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Summary 

As readers will have noticed, some everyday words are given technical meanings in statistical 
parlance (e.g. “mean,” “normal,” “significance,” “effect,” and “power”). It is necessary to resist the 
temptation of conflating their vernacular and technical meanings. A failure to do so may have a lot 
to do with the ready acceptance of the “effect size” and “power” arguments in recent years. 
To recapitulate, statistics is used (i) to describe succinctly data in terms of the shape, central 
tendency, and dispersion of their simple frequency distribution, and (ii) to make decisions about the 
properties of the statistical populations on the basis of sample statistics. Statistical decisions are 
made with reference to a body of theoretical distributions: the distributions of various test statistics 
that are in turn derived from the appropriate sample statistics. In every case, the calculated test 
statistic is compared to the theoretical distribution, which is made up of an infinite number of 
tokens of the test statistic in question. Hence, the “in the long run” caveat should be made explicit in 
every probabilistic statement based on inferential statistics (e.g. “the result is significant at the 0.05 
level in the long run”). 
Despite the recent movement to discourage psychologists from conducting significance tests, 
significance tests can be (and ought to be) defended by (i) clarifying some concepts, (ii) examining 
the role of statistics in empirical research, and (iii) showing that the sampling distribution of the test 
statistic is both the bridge between descriptive and inferential statistics and the probability 
foundation of significance tests. 

1. Introduction 

Statistics, as a branch of applied mathematics, consists of univariate and multivariate procedures. 
Psychologists use univariate procedures when they measure only one variable; they use multivariate 
procedures when multiple variables are used (a) to ascertain the relationship between two or more 
variables, (b) to derive the test statistic, or (c) to extract factors (or latent variables). As multivariate 
statistics is introduced in The Construction and Use of Psychological Tests and Measures, this 
article is almost exclusively about univariate statistics. The exception is the topic of linear 
correlation and regression. 
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The distinction needs to be made before proceeding between the substantive population and the 
statistical population. Suppose that an experiment is carried out to study the effects of diet 
supplements on athletic performance. The substantive population consists of all athletes. The 
sample selected from the substantive population is divided into two sub-samples. The experimental 
sub-sample receives the prescribed diet supplements and the control sub-sample receives a placebo. 
In this experimental context, the two groups are not samples of the substantive population, “all 
athletes.” Instead, they are samples of two statistical populations defined by the experimental 
manipulation “athletes given diet supplements” and “athletes given the placebo.” In general terms, 
even if there is only one substantive population in an empirical study, there are as many statistical 
populations as there are data-collection conditions. This has the following five implications. 
First, statistics deal with methodologically defined statistical populations. Second, statistical 
conclusions are about data in their capacity to represent the statistical populations, not about 
substantive issues. Third, apart from very exceptional cases, research data (however numerous) are 
treated as sample data. Fourth, testing the statistical hypothesis is not corroborating the substantive 
theory. Fifth, data owe their substantive meanings to the theoretical foundation of the research (for 
the three embedding conditional syllogisms, see Experimentation in Psychology--Rationale, 
Concepts, and Issues). 
Henceforth, “population” and “sample” refer to statistical population and statistical sample, 
respectively. A parameter is a property of the population, whereas a statistic is a characteristic of the 
sample. A test statistic (e.g. the student-t) is an index derived from the sample statistic. The test 
statistic is used to make a statistical decision about the population. 
In terms of utility, statistics is divided into descriptive and inferential statistics. Psychologists use 
descriptive statistics to describe research data succinctly. The sample statistic (e.g. the sample 
mean, X ) thus obtained is used to derive the test statistic (e.g. the student-t) that features in 
inferential statistics. This is made possible by virtue of the “random sampling distribution” of the 
sample statistic. Inferential statistics consists of procedures used for (a) drawing conclusions about a 
population parameter on the basis of a sample statistic, and (b) testing statistical hypotheses. 

2. Descriptive Statistics 

To measure something is to assign numerical values to observations according to some well-defined 
rules. The rules give rise to data at four levels: categorical, ordinal, interval, or ratio. A preliminary 
step in statistical analysis is to organize the data in terms of the research design. Psychologists use 
descriptive statistics to transform and describe succinctly their data in either tabular or graphical 
form. These procedures provide the summary indices used in further analyses. 

2.1. Four Levels of Measurement 

Using numbers to designate or categorize observation units is measurement at the nominal or 
categorical level. An example is the number on the bus that signifies its route. Apart from counting, 
nominal data are amenable to no other statistical procedure. 
An example of ordinal data is the result of ranking or rating research participants in terms of some 
quality (e.g. their enthusiasm). The interval between two successive ranks (or ratings) is 
indeterminate. Consequently, the difference between any two consecutive ranks (e.g. Ranks 1 and 
2) may not be the same as that between another pair of consecutive ranks (e.g. Ranks 2 and 3). 
Temperature is an example of the interval-scale measurement. The size of two successive intervals 
is constant. For example, the difference between 20°C and 30°C is the same as that between 10°C 
and 20°C. However, owing to the fact that 0°C does not mean the complete absence of heat (i.e. 
there is no absolute zero in the Celsius scale), it is not possible to say that 30°C is twice as warm as 
15°C. 
In addition to having a constant difference between two successive intervals, it is possible to make a 
definite statement about the ratio between two distances by virtue of the fact that 0 m means no 
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distance. Hence, a distance of 4 km is twice as far as 2 km because of the absolute zero in the 
variable, distance. Measurements that have properties like those of distance are ratio data. 

2.2. Data—Raw and Derived 

Suppose that subjects are given 60 minutes to solve as many anagram problems as possible. The 
scores thus obtained are raw scores when they are not changed numerically in any way. In a slightly 
different data collection situation, the subjects may be allowed as much time as they need. Their 
data may be converted into the average number of problems solved in a 30-minute period or the 
average amount of time required to solve a problem. That is, derived data may be obtained by 
applying an appropriate arithmetic operation to the raw scores so as to render more meaningful the 
research data. 

2.3. Data Tabulation and Distributions 

Data organization is guided by considering the best way (i) to describe the entire set of data without 
enumerating them individually, (ii) to compare any score to the rest of the scores, (iii) to determine 
the probability of obtaining a score with a particular value, (iv) to ascertain the probability of 
obtaining a score within or outside a specified range of values, (v) to represent the data graphically, 
and (vi) to describe the graphical representation thus obtained. 

