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Being critical of using significance tests in empirical 
research, the Board of Scientific Affairs (BSA) of the 
American Psychological Association (APA) convened a task 
force "to elucidate some of the controversial issues 
surrounding applications of statistics including significance 
testing and its alternatives; alternative underlying models and 
data transformation; and newer methods made possible by 
powerful computers" (BSA; quoted in the report by 
Wilkinson & Task Force, 1999, p. 594). Guidelines are 
stipulated in the report for revising the statistical sections of 
the APA Publication Manual. 

Some assertions in the report about research 
methodology are reasonable. An example is the statement, 
"There are many forms of empirical studies in psychology, 
including case reports, controlled experiments, 
quasi-experiments, statistical simulations, surveys, 
observational studies, and studies of studies (meta-analyses) 
... each form of research has its own strengths, weaknesses, 
and standard of practice" (Wilkinson & Task Force, 1999, p. 
594). However, it does not follow that data collected with 
any two methods are equally unambiguous. At the same 
time, a method that yields less ambiguous data is 
methodological superior to one that yields more ambiguous 
data. That is, despite the assertions made in the report, a case 
can be made that "some of these [research methods] yield 
information that is more valuable or credible than others" 
(Wilkinson & Task Force, 1999, p. 594). 

It is unfortunate that the report reads more like an 
advocacy document than an objective assessment of the role 
of statistics in empirical research. Moreover, 
non-psychologist readers of the report can be excused for 
having a low opinion of psychologists' research practice and 
methodological sophistication. 

Lest psychologists' methodological competence be 
misunderstood because of the report, this commentary 
addresses the following substantive issues: (a) the 
acceptability of the 'convenience' sample, (b) the inadequacy 
of the contrast group, (c) the unwarranted belief in the 
experimenter's expectancy effects, (d) some conceptual 
difficulties with effect size and statistical power, and (e) the 
putative dependence of statistical significance on sample 
size. 
 

The 'Convenience' Sample, Representativeness and 
Independence of Observations 

 
If we can neither implement randomization nor 
approach total control of variables that modify effects 
(outcomes), then we should use the term "control 
group" cautiously. In most of these cases, it would be 
better to forgo the term and use "contrast group" 
instead. In any case, we should describe exactly which 
confounding variables have been explicitly controlled 
and speculate about which unmeasured ones could lead 
to incorrect inferences. In the absence of randomization, 
we should do our best to investigate sensitivity to 
various untestable assumptions. (Wilkinson & Task 
Force, 1999, p. 595, emphasis in italics added) 
A non-randomly selected sample is characterized as a 

"convenience sample" (Wilkinson & Task Force, 1999, 
p.595). It is a label apparently applicable to most samples 
used in psychological research because most experimental 
subjects are college student-volunteers. However, a case 
can be made that using such non-random samples does not 
necessarily detract from the findings generality. Nor does 
such a practice violate the requirement that data from 
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different subjects be statistically independent. More 
importantly, using non-random samples is not antithetical to 
experimental controls. 

 
Non-random Participant-selection and 

Representativeness 
Suppose that, on the basis of the data collected from 

student-subjects, Experimenter E draws a conclusion about 
memory. The non-random nature of the sample would not 
affect the objectivity of the finding when the validity of the 
experiment is assessed with reference to unambiguous, 
theoretically informed criteria. At worst, one may question 
the generality of the experimental conclusion. Perhaps, this 
is the real point of the "Sample" section (Wilkinson & Task 
Force, 1999, p. 595), as witnessed by its reservations about 
the representativeness of the convenience sample. 

Although non-random selection of research participants 
jeopardizes the generality of survey studies, random 
subject-selection may not be necessary for generality in 
cognitive psychology. For instance, a non-random sample in 
an opinion survey about an election may be selected by 
stationing the enumerators at the entrance of a shopping 
mall. The representativeness of the opinion of such a sample 
(of the entire electorate's opinion) is suspect because patrons 
of the particular shopping mall may over-represent one 
social group, but under-represent another social strata. This 
is crucial because political opinion and socio-economic 
status are not independent. 

In contrast, consider a student-subject sample of a study 
of the capacity of the short-term store. As there is no reason 
to doubt the similarity between college students' short-term 
store capacity and that of the adult population at large, it is 
reasonable to assume that the student-subject sample is 
representative of all adults in the said capacity despite that 
no random selection is carried out. That is, random selection 
is not always required for establishing the generality of the 
result when there is neither a theoretical nor an empirical 
reason to question the representativeness of the sample in 
the context of the experiment. 

