,A ≈ B, B ⇒ A

A ≈ B,B ⇒ A
L2

≈

A ≈ B ⇒ B → A
R∧

⇒ (A ≈ B) → (B → A)
R→

The following derivation is a proof of axiom (≈4):

(A ⊗ C) ≈ (B ⊗ D), A ≈ B,C ≈ D ⇒ (A ⊗ C) ≈ (B ⊗ D)
A ≈ B,C ≈ D ⇒ (A ⊗ C) ≈ (B ⊗ D)

L3
≈

(A ≈ B) ∧ (C ≈ D) ⇒ (A ⊗ C) ≈ (B ⊗ D)
L∧

⇒ ((A ≈ B) ∧ (C ≈ D)) → ((A ⊗ C) ≈ (B ⊗ D))
R→

Completeness of the left system is a corollary from the simulation theorem
since lG3SCI is able to prove every formula, which is provable in HSCI and
Hibert-style system for SCI is complete with respect to SCI-semantics.

Admissibility of cut in lG3SCI Let us first prove the admissibility of rules
of weakening and contraction. Then we will prove the central result, namely
the admissibility of the cut rule.

Theorem 4.6. (Admissibility of Lw and Rw) If �n Γ ⇒ Δ, then �n A, Γ ⇒
Δ and �n Γ ⇒ Δ, A.

Proof. A very straightforward proof relies on the observation that one can
always transform a given derivation of Γ ⇒ Δ into a derivation of A, Γ ⇒ Δ
or Γ ⇒ Δ, A by adding a formula A to the antecedent or succedent of each
sequent in the original derivation.

Theorem 4.7. (Admissibility of Lctr and Rctr)

1. If �n Γ ⇒ Δ, A,A, then �n Γ ⇒ Δ, A.

2. If �n A,A,Γ ⇒ Δ, then �n A, Γ ⇒ Δ.

Proof. By induction on the height of derivation.

1. Assume n = 0. Then the sequent Γ ⇒ Δ, A,A is an (i) axiom or (ii)
conclusion of ⊥. It is easy to check that in these cases the sequent
Γ ⇒ Δ, A is an axiom or conclusion of ⊥ as well.
Assume that admissibility of contraction holds up to n and let �n+1

Γ ⇒ Δ, A,A. Consider the last step of the proof. If A is not principal in
the last rule, then we have:
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�n

D....
Γ′ ⇒ Δ′, A,A

�n+1 Γ ⇒ Δ, A,A
R

By inductive hypothesis, �n Γ′ ⇒ Δ′, A. Now we apply the last rule R
to conclude Γ ⇒ Δ, A in at most n + 1 steps.
If the contraction formula is principal in the conclusion of the last rule
we have to consider only classical rules, which are described in [7].

2. Assume n = 0. Then the sequent A,A,Γ ⇒ Δ is an (i) axiom or (ii)
conclusion of the rule for ⊥. Naturally, in these cases sequent A, Γ ⇒ Δ
is an axiom or conclusion of the rule for ⊥.

Assume the theorem holds up to n, and let �n+1 A,A,Γ ⇒ Δ. If the con-
traction formula A is not principal in the conclusion of the last applied rule
R of a given derivation, then we have to consider the following derivation:

�n A,A,Γ′ ⇒ Δ′

�n+1 A,A,Γ ⇒ Δ R

By inductive hypothesis we have that �n A, Γ′ ⇒ Δ′. By applying the rule
R to this sequent we obtain �n+1 A, Γ ⇒ Δ.

Assume that the contraction formula is principal. We omit the classical
cases and assume that a formula A has the form B ≈ C and the last rule
used is either L2

≈, L3
≈ or L3∗

≈ . The active formulas of the premisses of these
rules are not present in their conclusions. If only one occurrence of the
contraction formula is principal, then we obtain the contracted premiss by
inductive hypothesis and apply the appropriate rule to it. Let us consider the
exception. Both contraction formulas are principal and the last rule applied
is L3

≈:

�n (B ⊗ B) ≈ (C ⊗ C), B ≈ C,B ≈ C,Γ ⇒ Δ
�n+1 B ≈ C,B ≈ C,Γ ⇒ Δ L3

≈

By inductive hypothesis, �n (B ⊗ B) ≈ (C ⊗ C), B ≈ C,Γ ⇒ Δ. We apply
the rule L3∗

≈ , to conclude B ≈ C,Γ ⇒ Δ in at most n + 1 steps:

�n (B ⊗ B) ≈ (C ⊗ C), B ≈ C,Γ ⇒ Δ
�n+1 B ≈ C,Γ ⇒ Δ L3∗

≈

In this instance, applying the rule obtained by the closure condidtion is
necessary for proving admissibility of contraction.
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Theorem 4.8. (Admissibility of cut) The cut rule of the form:

Γ′ ⇒ Δ′, C C,Γ′′ ⇒ Δ′′

Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

is admissible in lG3SCI.

Proof. The proof is organized as in [7]. We consider only such cases, where
the new rules for identity are applied.

I The cut formula C is not principal in the left premiss.
(1) The last rule applied was L1

≈. Cut-height equals m + 1 + m′:
m

A ≈ A, Γ′ ⇒ Δ′, C
Γ′ ⇒ Δ′, C

L1
≈

m′

C,Γ′′ ⇒ Δ′′

Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

This derivation is transformed into a derivation of lower cut-height (equal
to m + m′):

A ≈ A, Γ′ ⇒ Δ′, C C,Γ′′ ⇒ Δ′′

A ≈ A, Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

Γ′, Γ′′ ⇒ Δ′, Δ′′ L1
≈

(2) The last rule applied was L2
≈. The cut height equals max(m,n)+1+m′ :

m

A ≈ B,Γ′ ⇒ Δ′, C,B

n

A ≈ B,A,Γ′ ⇒ Δ′, C
A ≈ B,Γ′ ⇒ Δ′, C

L2
≈

m′

C,Γ′′ ⇒ Δ′′

A ≈ B,Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

This derivation is transformed into derivation with two cuts, each of which
has lesser cut-height (m + m′ and n + m′ respectively):

A ≈ B,Γ′ ⇒ Δ′, C,B C,Γ′′ ⇒ Δ′′

A ≈ B,Γ′,Γ′′ ⇒ Δ′,Δ′′, B
cut

A ≈ B,A,Γ′ ⇒ Δ′, C C,Γ′′ ⇒ Δ′′

A ≈ B,A,Γ′,Γ′′ ⇒ Δ′,Δ′′ cut

A ≈ B,Γ′,Γ′′ ⇒ Δ′,Δ′′ L2≈

(3) The last rule applied was L3
≈. Cut-height equals m + 1 + m′:
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m

(D ⊗ F ) ≈ (E ⊗ G), D ≈ E,F ≈ G, Γ′ ⇒ Δ′, C
D ≈ E,F ≈ G, Γ′ ⇒ Δ′, C

L3
≈

m′

C,Γ′′ ⇒ Δ′′

D ≈ E,F ≈ G, Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

This derivation is transformed into a derivation with lesser cut-height (m +
m′):

(D ⊗ F ) ≈ (E ⊗ G), D ≈ E,F ≈ G, Γ′ ⇒ Δ′, C C,Γ′′ ⇒ Δ′′

(D ⊗ F ) ≈ (E ⊗ G), D ≈ E,F ≈ G, Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

D ≈ E,F ≈ G, Γ′, Γ′′ ⇒ Δ′, Δ′′ L3
≈

(4) The last rule applied was L3∗
≈ . Cut-height equals m + 1 + m′:

m

(A ⊗ A) ≈ (B ⊗ B), A ≈ B,Γ′ ⇒ Δ′, C
A ≈ B,Γ′ ⇒ Δ′, C

L3∗
≈

m′

C,Γ′′ ⇒ Δ′′

A ≈ B,Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

This derivation is transformed into a derivation with lesser cut-height (m +
m′):

(A ⊗ A) ≈ (B ⊗ B), A ≈ B,Γ′ ⇒ Δ′, C C,Γ′′ ⇒ Δ′′

(A ⊗ A) ≈ (B ⊗ B), A ≈ B,Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

A ≈ B,Γ′, Γ′′ ⇒ Δ′, Δ′′ L3∗
≈

II When the cut-formula is principal in the left premiss only, we consider
the last rule applied to the right premiss of cut. Some tranformations are
analogous to the previous ones.

