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Taking issue with Chow's (2002a) critique of Wilkinson and Task Force's (1999) report 
on statistical inference, Green (2002) raised several instructive issues, namely, (i) 
appealing to authority, (ii) theories for which there is no criterion of falsification, (iii) the 
distinction between experiment and meta-experiment, and (iv) the probability foundation 
of the null-hypothesis significance-test procedure (NHSTP). It is hoped that this reply can 
foster a better understanding of research methods in general, and of the role of NHSTP in 
empirical research in particular. 
 
Contrast vs. Control Groups 
 
Green (2002) points out that Wilkinson et al.'s (1999) Task Force did not recommend 
replacing the control group by the contrast group. His point is well made. The term 
"control group" should not be used in non-experimental or quasi-experimental studies. It 
is hoped that non-experimental researchers do not treat contrast groups on par with 
control groups for the reasons given in Chow (2002a, pp. 3334). Contrast groups cannot 
be used as valid comparison baselines. Nor can they reduce ambiguities as well as control 
groups can. 
 
Appeal to Authority 
 
It is sad if researchers accept Wilkinson et al.'s (1999) report simply because it was 
sponsored by the American Psychological Association (APA) and prepared by "a 
veritable 'Who's Who' of statistical expertise in the behavioral sciences" (Green, 2002, p. 
42). Although the appeal to authority may be an effective rhetorical device in advocacy, it 
has no place in theoretical discussion. Using it in an intellectual discussion would detract 
from the exchange its conceptual rigor or intellectual integrity. The fact that many 
well-known researchers subscribe to a theoretical stance does not necessarily warrant the 
truth of the said theory. The relevant consideration is the validity of the evidence used to 
substantiate the tenability of the theory. The following statement sets in high relief the 
distinction between advocacy and the pursuit of knowledge. 
 

You've heard it, we've heard it: Global warming is the greatest threat 
facing humanity. One hundred Nobel laureates recently signed a statement 
saying so. A UN panel of scientists says so. Our government says so. Can 
all these people be wrong? Of course they can. Whether the earth is 
warming or not is a scientific question, not a political one. (Essex & 
McKitrick, 2002, p. 9) 

 
Statistical Significance and Sample Size 



 
A constant refrain of critics of NHSTP is that statistical significance is a matter of sample 
size (call it the "size-dependent significance thesis"). Specifically, if a sufficiently large 
sample is used, statistical significance is a foregone outcome. Taking this view for 
granted, the critics have never provided any conceptual justification or empirical 
evidence for the thesis. Hence, it is refreshing to find Green's (2002) explication of the 
reasoning behind the "size-dependent significance thesis" as follows: 
 

 [a] Larger sample sizes give smaller standard errors. 
 [b] Larger degrees of freedom that come with larger sample sizes make the 

critical t smaller. 
 [c] For a given difference between sample means, even if it is not significant 

under one sample size, it would become significant when the sample size is 
increased because of [a] and [b]. 

 [d] Chow's (2002a) empirical demonstration to the contrary of [c] is something to 
be expected because "most people already know - as one increases sample size 
most aberrantly large sample differences will be diluted out" (p. 44). 

 
The validity of Green’s argument hinges on an implicit assumption.  Consider the 
completely randomized 1-factor, 2-level design with n1 = n2 = 10.  Suppose that 

.4)( hence,  ;6  ;10 2121 =−== XXXX  It seems from [c] that Green has in mind the 
situation in which the difference between the two sample means will still be 4 when n1 
and n2 are both increased to 20.   
 
It helps to recall that HO is never used as a categorical proposition. Instead, it appears as a 
component of a conditional proposition twice, once as the consequent (see [S1]) and once 
as the antecedent (see [S2]) of a conditional proposition. 
 

 [S1] If the data are the result of chance influences, then HO is true. 
 [S2] If HO is true, adopt the sampling distribution with Properties A, B and C. 

 
In other words, a fair test of the "size-dependent significance thesis" has to honor [S1] 
and [S2]. Consequently, everything in the experiment has to remain the same, except for 
the increase in sample size. At the same time, increasing the sample size means adopting 
a different sampling distribution. Specifically, the theoretical properties mentioned in 
[S2] are inevitably changed when the sample size is changed. Moreover, the change is in 
the direction described in [d] of Green's account. That is, points [a] [b] and [d] are 
inter-related in a way that renders [c] impossible. 
 
