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We construct a new biparametric three-point method with memory to highly improve the computational efficiency of its original
partner, without adding functional evaluations. In this way, through different estimations of self-accelerating parameters, we have
modified an existing seventh-order method. The parameters have been defined by Hermite interpolating polynomial that allows the
accelerating effect. In particular, the R-order of the proposed iterative method with memory is increased from seven to ten. A real
multidimensional analysis of the stability of this method with memory is made, in order to study its dependence on the initial
estimations. Taking into account that usually iterative methods with memory are more stable than their derivative-free partners
and the obtained results in this study, the behavior of this scheme shows to be excellent, but for a small domain. Numerical
examples and comparison are also provided, confirming the theoretical results.

1. Introduction

In recent times, solving nonlinear problems described by
f x = 0 is burning difficulty in real-world phenomena. In
this direction, numerous iterative methods have been pro-
jected (see, e.g., [1–7]). These iterative methods have a note-
worthy area of research in numerical analysis, as they can be
applied in several areas of pure or applied sciences. Out of
them, the most eminent one-point iterative method without
memory is the Newton-Raphson scheme, which is given by

xn+1 = xn −
f xn
f ′ xn

, n = 0, 1,… 1

and has second-order convergence. One drawback of this
method is the clause f ′ xn ≠ 0, which confines its applications.

The first objective and inspiration to design iterative
methods for solving this kind of problem are to get the high-
est order of convergence with the least computational cost.
Therefore, a lot of researchers have paid much interest to
construct optimal multipoint methods without memory, in
the sense of Kung-Traub’s conjecture [8], using n + 1 func-
tional evaluation which can reach the optimal 2n. The
paper follows three main goals: primarily, to avoid the
restriction f ′ x ≠ 0 in the practice; along with the subse-
quent goal, to develop the proposed families to methods with
memory in an approach that achieves convergence R-order
10 without any new functional evaluation; and to analyze
the dependence of the resulting scheme from the set of initial
estimations used.

Multipoint schemes have enormous practical meaning, as
they conquer theoretical limits of any point-to-point scheme
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about order and efficiency. They also generate approxima-
tions of higher precision and highly improved computer
arithmetics, and symbolic calculation has allowed efficient
execution of multipoint methods.

On the other hand, iterative schemes with memory utilize
information from the recent and preceding iterations. Traub,
in [9], designed the first method with memory by a small
change in the well-known Steffensen’s scheme as follows:

un = xn + ρn f xn , ρn ≠ 0,

xn+1 = xn −
f xn

f xn, un
, n ≥ 0,

2

where x0 and ρ0 are given; ρn is a self-accelerating parameter
defined as

ρn+1 =
−1

N1′ xn
, N1 x = f xn + x − xn f xn, un , n ≥ 0,

3

whereN1 x is Newton’s interpolating polynomial of the first
degree. The order of convergence of (2) was 2 41.

More recently, some authors have constructed iterative
schemes with memory from optimal procedures of different
orders, mainly four (see, e.g., [10–12]), eight ([13–15], among
others), or even general n-point schemes [16, 17]. Some good
reviews regarding the acceleration of convergence order by
using memory are [18, 19].

The convergence order of a new method is improved
regarding its without memory partner; it is derived by adding
self-accelerating parameters but holding the derivatives in
the iterative expression. The accelerated convergence rate
has been obtained without additional functional evaluations,
which results in higher computational efficiency. However,
another important aspect of an iterative method to be consid-
ered is the numerical stability, that is, the analysis that tells us
how dependent the scheme of the initial guesses used is. The

dynamical performance of the rational functions associated
to iterative schemes is a very useful element to study their
dependence on initial estimations. In recent years, complex
discrete dynamics has been widely used on iterative methods
without memory (see, e.g., [20–23]). Nevertheless, it is
known that iterative schemes with memory cannot be ana-
lyzed by means of these techniques. This is the reason why
the authors focused in [24–26] their qualitative study by
transforming them into multidimensional dynamical sys-
tems, as their qualitative properties can be analyzed by using
standard tools as the classical Hénon map (see [27, 28]).

In this manuscript, we have obtained a multipoint
method with memory, to solve the nonlinear equations
followed by its convergence and stability analysis. Sections
2, 3, and 4 can be summarized as follows: in Section 2, we
design a biparametric three-point iterative scheme with
memory. The method has been obtained by employing two
self-accelerating parameters, which use current and previous
data from available information. These parameters are recal-
culated at each iteration by using Hermite interpolating poly-
nomials, increasing from 7 to 10 the order of convergence.
Section 3 is related to the qualitative analysis of the proposed
scheme in terms of the real discrete dynamical system
involved. After introducing some basic concepts, the stability
of the method on a low degree generic polynomial is studied.
In general, it presents a very stable behavior, but also a cha-
otic one for the values of the parameter in a small domain.
In Section 4, some numerical examples are presented con-
firming the results proven in Section 2.