2.3.1. Simple Frequency Distribution 

The entries in panel 1 of Table 1 represent the performance of 25 individuals. This method of 
presentation becomes impracticable if scores are more numerous. Moreover, it is not conducive to 
carrying out the six objectives just mentioned. Hence, the data are described in a more useful way 
by (a) identifying the various distinct scores (the “Score” row in panel 2), and (b) counting the 
number of times each score occurs (i.e. the “Frequency” row in panel 2). This way of representing 
the data is the tabular “simple frequency distribution” (or “frequency distribution” for short). 
 

Table 1. Various ways of tabulating data 

Panel 1: A complete enumeration of all the scores 
15 14 14 13 13 13 12 12 12 12 
11 11 11 11 11 10 10 10 10 9 
9 9 8 8 7      

 
Panel 2: The simple frequency distribution 

Score 15 14 13 12 11 10 9 8 7 
Frequency 1 2 3 4 5 4 3 2 1 

 
Panel 3: Distributions derived from the simple frequency distribution 

1 2 3 4 5 6 

Score 
value Frequency Cumulative 

frequency 
Cumulative 
percentage 

Relative 
frequency 

Cumulative 
relative 

frequency 
15 1 25 100 0.04 1.00 
14 2 24 96 0.08 0.96 
13 3 22 88 0.12 0.88 
12 4 19 76 0.16 0.76 
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11 5 15 60 0.20 0.60 
10 4 10 40 0.16 0.40 
9 3 6 24 0.12 0.24 
8 2 3 12 0.08 0.12 
7 1 1 4 0.04 0.04 

 Total = 25     

2.3.2. Derived Distributions 

The frequency distributions tabulated in panel 2 of Table 1 have been represented in columns 1 and 
2 of panel 3. This is used to derive other useful distributions: (a) the cumulative percentage 
distribution (column 3), (b) the cumulative percentage (column 4), (c) the relative frequency 
(probability) distribution (column 4), and (d) the cumulative probability distribution (column 6). 
Cumulative frequencies are obtained by answering the question “How many scores equal or are 
smaller than X?” where X assumes every value in ascending order of numerical magnitude. For 
example, when X is 8, the answer is 3 (i.e. the sum of 1 plus 2) because there is one occurrence of 7 
and two occurrences of 8. A cumulative percentage is obtained when 100 multiply a cumulative 
relative frequency. 
 
A score’s frequency is transformed into its corresponding relative frequency when the total number 
of scores divides the frequency. As relative frequency is probability, the entries in column 5 are the 
respective probabilities of occurrence of the scores. Relative frequencies may be cumulated in the 
same way as are the frequencies. The results are the cumulative probabilities. 

2.3.3. Utilities of Various Distributions 

Psychologists derive various distributions from the simple frequency distribution to answer 
different questions. For example, the simple frequency distribution is used to determine the shape of 
the distribution (see Section 2.4.1. The Shape of the Simple Frequency Distribution). The 
cumulative percentage distribution makes it easy to determine the standing of a score relative to the 
rest of the scores. For example, it can be seen from column 3 in panel 3 of Table 1 that 22 out of 25 
scores have a value equal to or smaller than 13. Similarly, column 4 shows that a score of 13 equals, 
or is better than, 88% of the scores (see column 5). 
The relative frequencies make it easy to determine readily what probability or proportion of times a 
particular score may occur (e.g. the probability of getting a score of 12 is 0.16 from column 5). 
Likewise, it is easily seen that the probability of getting a score between 9 and 12, inclusive, is 0.64 
(i.e. 0.12 + 0.16 + 0.20 + 0.16). The cumulative probability distribution in column 6 is used to 
answer the following questions: 
(a) What is the probability of getting a score whose value is X or larger? 
(b) What is the probability of getting a score whose value is X or smaller? 
(c) What are X1 and X2 such that they include 95% of all scores? 
The probability in (a) or (b) is the associated probability of X. In like manner, psychologists answer 
questions about the associated probability of the test statistic with a cumulative probability 
distribution at a higher level of abstraction (see Section 3.2. Random Sampling Distribution of 
Means). The ability to do so is the very ability required in making statistical decisions about chance 
influences or using many of the statistical tables. 

2.4. Succinct Description of Data 

4 
 

Research data are described succinctly by reporting three properties of their simple frequency 
distribution: its shape, central tendency, and dispersion (or variability). 



2.4.1. The Shape of the Simple Frequency Distribution 

The shape of the simple frequency distribution depicted by columns 1 and 2 in panel 3 of Table 1 is 
seen when the frequency distribution is represented graphically in the form of a histogram (Figure 
1a) or a polygon (Figure 1b). Columns 1 and 6 jointly depict the cumulative probability distribution 
whose shape is shown in Figure 1c. In all cases, the score-values are shown on the X or horizontal 
axis, whereas the frequency of occurrence of a score-value is represented the Y or vertical axis. 
 
A frequency distribution may be normal or non-normal in shape. The characterization “normal” in 
this context does not have any clinical connotation. It refers to the properties of being symmetrical 
and looking like a bell, as well as having two tails that extend to positive and negative infinities 
without touching the X axis. Any distribution that does not have these features is a non-normal 
distribution. 

 

 
 
 
 
 

 

 

 

2.4.2. Measures of Central Tendency 

Suppose that a single value is to be used to describe a set of data. This is a request for its typical or 
representative value in lay terms, but a request for an index of central tendency in statistical 
parlance. There are three such indices: mode, median, and mean. The mode is the value, which 
occurs the most often. For example, the mode of the data in Table 1 is 11 (see panel 2). The median 
of the data set is the value that splits it into two equally numerous halves. It is 11 in the data in 
Table 1. 
The mean is commonly known as the average. Consider the following set of data: 18, 12, 13, 8, 18, 
16, 12, 17, and 12. The mean is 14. Introduced in panel 1 of Table 2 is x (i.e. the deviation score of 
X), which is the distance of X from the mean of the data (i.e. X ). That the mean is the center of 
gravity (or the balance point) of the aggregate may also be seen from panel 1 of Table 2 and the 
open triangle in Figure 2 in terms of the following analogy. 