 
Student-subjects as Theoretically Informed 

Samples 
The psychologist's practice of using student-subjects is 

further justified by the fact that psychologists employ 
student-subjects in a 

theoretically informed way. For example, in testing a theory 
about verbal coding, the experimenter may use only female 
students. The experimenter may use only right-handed 
students when the research concern is a theory about 
laterality or hemispheric specialization. Students may be 
screened with the appropriate psychometric tests before 
being included in a study about attitude. In short, depending 
on the theoretical requirement, psychologists adopt special 
subject-selection criteria even when they use student-
subjects. Moreover, psychologists do select subjects from 
outside the student-subject pools when required (e.g., they 
use hyperactive boys to study theories of hyperactivity). 
The mode of subject-selection is always explicitly described 
in such an event. That is, psychologists' convenience 
samples do not detract from the data's generality. 
Furthermore, psychologists describe only those procedural 
features that deviate from the usual, well-understood and 
warranted practice. 
 

Independent Observations from Non-randomly 
Selected Samples 

A crucial assumption underlying statistical procedures 
(be it significance test, confidence-interval estimate or 
regression analysis) is that observations are independent of 
one another. It can be illustrated that cognitive 
psychologists' use of non-randomly selected 
student-subjects does not violate this independence 
assumption. Consider the case in which, having discussed 
among themselves, twenty students decide to participate in 
the same memory experiment. This is non-random 
subject-selection par excellence. 

Suppose further that subjects, whose task is to recall 
multiple 10-word lists in the order they are presented, are 
tested individually. The words and their order of appearance 
are randomized from trial to trial. Under such 
circumstances, not only would an individual subject's 
performance be independent of that of other subjects, the 
subject's performance is also independent of his or her own 
performance from list to list. In other words, to ensure 
statistical independence of observations, what needs to be 
randomized is the stimulus material or its mode of 
presentation, not individual subjects. Such a randomized 
procedure ensures that non-randomly selected subjects may 
still produce statistically independent data. 
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Causal Inference-Deductive Implications of 
Explanatory Theories 

The conclusion about any causal relationship is based on 
the implicative relationships among the explanatory theory, 
the research hypothesis, the experimental hypothesis, the 
statistical hypothesis, and the data (see, e.g., the three 
embedding conditional syllogisms discussed in Chow, 1996, 
1998). The causal conclusion owes its ambiguity to deductive 
logic as a result of the facts that (a) hypothetical properties 
are attributed to the unobservable theoretical entities 
postulated (Feigl, 1970; MacCorquodale & Meehl, 1948), (b) 
it is always possible to offer multiple explanations for the 
same phenomenon (Popper, 1968a, 1968b), and (c) affirming 
the consequent of a conditional proposition does not affirm 
its antecedent (Cohen & Nagel, 1934; Meehl, 1967, 1978). In 
other words, the report's treatment of random 
subject-assignment is not helpful when it incorrectly assigns 
to the research design the task of making causal inference 
possible. Nor is the ambiguity of drawing causal conclusions 
a difficulty in inductive logic, as said in the report that "the 
causal inference problem ... one of missing data" (Wilkinson 
& Task Force, 1999, p.600). 
 

Random Subject-assignment, Control and 
Induction 

 
If causal inference is independent of research design in 

general (and the completely randomized design in 
particular), what precisely is the role of the design in 
empirical research? The answer to this question sets in high 
relief the unacceptability of the report's suggestion of 
replacing the control group with the contrast group if the 
researcher is concerned with conceptual rigor or 
methodological validity. 

 
Experimental Design and Induction 

Contrary to the induction by enumeration assumed in the 
report (recall the invocation of `missing data' on p. 600), 
underlying a valid research design is one of Mill's (1970) 
canons of induction (viz., Method of Difference, Joint 
Method of Agreement and Difference, Method of 
Concomitant Variation, and Method of Residues; see Cohen 
& Nagel, 1934, for the exclusion of Method of Agreement). 
The function of these inductive rules is to exclude 
alternative explanations, as may be seen in Table 1, which 
depicts the formal structure of the 

completely randomized one-factor, two-level experiment 
described in the `Independent Observations from 
Non-randomly Selected Samples' sub-section above. 

