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Abstract. In the first part of this paper we formulate the General Pattern
of Squares of Opposition (GPSO), which comes in two forms. The first form
is based on trichotomies whereas the second form is based on unilateral en-
tailments. We then apply the two forms of GPSO to construct some new
squares of opposition (SOs) not known to traditional logicians. In the second
part of this paper we discuss the hexagons of opposition (6Os) as an alterna-
tive representation of trichotomies. We then generalize GPSO to the General
Pattern of 2n-gons of Opposition (GP2nO), which also comes in two forms.
The first form is based on n-chotomies whereas the second form is based on
co-antecedent unilateral entailments. We finally introduce the notion of per-
fection associated with 2n-gons of opposition (2nOs) and point out that the
fundamental difference between a SO and a 6O is that the former is imper-
fect while the latter is perfect. We also discuss how imperfect 2nOs can be
perfected at different fine-grainedness.
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1. Introduction

The square of opposition (SO) has been an important entity studied in traditional
logic since the ancient times. Yet, for centuries logicians seemed to know only one
type of SO, i.e. the Boethian SO composed of the universal / particular affirmative
/ negative propositions arranged in the four corners named A, E, I and O. These
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Table 1

Name Definition
Subalternate Unilateral entailment (i.e. In case the former proposition is

true, the latter must be true, but not vice versa.)
Contrary Mutually exclusive but not collectively exhaustive (i.e. The

propositions cannot be both true but can be both false.)
Subcontrary Collectively exhaustive but not mutually exclusive (i.e. The

propositions cannot be both false but can be both true.)
Contradictory Both mutually exclusive and collectively exhaustive (i.e.

The propositions cannot be both true nor both false.)

four propositions are linked up by four types of binary opposition relations whose
definitions are given in Table 1.1

In modern times, many scholars tried to unravel the underlying principles
of opposition inferences with a view to achieving a new interpretation of SO.
Such kind of studies includes Brown (1984)’s classification of 4 main types and 34
subtypes of SOs, ([4]), Jaspers’ representation of SO in terms of two-dimensional
Cartesian coordinate ([7]), Seuren’s formulation of the improved square notation
based on his Valuation Space Model ([10]). In this paper, we will generalize the
traditional Boethian SO to a general pattern of SOs. After doing so, we can then
go further by generalizing the notion of “squares of opposition” to “2n-gons of
opposition”.

But before embarking, we have to clarify two points. First, in modern times
some scholars (such as [6], [5], [9]) adopt a new definition of SOs based on the
notions of negation and duality, rather than the traditional opposition relations as
defined in Table 1. This paper will stick to the traditional definition of SOs and
will not consider the new definition. Moreover, one should note that the general
patterns discussed in this paper are derived from traditional SOs and are not
generally applicable to the modern SOs (which should be more accurately called
“squares of duality”.)2

Second, this paper adopts a graph-theoretic rather than geometrical view on
the figures representing the logical relations. Instead of constructing all sorts of
higher-dimensional geometrical figures as was done by the n-Opposition theorists
such as [8] and [11], we will represent the logical relations by 2-dimensional la-
beled multidigraphs, with the vertices representing the propositions and the arcs
representing the opposition relations. The unilateral subalternate relations will be
represented by single arcs with arrow heads, whereas the bilateral contrary, sub-
contrary and contradictory relations will be represented by arcs without arrow

1This paper treats contrary, subcontrary and contradictory as three parallel relations, rather

than treating contradictory as a special case of the other two relations, as some scholars do.
2[9] defined a “square” function which may generate squares of duality composed of sentences
with various types of determiners. This may be seen as a “general pattern of squares of duality”.
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heads which are understood to be double arcs going in opposite directions. Under
this graph-theoretic view, the angles and lengths of the arcs have no significance.

2. General Pattern of Squares of Opposition

2.1. Some Preliminary Observations

We start from some preliminary observations of the Boethian SO. Consider the
subalternate relation between the A (i.e. “All S are P”) and I (i.e. “Some S are
P”) statements first. One crucial point is that if we rewrite the I statement as the
disjunction “All S are P ∨ Part of the S are P”3, then the subalternate relation
automatically obtains as it is only a special case of the unilateral entailment4

p1 ⇒u (p1 ∨ p2) in propositional logic. The same can be said of the subalternate
relation between the E (i.e. “All S are not P”, or equivalently “No S are P”) and
O (i.e. “Some S are not P”, or equivalently “Not all S are P”) statements if we
rewrite the O statement as the disjunction “No S are P ∨ Part of the S are P”.
Moreover, we notice that the three statements “All S are P”, “Part of the S are P”
and “No S are P” constitute a trichotomy, i.e. these three statements are pairwise
mutually exclusive and collectively exhaustive. Thus, we may say that the SO is
derived from a trichotomy.

