Skip to main content
Log in

Cosmological Density Perturbations in Newtonian- and MONDian Gravity Scenario: A Symmetry-Based Approach

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We investigate the evolution of linear density contrasts obtained with respect to a homogeneous spatially flat Friedman-Lemaître–Robertson–Walker (FLRW) background by solving the density contrast equations governed by Newtonian and MONDian force laws using symmetry-based approach. We find eight-parameter Lie group symmetries for the linear order density perturbation equation for the Newtonian case whereas the density contrast equation follows only one parameter Lie group symmetry in MONDian case. We use Lie symmetries to find the group invariant solutions from invariant curve condition. The physical features of the evolution for various mode of density contrast with respect to the global cosmic background density in homogeneous isotropic cosmological models have been investigated using analytical group invariant solutions along with their numerical solutions. An account for cosmological density contrast and mass fluctuation also have been provided. We also have shown that the MONDian force law generates higher amplitudes in the density fluctuation, results in a more rapid structure formation that cannot be possible under the Newtonian force law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: First year Wilkinson Microwave Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  2. Sachs, R.K., Wolfe, A.M.: Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73 (1967)

    Article  ADS  Google Scholar 

  3. Jeans, J.H.: The stability of spiral nebula. Philos. Trans. 199A, 49 (1902)

    Google Scholar 

  4. Jeans, J.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929)

    MATH  Google Scholar 

  5. Lifshitz, E.M.: On the gravitational instability of the expanding universe. JETP 16, 987 (1946)

    MATH  Google Scholar 

  6. Weinberg, S.: Cosmology. Oxford University Press Inc., New York (2008)

    MATH  Google Scholar 

  7. Peebles, P.J.E.: The Large-Scale Structure of the Universe. Princeton Series in Physics. Princeton University Press, Princeton (1980)

    Google Scholar 

  8. Zel’dovich, Ya B., Novikov, I.D.: Relativistic astrophysics. I. Usp. Fiz. Nauk 84, 377 (1965)

  9. Sakharov, A.D.: The initial stage of an Expanding Universe and Appearance of a Nonuniform Distribution of Matter. ZhETF 49, 345 (1965); translation in JETP Lett. 22, 241 (1966)

  10. Guth, A.H.: In: Freedman, W.L. (ed.) Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series, vol. 2. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  11. Moffat, J.W.: Scalar–tensor–vector gravity theory. JCAP 0603, 004 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Skordis, C., Mota, D.F., Ferreira, P.G., Boehm, C.: Large scale structure in Bekensteins theory of relativistic modified newtonian dynamics. Phys. Rev. Lett. 96, 011301 (2006)

    Article  ADS  Google Scholar 

  13. McGaugh, S.S.: A tale of two paradigms: the mutual incommensurability of \(\Lambda CDM\) and MOND. Can. J. Phys. 93, 250 (2015)

    Article  ADS  Google Scholar 

  14. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. J. Astrophys. 270, 365 (1983)

    Article  ADS  Google Scholar 

  15. Sanders, R.H., McGaugh, S.S.: Modified Newtonian dynamics as an alternative to dark matter. Annu. Rev. Astron. Astrophys. 40, 263 (2002)

    Article  ADS  Google Scholar 

  16. McGaugh, S.S., de Blok, E.: High-resolution rotation curves of low surface brightness galaxies. I. Data. Astrophys. J. 499, 66 (1998)

    Article  ADS  Google Scholar 

  17. Sanders, R.H.: Clusters of galaxies with modified Newtonian dynamics. Mon. Not. R. Astron. Soc. 342, 901 (2003)

    Article  ADS  Google Scholar 

  18. Pointecouteau, E., Silk, J.: New constraints on modified Newtonian dynamics from galaxy clusters. Mon. Not. R. Astron. Soc. 364, 654 (2005)

    Article  ADS  Google Scholar 

  19. Fabris, J.C., Velten, H.E.S.: MOND virial theorem applied to a galaxy cluster. Br. J. Phys. 39, 592 (2009)

    Article  ADS  Google Scholar 

  20. Clowe, D.: A direct empirical proof of the existence of dark matter. Astrophys. J. Lett 648, L109 (2006)

    Article  ADS  Google Scholar 

  21. Milgrom, M.: MOND Particularly as Modified Inertia. (2011). arXiv:1101.5122v1

  22. Calmet, X., Kuntz, I.: What is modified gravity and how to differentiate it from particle dark matter? (2017). arXiv:1702.03832v2

  23. Milgrom, M.: MOND theory. (2014). arXiv:1404.7661v2

  24. Scarpa, R.: Modified Newtonian Dynamics, an Introductory Review. astro-ph/0601478 (2006)

  25. Nusser, A.: Modified Newtonian dynamics of large-scale structure. Mon. Not. R. Astron. Soc. 331, 909 (2002)

    Article  ADS  Google Scholar 

  26. Nusser, A., Pointecouteau, E.: Modeling the formation of galaxy clusters in MOND. Mon. Not. R. Astron. Soc. 366, 969 (2006)

    Article  ADS  Google Scholar 

  27. Olver, P.J.: Applications of Lie Groups to Differential equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  28. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons, Inc., New York (1972)

    Google Scholar 

  29. Bonnor, W.B.: Jeans’ formula for gravitational instability. Mon. Not. R. Astron. Soc. 117, 104 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sanders, R. H.: Cluster of galaxies with modified Newtonian dynamics (MOND). (2002). arXiv:astro-ph/0212293v1

  31. Famaey, B., McGaugh, S.S.: Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extension. Living Rev. Relativ. 15, 10 (2012)

    Article  ADS  Google Scholar 

  32. Milgrom, M.: New physics at low accelerations (MOND): an alternative to dark matter. (2010). arXiv:0912.2678v2

Download references

Acknowledgements

AC acknowledges UGC, The Government of India, for financial support through Project No. F.30-302/2016(BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Choudhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, A., Ganguly, A. Cosmological Density Perturbations in Newtonian- and MONDian Gravity Scenario: A Symmetry-Based Approach. Found Phys 49, 63–82 (2019). https://doi.org/10.1007/s10701-018-00233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-00233-z

Keywords

Navigation