Made explicit in Table 1 are the independent variable 
(viz., the similarity in sound among the ten words in the list), 
four control variables (viz., list length, number of lists, rate 
of presentation, and the length of the items used), the 
dependent variables (viz., the number of items recalled in the 
correct order), and some of an infinite number of extraneous 
variables. This formal arrangement of the independent, 
control and dependent variables satisfies the stipulation of 
Mill's (1973) Method of Difference. That is, psychologists 
rely on an inductive method that is more sophisticated than 
the induction by enumeration envisaged in the report. 

Control Variables and Exclusion of Explanations 
Variables CI through C4 are control variables in the 

sense that they are represented by the same level at both 
levels of the independent variable. This feature is one type 
of the `constancy of condition' of experimental control 
(Boring, 1954, 1969). Suppose that there is a good reason to 
exclude chance influences as the explanation of the 
difference between X E and X c (i.e., the difference is 
statistically significant). This difference is found when there 
is no difference in any of the four control variables between 
the experimental and control conditions. Consequently, it 
can be concluded that none of the control variables is 
responsible for the difference between X E and X c. This 
shows that experimental control in the form of using control 
variables serves to exclude explanations, not to affirm a 
causal relationship. 

 
Random Subject-assignment As A Control Procedure 
Extraneous variables of the experiment are defined by 
exclusion, namely, any variable that is neither the 
independent, the control or the dependent variable is an 
extraneous variable. As the symbol, C∝, in Table 1 
indicates, there is an infinite number of extraneous 
variables. It follows that, in order to exclude any of them as 
an explanation of the data, these extraneous variables have 
to be controlled (in the sense of being held constant at both 
levels of the independent variable). Depending on the nature 
of the independent variable, the extraneous variables may 
be excluded from being confounding variables by (a) 
assigning subjects randomly to the experimental and 
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Table 1 
The Method of Difference That Underlies the Completely Randomized One-factor, two-level Experimental Design 
 Independent Control variables Extraneous Dependent 
 variable  variables variable 
  C 1 C2 C3 C4 C5 to C∝  
 Similarity in List length Number of Rate of Length of  Number of 
 sound  lists presneta- items used  items recalled 
    tion   in the correct 
       order 
E Yes 10 12 1 item/s 5-letter gender, age,  
     nouns SES, height, X E 

C No 10 12 1 item/s 5-letter ethnicity,  
     nouns hobbies, etc. X C 
E = Experimental Group; C = Control Group 

 

control conditions (the only procedure recognized in the 
report), (b) using the repeated-measures design, and (c) 
using the matched-groups (or randomized block) designs. 
That is, instead of rendering possible causal inference, 
random subject-assignment is only one of several control 
procedures that serve to prevent extraneous variables from 
being confounding variables. 

controlled in one of several ways. First, gender may be used 
as an additional control variable (e.g., only male or female 
students would be used). Second, gender may be used as 
another independent variable, in which case the relevancy of 
gender may be tested by examining the interaction between 
acoustic similarity and gender. The third alternative is to use 
gender as a blocking variable, such that equal number of 
male and females are used in the two groups. Which male 
(or female) is used in the experimental or control condition 
is determined randomly. In other words, the choice of any 
variable (be it the independent, control or dependent 
variable) is informed by the theoretical foundation of the 
experiment. This gives the lie to the report's treating 
matching or blocking variables as 'nuisance' variables. 

Control versus Contrast Group 

That no contrast group can replace the control group may 
also be seen from Table 1. The control group and the 
experimental group are identical in terms of all the control 
variables. It is reasonable to assume that the two groups are 
comparable in terms of the extraneous variables to the extent 
that the completely randomized design is appropriate and 
that the random-assignment procedure is carried out 
successfully. Being different from the control group, the 
contrast group envisaged in the report has to be a group that 
differs from the experimental group in something else in 
addition to being different in terms of the independent 
variable. The additional variable involved cannot be 
excluded as an alternative explanation. That is, there is 
bound to be a confounding variable in the contrast group; 
otherwise it would be a control group. 

The subject's gender is treated as an extraneous variable 
in Table 1. However, if there is a theoretical reason to 
expect that male and female students would perform 
differently on the task, gender would be 

Giving the impossible meaning of "total control of 
variables" (Wilkinson & Task Force, 1999, p.545) to 
`control' is an example of a striking feature in the report, 
namely, its indifference to theoretical relevancy. It is 
objectionable that the confusing and misleading treatment of 
the control group is used in the report as the pretext to 
"forgo the term ["control group"] and use 'contrast group' 
instead" (Wilkinson & Task Force, 1999, p.595, explication 
in square brackets added). As had been made explicit by 
Boring (1954, 1969), the control group serves to exclude 
artifacts or alternative explanations. 