(1) The last rule applied was L1
≈. Cut-height equals m + 1 + m′:

m

Γ′ ⇒ Δ′, C

m′

C,A ≈ A, Γ′′ ⇒ Δ′′

C,Γ′′ ⇒ Δ′′ L1
≈

Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

This derivation is transformed into a derivation of lesser cut-height (equal
to m + m′):

Γ′ ⇒ Δ′, C C,A ≈ A, Γ′′ ⇒ Δ′′

A ≈ A, Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

Γ′, Γ′′ ⇒ Δ′, Δ′′ L1
≈
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(2) The last rule applied was L2
≈. The cut height equals max(m,n)+1+m′:

m′

Γ′′ ⇒ Δ′′, C

m

C,A ≈ B,Γ′ ⇒ Δ′, B

n

C,A ≈ B, A,Γ′ ⇒ Δ′

C,A ≈ B,Γ′ ⇒ Δ′ L2
≈

A ≈ B,Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

This derivation is transformed into derivation with two cuts, each of which
has lesser cut-height (m + m′ and n + m′ respectively):

Γ′′ ⇒ Δ′′, C C,A ≈ B,Γ′ ⇒ Δ′, B
A ≈ B,Γ′,Γ′′ ⇒ Δ′,Δ′′, B

cut
Γ′′ ⇒ Δ′′, C C,A ≈ B,A,Γ′ ⇒ Δ′

A ≈ B,A,Γ′,Γ′′ ⇒ Δ′,Δ′′ cut

A ≈ B,Γ′,Γ′′ ⇒ Δ′,Δ′′ L2≈

(3) The last rule applied was L3
≈. The cut height equals m + 1 + n:

m

Γ′ ⇒ Δ′, E

n

(A ⊗ C) ≈ (B ⊗ D), E,A ≈ B, C ≈ D,Γ′′ ⇒ Δ′′

E,A ≈ B,C ≈ D,Γ′′ ⇒ Δ′′ L3
≈

A ≈ B,C ≈ D,Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

this derivation can be transformed into a derivation with cut height m+n:

Γ′ ⇒ Δ′, E (A ⊗ B) ≈ (A ⊗ B), E,A ≈ A,B ≈ B,Γ′′ ⇒ Δ′′

(A ⊗ C) ≈ (B ⊗ D), A ≈ B,C ≈ D,Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

A ≈ B,C ≈ D,Γ′, Γ′′ ⇒ Δ′, Δ′′ L3
≈

(4) The last rule applied was L3∗
≈ . Cut-height equals m + 1 + m′:

m′

Γ′′ ⇒ Δ′′, C

m

(A ⊗ A) ≈ (B ⊗ B), C, A ≈ B,Γ′ ⇒ Δ′

C,A ≈ B,Γ′ ⇒ Δ′ L3∗
≈

A ≈ B,Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

This derivation is transformed into a derivation with lesser cut-height (m +
m′):

Γ′′ ⇒ Δ′′, C (A ⊗ A) ≈ (B ⊗ B), C, A ≈ B,Γ′ ⇒ Δ′

(A ⊗ A) ≈ (B ⊗ B), A ≈ B,Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

A ≈ B,Γ′, Γ′′ ⇒ Δ′, Δ′′ L3∗
≈

III If the cut formula C is principal in both premises of the cut rule, only
classical rules can be applied to C.
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Table 4. Right rules for identity

Γ ⇒ Δ, A ≈ A
R1

≈
A,Γ ⇒ Δ, B,A ≈ B

A,Γ ⇒ Δ, B
R2

≈

Γ ⇒ Δ, (A ⊗ B) ≈ (C ⊗ D), A ≈ C Γ ⇒ Δ, (A ⊗ B) ≈ (C ⊗ D), B ≈ D

Γ ⇒ Δ, (A ⊗ B) ≈ (C ⊗ D)
R3

≈

Note that in the cut rule:
Γ′ ⇒ Δ′, C C,Γ′′ ⇒ Δ′′

Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

the cut-formula C is not determined by anything that occurs in a conclusion.
Thus the admissibility of the cut rule results in proof system for SCI, which
is more useful in automatic proof search than the system with the cut rule.