Confounded size-increase 
 
Chow's (2002a) simulations were carried out with the assumption that, at all the sample 
sizes used, all the recognized control variables present and the experimental manipulation 
does not have the expected substantive efficacy. To maintain these assumptions when the 
sample size in increased means that no confounding variable is introduced as a result of 



increasing the sample size. This stipulation may be difficult to satisfy in 
non-experimental studies. 
 
Consider the following study conducted to determine whether or not there is a 
relationship between children's IQ and their preference for shoe color. Envisage the 
situation in which five children with red shoes and five with blue shoes are selected, and 
their IQ is measured. Suppose that the difference between the mean IQs of the two groups 
is not significant. However, when the sample size is increased to 75, red-shoe children 
have a higher verbal IQ score than their blue-shoe counterparts (see the "Mean Verbal 
IQ" row in Table 1). 
 
Table 1: An inadvertent change in the girl-to-boy ratio when the sample size is increased 
from 5 (Panel 1) to 75 (Panel 2) 
 
 Panel l Panel 2 
 Red Shoes Blue Shoes Red Shoes Blue Shoes 
Number of girls 3 2 60 15 
Number of  boys 2 3 15 60 
Total number of  5 5 75 75 
Children     
Mean Verbal IQ 101 100.5 120 103 

 
For illustrative purposes, described in Panel 1 of Table 1 is the composition of the 
samples in terms of shoe-color and gender. It shows that the verbal IQ scores of 3 girls 
and 2 boys are measured because they wear red shoes. The mean of this group is 101. 
Similarly, the verbal IQ scores of 2 girls and 3 boys are measured because they wear blue 
shoes. Their mean is 100.5. The difference between the two means is not significant. 
 
In Panel 2 is described the composition of the red-shoe and blue-shoe groups when the 
sample size is increased to 75. The red-shoe group has a higher verbal IQ score than the 
blue-shoe group (viz., 120 vs. 103). Taken together, Panels 1 and 2 seem to support the 
"size-dependent significance" view. However, the girl-to-boy ratio is 4 to I in the red 
shoe group, but 1 to 4 in the blue-shoe group. This is possible if more girls like red shoes 
and more boys like blue shoes. 
 
This research is a non-experimental study because the variable, shoe-color, is not a 
manipulated variable. Instead, the variable is an assigned or subject variable (Kerlinger, 
1964) in the sense that its two levels are used to select participants. This is typical of 
many retrospective studies in epidemiology (Mausner & Kramer, 1985). The outcomes of 
t-tests based on this sort of non-experimental data are ambiguous in the a way not true of 
the t-tests based on experimental data. The ambiguity is the result of the fact that the 
assigned variable may be confounded with another variable. The confounding works as 
follows. 
 
Increasing the sample size also brings about a change in the gender ratio (albeit 
inadvertently) at both levels of the assigned variable. It turns out that the red-shoe group 



is also the group with a higher verbal ability by virtue of (a) its larger girl-to-boy ratio, 
and (b) girls are verbally more competent than boys. In view of the confounding variable, 
the data do not warrant accepting the "size-dependent significance" view. In short, 
increasing the sample size of a non-experimental study may change the composition of 
the groups of participants in a manner not envisaged in the original design or intent of the 
study. It is the resultant confounding that brings about statistical significance, not the 
increase in the sample size per se. 
 
Non-refutation Theories 
 
Not accepting the experimenter expectancy effects (EEE), Chow (1994) reported data 
that were contrary to EEE. To Green (2002), this state of affairs actually supported EEE 
(viz., Chow, 1994, found what he expected to find). Green could have also mentioned 
(but did not) that EEE would also be supported had Chow's data been consistent with it. 
In other words, EEE receives support regardless of whether the data are consistent or 
inconsistent with it. This state of affairs means that EEE is an example of a non-refutable 
theory. A non-refutable theory is not worthy of serious consideration, as may be seen 
from the following three statements: 
 

 [S3] It will rain. 
 [S4] It will rain tomorrow. 
 [S5] There will be 1 cm of rainfall on April 1, 2004 at Location X. 