The Task Force's recommendation of replacing the 
control group by the contrast group is an invitation to 
weaken the inductive principle that 
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underlies experimental control. Such a measure invites 
ambiguity by allowing confounds in the research. The 
ensuing damage to the internal validity of the research 
cannot be ameliorated by explaining `the logic behind 
covariates included in their designs' (Wilkinson & Task 
Force, 1999, p.600) or by describing how the contrast group 
is selected (pp. 594-597). Explaining or describing a 
confound is not excluding it. 

Experimenter's Expectancy Effects Revisited 
Despite the long-established findings of the effects of 
experimenter bias (Rosenthal, 1966), many published 
studies appear to ignore or discount these problems. For 
example, some authors or their assistants with 
knowledge of hypotheses or study goals screen 
participants (through personal interviews or telephone 
conversations) for inclusion in their studies. Some 
authors administer questionnaires. Some authors give 
instructions to participants. Some authors perform 
experimental manipulations. Some tally or code 
responses. Some rate videotapes. An author's 
self-awareness, experience, or resolve does not eliminate 
experimenter bias. In short, there are no valid excuses, 
financial or otherwise, for avoiding an opportunity to 
double-blind. (Wilkinson & Task Force, 1999, p. 596) 
As may be seen from the quote above, the report 

bemoans that psychologists do not heed Rosenthal's (1976) 
admonition about the insidious effects of the experimenter's 
expectancy effects (or EEE henceforth). Psychologists are 
faulted for not describing how they avoid behaving in such a 
way that they would obtain the data they want. Given the 
report's faith in EEE, it helps to examine the evidential 
support for EEE by considering Table 2 with reference to 
the following comment: 

But much, perhaps most, psychological research is not of 
this sort [the researcher collects data in one condition 
only, as represented by A, B, C, M, P or Q in Panel 1 of 
Table 2]. Most psychological research is likely to 
involve the assessment of the effects of two or more 
experimental conditions on the responses of the subjects 
[as represented by D, E, H or K in Panel 2 of Table 2]. If 
a certain type of experimenter tends to obtain slower 
learning from his subjects, 

the "results of his experiments" are affected not at all so 
long as his effect is constant over the different 
conditions of the experiment. Experimenter effects on 
means to do necessarily imply effects on mean 
differences. (Rosenthal,. 1976, p. 110, explication in 
square brackets and emphasis in italics added). 

The putative evidence for EEE came from Rosenthal and 
Fode (1963a, 1963b), the design of both of which is shown 
in Panel 1 of Table 2. In their 1963a studies, students in the 
"+5" expectation and "-5" expectation groups were asked to 
collect photo-rating data under one condition. Again, 
students collected `rate of conditioning' data with rats in two 
expectation conditions in their 1963b study. Of interest is 
the comparison between the mean ratings of the two groups 
of students. A significant difference in the expected 
direction was reported between the two means, 5X  and + 5X , 
in both studies. 

−

Note that the said significant difference is an effect on 
means, not an effect on mean difference, in Rosenthal's 
(1976) terms. Moreover, Rosenthal (1976) also noted 
correctly that the schema depicted in Panel 1 is not the 
structure of psychological experiments. That is, Individuals 
A, B, C, M, P and Q in Panel 1 should not be characterized 
as `experimenters' at all because they did not conduct an 
experiment. While the two studies were experiments to 
Rosenthal and Fode (1963a, 1963b), the studies were mere 
measurement exercises to their students. In other words, 
Rosenthal and Fode's (1963a, 1963b) data cannot be used as 
evidential support for EEE. 