4.2. Right Strategy

We now proceed to the right variant of sequent calculus for SCI, named
rG3SCI. As in the previous case, it is based on G3cp and constructed with
the use of the strategy presented in Section 2.

As an example we prove the law of transitivity for equality in rG3SCI

(where X stands for (A ≈ B) ≈ (A ≈ C)):

A ≈ B,B ≈ C ⇒ A ≈ C,X,A ≈ A
R1≈ A ≈ B,B ≈ C ⇒ A ≈ C,X,B ≈ C

A ≈ B,B ≈ C ⇒ A ≈ C, (A ≈ B) ≈ (A ≈ C)
R3≈

A ≈ B,B ≈ C ⇒ A ≈ C
R2≈

A ≈ B ⇒ (B ≈ C) → (A ≈ C)
R→

⇒ (A ≈ B) → ((B ≈ C) → (A ≈ C))
R→

Soundness and completeness The following theorems have analogous proofs
to those from Section 4.1; therefore we omit them to some extent.

Theorem 4.9. (Soundness) If a sequent is provable in rG3SCI, then it is
SCI-valid.

Theorem 4.10. (Simulation for rG3SCI) If A is provable in HSCI then the
sequent ⇒ A is provable in rG3SCI.

Proof. As in lG3SCI, we simulate the axiomatic system of SCI. The deriva-
tion of modus ponens is identical as in lG3SCI. All SCI-specific axioms are
provable. For example, the following derivation is a proof of axiom ≈4, where
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X stands for (A ⊗ C) ≈ (B ⊗ D).

A ≈ B,C ≈ D ⇒ X,A ≈ B A ≈ B,C ≈ D ⇒ X,C ≈ D

A ≈ B,C ≈ D ⇒ (A ⊗ C) ≈ (B ⊗ D)
R3

≈

(A ≈ B) ∧ (C ≈ D) ⇒ (A ⊗ C) ≈ (B ⊗ D)
L∧

⇒ ((A ≈ B) ∧ (C ≈ D)) → ((A ⊗ C) ≈ (B ⊗ D))
R→

Admissibility of weakening and contraction in rG3SCI As before, proofs of
admissibility of weakening and contraction follow the procedure described
in [7]. We consider only non-classical cases.

Theorem 4.11. (Admissibility of Lw and Rw) If �n Γ ⇒ Δ, then �n A, Γ ⇒
Δ. If �n Γ ⇒ Δ, then �n Γ ⇒ Δ, A.

Proof. Adding the formula A in the antecedent and consequent in every
sequent of the derivation of Γ ⇒ Δ will produce derivations of A, Γ ⇒ Δ in
the former and Γ ⇒ Δ, A in the latter case.

Theorem 4.12. (Admissibility of Lct and Rct) If �n A,A,Γ ⇒ Δ, then
�n A, Γ ⇒ Δ. If �n Γ ⇒ Δ, A,A, then �n Γ ⇒ Δ, A.

Proof. For derivation height n = 0, the sequents A,A,Γ ⇒ Δ and Γ ⇒
Δ, A,A are axioms or conclusions of either ⊥ or R1

≈. If so, sequents A, Γ ⇒ Δ
and Γ ⇒ Δ, A are axioms or conclusions of either ⊥ or R1

≈ as well. For the
inductive step, let us assume height-preserving left and right contraction for
derivations of height up to n. Assume �n+1 A,A,Γ ⇒ Δ and �n+1 Γ ⇒
Δ, A,A. In both cases, if the formula A is not principal in the last used
rule, we apply the inductive hypothesis to its premisses and then we apply
that very rule (or the inversion lemma in the case of classical connectives),
obtaining the contracted formula with derivation height of n + 1.

If the formula A is principal in the last step of the derivation, we have
two cases in which the last rule used is non-classical.