 
[S3] can never be refuted because it does not specify when it will rain. [S4] is supported 
no matter what the weather is like tomorrow because there is always another tomorrow. 
Neither [S3] nor [S4] can be taken seriously as an implication of a theory about 
atmospheric changes in the future. Consequently, the theory itself is also not worthy of 
serious consideration if the said theory has only implications like [S3] or [S4]. [S5] is  
better as a testable empirical statement because the criteria for refuting it are made 
explicit. 
 
EEE is not a satisfactory empirical theory because its implications fall short of the 
required specificity found in [S5]. The non-refutability of EEE speaks ill of EEE (call it 
"the irony of non-refutability"). 
 
EEE and Russell's (1940) "I am lying" Paradox 
 
It is easy to fall for the irony of non-refutability because it is like Russell's (1940) "I am 
lying" paradox. When John says, "I am lying," he is saying that there is a proposition p 
such that he asserts p, and p is false. Suppose that, at 5:30 p.m., John makes Statement 
[S6]. Further suppose that, during the five minutes in question, John made only one 
statement (viz., [S6]). 
 

[S6]: I make a false statement between 5.28 p.m. and 5.33 p.m. 
 
The paradox is as follows: 



 
If [S6] is true, the statement made by John at 5:30 p.m. must be false. 
However, if [S6] is false, every statement made during the crucial period 
must be true. As [S6] is the only statement made, [S6] must be true. The 
paradox is that "if p is true it is false, and if it is false it is true" (Russell, 
1940, p. 62). 

 
As pointed out by Russell (1940), two hierarchically arranged propositions are implicated 
in the example. To see his point, first let "A(p)" stands for "I assert p between 5.28 p.m. 
and 5:33 p.m." Then [S6] becomes [S7]. 
 

[S7] "There is a proposition p such that A(p) and p is false." 
 
It may be seen that the example implicates the two propositions, [S7] and p; and they 
belong to two levels of abstraction. Specifically, Statement p is about the world at Level 
n of abstraction. [S7] is about what is said about the world; it is at a level more abstract 
than that of p (viz., Level n + 1). It is true that either p or [S7] is capable of being true or 
false. However, their truth-values belong to Levels n and (n + 1), respectively. Hence, a 
false [S7] does not confer the value of truth to p (as insinuated by the paradox). In 
Russell's (1940) words, "The man who says 'I am telling a lie of order n' is telling a lie, 
but of order n + 1" (p. 63). 
 
Meta-experiment versus Experiment 
 
The moral of the story is that a statement like Russell's "I am lying" example owes its 
paradoxical nature to a failure to distinguish between the two levels of abstraction the 
statement implicates. The same is true with the paradoxical nature of EEE. 
 
EEE is a theory about conducting experiment. When one tests EEE, one is conducting an 
experiment about conducting experiment. Hence, EEE has to be tested at a more abstract 
level than a theory about behavior. Hence, what is required is a meta- experiment. 
Rosenthal and Fode's (1963a, 1963b) did not conduct the required meta-experiment. In 
contrast, Chow's (1994) study was a meta-experiment. The paradox suggested by Green 
(2002) is the result of failing to distinguish between the two levels of abstraction between 
a meta-experiment and an experiment. 
 
Experiment versus Measurement - A Technical Difference of Importance 
 
Green (2002) finds Chow's (1994) criticism of the experimenter expectancy effects (EEE) 
wanting because Green considers the difference between "data collector" and 
"experimenter" a simple matter of technical definition. In doing so, Green is denying the 
important differences between a non-experimental study and the experiment. For ease of 
exposition, consider the measurement exercise (Panel 1 of Table 1) and the experiment 
(Panel 2 of Table 2). 
 



In Panel 1 of Table 2 is described the situation in which the investigator asks two groups 
of senior undergraduates to collect memory span data. To the group consisted of A, B and 
C, the investigator insinuates the bias that the memory span should be large (the "Large 
span" group henceforth). The other group (viz., M, P and Q) receives the suggestion that 
they are expected to obtain a small memory span (the "Small span" group subsequently). 
 