What is required, as noted in the italicized emphasis 
above, are data collected in accordance with the 
meta-experiment schema depicted in Panel 2 of Table 2. 
While Chow (1994) was the investigator who conducted a 
meta-experiment (i.e., an experiment about conducting the 
experiment), D, E, H and K were experimenters because 
they collected data in two conditions which satisfied the 
constraints depicted in Table 1. When experimental data 
were collected in such a meta-experiment, Chow (1994) 
found no support for EEE. There was no expectancy effect 
on mean difference in the meta-experiment. That is, EEE 
owes its apparent attractiveness to the casual way in which 
`experiment' is used to refer to any empirical research. The 
experiment is a special kind of empirical research, namely, 
a research in which data are collected in two or more 
conditions that are identical (or comparable) in all aspects, 
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Table 2 

 
The Distinction Between the Formal Structure of the Experiment (Panel 1) 

 
and that of the Meta-experiment (Panel 2) 

 
Panel 1—The formal Structure of the Experiment 

 
  Investigators (Rosenthal & Fode, 1963a, 1963b)  

  +5 -5  

  A  B  C M  P  Q  

  S1  S1  S1 S1  S1  S1  

  …  …  … …  …  …  

  Sn  Sn  Sn Sn  Sn  Sn  

  X
A 

 X B  X C X M  X P  X
Q 

 

    X +5     X -5    

 
 
A, B, C, M, P and Q are data-collectors, not experimenters. 
 

 
 

Panel 2—The Formal Structure of the Meta-experiment 
 

  Investigator (Chow, 1994) 

    +5     -5   

  D  E H  K 

  SC1 SE1  SC1 SE1 SC1 SE1  SC1 SE1 

  … …  … … … …  … … 

  SCn SEn  SCn SEn SCn SEn  SCn SEn 

  DCEX )( −   ECEX )( −  HCEX )( −   KCEX )( −  

A, B, M and Q are experimenters. 
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what warrants the assertion, "reporting and interpreting 
effect sizes in the context of previously reported effects is 
essential to good research" (Wilkinson & Task Force, 1999, 
p.599). 

Some Reservations about Statistical Power 
The validity of the power-analytic argument is taken for 

granted in the report (Wilkinson & Task Force, 1999, 
p.596). It may be helpful to consider three issues about the 
power-analytic approach, namely, (a) the statistical power is 
a conditional probability, (b) statistical significance and 
statistical power belong to different levels of abstraction, (c) 
the determination of sample size is not a mechanical 
exercise. 

Power Analysis as a Conditional Probability 
Statistical power is the 1's complement of b, the 

probability of the Type II error. That is, statistical power is 
the probability of rejecting H0, given that H0 is false. The 
probability becomes meaningful only after the decision is 
made to reject H0. As b is a conditional probability, so 
should be statistical power. How is it possible for such a 
conditional probability to be an exact probability, namely, 
"the probability that it will yield statistically significant 
results" (Cohen, 1987, p. 1; italics added)? 
 
The Putative Relationship Between Statistical Power and 

Statistical Significance 
Central to the power-analytic approach is the 

assumption that statistical power is a function of the desired 
effect size, the sample size, and the alpha level. At the same 
time, the effect size is commonly defined at the level of the 
statistical populations underlying the experimental and 
control conditions (e.g., Cohen's, 1987, d). It take two 
statistical population distributions to defined the effect size. 

The decision about statistical significance, on the other 
hand, is made on the basis of a lone theoretical distribution 
in the case of the t-test (viz., the sampling distribution of the 
differences between two means). Moreover, the sampling 
distribution of difference is at a level more abstract than the 
distributions of the two statistical populations underlying 
the experimental and control conditions. Consequently, it is 
impossible to represent correctly both alpha and statistical 
power at the same level of abstraction (Chow, 1991, 1996, 
1998).  Should 

except one (viz., the aspect represented by the independent 
variable). 

Effect Size and Meta-analysis 

We must stress again that reporting and interpreting 
effect sizes in the context of previously reported effects 
is essential to good research. It enables readers to 
evaluate the stability of results across samples, designs, 
and analyses. Reporting effect sizes also informs power 
analyses and meta-analyses needed in future research. 
(Wilkinson & Task Force, 1999, p. 599) 

The Task Force's reservations about the accept-reject 
decision about H0 and its insistence on reporting the effect 
size (Wilkinson & Task Force, 1999, p.599) and 
confidence-interval estimates (Wilkinson & Task Force, 
1999, p.599) have to be considered with reference to (a) 
Meehl's (1967, 1978) distinction between the substantive and 
statistical hypotheses, (b) what the statistical hypothesis is 
about, and (c) Tukey's (1960) distinction between making the 
statistical decision about chance influences and drawing the 
conceptual conclusion about the substantive hypothesis. As 
H0 is the hypothesis about chance influences on data, a 
dichotomous accept-reject decision is all that is required. It is 
not shown in the report why psychologists can ignore 
Meehl's or Tukey's distinction in their methodological 
discourse. 