2. Convergence Analysis

In this section, we demonstrate the improvement of the con-
vergence order of the method given by Khattri and Argyros
[29] by adding up two different parameters in the first and
the third steps. Firstly, we consider the seventh order without
memory scheme presented in [29].

yn = xn −
f xn
f ′ xn

,

zn = yn −
f yn

−f ′ xn + 2 f yn − f xn / yn − xn
,

xn+1 = zn −
f zn

α1 f yn − f xn / yn − xn + α2 f zn − f yn / zn − yn + 1 − α1 − α2 f zn − f xn / zn − xn
,

4

where α1 = −1 and α2 = 1. The error equation for the last step
of (4) is

en+1 = c3 − c22 c22c3e
7
n +O e8n , 5

where cj = f j α /j f ′ α , for j = 2, 3,… , n.

By using two parameters γ and λ in (4) and replacing
α1 = −1 and α2 = 1, we obtain the biparametric family.

yn = xn −
f xn

f ′ xn − γf xn
,
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zn = yn −
f yn

−f ′ xn + 2 f yn − f xn / yn − xn
,

xn+1 = zn − f zn −
f yn − f xn

yn − xn
+ f zn − f yn

zn − yn

+ f zn − f xn
zn − xn

+ λ zn − xn zn − yn

6
The error equations of each step of (6) are

en,y = yn − α = c2 − γ e2n + −2c22 − γ2 + 2c2γ + 2c3 e3n
+⋯ +O e8n ,

7

en,z = zn − α = γ − c2 γ − c2 c2 + c3 e4n
+ 8γc32 − 4c42 + 3γc3 − 2c23 + c22 −6γ2 + 8c3
+ 2c2 γ3 − 5γc3 − c4 + 2γc4 e5n +⋯ +O e8n ,

8

and

en+1 =
γ − c2

2 γ − c2 c2 + c3 −λ + f ′ α c3

f ′ α
e7n +O e8n

9
From (9), we can assure that the order of convergence

of (6) is still seven, with the independence of parameters γ
and λ. This order can be improved from seven to ten, by
taking γ = c2 and λ = f ′ α c3, but root α is not known.

So, to improve the rate of convergence of (6), we recal-
culate the value of parameters γ and λ in each iteration,
by taking γ ≈ c2 and λ ≈ f ′ α c3, as f ′ α , f ′′ α , and f ′′′ α
are not provided. We denote by γn and λn these estima-
tions, and they are computed by using the current and
previous iteration satisfying limn→∞γn = c2 = f ′′ α /2f ′ α
and limn→∞λn = f ′ α c3 = f ′′′ α /6. We consider the follow-
ing formulas for γn and λn, using Hermite interpolating poly-
nomials of different degrees:

γn =
H5″ xn
2f ′ xn

,

λn =
H‴

6 yn
6

10

Theorem 1. Let f I ⊆ℝ→ℝ be a sufficiently differentiable
function and Hm x be the interpolating polynomial of Her-
mite with mth degree that interpolates f x at nodes yn, xn,
xn, t0,… , tm−3 belonging to interval I, and the derivative
f m+1 is continuous in I and the Hermite interpolating polyno-
mial Hm x satisfies conditions Hm yn = f yn , Hm xn =
f xn , Hm′ xn = f ′ xn , and Hm tj = f t j , j = 0, 1,… ,
m − 3.

Let us define et,j = t j − α and j = 0, 1,… ,m − 2 and

(i) All nodes yn, xn, t0,… , tm−3 are close enough to zero α.

(ii) Conditions en = xn − α =O et,0 … et,m−3 and en,y =
yn − α =O e2n, et,0 … et,m−3 hold. Then,

λn − f ′ α c3 ~ −1 m−3 f ′ α cm+1 ∏
m−3

j=0
et,j 11

Proof. It is known that the error expression of Hm x can be
obtained by

f x −Hm x = f m+1 ξ

m + 1 x − yn x − xn
2 ∏
m−3

j=0
x − t j , ξ ∈ I

12

After differentiating (12) at x = yn, we get

f ‴ yn −H‴
m yn

= 6 f
m+1 ξ

m + 1

∏
m−3

j=0
yn − t j + 2 yn − xn

〠
m−3

k=0
∏
m−3

j≠k,j=0
yn − t j + yn − xn

2

2

〠
m−3

k=0
〠
m−3

i≠k,i=0
∏
m−3

j≠k,j≠i,j=0
yn − t j , ξ ∈ I,

H‴
m yn = f ‴ yn − 6 f

m+1 ξ

m + 1

∏
m−3

j=0
yn − t j + 2 yn − xn 〠

m−3

k=0

∏
m−3

j≠k,j=0
yn − t j + yn − xn

2

2 〠
m−3

k=0
〠
m−3

i≠k,i=0

∏
m−3

j≠k,j≠i,j=0
yn − t j , ξ ∈ I

13

Taylor’s development of the derivative of f at xn, yn ∈ I
and ξ ∈ I about α provides

f ′′′ yn = f ′ α 6c3 + 24c4en,y +O e2n,y 14

and

f m+1 ξ = f ′ α m + 1 cm+1 + m + 2 cm+2eξ +O e2ξ ,
15

where eξ = ξ − α. Putting (14) and (15) in (13), we obtain
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H‴
m yn = 6f ′ α