Table 2 
The Distinction Between the Formal Structure of the Experiment (Panel 1) and That of 
the Meta-experiment (Panel 2) 
 
Panel 1—The Formal Structure of the Experiment 

  Investigator  
  "Large span" Expectancy "Small span" Expectancy  
  A  B  C M  P  Q  
  S1  S1  S1 S1  S1  S1  
  …  …  … …  …  …  
  Sn  Sn  Sn Sn  Sn  Sn  
  X A  X B  X C X M  X P  X Q  

    X L     X S    

 
A, B, C, M, P and Q are data-collectors, not experimenters. 
 
Panel 2—The Formal Structure of the Meta-experiment 
 
  Investigator 
  "Large span" Expectancy "Small span" Expectancy 
  D  E H  K 
  SC1 SE1  SC1 SE1 SC1 SE1  SC1 SE1 
  … …  … … … …  … … 
  SCn SEn  SCn SEn SCn SEn  SCn SEn 
       KCEX )( −  
  

 SCEX )( −  

DCEX )( − ECEX )( − HCEX )( −

LCEX )( −

A, B, M and Q are experimenters. 
 
To subscribe to "the possibility that the [data collector] is subtly passing his or her 
expectancies on to the subjects" (Green, 2002, p. 43, my substitution in square brackets) 
is to say that the data obtained by A or M or any data collector is the result of a data 
collector's having received the specific instruction. However, the expectation instruction 
is not the only reason. For example, the data may be due to the type of words used, the 
presentation rate adopted, the mode of stimulus presentation employed or any other 
features found in the data collection procedure. As the data are collected in only one 
condition, there is no valid comparison baseline. Hence, there is no way to exclude any of 
the alternative explanations of the data in favor of Green's interpretation. What is amiss in 
Panel 1 of Table 2 is the absence of experimental controls. It is for this reason that 
Individuals A, B, C, M, P, Q are called "data collectors." 
 



The basic structure of the experiment is depicted for each of D, E, H and K in Panel 2 of 
Table 2.  Regardless of the expectancy condition, any one of them collects data in two 
conditions that are identical in all aspects but one (Boring, 1954, 1969; Chow, 2002b). 
For example, acoustically similar words may be used in the memory span task in the SE 
condition, whereas acoustically dissimilar words of comparable length are used in the SC 
condition. Moreover, the to-be-tested participants are assigned randomly to the SE and SC 
conditions. 
 
The independent variable is the type of to-be-remembered words. The control variables 
are the word-length, the presentation rate adopted, the mode of stimulus presentation 
adopted, and the individual who collects the data. In other words, with the exception of 
the independent variable, experimental subjects are being tested in an identical manner in 
both the experimental and control conditions. Whatever the data are like, the control 
variables can be excluded as explanations (Boring, 1954, 1956) at the experimental level 
by virtue of the inductive principle, the method of difference (Cohen & Nagel, 1934; 
Chow, 2002b). It is for these reasons that Individuals D, E, H and K are called 
"experimenters."  
 
At the meta-theoretical level, the expectation instruction is the meta-independent 
variable. Individuals D and E are being "tested" in the same manner as Individuals H and 
K are being tested, with the exception of the expectation instruction. It is for this reason 
that the study is a meta-experimenter to the investigator. 
 
In other words, the difference between "data collector" and "experimenter" should not be 
dismissed as a mere issue in technical definition. It points to an important methodological 
difference, namely, whether or not the procedure has provisions for excluding alternative 
interpretations of the data. That controls are present in the experiment (Panel 2 of Table 
2), but absent in the measurement exercise (Panel 1 of Table 2), gives the lie to the 
assertion that "the technical definition of experimenter has little to do with the (EEE's) 
reality" (Green, 2002, p. 43). Rosenthal (1976) realized as much when he said, 
 

But much, perhaps most, psychological research is not of this sort [the 
researcher collects data in one condition only, as represented by A, B, C, 
M, P or Q in Panel 1 of Table 2]. Most psychological research is likely to 
involve the assessment of the effects of two or more experimental 
conditions on the responses of the subjects [as represented by D, E, H or K 
in Panel 2 of Table 2]. If a certain type of experimenter tends to obtain 
slower learning from his subjects, the "results of his experiments" are 
affected not at all so long as his effect is constant over the different 
conditions of the experiment. Experimenter effects on means do not 
necessarily imply effects on mean differences. (Rosenthal, 1976, p. 110, 
explication in square brackets and emphasis in italics added). 