The main reason to require reporting the effect size is 
that the information is crucial to meta-analysis. This 
insistence would be warranted if meta-analysis were a valid 
way to ascertain the tenability of an explanatory theory. 
However, there are conceptual difficulties with 
meta-analytic approaches (Chow, 1987). For the present 
discussion, note that 'effect' as a statistical concept refers to 
(a) the difference between two or more levels of an 
independent variable or (b) the relation between two or more 
variables at the statistical level. Given the fact that different 
variables are used in the context of diverse tasks in a 
converging series of experiments (Garner, Hake, & Eriksen, 
1956), the effects from diverse experiments are not 
commensurate even though the experiments are all 
ostensibly about the same phenomenon (see Table 5.5 in 
Chow, 1996, p. 111). It does not make sense to talk about 
the 'stability results across samples' when dealing with 
apples and oranges. Consequently it is not clear 
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psychologists be oblivious to the `disparate levels of 
abstraction' difficulty noted above? 
 

Sample-size Determination 
 

It is asserted in the report that using the power-analytic 
procedure to determine the sample size would stimulate the 
researcher "to take seriously prior research and theory" 
(Wilkinson & Task Force, 1999, p.586). This is not possible 
even if it were possible to leave aside the `disparate levels of 
abstraction' difficulty for the moment. A crucial element in 
determining the sample size with reference to statistical 
power is the 'desired effect size.' At the same time, it is a 
common power-analytic practice to appeal to "a range of 
reasonable alpha values and effect sizes" (Wilkinson & Task 
Force, 1999, p.597). Such a range consists typically of ten to 
fourteen effect sizes. 

Apart from psychological laws qua functional 
relationships between two or more variables, theories in 
psychology are qualitative explanatory theories. These 
explanatory theories are speculative statements about 
hypothetical mechanisms. Power-analysts have never shown 
how subtle conceptual differences in the qualitative theories 
may be faithfully represented by their limited range of ten or 
so 'reasonable' effect sizes. Furthermore, concerns about the 
statistical significance are ultimately concerns about data 
stability and the exclusion of chance influences as an 
explanation. These issues cannot be settled mechanically in 
the way depicted in power-analysis. The putative 
relationships among effect size, statistical power and sample 
size brings us to the putative dependence of statistical 
significance on sample size. 

the critical value becomes 1.65 when each of the 
independent samples is increased to 75. An implication of 
the size-dependent significance assertion may now be seen. 

Table 3 

An implication of the `sample size-dependent 
significance' thesis 

Independent-  df = 8 calculated t  critical t = 
sample t (n, = n2 = = 1.58 1.86 
 5)   
 df = 148 calculated t critical t = 
 (n, = n2 = = ? 1.65 
 75)   
 df = 1498 calculated t critical t = 
 (n, = n2 = =? 1.65 
 750)   

 

 

In order for the `sample size-dependent significance' 
assertion to be true, the calculated t must become larger than 
1.58 when the sample size is increased from n1 = n2 = 5 to n1 
= n2 = 75. Even if there is no change in the calculated t 
when the sample size is increased to 75, the calculated t 
should become larger when the sample size is increased to 
n1 = n2 =750. Otherwise, increasing the sample size would 
not make the result significant if the t-ratio remains at 1.58. 
Six simulation trials were carried out to test the `sample 
size-dependent significance' thesis as follows. 

Three Simulation Trials With the Zero-null H0 
Two identical statistical populations were used in the 

zero-null case (i.e., H0: u1 - u2 = 0). The two populations' 
size, mean and standard deviation were 1328, 4.812, and 
.894, respectively (see Panels 1 and 2 of Table 4). The 
procedure used may be described with the n1 = n2 = 5 case. 
(1) A random sample of 5 was selected with replacement 

from each of the two statistical populations. 
(2)  The two sample means and their difference were 
 calculated. 