c3 + 4c4en,y − cm+1 ∏
m−3

j=0
yn − t j + 2 yn − xn

〠
m−3

k=0
∏
m−3

j≠k,j=0
yn − t j + yn − xn

2

2 〠
m−3

k=0
〠
m−3

i≠k,i=0

∏
m−3

j≠k,j≠i,j=0
yn − t j ,

16

which implies

λn =
H‴

m yn
6 ~ f ′ α

c3 + 4c4en,y − cm+1 ∏
m−3

j=0
yn − t j + 2 yn − xn 〠

m−3

k=0

∏
m−3

j≠k,j=0
yn − t j + yn − xn

2

2 〠
m−3

k=0
〠
m−3

i≠k,i=0

∏
m−3

j≠k,j≠i,j=0
yn − t j ,

17

that is,

λn − f ′ α c3 ~ f ′ α

−cm+1 ∏
m−3

j=0
yn − t j + 2 yn − xn 〠

m−3

k=0
∏
m−3

j≠k,j=0
yn − t j

+ yn − xn
2

2 〠
m−3

k=0
〠
m−3

i≠k,i=0
∏
m−3

j≠k,j≠i,j=0
yn − t j + 4c4en,y

18

or

λn − f ′ α c3 ∼ −1 m−3 f ′ α cm+1 ∏
m−3

j=0
et,j 19

The concept of the R-order of convergence [30] and the
subsequent declaration (see [4], p.287) is used to approxi-
mate the order of convergence of (6).

Then, we can prove the following result.

Theorem 2. Let f I ⊆ℝ→ℝ be a sufficiently differentiable
function and let γn and λn be the varying parameters in itera-
tive scheme (6) obtained by means of (10). If the initial esti-
mate x0 is close enough to a simple root α of f x , then, the
R-order of the iterative method is at least 10. We denote this
scheme by OM10.

Proof. Let xn be the generated sequence by scheme OM10.
As it converges to the root α of f x , with R-order r, we write

en+1 ~Dn,re
r
n, 20

where en = xn − α. If n→∞, then, Dn,r →Dr . Therefore,

en+1 ~Dn,r Dn−1,re
r
n−1

r =Dn,rD
r
n−1,re

r2
n−1 21

Let us consider now sequences yn and zn with
R-order p and q, respectively; then,

en,y ~Dn,pe
p
n ~Dn,p Dn−1,re

r
n−1

p =Dn,pD
p
n−1,re

rp
n−1, 22

and

en,z ~Dn,qe
q
n ~Dn,q Dn−1,re

r
n−1

q =Dn,qD
q
n−1,re

rq
n−1 23

The following error expression of the method with mem-
ory (6) can be obtained by (7), (8), and (9) and the varying
parameter γn and λn.

en,y = yn − α ~ c2 − γn e2n, 24

en,z = zn − α ~ γn − c2 γn − c2 c2 + c3 e4n, 25

and

en+1 = xn+1 − α ~
γ − c2

2 γ − c2 c2 + c3 −λ + f ′ α c3

f ′ α
e7n

26

Here, we excluded higher order terms in (24), (25),
and (26).

In method OM10, γn is calculated by (10): Hermite inter-
polating polynomial H5 x satisfies conditions H5 xn =
f xn , H5′ xn = f ′ xn , H5 zn−1 = f zn−1 , H5 yn−1 =
f yn−1 , H5 xn−1 = f xn−1 , and H5′ xn − 1 = f ′ xn − 1 .
After differentiating twice the error expression of H5 x at
point x = xn, we get

H′5′ xn = f ′′ xn − 2 f
6 ξ

6 n − xn−1
2

xn − zn−1 xn − yn−1 , ξ ∈ I
27

By using Taylor’s expansion of f ′ and f ′′ at xn ∈ I and
ξ ∈ I about α,

f ′ xn = f ′ α 1 + 2c2en + 3c3e2n +O e3n , 28

f ′′ xn = f ′ α 2c2 + 6c3en +O e2n , 29

and

f m+1 ξ = f ′ α m + 1 cm+1 + m + 2 cm+2eξ +O e2ξ
30

From (30), we have

f 6 ξ = f ′ α 6 c6 + 7 c7eξ +O e2ξ , 31

where eξ = ξ − α. By replacing (29) and (31) into (27),
we obtain
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H′5′ xn ∼ 2f ′ α c2 − c6en−1,yen−1,ze
2
n−1 + 3c3en 32

Now, dividing (32) by (28),

γn =
H5 xn
2f xn

~ c2 − c6en−1,yen−1,ze
2
n−1 + 3c3 − 2c22 en ,

33

or

γn − c2 ~ −c6en−1,yen−1,ze
2
n−1 34

As λn is calculated by (10), the third derivative of Her-
mite interpolating polynomial H6 x satisfies