1. The last rule applied was R2
≈. Then we have two subcases, depending

on the side of the sequent on which the contracted formula occurs. For
left contraction, Δ = Δ′, B and the derivation has the following form:

�n A,A,Γ ⇒ Δ′, B,A ≈ B

�n+1 A,A,Γ ⇒ Δ′, B
R2

≈

By applying the inductive hypothesis to the premiss, we have �n A, Γ ⇒
Δ′, B,A ≈ B. Using the rule R2

≈, we obtain �n+1 A, Γ ⇒ Δ′, B.
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For right contraction, Γ = B,Γ′ and the derivation to consider is:

�n B,Γ′ ⇒ Δ, A,A,B ≈ A

�n+1 B,Γ′ ⇒ Δ, A,A
R2

≈

An application of the inductive hypothesis to the premiss gives us �n

B,Γ′ ⇒ Δ, A,B ≈ A. With the use of rule R2
≈, we conclude B,Γ′ ⇒

Δ, A in at most n + 1 steps.

2. The last rule applied is R3
≈. Then A = (B ⊗ C) ≈ (D ⊗ E). We need to

consider the following derivation:

�n Γ ⇒ Δ, A,A,B ≈ D �n Γ ⇒ Δ, A,A,C ≈ E

�n+1 Γ ⇒ Δ, A,A
R3

≈

Applying the inductive hypothesis to the premisses gives us �n Γ ⇒
Δ, A,B ≈ D and �n Γ ⇒ Δ, A,C ≈ E. Using R3

≈ we infer Γ ⇒ Δ, A in
at most n + 1 steps.

The problem of cut-admissibility in rG3SCI Although weakening and con-
traction rules are admissible in rG3SCI, the rule of cut seems to be essential
in proving certain SCI-theses. Let us consider the following example3:

p, q ⇒ p p, q ⇒ q
p, q ⇒ p ∧ q R∧

p ∧ q, (p ∧ q) ≈ r ⇒ r, (p ∧ q) ≈ r

p ∧ q, (p ∧ q) ≈ r ⇒ r
R2

≈

p, q, (p ∧ q) ≈ r ⇒ r
cut

p, q, ⇒ ((p ∧ q) ≈ r) → r
R→

p ⇒ q → (((p ∧ q) ≈ r) → r)
R→

⇒ p → (q → (((p ∧ q) ≈ r) → r))
R→

The cut formula p ∧ q is principal in both premises of the cut rule. The
rule R∧ has been applied to the left premiss of cut and the rule R2

≈ has
been applied to the right premiss of cut. All leafs of the derivation above
are axioms, therefore cut-height equals 2. If the rule applied to the right
premiss of cut was L∧, we would transform the following derivation:

Γ′ ⇒ Δ′, p Γ′ ⇒ Δ′, q
Γ′ ⇒ Δ′, p ∧ q

R∧
p, q, Γ′′ ⇒ Δ′′

p ∧ q, Γ′′ ⇒ Δ′′ L∧

Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

3I would like to thank Dorota Leszczyńska-Jasion for pointing out to me this particular
example.
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into:

Γ′ ⇒ Δ′, q
Γ′ ⇒ Δ′, p p, q, Γ′′,⇒ Δ′′

q, Γ′, Γ′′ ⇒ Δ′, Δ′′ cut

Γ′, Γ′, Γ′′ ⇒ Δ′, Δ′, Δ′′ cut

Γ′, Γ′′ ⇒ Δ′, Δ′′ Lctr, Rctr

and the complexity of cut-formula would be reduced. Application of a similar
strategy to the original example (we omit three consecutive applications of
R→) gives us the following derivation:

q ⇒ q

p ⇒ p p, q, (p ∧ q) ≈ r ⇒ r

q, p, (p ∧ q) ≈ r ⇒ r
cut

p, p, q, (p ∧ q) ≈ r ⇒ r
cut

p, q, (p ∧ q) ≈ r ⇒ r
Lctr

in which we have reduced the complexity of cut formula but we have also
obtained a problematic sequent labelling the rightmost leaf. Thus this deriva-
tion is not a proof of the sequent p, q, (p ∧ q) ≈ r ⇒ r. There is a way to
recover the provability of this sequent by applying contraction rules and the
cut rule:

q ⇒ q

p ⇒ p

p, q ⇒ p p, q ⇒ q
p, q ⇒ p ∧ q R∧

p ∧ q, (p ∧ q) ≈ r ⇒ r, (p ∧ q) ≈ r

p ∧ q, (p ∧ q) ≈ r ⇒ r
R2≈

p, q, (p ∧ q) ≈ r ⇒ r
cut

q, p, (p ∧ q) ≈ r ⇒ r
cut

p, p, q, (p ∧ q) ≈ r ⇒ r
cut

p, q, (p ∧ q) ≈ r ⇒ r
Lctr

but this derivation leads us nowhere due to the fact that the cut height of
the last application of the cut rule is not reduced compared to the original
derivation (and is equal to 2).