Second, we observe that by virtue of the two contradictory relations (i.e. O
≡ ¬A, E ≡ ¬I), the two subalternate relations (i.e. A ⇒u I and E ⇒u O) are in
fact contraposition of each other. Thus, we may also say that the SO is derived
from a unilateral entailment (i.e. subalternate relation) and its contraposition.

2.2. Two Forms of the General Pattern of Squares of Opposition

We can generalize the above two observations to the General Pattern of Squares of
Opposition (GPSO), which comes in two forms. The first form, henceforth GPSO1,
is generalized from the first observation.
GPSO1: Given 3 non-trivial5 propositions (or propositional functions) p, q and r

that constitute a trichotomy, we can construct a SO as shown in Figure 1.
In what follows we will show that the SO in Figure 1 satisfies the definitions

of the opposition relations. As mentioned above, the two subalternate relations
are just special cases of p1 ⇒u (p1 ∨ p2). The two contradictory relations follow
from the fact that p, q and r constitute a trichotomy. The contrariety between p
and r follows from the fact that any two members of a trichotomy are mutually
exclusive but not collectively exhaustive. The subcontrariety between (p ∨ q) and
(r∨q) follows from the fact that (p∨q)∨(r∨q) ≡ (p∨q∨r) and (p∨q)∧(r∨q) ≡ q.
Thus, (p ∨ q) and (r ∨ q) are collectively exhaustive but not mutually exclusive.

3In this paper , “Part of the S are P” is to be interpreted as “Some but not all S are P”.
4This paper uses “⇒u” to represent “unilaterally entails”, i.e. (p⇒u q)⇐⇒ (p⇒ q ∧ q 6⇒ p).
5In this paper, non-trivial propositions refer to propositions that are neither tautologies nor

contradictions. Similarly, non-trivial sets refer to sets that are neither empty nor equal to the
universal set.
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Figure 1

Figure 2

The second form, henceforth GPSO2, is generalized from the second obser-
vation.
GPSO2: Given 2 non-trivial propositions (or propositional functions) s and t such

that (a) s 6≡ t; (b) they constitute a unilateral entailment: s⇒u t, we can construct
a SO as shown in Figure 2.

In what follows we will show that the SO in Figure 2 also satisfies the def-
initions of the opposition relations. First, by definition of this SO, the two sub-
alternate and contradictory relations are obviously satisfied. Next we consider
the contrary relation. This can be proved by showing that two propositions p1
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and p2 are contrary to each other if and only if p1 ⇒u ¬p2. This unilateral en-
tailment is equivalent to (p1 ⇒ ¬p2) ∧ (¬p2 6⇒ p1). This can be rewritten as
(p1 ∧ p2 ≡ F ) ∧ (p1 ∨ p2 6≡ T )6, which is equivalent to saying that p1 and p2 are
mutually exclusive but not collectively exhaustive, and thus satisfy the contrary
relation. Now since we have s ⇒u t, it thus follows that s and ¬t are contrary to
each other.

Finally we consider the subcontrary relation. This can be proved by showing
that two propositions p1 and p2 are subcontrary to each other if and only if ¬p1
and ¬p2 are contrary to each other. Now the fact that ¬p1 and ¬p2 are contrary
to each other can be expressed as (¬p1 ∧ ¬p2 ≡ F ) ∧ (¬p1 ∨ ¬p2 6≡ T ), which is
equivalent to (p1∨p2 ≡ T )∧(p1∧p2 6≡ F ). This shows that p1 and p2 are collectively
exhaustive but not mutually exclusive, and thus satisfy the subcontrary relation.
As we have previously shown that s and ¬t are contrary to each other, it thus
follows that ¬s and t are subcontrary to each other.

2.3. Relations between GPSO1 and GPSO2

Although GPSO1 and GPSO2 are based on a trichotomy and a unilateral entail-
ment, respectively, the two forms are in fact two sides of the same coin. Given one
form, we can always transform it into the other form, which we will show below.