H′′6′ yn = f ′′′ yn −
f 7 ξ

7
6 yn − xn−1

2 yn − yn−1 yn − zn−1

+ 16 yn − xn−1
2 yn − xn yn − zn−1

+ 16 yn − xn−1
2 yn − xn yn − yn−1

+ 16 yn − xn
2 yn − xn−1 yn − zn−1

+ 16 yn − xn
2 yn − xn−1 yn − yn−1

+ 24 yn − xn−1 yn − xn yn − yn−1 yn − zn−1
+ 12 yn − xn−1

2 yn − xn
2 + 6 yn − xn

2

yn − yn−1 yn − zn−1 , ξ ∈ I

35

From (30), we have

f 7 ξ = f ′ α 7 c7 + 8 c8eξ +O e2ξ 36

Substituting (14) and (36) into (35), we obtain

H′′6′ yn ∼ 6f ′ α c3 − c7en−1,yen−1,ze
2
n−1 , 37

and hence,

λn =
H′′6′ yn

6 ∼ f ′ α c3 − c7en−1,yen−1,ze
2
n−1 , 38

or

λn − f ′ α c3 ~ −f ′ α c7en−1,yen−1,ze
2
n−1 39

According to (24), (25), (26), (34), and (39), we get

en,y ~ −c6en−1,yen−1,ze
2
n−1 Dn−1,re

r
n−1

2

~ −c6Dn−1,pDn−1,qD
2
n−1,re

p
n−1e

q
n−1e

2r
n−1e

2
n−1

~ −c6Dn−1,pDn−1,qD
2
n−1,re

p+q+2r+2
n−1 ,

40

en,z ~ c6en−1,yen−1,ze
2
n−1 Dn−1,re

r
n−1

4

~ c6Dn−1,pDn−1,qD
4
n−1,re

p
n−1e

q
n−1e

4r
n−1e

2
n−1

~ c6Dn−1,pDn−1,qD
4
n−1,re

p+q+4r+2
n−1

41

and

en+1 ~ c26 en−1,yen−1,ze
2
n−1

2 −c7 f ′ α en−1,yen−1,ze
2
n−1

Dn−1,re
r
n−1

7 ~ −c26c7 f ′ α e3n−1,ye
3
n−1,ze

6
n−1D

7
n−1,re

7r
n−1

~ −f ′ α c26c7D
3
n−1,pD

3
n−1,qD

7
n−1,re

3p
n−1e

3q
n−1e

7r
n−1e

6
n−1

~ −f ′ α c26c7D
3
n−1,pD

3
n−1,qD

7
n−1,re

3p+3q+7r+6
n−1

42

By comparing the exponents of en−1 featuring in the three
pairs of relation (22)-(40), (23)-(41), and (21)-(42), the sub-
sequent system is provided.

2r + p + q + 2 = rp,
4r + p + q + 2 = rq,

7r + 3p + 3q + 6 = r2

43

The unique positive solution of (43) is r = 10, q = 5, and
p = 3. So R-order of method (6), for γn and λn being calcu-
lated by (10), is at least 10.

3. Multidimensional Dynamical Study

In this section, we build the discrete dynamical system asso-
ciated to OM10, for overcoming its qualitative analysis. The
general iterative expression of a fixed-point procedure that
employs two previous iterations in order to get the following
one is

xn+1 = h xn−1, xn , n ≥ 1, 44

where x0 and x1 are initial approximations. But if the scheme
is a three-step one, as OM10, not only xn−1 but also the sub-
sequent intermediate points yn−1 and zn−1 must be used to
calculate the following iterate xn with a high order of conver-
gence. So the fixed point iteration is expressed as

xn+1 = g xn−1, yn−1, zn−1, xn , n ≥ 1 45

To obtain the fixed points, we define the fixed point
multidimensional function G ℝ4 →ℝ4 associated to g by
means of

G xn−1, yn−1, zn−1, xn
= xn, yn, zn, xn+1
= xn, yn, zn, g xn−1, yn−1, zn−1, xn , n = 1, 2,…

46

Therefore, a fixed point of G satisfies xn+1 = xn and
xn−1 = yn−1 = zn−1 = xn.

We define a discrete dynamical system in ℝ4 from
function G ℝ4 →ℝ4, given by

G z, zy, zz, x = x, xy, xz, g z, xy, xz, x , 47

where the steps of nth and (n − 1)th iterations are denoted by
z = xn−1, zy = yn−1, zz = zn−1, xy = yn, xz = zn, and x = xn.
Fixed points z, zy, zz, x of G satisfy z = zy = zz = x and
x = g z, xy, xz, x . By imposing these conditions to the
rational operator G, it can be reduced to a real-valued func-
tion g x , to study the asymptotic stability of these points.
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If all the components of a fixed point of G are different
from r, r being a zero of the nonlinear scalar function f , then,
it is called strange fixed point.

Let G ℝ4 →ℝ4 be a vectorial function. The orbit of a
point x ∈ℝ4 is defined as x,G x ,… ,Gn x ,… .

A point x∗ ∈ℝ4 is a k-periodic point if Gk x∗ = x∗ and
Gp x∗ ≠ x∗, for p = 1, 2,… , k − 1.

The stability of fixed points in multivariate operators
(see, e.g., [31]) is analyzed as follows.

Theorem 3. Let G from ℝm to ℝm be of class C2. Assume
x∗ is a k-periodic point. Let λ1, λ2,… , λm be the eigenvalues of
G′ x∗ .

(a) If all the eigenvalues λj have ∣λj∣ < 1, then, x∗ is
attracting.

(b) If one eigenvalue λj0
has ∣λj0

∣ > 1, then, x∗ is unstable,
that is, repelling or saddle.

(c) If all the eigenvalues λj have ∣λj∣ > 1, then, x∗ is
repelling.

In addition, a fixed point is hyperbolic if λj satisfies λj

≠ 1∀j. In particular, if λi exists such that ∣λi∣ < 1 and λ j such
that ∣λj∣ > 1, then, the hyperbolic point is a saddle point.