Table 2. An illustration of the deviation score x = (X – X ), sum of squares, variance, and standard 
deviation of a set of scores 

Panel 1: The deviation score 
 

Scores to the left of the mean = negative 
scores vis-à-vis the mean 

Scores to the right of the mean = positive 
scores vis-à-vis the mean 
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Score (X) 
Deviation 

score 
x = (X – X ) 

Deviation 
score times 
frequency 

Score (X) 
Deviation 

score 
x = (X – X ) 

Deviation 
score times 
frequency 

8 8 – 14 = –6 –6 × 1 = –6 16 16 – 14 = 2 2 × 1 = 2 

12 12 – 14 = –2 –2 × 3 = –6 17 17 – 14 = 3  3 × 1 = 3 

13 13 – 14 = –1 –1 × 1 = –1 18 18 – 14 = 4 4 × 2 = 8 

      
The sum of the deviation 
scores =  ∑ = –13 The sum of the deviation 

scores =  
∑ = 13 

 
 
Panel 2: The sum of squares, variance, and standard deviation 
 

1 2 3 4 
 X x = (X – X ) x2 = (X – X )2 
 18 4 16.00 
 12 –2 4.00 
 13 –1 1.00 
 8 –6 36.00 
 18 4 16.00 
 16 2 4.00 
 12 –2 4.00 
 17 3 9.00 
 12 –2 4.00 

Σ =  126 0 sum of squares = 94.00 
s2 =   94 ÷ 8 = 11.75 
s =   √(11.75) = 3.43 

 

 

 

 

 

Suppose that the scores are the weights of nine children in arbitrary units. It is assumed in Figure 2 
that the distance between two successive units of weight is constant. A square represents a child, 
and the position of the child on the seesaw represents the child’s weight. Hence, the three 
occurrences of 12 are represented by three squares at location 12. The task is to balance the children 
on the seesaw by (a) arranging them, from left to right, in ascending order of weights, and (b) 
placing the fulcrum at the place that keeps the seesaw level (i.e. the open triangle in Figure 2). 
In order for the seesaw to remain level, the sum of the moments (mass × distance from fulcrum) on 
the left should equal that on the right. The location of the fulcrum is 14, which is also the mean of 
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the scores. This prerequisite state of affairs at the numerical level may be seen from panel 1 of 
Table 2 by the fact that the sum of the negative deviation scores equals that of the positive deviation 
scores. 
Of importance is the fact that the mean is used as the reference point for transforming the raw 
scores into their respective deviation scores. The deviation score of X (x) shows how far, as well as 
in what direction, it is away from X  (2 units above 14 in the case when X = 16). This foreshadows 
the fact that these deviation scores are the basis of all indices of data dispersion, the topic of Section 
2.4.4. Measures of Dispersion. Meanwhile, it is necessary to introduce the degrees of freedom 
associated with X . 

2.4.3. Degrees of Freedom (df) 

As the sample size is nine in the example in Table 2, there are nine deviation scores. Suppose that 
we are to guess what they are. We are free to assume any value for each of the first eight deviation 
scores (e.g. –1, –2, –2, –2, 2, 3, 4, and 4). These eight deviation scores sum to 6. 
Given that the deviation scores of the sample must sum to 0, we are not free to assign any value 
other than –6 to the ninth deviation score. This means that the ninth score is also not free to vary. In 
other words, only (n – 1) of the sample of n units are free to assume any value if the deviation 
scores are derived with reference to X . Hence, the parameter (n – 1) is the degrees of freedom 
associated with X . Such a constraint is not found when the deviation scores of the sample are 
derived with reference to u. 

2.4.4. Measures of Dispersion 

The frequency distribution in panel 2 of Table 1 makes explicit the fact that the largest score value 
in condition E is 15, whereas the smallest score value is 7. These two values define the range of the 
scores. The range is an index of data dispersion (or the variation in values among the data). A larger 
numerical value means greater variability. The range in the example is 8. However, the range gives 
only a rough indication of data dispersion. Moreover, it is not useful for transforming data or 
making statistical decisions. For more sophisticated purposes, the index of data dispersion to use is 
the standard deviation. 
Of interest at the conceptual level are that (a) “deviation” in “standard deviation” refers to the 
deviation score illustrated in panel 1 of Table 2, and (b) “standard” refers to a special sort of 
pooling procedure. For example, to calculate the standard deviation of the scores in question, each 
of the deviation scores [i.e. x = (X – X )] is squared [i.e. x2 = (X – X )2] (see columns 3 and 4 in 
panel 2 of Table 2), and all the squared deviation scores are summed together. The sum of all 
squared deviation scores is called the “sum of squares” (94 in the example; see row 11). 
The variance is obtained when the sum of squares is divided by the degrees of freedom (df = n – 1), 
where n is the sample size (s2 = 11.75 in the example; row 12). In other words, the variance is the 
average squared deviations. The standard deviation is the result of taking the square root of the 
variance (s = 3.43; row 13). It is in this sense that the standard deviation is the result of pooling all 
deviation scores. In such a capacity, the standard deviation is an index of data dispersion. 

2.5. Standardization 

It is not easy to compare the costs of an automobile between two countries when they have different 
costs of living. One solution is to express the cost of the automobile in terms of a common unit of 
measure, a process called “standardization.” For example, we may quote the automobile’s costs in 
the two countries in terms of the number of ounces of gold. 
Similarly, a common unit of measure is required when comparing data from data sets that differ in 
data dispersion. Specifically, to standardize the to-be-compared scores XA and XB is to transform 
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them into the standard-score equivalent (z), by dividing (XA – uA) and (XB – uB) by their respective 
standard deviations (σA and σB). 
If standardization is carried out for all scores, the original simple frequency distribution is 
transformed into the frequency distribution of z scores. The mean of the z distribution is always zero 
and its standard deviation is always one. Moreover, the distribution of z scores preserves the shape 
of the simple frequency distribution of the scores. If the original distribution is normal in shape, the 
result of standardizing its scores is the “standard normal distribution,” which is normal in shape, in 
addition to having a mean of zero and a standard deviation of one. 
The entries in the z table are markers on a cumulative probability or percentage distribution derived 
from the standard normal curve. It is in its capacity as a cumulative probability distribution that the 
distribution of the test statistic (e.g. z, t, F, or χ2) is used to provide information about the long-run 
probability (a) that a population parameter would lie within two specified limits (the confidence-
interval estimate), or (b) that the sample statistic has a specific associated probability (for the role of 
the long-run probability in tests and measurements, see The Construction and Use of Psychological 
Tests and Measures). 