First, suppose we are given a SO constructed from GPSO1, we immediately
get a unilateral entailment, i.e. p ⇒u (p ∨ q) such that p 6≡ (p ∨ q). With this
unilateral entailment, we can then construct another SO by invoking GPSO2.
Please note that if either of p, q, r is trivial, then either p or (p ∨ q) is trivial, or
p ≡ (p ∨ q).

On the other hand, suppose we are given an SO constructed from GPSO2,
then s, ¬t and (¬s ∧ t) constitute a trichotomy. To show that these three propo-
sitions are pairwise mutually exclusive, we first observe that s ∧ ¬t ≡ F by the
contrary relation between s and ¬t. Moreover, it is also obvious that s∧ (¬s∧ t) ≡
¬t∧ (¬s∧ t) ≡ F . To show that the three propositions are collectively exhaustive,
it suffices to show that s∨¬t∨ (¬s∧ t) ≡ T , which is obvious after we expand the
left-hand side into (s ∨ ¬t ∨ ¬s) ∧ (s ∨ ¬t ∨ t). The above fact can be illustrated
by Figure 3 in which s and t are depicted as sets and the unilateral entailment is
depicted as proper set inclusion. From Figure 3 we can see that if s is a proper
subset of t, then s, ¬t and (¬s ∧ t) constitute a partition of the universe.

The above discussion shows that a unilateral entailment is closely related to
a trichotomy. With this trichotomy, we can then construct another SO by invoking
GPSO1. Please note that if either s or t is trivial, or s ≡ t, then either of s, ¬t,
(¬s ∧ t) is trivial.

2.4. Applications of GPSO1

By applying the two forms of GPSO, a great number of SOs not known to tra-
ditional logicians can be easily constructed. We first see some examples of the
application of GPSO1. Let 50 < n < 100, where n is a real number. Then the

6“T” and “F” represent “true” and “false”, respectively.
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Figure 3

Figure 4

three intervals [0, 100 − n), [100 − n, n] and (n, 100] constitute a tripartition of
the interval [0, 100]. In other words, “Less than (100− n)% of S are P”, “Between
(100 − n)% and n% of S are P” and “More than n% of S are P” constitute a
trichotomy. With this trichotomy, we can construct the SO shown in Figure 4.

Please note that in constructing the SO in Figure 4, we have also made use
of the following equivalences: “Less than (100 − n)% of S are P” ≡ “More than
n% of S are not P”; “At most n% of S are P” ≡ “At least (100−n)% of S are not
P”.

The application of GPSO is not confined to quantified sentences, but may
be extended to other types of sentences or even plain predicates. Suppose our
domain of discourse consists of members of the pre-1789 French Estates General,
which were divided into three estates: clergymen, noblemen and commoners, which
constituted a trichotomy. If we now call “clergymen ∨ noblemen” the “privileged
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Figure 5

class” and “commoners ∨ noblemen” the “secular class”, then we may construct
the SO shown in Figure 5.

Although the SO in Figure 5 is composed of plain predicates rather than
propositions, these plain predicates may be seen as short forms of propositional
function with a variable x. For example, “clergymen” in the SO may be seen as
short form of the propositional function “x was a clergyman”.

2.5. Applications of GPSO2

According to GPSO2, a SO may be constructed from a unilateral entailment to-
gether with its contraposition. This is in fact the underlying principle of the “semi-
otic squares”. Given a pair of contrary concepts, such as “happy” and “unhappy”,
we immediately obtain the unilateral entailment “happy⇒u not unhappy”7. With
this unilateral entailment, we can then construct the semiotic square shown in Fig-
ure 6.

Unilateral entailments may also occur between sentences with more than one
quantifier, such as “Every boy loves every girl⇒u Some boy loves some girl”. One
interesting subtype of this kind of entailments consists of unilateral entailments
between the active and passive forms of a sentence with more than one quantifier.
This is the subject area of “scope dominance” studied by [2] and [1]8. These schol-
ars have discovered a number of valid unilateral entailments involving sentences
with more than one quantifier. Here is one such example:

7It is essential that “happy” and “unhappy” constitute a pair of contrary rather than contradic-

tory concepts. Otherwise, the entailment will be bilateral rather than unilateral.
8Scope dominance originally refers to unilateral entailments between the “direct scope” and
“inverse scope” readings of a sentence with more than one quantifier. However, this phenomenon

can also be reinterpreted as unilateral entailments between the active and passive forms of the
sentence, assuming that both forms are interpreted under the direct scope reading.
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Figure 6

Figure 7

Most boys love no girl⇒u No girl is loved by most boys (2.1)

With this unilateral entailment, we can then construct the SO shown in
Figure 7.