Let us remark the difference between the stability of a
fixed point x∗ in one-dimensional dynamics and that in
multidimensional dynamics: meanwhile, in the scalar case,
the stability of the fixed point depends on the value of the
derivative operator at the point: (∣R′ x∗ ∣ < 1 means that
x∗ is attracting, superattracting if ∣R′ x∗ ∣ = 0 and repulsive
if ∣R′ x∗ ∣ > 1, R being the rational function associated to the
iterative method applied on a polynomial p x ); in the multi-
dimensional case, the eigenvalues of the Jacobian matrix
associated to the fixed point operator are the elements that
determine the character of the fixed points.

Moreover, a point x is called critical if the associated
Jacobian matrix G′ x satisfies det G′ x = 0 (in the one-
dimensional case, a critical point is that what makes the
derivative fixed point operator vanish). One way to calcu-
late critical points, for iterative methods of convergence
order higher than two, is to find those fixed points with null
eigenvalues λj = 0, ∀j. In the case that they are also fixed
points, they are called superattracting, as an extension of
the scalar case.

So, x∗ being an attracting fixed point of G, its basin of
attraction A x∗ is defined as

A x∗ = x 0 ∈ℝn Gm x 0 → x∗,m→∞ 48

A key result from Julia and Fatou [32] proves the rela-
tionship between the existence of free critical points (they
are called in this way if they are different from the roots of
p x ) and the set of initial points that converge to an attract-
ing periodic point: there is at least one critical point associ-
ated with each invariant Fatou component. So observing

the orbit of the critical points, all the attracting behaviors
can be found. This result is valid as for complex as for real
iterative functions. The main drawback is that often the
analytic expression of the critical points cannot be found
in high-order methods, because of the elevated degree of
the polynomials involved in the rational function.

The union of all the basins of attraction defines the Fatou
set, usually represented as a dynamical plane. It is numeri-
cally constructed starting with a mesh of initial guesses, iter-
ating the method on them and assigning different colors
depending on the basin they converge to.

3.1. Dynamical Analysis of OM10. Now, we study the behav-
ior of the operator associated to scheme OM10 on quadratic
polynomials. In order to get this aim, the asymptotic stability
of the fixed points of the associate rational vector applied on
p x = x2 − c, with c ∈ℝ, must be analyzed. It is clear that, if
c > 0, p x has two simple real roots, it has one double root
at x = 0 if c = 0 and p x does not have real roots if c < 0.

We need to calculate the fixed points of the associate
fixed point operator on method OM10 on p x = x2 − c,
M z, zy, zz, x, c , that is, a high-degree rational function
depending on the parameter of the polynomial c. How-
ever, it is not viable to analyze directly the fixed points of this
operator, as usually indetermination appears when we calcu-
late the fixed points due to cancelations of factors as z − x ,
zy − x , ansd zz − x in the denominator of M z, zy, zz,
x, c . In order to avoid this and using that all the fixed points
have equal components, we force firstly zy = zz = x and, after
simplifying, z = x. The resulting one-dimensional reduced
operator is

M z, zy, zz, x, c ∣zy=zz=x ∣z=x

=m x, c = x2 x − 1 2 + c 6x2 − 6x + 1 + c2

2 2x − 1 c + x x − 1

49

Moreover, there are two values of c which reduce the
rational function:

(i) If c = 0, then,

m x, 0 = −1 + x x
−2 + 4x 50

(ii) If c = 1/4, then,

m x, 14 = 5 − 4x + 4x2
−8 + 16x 51

Proposition 1. The number of real fixed points (and their
stability) of m x, c depends on the value of parameter c:

(a) If c < 0, p x has no real roots, so fixed points s1
c = 2/3 − 1/3 1 − 3c and s2 c = 2/3 + 1/3
1 − 3c are strange, being both repulsive.
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(b) If c = 0, the only (double) root of p x , x = 0 is an
attracting fixed point of m x, 0 and also x = 1/3 is a
repulsive strange fixed point.

(c) When 0 < c < 1/4 or c > 1/4, fixed points c, c and
− c, − c are superattracting (corresponding to the
roots of p x ). Moreover, s1 c and s2 c are strange
fixed points if 1/4 < c ≤ 1/3; s1 c is always repulsive,
and s2 c is attracting if c ∈ 7/25, 1/3 and superat-
tracting if c = 5/16.

For c = 1/4, there is only one (superattracting) fixed point
that is a root of p x , x = −1/2 and one strange fixed point,
x = 5/6, that is repulsive.

4
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1

−15 −10 −5 0 5 10 15

(a) λ1 = m s1 c , c

4

3

2

1

−2 −1 0 1 2

(b) λ2 = m s2 c , c

Figure 1: Absolute value of the eigenvalues λi of M si c , si c , si c , si c , c , i = 1, 2.
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Figure 2: Dynamical planes of OM10 on p x = x2 − c.

Proof. It is straightforward that identity m x, c = x leads us
to the fixed points. Specifically,

m x, c = c2 + c 6x2 − 6x + 1 + x − 1 2x2

2 2x − 1 c + x − 1 x

= x⇔ c − x2 1 + c − 4x + 3x2 = 0,
52

provided that 2x − 1 c + x − 1 x ≠ 0. That is, the fixed
points of m x, c are the roots of p x or the real roots of
polynomial 1 + c − 4x + 3x2. Then, real strange fixed points
s1 c and s2 c appear when c ≤ 1/3.
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Regarding their stability, it can be checked that the eigen-
values of the reduced Jacobian matrix coincide with the
derivative of mx x, c : .