2.6. Correlation and Regression 

Another major function of descriptive statistics is to provide an index of the relationship between 
two variables. The correlation coefficient is used to describe the relationship between two random 
variables. The regression coefficient is used when only one variable is random and the other in 
controlled by the researcher. 

2.6.1. Linear Correlation 

Suppose that 10 individuals are measured on both variables X and Y, as depicted in each of the three 
panels in Table 3. Depicted in panel 1 is the situation in which increases in Y are concomitant with 
increases in X. While a perfect positive correlation has a coefficient of 1, the present example has a 
positive correlation of 0.885. The data show a trend to move from bottom left upwards to top right, 
as may be seen from Figure 3a. 

Table 3. Some possible relationships between two variables 

Panel 1: Positive correlation 
 A B C D E F G H I J 

X 7 13 2 4 15 10 19 28 26 22 
Y 3 6 2 5 14 10 8 19 15 17 

 
Panel 2: Negative correlation 

 A B C D E F G H I J 
X 22 26 28 19 10 15 4 2 13 7 
Y 3 6 2 5 14 10 8 19 15 17 

 
Panel 3: Zero correlation 

 A B C D E F G H I J 
X 10 19 17 3 15 6 2 5 14 8 
Y 7 13 2 4 15 10 19 28 26 22 

 
Panel 4: A non-linear relationship 

 A B C D E F G H I J 
X 7 13 2 4 15 10 19 28 26 22 
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Y 7 8 2 5 11 10 8 1 4 5 
 
Panel 5: Data used to illustrate linear regression 

 A B C D E F G H I J 
X 3 5 7 9 11 13 15 17 19 21 
Y 8 12 11 14 15 12 14 19 20 20 

 

 

 

 

 

 

 

 

 

 
The data tabulated in panel 2 of Table 3 have been depicted in Figure 3b. The data have a trend of 
moving from top left downward to bottom right. This pattern is typical of a negative correlation: X 
and Y are inversely related (a coefficient of –0.81 in the present example). A perfect negative 
correlation has a coefficient of –1. 
Figure 3c depicts the data tabulated in panel 3 of Table 3. The data show a correlation coefficient of 
–0.161, which does not differ significantly, from 0 (see Section 4.5. The Meaning of Statistical 
Significance). The scatter plot assumes the form of a circle, which is indicative of no relationship 
between the two variables. 

2.6.2. Non-Linearity 

Although the correlation is not perfect in either Figure 3a or 3b, the data nonetheless show a linear 
trend in the sense that, when a straight line is drawn through the main body of the data points, the 
resultant line gives a good representation of the points. Such is not the case with the plot in Figure 
3d, which represents the data shown in panel 4 of Table 3. The correlation coefficient in Figure 3d 
is –0.204, which does not differ significantly from 0. However, it would be incorrect to conclude 
that there is no relationship between X and Y. 
The non-linear trend in the data in Figure 3d means that the exact relationship between X and Y in 
panel 4 of Table 3 depends on the range of X. Specifically, there is a positive relationship between X 
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and Y when the value of X is small. A negative relationship is found with larger values of X. There 
may be no relationship between X and Y in the medium range of X values. 
Taken together, Figures 3c and 3d make clear that the correlation coefficient alone is not sufficient 
for interpreting correlational data. A scatter plot of the data is necessary. Moreover, Figure 3d 
shows that correlational data based on a limited range of either of the two variables is ambiguous. 

2.6.3. Linear Regression 

The correlation coefficient informs researchers the extent to which variables X and Y are related. 
However, it conveys only ordinal information. For example, given three correlation coefficients 0.7, 
0.6, and 0.5, we can only say that (a) the first one indicates a closer relationship than the second 
one, and (b) the second one signifies a closer relationship than the third one. However, we cannot 
know that the difference between the first two is the same as that between the second and third 
coefficients. Moreover, the correlation coefficient does not enable us to tell how much change there 
is in Y per unit change in X, or vice versa. 
Suppose that the data in panel 5 of Table 3 are obtained by manipulating X and measuring Y. Recall 
that the mean is the point of balance of the data. Likewise, we may draw a line through the data 
depicted in Figure 3e to represent the relationship between X and Y. To the extent that the line is a 
valid representation of the scatter plot, it is possible to tell the amount of change in Y per unit 
change in X. In such a capacity, the solid line is the regression line (or the line of prediction). 
At first glance, drawing such a prediction line seems a non-exact task because many such lines may 
be drawn. However, the method of least squares is used to decide the best fitting line. Specifically, 
the dotted line marked di in Figure 3e represents dropping a line perpendicular to the X axis from 
the datum, cutting the solid line at Y'. The difference between Y and Y' is di, which is squared. The 
sum of the 10 (di)2 in the present example is the “sum of squares of prediction.” It is an index of the 
error of prediction. 
Given any such line, there are as many (di)2 as there are data points. Moreover, each line gives rise 
to its own set of (di)2. The line that gives rise to the smallest error of prediction is chosen as the best 
fitting line (hence, the “least squares” characterization of the method). The method of least squares 
gives rise to Equation (1): 

′ Y = a + bX , (1) 
where Y' is the predicted value of Y; a is the zero intercept and b is the regression coefficient. 
Specifically, b describes the amount of change in Y per unit change in X. Numerically, the zero 
intercept (a) represents the value of Y when X is zero. Its conceptual meaning depends on the 
substantive meaning of the research manipulation. Suppose that Y represents examination grade and 
X represents the number of hours of extra tutoring. The zero intercept represents the examination 
grade when there is no extra tutorial. However, researchers sometimes carry out regression analysis 
even though X is not a manipulated variable. The zero intercept may not have any substantive 
meaning under such circumstances. 

3. Bridging Descriptive and Inferential Statistics 

Bridging descriptive and inferential statistics are various theoretical distributions: the random 
sampling distributions of various test statistics. In what follows, the meanings of “random 
sampling” and “all possible samples” are introduced. An empirical approximation to the “random 
sampling distribution of the differences between two means of samples of sizes n1 and n2” (or 
“sampling distribution of differences” henceforth) will be used (a) to describe the theoretical 
properties, as well as the utility, of the theoretical distribution, and (b) to introduce the rationale of 
statistical hypothesis testing. 
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3.1. Random Sampling 

Suppose that the population of interest consists of the following scores: 1, 2, 3, 4, 5, 6, and 7. The 
population size (N) is 7; its mean (u) is 4; and its standard deviation (σ) is 2. Shown in panel 1 of 
Table 4 are the 49 possible combinations of two units selected with replacement from the 
population. By “with replacement” is meant the procedure in which the item selected on any 
occasion is returned to the population before the next item is selected. That is, the same item may be 
selected again. 