We can thus see that by combining GPSO2 with the research findings on
scope dominance, we can construct a great number of SOs composed of sentences
with more than one quantifier.
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Figure 8

3. General Pattern of 2n-gons of Opposition

3.1. Hexagons of Opposition

According to GPSO1, a SO can be derived from any trichotomy composed of 3
non-trivial propositions p, q and r. However, GPSO1 shows an asymmetry between
these 3 propositions: while each of p and r appears as an independent proposition
in the two upper corners (i.e. A and E), q only appears as parts of two disjunctions
in the two lower corners (i.e. I and O).

To achieve symmetry, we need to add to the SO two new vertices denoted as
Y and U corresponding to the propositions q and p∨r, respectively, thus expanding
the SO to a hexagon of opposition (6O) proposed by [3] as shown in Figure 8.

Please note that this figure contains the Boethian SO AEIO as a subpart.
For this reason, only those arcs not being part of AEIO are labeled. This figure
also contains the AYE triangle of contrariety, IOU triangle of subcontrariety as
well as two more SOs: AYUO and YEIU, as its subparts.

For ease of comparison with other 2n-gons below, the components of the above
6O can be rearranged into the form shown in Figure 9 which is, graph-theoretically
speaking, isomorphic with the original form (in Figure 9, SA = subalternate, CD
= contradictory, C = contrary, SC = subcontrary).
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Figure 9

Figure 10

To avoid messing up the figure, some arcs in Figure 9 have been left out, eg.
the SA arc leading from p to p∨q. One should view Figure 9 on the understanding
that there is a C arc between any two upper-row vertices, a SC arc between any
two lower-row vertices and a SA arc leading from any upper-row vertex to any
lower-row vertex not directly below it.

The above discussion shows that a trichotomy is best represented by a 6O.
But as shown in subsection 2.3, trichotomies and unilateral entailments are closely
related to each other. How can we construct a 6O from a unilateral entailment? If
we review Figure 3, then we can see that apart from the unilateral entailment s⇒u

t, there is in fact another less obvious one with s as antecedent, i.e. s⇒u (s∨¬t).
By properly arranging the 3 propositions s, t, (s ∨ ¬t) and their contradictories
¬s, ¬t, (¬s ∧ t), we can then construct a 6O as shown in Figure 10.

3.2. Two Forms of the General Pattern of 2n-gons of Opposition

The natural association between a trichotomy (or a unilateral entailment) and a
6O may be generalized to an association between a n-chotomy (or n− 2 unilateral
entailments) and a 2n-gon of opposition (2nO), resulting in the General Pattern of
2n-gons of Opposition (GP2nO), which also comes in two forms, denoted GP2nO1
and GP2nO2 below.
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Figure 11

Figure 12

GP2nO1: Given n (n ≥ 3) non-trivial propositions (or propositional functions) p1,
p2 . . . pn that constitute a n-chotomy (i.e. p1, p2 . . . pn are collectively exhaustive
and pairwise mutually exclusive), we can construct a 2nO as shown in Figure 11
(Many arcs have been left out from this figure)9.

It is easy to see that the 2nO in Figure 11 satisfies the definitions of the
opposition relations. For example, any two lower-row propositions are subcontrary
to each other because they contain some common disjuncts (hence not mutually
exclusive), and they collectively contain all the n propositions as disjuncts (hence
collectively exhaustive).
GP2nO2: Given n−1 (n ≥ 3) non-trivial propositions (or propositional functions)
s, t1, . . . tn−2 such that (a) any two of t1, . . . tn−2 satisfy the subcontrary relation;
(b) s 6≡ (t1 ∧ · · · ∧ tn−2); (c) they constitute (n − 2) co-antecedent unilateral
entailments (i.e. unilateral entailments with the same antecedent): s ⇒u t1, . . .
s ⇒u tn−2, then we have an additional unilateral entailment: s ⇒u (s ∨ ¬t1 ∨
. . .¬tn−2) and we can construct a 2nO as shown in Figure 12.

Next we show that the 2nO in Figure 12 also satisfies the definitions of
the opposition relations. The contradictory relations are obviously satisfied. So
we consider the subalternate relations. The subalternate relations between s and
t1, . . . s and tn−2, as well as the subalternate relations between ¬t1 and ¬s,
. . . ¬tn−2 and ¬s are guaranteed by condition (c) above and its contraposition.