 
The italicized statement shows that Rosenthal (1976) saw the crucial difference between 
collecting measurement data in one condition (Panel 1 of Table 2) and experimental data 



in two properly set up conditions (Panel 2 of Table 2). The to-be-tested statistic is the 
mean in the former, but the difference between two means in the latter. 
 
The Impossibility of EEE 
 
Being an important component of the social psychology of the psychological experiment 
(SPOPE), EEE implicates the possibility of the participants faking their actual 
performance in response to the demand characteristics of the situation (Orne, 1962, 1969; 
see subject effects and demand characteristics in Section 6.4 of Chow, 2002b). It may 
now be shown why Green's (2002) suggestion that "the possibility that the [data 
collector] is subtly passing his or her expectancies on to the subjects" (Green, 2002, p. 
43) may apply to the measurement scenario in Panel 1 of Table 2, but not to the 
experimental situation depicted in Panel 2 of Table 2. 
 
For EEE to be true, it is necessary to assume that the investigator succeeds in 
indoctrinating the individuals who have direct contact the research participants in the 
course of data collection. Furthermore, one has to assume further (a) that the data 
collectors are willing to, as well as capable of, conveying the bias to those being tested, 
and (b) the to-be-tested participants comply with the bias (even by faking). 
 
If EEE (together with the rest of the SPOPE argument) were correct, the two groups of 
data collectors in Panel 1 would administer the memory span task in such a way that 
participants in their respective groups would perform in accordance to expectation. As it 
is possible for some one to fake poor performance (even though participants in the "Large 
span" group cannot fake good performance), the expectation of Panel I is not 
unreasonable. This would be confirmed for the investigator when LX  is larger than SX . 
That is, to the investigator, the arrangement in Panel 1 of table 2 is an experiment. 
However, the data collectors in Panel 1 of Table 2 do not conduct an experiment. They 
collect measurement data, not experimental data. Hence, the difference between two 
sample means in question is irrelevant to the truth of EEE in view of the realization that 
"effects on means do not necessarily imply effects on mean differences" (Rosenthal, 
1976, p. 110). 
 
Why would the participants not fake in a way that support "effects on mean differences"? 
The question perhaps should be why the participants and the experimenter cannot meet 
the EEE requirement. In discussing Panel I of Table 2, the issue is the participants' 
absolute performance. Faking is not impossible as discussed previously. However, there 
are two concerns in the case of Panel 2 of Table 2.  
 
For EEE to be possible, each experimental subject must be capable of behaving 
differently in the two conditions in the direction required by the next consideration. That 
is, the difference between the mean differences of the two expectancy conditions must be 
in the direction envisaged by EEE (viz., [ eLCEX arg)( −  - SmallCEX )( −  ]). Can any one 
orchestrate and monitor the experimental procedure is such a way that the difference 



between LCEX )( −  and SCEX )( −  is in the expected direction? Can all participants in 
the meta-experiment orchestrate such an elaborate state of affairs? 
 
In short, underlying the "data collector" and "experimenter" distinction is the issue of 
whether or not there is provision in the research procedure for reducing ambiguities. It is 
the reason why Wilkinson et al.'s (1999) report is misleading in saying that all research 
methods are equally important. The experimental method is superior in its ability to 
exclude alternative interpretations of the data by virtue of experimental controls. 
 
Rejecting EEE - Modus Tollens, not Null Hypothesis 
 
Green (2002) finds it insufficient to reject EEE on the basis of "a single failure to 
replicate it" (p. 42). The research community should take this good point as an invitation 
to test EEE (as well as the rest of the SPOPE phenomena) with properly designed meta-
experiments. 
 
Green (2002) raises an interesting question when he wonders "what conclusion we should 
draw when we fail to reject [the null hypothesis]" (p. 42). The answer is simply that the 
data are due to chance. Such a decision says nothing about the substantive hypothesis 
(viz., EEE in the present discussion; see Tukey, 1960, for the distinction between 
deciding whether or not there is statistical significance and drawing a research 
conclusion). However, Green's (2002) real question seems to be: How was Chow (1994) 
justified in rejecting EEE on the basis of a failure to reject HO? Chow (1994) justified the 
rejection of EEE with modus tollens, as may be illustrated with Figure 1. 
 