Eig M′ z, zy, zz, x, c zy=zz=x z=x

=mx x, c = x − 1 2 − c x2 − c −2c + 2x2 − 2x + 1
2 1 − 2x 2 c + x − 1 x 2 ,

53

and then, their stability is easily stated.

mx s1 c , c = −24c − 2 1 − 3c + 7
−6c + 1 − 3c + 1

> 1, ∀c ∈ℝ, 54

and

mx s2 c , c = 24c − 2 1 − 3c − 7
6c + 1 − 3c − 1

< 1, if c ∈ 7
25 ,

1
3,

55

where mx s2 c , c = 0 for c = 5/16. This is graphically
checked in Figure 1.

An example of the behavior stated at Proposition 1 is pre-
sented at Figure 2, where the basins of attraction for different
values of c are showed. These pictures have been generated
by means of a real mesh x, z of 800 × 800 points, following
the routines appearing in [33]. For each initial pair x, z ,
intermediate values zy and zz have been generated from z
by adding a small random value (in MATLAB code, zy =
z + 0 01 ∗ rand 1 and zz = z + 0 01 ∗ rand 1 ). When the
method is executed on each initial estimation x, z under
these conditions, the point of the mesh is represented in
orange or blue color if the process has converged to one
of the roots c or − c at a distance lower than 10−3; other
colors correspond to convergence to strange fixed points,
and black points to initial guesses that make the method
diverge or do not converge after a maximum number of
iterations, 200.

Let us remark that c = 5/16 is the value of parameter c
that makes the strange fixed point s2 c superattractor;
even in this situation, it is difficult to find initial estimations
converging to it (a converging orbit to s2 5/16 is plotted in
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Figure 3: Bifurcation diagrams of family OM10 on p x for free independent critical points.
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Figure 2(b)), as the most of them converge to the roots
(orange and blue areas of Figure 2(a)) but some of them con-
verge to 2-periodic orbits (black area appearing in Figure 2(c)
where the initial estimation of the orbit is selected). Also,
c = 0 1 is used and convergence is observed (Figure 2(d)) to
both roots with black areas of slow convergence. No other
attractors appear. In Figure 2(e), the most frequent behavior
is the convergence to the roots, but a black line of conver-
gence to a 2-periodic orbit near 1, 1 also appears. In the
case of double root, corresponding to c = 0 (see Figure 2(f)),
convergence to x = z = 0 is very slow.

On the other hand, critical points play a key role in the
stability of the system, as they appear always in any basin of
attraction. Then, it is necessary, not only to calculate them
but also to analyze their asymptotic behavior, in order to
detect all the attracting elements: attracting fixed points, peri-
odic orbits, strange attractors, and so on. This is the reason
why we calculate the free critical points of mx x, c , with
equal components, in the following result. Maybe other crit-
ical points of the multivariate rational functions exist, but
their calculation is not feasible due to the high degree of the
polynomials (of several variables) involved.

Proposition 2. The number of real critical points of m x, c
depends on parameter c, ± c, c > 0 are always critical points,
and also,

(a) If c > 0, c1 c = 1 − c and c2 c = 1 + c are free
critical points.

(b) If c > 1/4, there also exist two more free critical points:
c3 c = 1/2 − 1/2 −1 + 4c and c4 c = 1/2 + 1/
2 −1 + 4c.

The proof of this result is direct from solving mx x, c =
x − 1 2 − c x2 − c −2c + 2x2 − 2x + 1 / 2 1 − 2x 2

c + x − 1 x 2 = 0 or, equivalently, forcing the eigenvalues
of the reduced Jacobian matrix to be zero.

Let us remark that, although the dynamics of the method
seems to be stable from the dynamical planes plotted and the
analysis of the strange fixed points, the presence of any of
these critical points can make them bifurcate into periodic
orbits or to generate chaos for specific values of c. In what fol-
lows, we analyze how it changes depending on c and if there
exists any other kind of bifurcations that leads to repulsive or
attractive points or to periodic or strange attractors.

3.2. Feigenbaum Diagrams. In order to analyze bifurcations,
we employ Feigenbaum diagrams of the multidimensional
rational function related to OM10 on p x , by using as initial
estimation real critical points described in Proposition 2 and
searching those ranges where changes of behavior happen.
The critical points are not independent but conjugated two-
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Figure 4: Bifurcation diagrams of family OM10 on p x for free independent critical points.

Table 1: Nonlinear test functions along with their zeros.

Nonlinear function Root

f1 = x3 − x2 − 1 1.4655…

f2 = x − 1 3 − 1 2.0000…

f3 = x3 − 10 2.1544…

9Complexity



by-two: c1 c = −1/c2 c and c3 c = −1/c4 c . Nevertheless, it
is necessary to analyze the bifurcation diagram correspond-
ing each one of them, as their performance is different.

By using the critical point c1 c as the starting guess, a
bifurcation diagram is observed in Figure 3(a). In this case,
it is observed that the critical point is in the basin of attrac-
tion of the roots − c, as converges to it for c > 0. A symmet-
ric behavior is obtained for c2 c as the initial estimation,
belonging to the basin of attraction of the root c. In
Figure 3(b), critical point c3 c shows also convergence
to one of the roots, but c4 c shows a chaotic behavior
for 1/4 < c < 1/3, with period-doubling bifurcation cascades
as can be observed in Figures 3(c) and 3(d).