The Relationship Between Statistical Significance 
and Sample Size Examined 

It is taken as a truism in the report that statistical 
significance depends on sample size. Yet, there has been 
neither empirical evidence nor analytical reason for saying 
that "statistical tests depend on sample size" (Wilkinson & 
Task Force, 1999, p.598). Consider the assertion, "as sample 
size increases, the tests often will reject innocuous 
assumptions," (Wilkinson & Task Force, 1999, p.598) with 
reference to Table 3. Suppose that the result of the 1-tailed, 
independent-sample t-test with df = 8 is 1.58. It is not 
significant at the .05 level with reference to the critical value 
of 1.86. The df  becomes 148 and 
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(3)  The two samples were returned to their respective 
 statistical populations. 
(4)  Steps (1) through (3) were repeated 5,000 times. 
(5)  The mean of the 5,000 differences (between two 
means) was determined (viz., -.007; see the last but one cell 
of Panel 2A of Table 4). (6) The 5,000 calculated t-values 
were cast into a - frequency distribution (see Panel 2A). 

Steps (1) through (6) were repeated with n1 = n2 = 75, as 
well as with n1 = n2 = 750. As may been seen from the 
`Mean t-ratio' row, the values for the three sample sizes 
(viz., 5, 75 and 750) are -.007, .011 and .002, respectively. 
They do not differ among themselves, nor does any one of 
them differ from zero. 

 
Three Simulation Trials With the Point-null H0 
Does the `sample size-dependent significance' thesis 

hold when an effect-size is expected before data collection 
(e.g., H0: u1 - u2 = half of the standard deviation of the first 
population)? This is the situation where the expected 
difference between the two conditions is larger than 0 before 
the experiment. Hence, three more simulations were carried 
out with two statistical populations whose means differ. 
Specifically, while u1 = 4.812, u2 = 5.262. This arrangement 
represents a medium effect size in Cohen's (1987) terms 
(viz.., the difference of .45 represents half of the standard 
deviation of the first population). Steps (1) through (6) 
described in the "Three Simulation Trials With the Zero-null 
Ho" section above were carried out. Each of the t-ratios was 
determined with ( CXEX − - .45) as the numerator in view of 
the point-null, Ho: (u1 - u2 = 0.45 (see Kirk, 1984; Chow, 
1986, pp. 132-137). The data are shown in Panels 2D, 2E 
and 2F in Table 4. The mean t-ratios for sizes 5, 75 and 750 
are .006, 0 and .028, respectively. They are not different. 

 
The Independence of Sample Size and Statistical 

Significance 
Data from Panels 2A, 2B and 2C of Table 4 are entered 

into a 2-way classification scheme so as to apply the χ2 test 
(see Panel 1 of Table 5). The three levels of the variable 
Sample Size are 5, 75 and 750. The second variable is 
Significance-status (i.e., Yes or No) with reference to the 
critical value appropriate for the df. Each of the 5,000 
t-ratios from each level of Sample Size was put in the 
appropriate cell of the 3 by 2 matrix (see the six boldface 
entries in Panel 1 of Table 5).The χ2 (df = 2) = 2.645 is not 

significant at the .05 level. Data from Panels 2D, 2E and 2F 
of Table 4 were treated in like manner (see Panel 2 of Table 
5). The six italicized boldface entries yield a χ2

 (df = 2) = 
3.458. It is also insignificant. As there is no reason to reject 
chance as an explanation of the two χ2's, the conclusion is 
that sample size and statistical significance are independent. 

Summary and Conclusions 

It is true that "each form of research has its own 
strengths, weaknesses, and standard of practice" (Wilkinson 
& Task Force, 1999, p. 594). However, this state of affairs 
does not invalidate the fact that some research methods yield 
less ambiguous data than others. Nor does it follow that all 
methodological weaknesses are equally tolerable if the 
researcher aims at methodological validity and conceptual 
rigor. Having a standard of practice per se is irrelevant to the 
validity of the research method. To introduce the criteria of 
being valuable or credible in methodological discussion is 
misleading because "being valuable" or "being credible" is 
not a methodological criterion. Moreover, "being valuable" 
or "being credible" may be in the eye of the beholder. This 
state of affairs is antithetical to objectivity. 

Psychologists can justify using non-randomly selected 
student-subjects because the representativeness of such 
samples is warranted on theoretical grounds. Moreover, 
using student-subjects does not violate the independence of 
observations requirement. Causal inference is made by 
virtue of the implicative relationships among the hypotheses 
at different levels of abstraction and data. Being one of 
several control procedures, random subject-assignment 
serves to exclude extraneous variables as alternative 
explanations of data. Psychologists can exclude many 
extraneous variables by using the repeated-measures or 
randomized-block design. 