Table 4. All possible samples of size 2 from a population of size 7 

Panel 1: Population P: 1, 2, 3, 4, 5, 6, 7; N = 7; u = 4; σ = 2 
1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 
1, 2 2, 2 3, 2 4, 2 5, 2 6, 2 7, 2 
1, 3 2, 3 3, 3 4, 3 5, 3 6, 3 7, 3 
1, 4 2, 4 3, 4 4, 4 5, 4 6, 4 7, 4 
1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 7, 5 
1, 6 2, 6 3, 6 4, 6 5, 6 6, 6 7, 6 
1, 7, 2, 7 3, 7 4, 7 5, 7 6, 7 7, 7 

 
Panel 2: Various distributions of all possible sample means from panel 1 

1 2 3 4 
Value 

of 
Mean 

Freq 
of 

Value 

Long-run 
probability 

Long-run 
cumulative 
probability 

7 1 0.0204 1.0000 
6.5 2 0.0408 0.9792 
6 3 0.0612 0.9384 
5.5 4 0.0816 0.8772 
5 5 0.102 0.7956 
4.5 6 0.1224 0.6936 
4 7 0.1428 0.5712 
3.5 6 0.1224 0.4284 
3 5 0.102 0.306 
2.5 4 0.0816 0.204 
2 3 0.0612 0.1224 
1.5 2 0.0408 0.0612 
1 1 0.0204 0.0204 

uX = u = 4; σ
X 

=
σ
2

= 1.4  

 
It is important to note that the 49 samples in panel 1 are not necessarily the outcomes of 49 
selection trials. They are logical possibilities only. However, they are useful for defining the crucial 
term “random sampling.” The selection is random if all of the logically possible samples have an 
equal chance of being selected. 
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3.2. Random Sampling Distribution of Means 

Each of the 49 possible samples gives a mean. As may be seen from column 1 in panel 2 of Table 4, 
some samples have the same mean. Depicted in column 2 are the frequencies of various values of 
the mean. Shown in column 3 are their probabilities of occurrence in the long run (i.e. repeating 
the random selection process an infinite number of times), and their long-run cumulative 
probabilities (column 4). The “in the long run” caveat highlights the fact that an empirical 
approximation to the logical possibilities depicted in columns 1 and 2 of panel 2 requires carrying 
out the random sampling procedure an infinite number of times. 
Taken together, the entries in columns 1 and 2 of panel 2 form a frequency distribution. In such a 
capacity, it has a mean (u = 4) and a standard deviation (σ = 1.4). However, this is not a frequency 
distribution of raw scores. Instead, it is the distribution of the means of random samples of two 
scores. That is, it is a frequency distribution at a higher level of abstraction. This more abstract 
distribution is called the “random sampling distribution of means.” Its mean is the “mean of means” 
(uX )  and its standard deviation is the “standard error of means” (σ X ) . The parameters uX  and σ X  
are indices of the central tendency and dispersion, respectively, of the sampling distribution of 
means. Note that uX  is numerically equal to u, and that σ X =

σ
n

. 

To reiterate, the random sampling distribution of means is a distribution at the higher level of 
abstraction than the distribution of the scores. It is a theoretical distribution of the chosen statistic 
( X  in the present example). The ‘“theoretical” characterization signifies that the distribution is 
based on the mathematical derivation of what should be the result if an infinite number of samples 
of the same size is selected randomly. However, its parameters bear a systematic relationship with 
the population parameters. This relationship makes it possible to talk about the population’s 
parameter on the basis of what is known about its corresponding statistic in a randomly selected 
sample. This point may be explicated with the sampling distribution of differences. 

3.3. The Random Sampling Distribution of Differences 

Shown in Table 5 is an empirical approximation to the theoretical distribution. Underlying the 
scenario are two statistical populations that have the same mean (u1 = u2 = 4.812) and the same 
standard deviation (σ1 = σ2 = 0.894). Hence, the difference between the two population means is 
zero. The following procedure was carried out: 
(a) A sample of 25 was selected randomly with replacement from each of the two statistical 

populations. 
(b) The means of the two samples were ascertained (e.g. 1X  = 4.96 and 2X  = 4.84 in row 1 of 

Table 5). 
(c) The difference between 1X  and 2X  was then determined (i.e. 4.96 – 4.84 = 0.12 in row 1 of 

Table 5). 
(d) Units of the two samples were returned to their respective populations. 
(e) Steps (a) through (d) were repeated 30 times. 

Table 5. An empirical approximation to the random sampling distribution of differences 

 

N1 = 1328 
u1 = 4.812 
σ1 = 0.894 
n1 = 25 

N2 = 1328 
u2 = 4.812 
σ2 = 0.894 
n2 = 25 

u1 – u2 = 0 

Sample-pair X1 X2 ( )21 XX −  
1 4.96 4.84 0.12 
2 4.76 4.92 –0.16 
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3 4.44 4.72 –0.28 
4 4.56 5.00 –0.44 
5 4.84 4.68 0.16 
6 4.80 5.00 –0.20 
7 4.88 4.72 0.16 
8 4.96 4.88 0.08 
9 4.56 4.64 –0.08 

10 4.84 4.96 –0.12 
11 4.80 4.72 0.08 
12 4.80 4.76 0.04 
13 4.88 4.72 0.16 
14 4.80 4.72 0.08 
15 4.80 4.48 0.32 
16 4.96 4.96 0 
17 4.88 4.72 0.16 
18 4.76 4.64 0.12 
19 4.76 5.08 –0.32 
20 4.96 5.12 –0.16 
21 5.20 4.76 0.44 
22 4.60 4.72 –0.12 
23 4.76 4.76 0 
24 4.68 5.04 –0.36 
25 4.84 4.84 0 
26 4.68 5.04 –0.36 
27 4.76 4.72 0.04 
28 4.76 4.84 –0.08 
29 4.84 5.08 –0.24 
30 4.60 5.04 –0.44 

 
u X 1−X 2( ) = −0.047  σ(X 1 − X 2) = 0.220  

 