9If n = 2, then the upper-row propositions are t1 and t2, while the lower-row propositions are t2
and t1. In this case, the subalternate relations will become equivalence relations, which are not
among the opposition relations defined in Table 1. That is the reason why n must be at least 3.
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We will now show that ¬ti ⇒u tj (1 ≤ i, j ≤ n − 2, i 6= j). By condition (a)
above, any ti and tj satisfy the subcontrary relation, which can be expressed as
(ti ∨ tj ≡ T ) ∧ (ti ∧ tj 6≡ F ). This is equivalent to (¬ti ⇒ tj) ∧ (tj 6⇒ ¬ti), which
can be rewritten as ¬ti ⇒u tj . The remaining subalternate relations in Figure 12
are just special cases of unilateral entailments in propositional logic. For example,
(¬s ∧ t1 ∧ · · · ∧ ¬tn−2)⇒u t1 is just a special case of (p1 ∧ p2)⇒u p1.

Next we consider the contrary relations. Since it has been shown that for
any two distinct upper-row propositions p1 and p2, we have p1 ⇒u ¬p2, thus p1
and p2 are contrary to each other. Finally, since each lower-row proposition is the
contradictory of the upper-row proposition directly above it, the subcontrariety
between any two lower-row propositions follows from the contrariety between any
two upper-row propositions.

3.3. Relations between GP2nO1 and GP2nO2

Just like GPSO, the two forms of GP2nO are also interdefinable. If we are given a
2nO constructed from GP2nO1, then this 2nO contains n−1 propositions: p1, (p1∨
p3∨· · ·∨pn), . . . (p1∨· · ·∨pn−2∨pn) that satisfy the three conditions of GP2nO2:
(a) the subcontrariety between any two of (p1∨p3∨· · ·∨pn), . . . (p1∨· · ·∨pn−2∨pn)
is guaranteed by the subcontrariety between any two lower-row propositions in this
2nO; (b) p1 6≡ (p1∨p3∨· · ·∨pn)∧· · ·∧(p1∨· · ·∨pn−2∨pn) because the right-hand
side is equivalent to (p1∨pn); (c) these propositions constitute (n−2) co-antecedent
unilateral entailments: p1 ⇒u (p1 ∨ p3 ∨ · · · ∨ pn), . . . p1 ⇒u (p1 ∨ · · · ∨ pn−2 ∨ pn).

This 2nO also contains an additional unilateral entailment: p1 ⇒u (p1 ∨
p2 ∨ · · · ∨ pn−1) whose antecedent is p1 and whose consequent has the correct
form as stipulated in GP2nO2, because (p1 ∨ p2 ∨ · · · ∨ pn−1) ≡ p1 ∨ ¬(p1 ∨
p3 ∨ · · · ∨ pn) ∨ . . .¬(p1 ∨ · · · ∨ pn−2 ∨ pn). Moreover, the arrangement of the 2n
propositions of this 2nO also satisfies GP2nO2. Please also note that if either of
p1, . . . pn is trivial, then either of the n− 1 propositions given above is trivial, or
p1 ≡ (p1 ∨ p3 ∨ · · · ∨ pn)∧ · · · ∧ (p1 ∨ · · · ∨ pn−2 ∨ pn). For example, if p2 ≡ F , then
(p1 ∨ p3 ∨ · · · ∨ pn) ≡ T .

Conversely, if we are given a 2nO constructed from GP2nO2, then this 2nO
contains n propositions s, ¬t1, . . .¬tn−2, (¬s∧ t1 ∧ · · · ∧ tn−2) that constitute a n-
chotomy. That these n propositions are pairwise mutually exclusive is guaranteed
by the contrary relations among these propositions. To show that these proposi-
tions are collectively exhaustive, it suffices to show that s ∨ ¬t1 ∨ · · · ∨ ¬tn−2 ∨
(¬s∧ t1 ∧ · · · ∧ tn−2) ≡ T , which is obvious after we expand the left-hand side into
(s∨¬t1∨· · ·∨¬tn−2∨¬s)∧(s∨¬t1∨· · ·∨¬tn−2∨t1)∧· · ·∧(s∨¬t1∨· · ·∨¬tn−2∨tn−2).
The above fact can be illustrated by Figure 13 for the case n = 2, which shows that
the two co-antecedent unilateral entailments s⇒u t1 and s⇒u t2 give rise to the
additional unilateral entailment: s⇒u (s ∨ ¬t1 ∨ ¬t2) and a 4-chotomy consisting
of s, ¬t1, ¬t2 and (¬s ∧ t1 ∧ t2).