Many of the observations made about psychologists' 
research practice would assume a more benign complexion 
if theoretical relevancy and some subtle distinctions are 
taken into account. For example, the evidential support for 
the experimenter's expectancy effects has to be 
re-considered if the distinction between meta-experiment 
and experiment is made. It is necessary for power-analysts 
to resolve the 'disparate levels of abstraction' difficulty and 
to 
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explain how a conditional probability may be used as an 
exact probability. Despite what is said in the report, it is 
hoped that non-psychologist readers have a better opinion of 
psychologists' methodological sophistication, conceptual 
rigor or intellectual integrity. 
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Panel l Score 1 2 3 4 5 6 7 8 Total 
 Fre uenc 1 12 36 412 669 128 65 5 1328 
Panel 2 N 1=N2=1328; el = fit = .894 
 Panel 2A Panel 2B Panel 2C Panel 2D Panel 2E Panel 2F 
 ul =u2=4.812 ul =4.812; u2=5.262 
Range of t 
ratio's 

uE - uc =-.005 
.564  
n1 =n2=5 

uE - uc --.001 
Ql~_ ~1 =.148  
n1 =n2=75 

uE - uc = 0 
al~_ -.046  

n1 =n2=750 

uE - uc --.482 
61_ =.584  
n1 =n2=5 

uE - uc = -.45 
al_ -.145 

.97 AD 
nj =n2=75 

uE - uc --.449 

r) =.046 
6177_  
nj =n2=750 

 Frequency Fre uenc Frequency Frequency Frequency Frequency 
<_ -2.901 3 0 12 13 2 9 12 8 

-2.90 - -2.701 16 9 8 14 5 9 
-2.70 - -2.501 3 0 2 2 6 3 2 16 15 
-2.50 --2.301 35 26 23 24 22 20 

-2.30 - -2.101 50 3 5 28 64 31 3 5 
-2.10 --1.901 10 55 60 17 42 46 

-1.90 - -1.701 124 85 96 114 91 76 
-1.70 - -1.501 77 119 114 67 116 94 
-1.50 - -1.301 214 160 112 190 170 136 
-1.30 - -1.101 166 183 206 163 187 215 
-1.10 - -.901 264 254 282 216 214 253 
-.900 - -.701 240 271 245 227 288 245 
-.700 - -.501 366 362 365 408 333 298 

-.500--.301 413 346 338 392 369 395 
-.300 - -.101 137 343 383 111 335 393 
-.100 - .099 744 461 401 862 499 441 

.100-.299 111 359 398 113 373 360 
.300 - .499 373 353 368 395 354 358 

.500-.699 389 331 340 374 349 347 
.700 - .899 221 288 302 227 266 298 

.900 - 1.099 257 239 241 233 255 251 
1.10 - 1.299 162 211 187 159 188 197 
1.30 - 1.499 135 140 158 146 160 160 
1.50 - 1.699 136 98 120 123 103 118 
1.70 - 1.899 101 89 65 111 75 86 
1.90 - 2.099 12 46 55 9 71 53 
2.10 - 2.299 69 41 34 67 34 40 
2.30 - 2.499 38 20 22 32 21 19 
2.50 - 2.699 34 19 12 39 12 15 
2.70 - 2.899 14 11 9 9 4 8 
2.90 - 3.099 1 6 3 1 2 4 

>- 3.100 31 6 6 3 2 3 8 
Mean t-ratio -.007 -.011 .002 .006 0 .028 

Expected t-ratio 0 0 0 0 0 0 
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Table 5 

The number of empirically determined t-ratios tabulated in Table 3 that exceed the critical value of the t-ratio 
(significant) and do not exceed the critical value (non-significant) at the .OS level when Ho is a zero-null (Panel ) and 

a point-null (Panel 2). 

  df  nl -n2  Critical t Signi-  
ficant  

Not 
significant  χ2 

(df = 2) 
Panel 1 8 5 :9 -1.86 or >_ 1.86 462 4538  
alpha = .05 (1-tailed) 148 75 5 -1.65 or >_ 1.65 510 4490 2.645 
 1498 750 <_ -1.645 or > 1.645 490 4510  
       
Panel 2 8 5 <_ -1.86 or >_ 1.86 449 4551 _ 
alpha = .05 (1-tailed) 148 75 :5 -1.65 or >_ 1.65 471 4529 3.458 
 1498 750 :5 -1.645 or >_ 1.645 503 4497  
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