Shown in columns 1X  and 2X  of Table 5 are the means of the 30 samples randomly selected from 
two statistical populations, 1 and 2, respectively. Their differences are shown in the (X1 − X 2 ) 
column. An examination of either the 1X  or the 2X  column shows that (a) samples of the same size 
selected randomly from the same population may have different means, and (b) samples selected 
randomly from their respective statistical populations that have the same u may not have the same 
X . 
When the 30 differences shown in the (X1 − X 2 ) column are represented graphically, it is an 
empirical approximation to the theoretical sampling distribution of differences. As such, it has a 
mean, called the “mean difference” (u X 1−X 2( )) , and a standard deviation, called the “standard error 

of differences” (σ (X 1 − X 2)
) . 
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3.4. Theoretical Properties of the Sampling Distribution of Differences 

The sampling distribution of differences is neither of the two statistical populations. It is the 
theoretical distribution of differences between an infinite number of pairs of samples drawn 
randomly from the two statistical populations. Nonetheless, the properties of this theoretical 
distribution are related to those of the two underlying statistical populations. Specifically, the mean 
difference equals the difference between the means of the two statistical populations (i.e. 
u X 1−X 2( ) = (u

1
− u

2
) ), and the exact relationship between the standard error of the difference and the 

standard deviations of the two statistical populations depends on whether or not the two 
methodologically defined statistical samples are independent. These theoretical properties make it 
possible to make a decision about the difference between the means of two statistical populations on 
the basis of that between two sample means. 
Represented in the sampling distribution of differences are the frequencies of all possible 
differences that can occur by random chance, given the two statistical populations. The test statistic, 
t, is the result of standardizing the difference between two sample-means in terms of the estimated 
standard error of the difference. Hence, the t-distribution is obtained when all possible differences 
between two sample-means are standardized. Consequently, given a particular difference between 
two sample-means, it is possible to determine its associated probability with reference to the t-
distribution. 
In sum, the foundation of probability statements in inferential statistics is ultimately the sampling 
distribution of the test statistic that is contingent on chance. The applicability of these probability 
statements is based on the assumption that chance is the sole determinant of data dispersion. 

4. Inferential Statistics 

Psychologists apply inferential statistics to decide whether or not there is statistical significance 
with reference to a criterion value set in terms of the distribution of the test statistic. As an example, 
consider the case in which the experimental and control conditions are the partial-report and whole-
report tasks (see Appendix 1 of Experimentation in Psychology--Rationale, Concepts, and Issues). 
The reasoning that gives rise to the decision criterion is shown in panel 1 of Table 6. 

Table 6. The conditional syllogisms implicated in testing H0 

Panel 1: The reasoning that gives rise to the decision criterion used in panel 2 (adopted from 
Table 7 of “Laboratory Experimentation”) 
Experimental 
hypothesis 

If only raw sensory information is available in the buffer, then partial-
report superiority is found when a spatial cue is used 

Complement of 
experimental 
hypothesis 

If the storage format envisaged in the theory is false, then there is no 
partial-report superiority with a spatial cue 

Statistical alternative 
hypothesis (H1) 

If the experimental hypothesis is true, then H1: upartial report > uwhole report 

Statistical null 
hypothesis (H0) 

If the experimental hypothesis is false, then H0: upartial report ≤ uwhole report 

Sampling distribution 
based on H1 

If H1 is used, the probability associated with a t-value as extreme as 
1.729 is not known 

Sampling distribution 
based on H0 

If H0 is used, the probability associated with a t-value as extreme as 
1.729 is 0.05 in the long run 

 
Panel 2: Two conditional syllogisms involving the sampling distribution 
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 Criterion exceeded Criterion not exceeded 
Major premise If calculated t > (criterion = 

1.729), then not H0 
If calculated t ≤ (criterion = 
1.729), then H0 

Minor premise t > (criterion = 1.729) 
[e.g., t = 2.05] 

t ≤ (criterion = 1.729) 
[e.g.. t = 1.56] 

Conclusion Not H0 H0 
 
Panel 2: The disjunctive syllogism that decides between H1 and H0 
 

 Statistical significance No statistical significance 
Major premise H1 or H0 H1 or H0 
Minor premise Not H0 H0 
Conclusion H1 Not H1 

 

.1. Experimental Hypothesis versus Statistical Hypothesis 

To begin with, the experimental expectation of partial-report superiority shown in row 1 of Table 6 
is translated into a directional difference between two parameters in the statistical alternative 
hypothesis (H1: upartial report > uwhole report in row 3). As may be recalled, the mean difference equals the 
difference between two population means. For this reason, there is no information about the mean 
difference because the researchers do not know the means of the two statistical populations. If the 
mean difference is not known, it is not possible to determine which sampling distribution of 
differences to use. It is for this reason that psychologists appeal to the logical complement of the 
experimental hypothesis, which denies the hypothetical property, envisaged in the theory. 

4.2. The Implication of H0 

The statistical null hypothesis (H0: upartial report ≤ uwhole report) is the statistical representation of the 
logical complement of the experimental hypothesis (see rows 1 and 4). This H0 stipulates that the 
sampling distribution with a mean difference of zero be used. Recall from Table 5 that the 
difference between two sample means may not be zero even though the samples are selected 
randomly from two populations that have the same mean. In other words, the difference between 
X partial report and X whole report need not be zero even if H0 is true (i.e. chance is the sole determinant of 
data dispersion). Nonetheless, most of the non-zero differences are close to zero. Moreover, the 
sampling distribution with a mean difference of zero is informative as to the probability of obtaining 
a difference that equals, or is larger than, 95% of all possible differences. Such a difference gives 
rise to t(df = 19) = 1.729 in the long run when n = 20 (with the repeated-measures design). That is, the 
probability of obtaining a difference that gives rise to t(df = 19) ≥ 1.729 is 0.05 or lower, as may be 
seen from row 6 in Table 6. 