We plot the iteration of m x, c for the values of c in one
of the blue regions of Figure 3(d), in the x, z space. In the
sequence shown in Figure 4, several strange attractors
appear, separated or unified depending on very close values
of c. These plots have been generated by fixing a value of c,
with an initial estimation at x = 0 8. OM10 which has been
applied on it, plotting one point per iteration (blue for the
first 2000 iterations, green for iteration 2001 to 4000, and
magenta for iteration 4001 to 10,000). The resulting images
show that several attracting points joint into wandering areas
that are unified and separated depending on c.

4. Numerical Comparison

In this section, after a review of two and three steps with
memory methods, we have tried some schemes to be com-
pared with proposed biparametric three-step method
OM10, (6). This method is compared with methods XW41
(16–18), XW42 (16–19), XW43 (16–20), XW44 (17-18),
XW45 (17–19), and XW46 (17–20) presented in [5],
XW5(18–24) given in [1], method SK7 in [29], and methods
XW81 (37–34), XW82 (37–35), XW83 (37–36), XW84 (38–
34), XW85 (38–35), and XW86 (38–36) given in [6] by using
the test functions shown in Table 1.

A numerical test of methods with memory is usually
made by using starting point x0 and also starting values of
the accelerating parameters: γ0 to calculate y1 and z1 and
thereafter λ0 in order to estimate x1. We check the perfor-
mance of the methods by using this strategy, in order to see

if the unstable behavior is avoided or, on the contrary,
increased. For this, we use γ0 = 0 01 and λ0 = 2. It can be
observed in Figure 5 that the stability of the method is highly
improved when appropriate initial values are considered, not
only x0 but also the steps y1 and z1 and, subsequently, the sec-
ond iterate x1. The areas of convergence around the searched
roots are wide in spite of the complexity of the nonlinear
functions involved, and the behavior of the method is stable.

Table 1 is furnished with the considered nonlinear test
functions with their root (α). In the same table, there are infi-
nite numbers of digits after the decimal but we have men-
tioned only four digits (the nonlinear functions are taken
from [6, 7]). In Table 2, the absolute errors ∣xk − α∣ are given
for presented method OM10. The computational order of
convergence COC approximated using expression (see [34])

COC ≈
ln ∣ f xn+1 /f xn ∣
ln ∣ f xn /f xn−1 ∣

, 56

to check the theoretical order. All the numerical results
revealed in Table 2 agree with previous results; for this, we
have considered up to 2000 significant digits by using “Set
Accuracy” command in Mathematica 8. OM10 has been used
to solve the nonlinear functions, and the calculated results
are compared with the other methods XW41 (16–18),
XW42 (16–19), XW43 (16–20), XW44 (17-18), XW45
(17–19), XW46 (17–20),XW5(18–24), SK7, XW81 (37–34),
XW82 (37–35), XW83 (37–36), XW84 (38–34), XW85
(38–35), and XW86 (38–36). In Table 2, “NC” means
not convergent. From Table 2, it is very easy to identify
that the results obtained by the proposed method are quite
superior to the other two- and three-step schemes.

5. Conclusion

In this work, we have presented a new family of biparametric
three-step schemes with memory to solve nonlinear equa-
tions. As a result, we have used two self-correcting parame-
ters, designed by Hermite interpolating polynomials in the
seventh-order method to achieve higher order convergence
without any additional calculation. The R-order of OM10
increases up to 10. The stability analysis of this family has
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Figure 5: Dynamical planes of OM10 on test functions.
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Table 2: Numerical comparison of bi-parameter with memory method.

Example Method Guess ∣x1 − α∣ ∣x2 − α∣ ∣x3 − α∣ ∣x4 − α∣ COC

f1

XW41 (16–18), T0 = 1 5, a = 8 1.3 NC — — — —

XW41 (16–19), T0 = 1 5, a = 8 NC — — — —

XW41 (16–20), T0 = 1 5, a = 8 NC — — — —

XW41 (17-18), T0 = 1 5, b = −2 0.0437e − 0 0.1582e − 6 0.7900e − 33 0.3499e − 148 4.5591

XW41 (17–19), T0 = 1 5, b = −2 0.0437e − 0 0.4206e − 8 0.1566e − 37 0.1579e − 154 4.3383

XW41 (17–20), T0 = 1 5, b = −2 0.0437e − 0 0.4206e − 8 0.3135e − 35 0.1015e − 152 4.3310

XW81 (37–34), T0 = 1 5, L = 0 0.0240e − 0 0.2017e − 17 0.3801e − 153 0.1089e − 1374 9.0001

XW82 (37–35), T0 = 1 5, L = 0 0.0240e − 0 0.5752e − 18 0.3290e − 174 0.1235e − 1736 10.000

XW83 (37–36), T0 = 1 5, L = 0 0.0240e − 0 0.5752e − 18 0.3290e − 174 0.1250e − 1736 10.000

XW84 (38–34), T0 = 1 5, K = 6 0.0828e − 0 0.2901e − 10 0.3076e − 80 0.1528e − 647 8.1216