Moreover, the arrangement of the 2n propositions of this 2nO also satisfies
GP2nO1. Please also note that if either of s, t1, . . . tn−2 is trivial, or s ≡ (t1∧· · ·∧
tn−2), then either of s, ¬t1, . . .¬tn−2, (¬s ∧ t1 ∧ · · · ∧ tn−2) is trivial.
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Figure 13

4. Perfection

Figures 11 and 12 show that every 2nO contains C(n,m) 2mOs as its proper
subparts10, for any m such that m < n and m ≥ 2.11 To distinguish these 2mOs
from the 2nO, we need to introduce the notion of perfection.

We say that a 2nO is perfect if the disjunction of all its upper-row propositions
≡ the disjunction of all its lower-row propositions, otherwise it is imperfect. Given
the pairwise subcontrariety of the lower-row propositions of any 2nO, this condition
is equivalent to the fact that the disjunction of all its upper-row propositions ≡ T .

According to this definition, any 2nO that satisfies GP2nO1 or GP2nO2 is
perfect, whereas a 2mO (m < n) which is a proper subpart of a perfect 2nO is
imperfect. Thus, the 6O proposed by modern scholars as depicted in Figure 9
above is perfect whereas the traditional SO (i.e. 4O) is imperfect. Moreover, the
fundamental difference between the 6O and SO in terms of symmetry with respect
to the three propositions in a trichotomy can now be more formally captured by
the notion of perfection, i.e. the symmetric 6O is perfect and the asymmetric SO
is imperfect.

Given an imperfect 2mO, we can always make it perfect. But the outcome of
the perfection process is not unique because an imperfect 2mO can be perfected
at different fine-grainedness by combining or splitting propositions.

10C(n,m) = n!/[(m!)(n − m)!] represents the number of possible ways of choosing m objects

from a set of n objects.
11In fact, just as a 6O contains a triangle of contrariety and a triangle of subcontrariety as
its proper subparts, every 2nO also contains a n-gon of contrariety (consisting of the upper-

row propositions) and a n-gon of subcontrariety (consisting of the lower-row propositions) as its
proper subparts. This paper will not discuss these n-gons any further.
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Figure 14

Let’s use an example to illustrate this point. Figure 14 shows an imperfect
4O because (p1 ∨ p2) 6≡ (p1 ∨ p2 ∨ p3 ∨ p4).

The most straightforward way to perfect this 4O is to expand it into an 8O
by adding two upper-row propositions: p3 and p4 (and corresponding lower-row
propositions). But this is not the unique way. Another way is to expand this 4O into
a 6O by adding just one upper-row proposition: (p3 ∨ p4) (and the corresponding
lower-row proposition). This is tantamount to combining the two propositions
p3 and p4 into one, hence transforming the original 4-chotomy to a trichotomy
(comprising the three propositions p1, p2 and (p3 ∨ p4)). Still another way is to
expand this 4O into a 10O by rewriting p4 as p4a∨p4b and adding three upper-row
propositions: p3, p4a and p4b (and corresponding lower-row propositions). This is
tantamount to splitting the proposition p4 into two non-trivial propositions p4a
and p4b such that p4 ≡ p4a ∨ p4b, hence transforming the original 4-chotomy to a
5-chotomy (comprising the five propositions p1, p2, p3, p4a and p4b).

5. Conclusion

In this paper we have shown how the Boethian SO is related to trichotomies or
unilateral entailments and then formulated the two forms of GPSO, which enables
us to construct a great number of new SOs not known to traditional logicians.
We have also discussed 6O as an alternative representation of a trichotomies.
Intuitively, a 6O differs from a SO in that the former is symmetric while the
latter is asymmetric with respect to the three propositions in a trichotomy. This
difference can be more formally captured by the notion of perfection in that a 6O
is a perfect representation of trichotomies, whereas a SO, being a proper subpart of
a 6O, is imperfect. By further generalizing trichotomies and unilateral entailments
to n-chotomies and co-antecedent unilateral entailments, respectively, we come up
with the notion of 2n-gons and the two forms of GP2nO. We finally discuss the
distinction between perfect and imperfect 2nOs. Thus, GPSO and GP2nO have
very different nature, in that any SOs constructed from the two forms of GPSO are
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imperfect whereas any 2nOs (n ≥ 3) constructed from the two forms of GP2nO
are perfect.
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