4.3. The Decision Rule—Criterion and Conditional Probability 

Suppose that it is rare that Event E would occur when chance is the cause. It is not unreasonable to 
ignore chance as an explanation of E under such circumstances, particularly when there is a well-
defined way of stipulating the meaning of “rare.” Suppose further that Event E is the data that give 
rise to a calculated t(df = 19) of 1.85, with df = 19. In exceeding the critical t value of 1.729, the 
associated probability of E is lower than 0.05 with reference to the sampling distribution of 
differences based on H0. 
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At the same time, psychologists adopt in most research the convention that anything that happens 
five out of 100 times in the long run is a rare event. Hence, it is deemed unlikely that the data 
(whose associated probability is 0.05 or smaller) have been obtained from the sampling distribution 



based on H0. The outcome is characterized as “statistically significant” in such an event. By the 
same token, data that produce a calculated t that is smaller than 1.729 has a probability higher than 
0.05 occurring in the long run, given the sampling distribution based on H0. The decision is that 
such an outcome occurs frequently enough for maintaining that H0 is true. Such an outcome is a 
statistically non-significant result. 

4.4. The Level of Significance 

The demarcation between significant and non-significant results is based on the critical t value 
identified in terms of the “five out of 100 times in the long run” criterion in the present example. 
The 0.05 value is called the “level of significance.” The significance level is an index of the 
strictness of the decision in the sense that it stipulates the probability of committing the Type I 
error, the error of rejecting H0 when H0 is true (see panel 1 of Table 7). The boldface “when” 
emphasizes the fact that the Type I error is a conditional event. Hence, the probability of the Type I 
error is a conditional probability (for the conditional nature of many statistical indices, see The 
Construction and Use of Psychological Tests and Measures).  

Table 7. Two types of errors in statistical hypothesis testing 

Panel 1: Statistical decision in terms of H0 only 
Decision made 
with reference 
to the α level 

State of affairs Power Underlying 
distribution 

 H0 is true H0 is not true  
The random sampling 
distribution of 
differences 

Accept H0 
Correct acceptance 
of H0 

Type II error 
p(Type II error) = β 

Not 
possible  

Reject H0 
Type I error 
p(Type I error) = α 

Correct rejection of 
H0 

  

 
Panel 2: H1 introduced in the statistical decision in power analysis 

Decision made 
with reference 
to the α level 

State of affairs Power Underlying 
distributions 

 H0 is true H1 is true  

Two distributions of 
population scores 
predicated on H0 and 
H1  

Accept H0 
Correct acceptance 
of H0 

Type II error 
p(Type II error) = β 1– β  

Reject H0 
Type I error 
p(Type I error) = α 

Correct acceptance 
of H1 

  

 
The significance level is arbitrary in the sense that psychologists may adopt the “one out of 100 
times in the long run” value as the significance level (i.e. the 0.01 level). The choice of the 
significance level depends on common practice or some non-statistical considerations. Be that as it 
may, although the 0.01 level is stricter than the 0.05 level, it does not follow that a decision based 
on the former is superior to one based on the latter. The theoretical foundation of the research, the 
validity of the research design, and the appropriateness of the experimental procedure collectively 
determine data quality, not the decision about statistical significance. 
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For example, the bulk of experiments in support of the partial-report superiority described in 
Appendix 1 of Experimentation in Psychology--Rationale, Concepts, and Issues  is established with 
α = 0.05 when subjects were given extensive training on the partial-report task (e.g. 100 trials of 
training). Hence, it is necessary to use a more stringent criterion (e.g. α = 0.01) if subjects are not 
given a comparable amount of training on the partial-report task (e.g. fewer than 50 training trials). 
The quality of the data is determined by how well trained the subjects are, as well as the number of 
trials in a session. The alpha level has nothing to say about how the data are collected. 

4.5. The Meaning of Statistical Significance 

It may be seen that “statistical significance” owes its conceptual meaning to the sampling 
distribution of the test statistic. The said theoretical distribution is based on the assumptions that (a) 
the research manipulation is substantively ineffective, and (b) random chance is the cause of 
variation in the score-values. Hence, to adopt the sampling distribution based on H0 is to adopt 
chance influences as an explanation of the data. In its capacity as the logical complement of H0, the 
conceptual meaning of H1 is that chance influences may be ruled out as an explanation of the 
experimental outcome. This is less specific than saying that the experimental manipulation is 
efficacious because the significant result may be due to some confounding variables (see 
Experimentation in Psychology--Rationale, Concepts, and Issues).  

4.6. “H0 Is Never True” Revisited 

Critics find the significance test wanting because it is based on H0, and critics assert that H0 is never 
true in the substantive population. However, as has been shown in the introduction, statistics is 
about statistical populations, not any substantive population. The second difficulty with the critics’ 
stance is that H0 is not (and should not be) stated as a categorical proposition, as may be seen from 
the foregoing discussion. Instead, it appears in the two conditional propositions [P1] and [P2]: 

If chance is the cause of data dispersion, then H0 is true [P1] 
If H0 is true, then the sampling distribution of differences has a mean difference of zero [P2] 

In view of the fact that H0 is the consequent of [P1], the reservation about H0 is actually a question 
about the antecedent of [P1]. Such a concern is about the data-collection procedure, not about H0 
per se. In sum, it is misleading to say “H0 is never true.” 

5. Effect Size and Statistical Power 

Having a utilitarian goal in mind (see Experimentation in Psychology--Rationale, Concepts, and 
Issues), critics find significance tests wanting. For example, they note that the difference between 
subjects’ partial-report and whole-report performance is used to obtain the t-statistic, and the binary 
decision about statistical significance is made on the basis of the t-statistic. At the same time, 
statistical significance is not informative of the practical importance of the result. Worse still, 
statistical significance is ambiguous or misleading because of its anomalous relationship with the 
effect size, as may be seen from Table 8. 

Table 8. The putative anomalous relationship between statistical significance and effect size 

1 2 3 4 5 6 

Study uE uC Effect size = 
d = ( X E – X C) ÷ sE t significant? df 

I 8 2 0.5 Yes 22 

II 17 8 0.9 No 5 
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III 25 24 0.1 No 8 

IV 6 5 0.2 Yes 20 

5.1. The Putative Anomaly of Significance Tests 

A commonly used index of effect size is the result of dividing the difference between the two 
sample means by the standard deviation of the control sample (see column 4 of Table 8). Study IV 
is significant, whereas Study II is not. Yet, the effect size of Study II is larger than that of Study IV. 
Although both Studies I and IV are significant, the effect size of Study I is larger than that of Study 
IV. Similarly, the two non-significant studies have different effect sizes. Specifically, Study II has a 
larger effect size than Study III. The critics make the point that, in concentrating only on statistical 
significance, psychologists are losing the important information conveyed by the effect size. To the 
critics, non-significance results may lead psychologists to ignore important (i.e. large-effect) results. 
By the same token, significance results may lead psychologists to accept trivial (i.e. small-effect) 
results. 