XW85 (38–35), T0 = 1 5, K = 6 0.0528e − 0 0.4136e − 13 0.1322e − 124 0.1472e − 1239 10.000

XW86 (38–36), T0 = 1 5, K = 6 0.0528e − 0 0.4136e − 13 0.1322e − 124 0.1472e − 1239 10.000

XW5 (18–24), T0 = −1 5, K0 = −1 5 0.8364e − 3 0.1055e − 13 0.7715e − 66 0.1276e − 315 4.7910

SK7, α1 = −1, α2 = 1 0.2002e − 1 0.4807e − 41 0.1535e − 289 0.3491e − 2029 7.0000

OM10 (4)–(8), γ = 1 5, λ = 1 2 0.7454e − 9 0.1755e − 72 0.9235e − 729 0.1496e − 7291 10.000

f2

XW41 (16–18), T0 = 1 5, a = 8 2.5 NC — — — —

XW41 (16–19), T0 = 1 5, a = 8 NC — — — —

XW41 (16–20), T0 = 1 5, a = 8 NC — — — —

XW41 (17-18), T0 = 1 5, b = −2 NC — — — —

XW41 (17–19), T0 = 1 5, b = −2 NC — — — —

XW41 (17–20), T0 = 1 5, b = −2 NC — — — —

XW81 (37–34), T0 = 1 5, L = 0 3.2783e − 4 5.6640e − 33 7.5622e − 293 9.9847e − 2632 9.0000

XW82 (37–35), T0 = 1 5, L = 0 3.2783e − 3 1.7686e − 36 3.6959e − 354 5.8712e − 3586 10.000

XW83 (37–36), T0 = 1 5, L = 0 3.2783e − 3 1.7686e − 36 3.6959e − 354 5.8712e − 3586 10.000

XW84 (38–34), T0 = 1 5, K = 6 NC — — — —

XW85 (38–35), T0 = 1 5, K = 6 NC — — — —

XW86 (38–36), T0 = 1 5, K = 6 NC — — — —

XW5 (18–24), T0 = −1 5, K0 = −1 5 1.2283e − 2 4.9823e − 11 5.6852e − 53 1.0497e − 262 5.000

SK7, α1 = −1, α2 = 1 1.0478e − 4 3.0825e − 29 5.8764e − 201 5.3772e − 1403 7.0000

OM10 (4)–(8), γ = 1 5, λ = 1 2 1.5515e − 3 3.9470e − 30 4.5314e − 296 1.8024e − 2955 10.000

f3

XW41 (16–18), T0 = −1 5, a = 8 2.0 2.5035e − 3 5.5559e − 15 6.3146e − 68 2.3358e − 309 4.8601

XW42 (16–19), T0 = −1 5, a = 8 2.5035e − 3 1.0056e − 15 8.3197e − 70 7.0470e − 305 4.3466

XW43 (16–20), T0 = −1 5, a = 8 2.5035e − 3 1.0056e − 15 1.6639e − 69 4.5101e − 303 4.3429

XW44 (17-18), T0 = −1 5, b = −2 1.6966e − 3 1.0769e − 15 3.750e − 71 4.4929e − 324 4.5604

XW45 (17–19), T0 = −1 5, b = −2 1.6966e − 3 1.4415e − 16 1.6141e − 73 4.4565e − 321 4.3469

XW46 (17–20), T0 = −1 5, b = −2 1.6966e − 3 1.4415e − 16 3.2282e − 73 2.8521e − 319 4.3434

XW81 (37–34), T0 = −1 5, L = 0 1.4745e − 7 1.2463e − 66 1.9291e − 598 9.8391e − 5285 9.0000

XW82 (37–35), T0 = −1 5, L = 0 1.4745e − 7 5.9981e − 73 7.4408e − 727 6.4227e − 7266 10.000

XW83 (37–36), T0 = −1 5, L = 0 1.4745e − 7 5.9981e − 73 7.4408e − 727 6.4227e − 7266 10.000

XW84 (38–34), T0 = −1 5, K = 6 7.7322e − 5 5.9725e − 39 3.3296e − 315 2.3998e − 2359 8.1235

XW85 (38–35), T0 = −1 5, K = 6 1.5456e − 4 1.6975e − 41 4.3428e − 411 5.2174e − 4107 10.000

XW86 (38–36), T0 = −1 5, K = 6 1.5456e − 4 1.6975e − 41 4.3428e − 411 5.2174e − 4107 10.000

XW5 (18–24), T0 = −1 5, K0 = −1 5 4.6468e − 4 1.8636e − 19 1.9319e − 96 2.3132e − 481 5.000

SK7, α1 = −1, α2 = 1 7.0030e − 9 1.8357e − 60 1.5607e − 421 5.0127e − 2949 7.0000

OM10 (4)–(8), γ0 = −1 5, λ0 = −1 5 3.0734 e − 7 3.7135e − 70 2.4628e − 699 4.0535e − 6991 10.000
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been made by transforming it in a discrete dynamical system
and studying the asymptotical behavior of the fixed and
critical points. The method has been shown to be very stable
except in few cases. These results have been checked by using
dynamical planes, and the proposed method has been com-
pared in performance and computational efficiency with a
few existing methods by numerical examples. This confirms
the validity of theoretical results.
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