We suppose that the cut rule is not admissible in rG3SCI. Our diagnosis
focuses on the role on axiom ≈2, (A ≈ B) → (B → A), which corresponds
to the right rule of the form:

A, Γ ⇒ Δ, B,A ≈ B

A, Γ ⇒ Δ, B
R2

≈

Note that the problematic rule is based on the so-called bridge axiom
i.e. an axiom which governs the relation between non-classical connective,
identity, and implication. Looking at this rule from the proof-search oriented
perspective (i.e. bottom-up) we conclude that it allows us to synthesise iden-
tity on the right side of a premiss. The internal structure of A and B is not
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important in this synthesis which is the main reason why the strategy of re-
ducing the complexity of cut-formulas does not work in this particular case
of R2

≈. It is interesting that this problem does not arise in the left system,
which causes deep asymmetry between left and right system for SCI.

5. Some Derivability Results

In the case of sequent calculi for SCI, proving some simple SCI-tautologies
may be very complex due to the rule corresponding to the axiom ≈4. There-
fore it is interesting to study some derivable rules, which can be used in
proof search in SCI.

5.1. Left System

Let us first prove that the rule:
B ≈ A, Γ ⇒ Δ
A ≈ B,Γ ⇒ Δ

Lsym

is derivable in lG3SCI (Z stands for the formula (B ≈ A) ≈ (B ≈ B)):

Z,B ≈ B,A ≈ B,Γ ⇒ Δ, B ≈ B

B ≈ A, Γ ⇒ Δ
Z,B ≈ A,B ≈ B, A ≈ B,Γ ⇒ Δ Lw

Z,B ≈ B,A ≈ B,Γ ⇒ Δ L2
≈

B ≈ B,A ≈ B,Γ ⇒ Δ L3
≈

A ≈ B,Γ ⇒ Δ L1
≈

Moreover, the transitivity rule:
A ≈ C,A ≈ B,B ≈ C,Γ ⇒ Δ

A ≈ B,B ≈ C,Γ ⇒ Δ Ltrans

is derivable in lG3SCI by (Z stands for the formula (A ≈ B) ≈ (A ≈ C)):

Z,A ≈ A,A ≈ B,B ≈ C,Γ ⇒ Δ, A ≈ B D
Z,A ≈ A,A ≈ B,B ≈ C,Γ ⇒ Δ L2

≈

A ≈ A,A ≈ B,B ≈ C,Γ ⇒ Δ L3
≈

A ≈ B,B ≈ C,Γ ⇒ Δ L1
≈

where D is:
A ≈ C,A ≈ B,B ≈ C,Γ ⇒ Δ

Z,A ≈ C,A ≈ A,A ≈ B,B ≈ C,Γ ⇒ Δ Lw

The following rule (modus ponens for ≈):

B,A,A ≈ B,Γ ⇒ Δ
A,A ≈ B,Γ ⇒ Δ

Lmp
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is derivable in lG3SCI by:

B ≈ A,A,Γ ⇒ Δ, A

B,A,A ≈ B,Γ ⇒ Δ
B,A,B ≈ A, Γ ⇒ Δ

Lsym

A,B ≈ A, Γ ⇒ Δ L2
≈

A,A ≈ B,Γ ⇒ Δ
Lsym

Let us consider the following substitution rule:

λ(B), λ(A), A ≈ B,Γ ⇒ Δ
λ(A), A ≈ B,Γ ⇒ Δ

Lsub

where λ(A) denotes a formula which has formula A as its subformula, and
λ(B) is a result of replacing some occurrences of A in λ(A) by a formula B.
Versions of the rule Lsub are used in [2,9] as well as in [3,12] to formalize
SCI.