5.2. “Effect”—Statistical versus Substantive 

A simple reflection will show that statistical statements are about data, not substantive issues. This 
may be seen from the fact that psychologists use the t-test in a way indifferent to the nature of the 
research manipulation. For example, the t-test is used to assess the difference between two sample 
means, be they drug D and the placebo or a new teaching method and the traditional teaching 
method or acoustically similar words and acoustically dissimilar words. That such a practice is 
legitimate means that the research manipulation or substantive issue and statistics belong to 
different domains. 
In a similar vein, “effect” is simply the difference between two means in cases where the t-test is 
used (e.g. XC − XE ). Its numerical magnitude says nothing about its being trivial or important in the 
substantive domain. The statistical decision about the effect of the research manipulation is one 
about (XC − XE) as a numerical difference, not as the product of a substantive causal agent. In other 
words, the anomalies suggested by critics of significance tests are more apparent than real. 

5.3. Statistical Power 

Table 8 also suggests to critics that sample size is responsible for the ambiguity in significance 
tests. The critics’ argument is that too small a sample size will produce non-significant results 
despite a large effect size. At the same time, statistical significance is assured even though the effect 
size is trivial if a large enough sample size is used. The ambiguity is eliminated if psychologists 
know the probability of obtaining statistical significance. Statistical power is considered such an 
index. 
It is necessary to refer to Table 7 again to present the power-analytic argument. The two panels of 
Table 7 would be saying the same thing if H0 and H1 are mutually exclusive, as is the case when 
they are identified with “chance” and “not chance” influences, respectively, as in Section 4.5. The 
Meaning of Statistical Significance.  However, H1 and H0 are not mutually exclusive in the power-
analytic account. To power analysts, there are as many H1 as there are possible differences between 
two sample means expressed in units of the standard deviation of the control sample. Hence, a 
specific numerical value is assumed in “H1 is true” in panel 2 of Table 7. Consequently, the 
statistical hypothesis testing is represented graphically with two distributions by power analysts, 
one based on H0 and the other on H1. Once, the decision is made about the desired statistical power, 
desired effect size, and the level of significance the appropriate sample size may be obtained by 
consulting the tables prepared for that specific purpose. 

18 
 



5.4. Reservations about Statistical Power 

Before accepting the scenario in panel 2 of Table 7, it is necessary to settle a few important 
questions. The first is about the level of abstraction. As may be seen from column 4 of Table 8, the 
effect size is defined at the level of scores. Consequently, the two distributions envisaged in panel 2 
of Table 7 are distributions of population scores. However, the statistical decision is made with 
reference to the sampling distribution of differences, not on the basis of the substantive population. 
Hence, the α level envisaged in panel 2 of Table 7 is not (and cannot be) that depicted in panel 1 of 
the same table. 
Second, the power of the test is said to be the probability of obtaining statistical significance. One 
gets the impression that statistical power is an exact probability about H0. This state of affairs may 
be responsible for the ready and uncritical acceptance of the power-analytic argument. However, as 
β is conditional probability, so should be statistical power (1 – β). How can statistical power be the 
exact probability of obtaining statistical significance? 
The power-analytic stance also owes its third difficulty to the conditional nature of the Type II 
error. Recall that the probability of the Type I error is an index of the strictness of the statistical 
decision. That is, the α level says nothing about the data, but the researchers’ decision about the 
data. By the same token, specifying the Type II error is to specify something about the decision 
makers, not the data. Consequently, being the one’s complement of the probability of the Type II 
error, statistical power is, at best, an index of some aspects of decision making (e.g. the researchers’ 
willingness or reluctance to choose H0 in the face of uncertainty). It cannot be about data; nor can it 
be about H0. 

Glossary 

Alternative hypothesis (H1): The statistical hypothesis implied by the hypothesis that the research 
data are not the result of chance influences. 

Associated probability: The probability of obtaining a score as extreme as, or more extreme than, 
X. 

Conditional probability: The probability of obtaining X, on the condition that another event 
occurs. 

Confidence interval: The interval that would include the population parameter with the specified 
long-run probability. 

Correlation: The relationship between two variables. 
Data dispersion: The variability among the scores. 
Degrees of freedom: The number of scores in a sample that are free to vary when the deviation 

scores are calculated with reference to the sample mean. 
Deviation score: The difference between X and the sample mean. 
Level of significance: The long-run probability that the decision to exclude chance influences as an 

explanation of the data is wrong. 
Long-run probability: The probability based on the theoretical exercise of carrying out the random 

sampling procedure an infinite number of times. 
Mean: The point of balance or the center of gravity of the scores. 
Null hypothesis (H0): The statistical hypothesis implied by the hypothesis that the research data are 

the result of chance influences. 
Parameter: A summary of characteristics of a population. 
Population: The entire collection of units about which the research is carried out. 
Random sampling: The procedure used to select samples such that all possible samples of the 

same size have an equal chance of being selected. 
Random sampling distribution: The theoretical distribution of all possible values of a sample 

statistic based on an infinite number of random samples of the same size. 
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Random sampling distribution of means: The theoretical distribution of the means of an infinite 
number of random samples of the same size. 

Random sampling distribution of the difference between two means: The theoretical 
distribution of the differences between an infinite number of pairs of means from random 
samples of size n1 and n2. 

Regression: The functional relationship between a manipulated and a random variable. 
Sample: A subset of a population. 
Sampling: The selection of a sample with reference to a well-defined rule. 
Standard deviation: The square root of the mean-squared deviation scores. 
Statistic: A summary characteristic of a sample. 
Statistical hypothesis: An hypothesis about the parameters of the methodologically defined 

statistical populations. 
Statistical power: The one’s complement of the probability of committing the Type II error. 
Statistical significance: The decision that chance influences can be excluded as an explanation of 

the data at the level of significance specified. 
Test statistic: A statistic derived from a sample statistic for the purpose of testing a hypothesis 

about the population parameter (e.g. t of F). 
Type I error: The error committed in rejecting H0, given that H0 is true. 
Type II error: The error committed in not rejecting H0, given that H0 is false. 
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