Proposition 1. The rule Lsub is admissible in lG3SCI.

Proof. lG3SCI is proved to be complete with respect to SCI semantics and
the rule Lsub is sound.

Moreover, we can prove the following:

Proposition 2. The rule Lsub is derivable in lG3SCI with contraction rules
and the cut rule.

Proof. Let us consider the following application of cut:

λ(A), A ≈ B ⇒ λ(B) λ(B), λ(A), A ≈ B,Γ ⇒ Δ
λ(A), λ(A), A ≈ B,A ≈ B,Γ ⇒ Δ

λ(A), A ≈ B,Γ ⇒ Δ
Lctr

cut

Note that the sequent λ(A), A ≈ B ⇒ λ(B) is provable in lG3SCI for arbi-
trary formula λ(A) since lG3SCI is complete with respect to SCI semantics
and the aforementioned sequent is true under every SCI-valuation. So the
left premiss of cut is provable and plays no role, whereas the right premiss
is the premiss of Lsub.

Derivations which establish derivability of Lsub are typically complicated
and consist of multiple applications of L3

≈ as is witnessed by the following
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example (for the sake of conciseness we omit formulas which are rewritten
in the application of rules L2

≈ and L3
≈):

(p ∧ q) ≈ (p ∧ q) ⇒ (p ∧ q) ≈ (p ∧ q)

⇒ (p ∧ q) ≈ (p ∧ q)
L1≈ (p ∧ z) ≈ (r → s) ⇒ (p ∧ z) ≈ (r → s)

((p ∧ z) ≈ (r → s)) ≈ ((p ∧ q) ≈ (p ∧ q)) ⇒ (p ∧ z) ≈ (r → s)
L2≈

((p ∧ q) ≈ (p ∧ q)) ≈ ((p ∧ z) ≈ (r → s)) ⇒ (p ∧ z) ≈ (r → s)
Lsym

(p ∧ q) ≈ (p ∧ z), (p ∧ q) ≈ (r → s) ⇒ (p ∧ z) ≈ (r → s)
L3≈

p ≈ p, (p ∧ q) ≈ (r → s), q ≈ z ⇒ (p ∧ z) ≈ (r → s)
L3≈

(p ∧ q) ≈ (r → s), q ≈ z ⇒ (p ∧ z) ≈ (r → s)
L1≈

5.2. Right System

We now proceed to show derivability of the right-sided equivalents of the
aforementioned rules. They are constructed according to the right strategy
as presented in Section 2. The right variant of the modus ponens rule for
identity A ∧ (A ≈ B) → B:

Γ ⇒ Δ, B,A Γ ⇒ Δ, B,A ≈ B

Γ ⇒ Δ, B
Rmp

is derivable in rG3SCI, albeit only if assuming cut, left weakening and con-
traction:

Γ ⇒ Δ, B,A

Γ ⇒ Δ, B, A ≈ B

A, Γ ⇒ Δ, B,A ≈ B
Lw

A, Γ ⇒ Δ, B
R2

≈

Γ, Γ ⇒ Δ, Δ, B,B
cut

Γ ⇒ Δ, B
Lctr, Rctr

The right symmetry rule:
Γ ⇒ Δ, B ≈ A

Γ ⇒ Δ, A ≈ B
Rsym

is derivable in rG3SCI by (where X stands for (B ≈ B) ≈ (A ≈ B)):

⇒ B ≈ B
R1≈

Γ ⇒ Δ, B ≈ A

Γ ⇒ Δ, A ≈ B,X,B ≈ A
Rw

B ≈ B,Γ ⇒ Δ, A ≈ B,X,B ≈ A
Lw Γ ⇒ Δ, A ≈ B,X,B ≈ B

R1≈

B ≈ B,Γ ⇒ Δ, A ≈ B, (B ≈ B) ≈ (A ≈ B)
R3≈

B ≈ B,Γ ⇒ Δ, A ≈ B
R2≈

Γ ⇒ Δ, A ≈ B
cut
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The right transitivity rule:
Γ ⇒ Δ, A ≈ B,A ≈ C Γ ⇒ Δ, B ≈ C,A ≈ C

Γ ⇒ Δ, A ≈ C
Rtrans

is derivable in rG3SCI by (where X stands for (B ≈ B) ≈ (A ≈ C) and Z
stands for B ≈ B):

⇒ B ≈ B
R1

≈

Γ ⇒ Δ, A ≈ C,A ≈ B

Z,Γ ⇒ Δ, A ≈ C,X,A ≈ B
Lw, Rw

Z,Γ ⇒ Δ, A ≈ C,X,B ≈ A
Rsym

Γ ⇒ Δ, A ≈ C,B ≈ C

Z,Γ ⇒ Δ, A ≈ C,X,B ≈ C
Lw, Rw

B ≈ B,Γ ⇒ Δ, A ≈ C,X
R3

≈

B ≈ B,Γ ⇒ Δ, A ≈ C
R2

≈

Γ ⇒ Δ, A ≈ C
L≈

Now we shall consider substitution in rG3SCI. By applying the scheme R
shown in Section 2 to the following axiom:

λ(A) ∧ A ≈ B → λ(B)

we obtain the right-sided equivealent of the rule Lsub:

Γ ⇒ Δ, λ(B), λ(A) Γ ⇒ Δ, λ(B), A ≈ B

Γ ⇒ Δ, λ(B)
Rsub

Proposition 3. Assuming the rules of cut and contraction, the rule Rsub

is derivable in rG3SCI.

Proof. The following derivation:

Γ ⇒ Δ, λ(B), λ(A)
Γ ⇒ Δ, λ(B), A ≈ B A ≈ B, λ(A) ⇒ λ(B)

λ(A), Γ ⇒ Δ, λ(B), λ(B)
cut

Γ, Γ ⇒ Δ, Δ, λ(B), λ(B), λ(B)
cut

Γ ⇒ Δ, λ(B)
Lctr, Rctr

establishes derivability of Rsub. Note that the rightmost premiss has to
be provable due to the fact that rG3SCI is complete with respect to SCI-
semantics.

6. Final Remarks

In this paper we have introduced two systems for the logic SCI, following
the strategy described by Negri and von Plato [5]. We have showed that the
cut rule is admissible in the system obtained by an application of the left
strategy. We have also presented a conjecture according to which the rule of
cut is not admissible in the right system. These calculi are not analytic (even
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if the cut rule is putted aside) in the sense that not all formulas occurring in
a derivation for a given formula A have to be subformulas of A, nevertheless
the structural rules of weakening and contraction are admissible in them.

Since our completeness proof is not direct and relays on Hilbert-style
system for SCI, we have not developed a systematic decidability procedure
for the introduced calculi—we consider it as one of the main open problems,
which we intend to tackle in the future.

A detailed comparison between systems presented here and other systems
for SCI would require a decidability procedure based on lG3SCI or rG3SCI

and a definition of a canonical derivation. At the moment we are not in a
possession of decidability procedure, therefore we will stay on the level of a
few basic observations concerning the relation to the system based on dual
tableaux [9]. As we mentioned, this formalisation of SCI is based on one
specific rule:

λ(A)

A ≈ B, λ(A) λ(B), λ(A)

where λ(A) is a formula, which has A as its subformula and λ(B) is obtained
from λ(A), by replacing some occurrences of formula A in λ(A) by a formula
B. We proved that the sequent version of this rule, obtained from the axiom

λ(A) ∧ A ≈ B → λ(B) (2)

by the right strategy is derivable in the system rG3SCI (without cut-rule)
and the rule obtained from axiom 2 by the left strategy is derivable in
rG3SCI + cut.

This observation is not supposed to mean that any of the systems intro-
duced are better suited for proof search than dual tableaux system. This
only means that presented systems are general enough to simulate deriva-
tions performed in dual tableaux formalisation of SCI.

Moreover we have shown that there is an asymmetry between the left
and right strategy in the case of SCI. We suppose that this difference (which
is reflected in non-admissibility of the cut rule in the right system) is caused
by non-atomic character of SCI axioms. The question of possible extensions
of Negri strategy remains open.
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