Each subject was shown a photograph on every trial. The subject's task was to rate 
whether or not the stimulus is a photograph of someone who had recently enjoyed a 
success (maximum +10) or suffered a recent failure (minimum -10). Half of the faces 
were "happy faces"; the other half was "sad faces." The two types of faces were 
randomized in the course of the experimental session. The three levels of expectancy 
instruction (viz., the mean rating obtained by previous researchers) were "+5", "0" and 
"-5," respectively. 
 
It is not possible to derive any empirical implication from EEE without making additional 
assumptions. Chow (1994) considered two scenarios. It was assumed in Scenario 1 that 
the experimenter (e.g., D or E or H or K) and the subjects ignored completely what the 
stimuli were. Their behavior was determined solely by the expectancy instruction. The 
implication of such a scenario is shown in Panel 1 of Figure 1. The reasoning underlying 
the testing of Scenario 1 is Syllogism 1. 
 

Syllogism 1 
[Major Premise] If EEE is true, data are like what is depicted in Panel 1 of Figure 
1. 
[Minor Premise] [To be supplied by the meta-experimental data.] 
[Conclusion] Retain EEE tentatively or reject EEE, depending on the data. 
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Panel 2: EEE Expectation 2
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Panel 3: Meta-experimental Data
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Figure 1. Two expectations of EEE (Panels I and 2) contrasted with meta-experimental 
data (Panel 3) 
 
 
 



It was assumed in the second scenario that neither the experimenter nor the subjects could 
ignore completely the stimuli. However, the expectation instruction would have the 
following effects: [a] It minimized the effects of stimuli that were contrary to the 
expectation instruction. [b] It exaggerated the effects of stimuli that were consistent with 
the expectation instruction. The implication of the second scenario is shown in Panel 2 of 
Figure 1. The reasoning underlying the testing of Scenario 2 is Syllogism 2. 
 

Syllogism 2 
[Major Premise] If EEE is true, data are like what is depicted in Panel 2 of Figure 
1. 
[Minor Premise] [To be supplied by the meta-experimental data.] 
[Conclusion] Retain EEE tentatively or reject EEE, depending on the data. 

 
As it turned out, Chow's (1994) meta-theoretical data were like what is depicted in Panel 
3 of Figure 1. The pattern is like neither the pattern in Panel 1 nor the pattern in Panel 2. 
In other words, the minor premise of either Syllogism 1 or Syllogism 2 denies the 
consequent of the syllogism in question. Hence, the antecedents of the two major 
premises of Syllogisms 1 and 2 is denied. It is by the force of modus tollens that Chow 
(1994) rejected EEE, not because he failed to reject HO. Given the pattern in Panel 3, 
EEE would still be rejected even if there were a significant difference among the three 
instruction conditions. The non-significant result means the data may be due to chance 
influences (viz., the processing implied by Scenario 1 or 2 does not occur). 
 
Statistical Significance and Substantive Importance 
 
Green (2002) reiterates another refrain favored by critics of NHSTP. The issue is "the 
much more important problem is not that of small effects coming up significant, but 
rather of important ones (their size notwithstanding) coming up non-significant .…." (p. 
44). A concrete example may be used to facilitate discussion. 
 
Suppose that the two levels of the independent variable, medication, are Wonder Drug 
and Placebo. Ten patients each are used in the two conditions. Moreover, the putative 
utility of Wonder Drug is to eliminate depression (and hence prevent suicides). 
Obviously, the substantive consequence of administering Wonder Drug is important par 
excellence.. The outcome is that the mean number of suicides in the Wonder Drug 
conditions is nil, whereas two patients committed suicide in the placebo condition. 
However, the t-statistic is not significant. Green (2002) asks what one should do in such 
circumstances. His answer seems to be to ignore the non-significance decision, but to 
conclude that the two deaths in the placebo condition is not a chance event. Suggestive of 
this answer is the fact that the boldface ellipses in the previous paragraph stands for 
"because the sample sizes used were too small" (p. 44). 
 
The purpose of doing the research is to reduce ambiguity about the efficacy of Wonder 
Drug. It has been shown in the previous section that the lack of statistical significance 
serves only to say that the experimental manipulation is not effective, and that the 
data-pattern is the result of chance influences. Hence, to ignore the non-significance 



decision is to say that Wonder Drug is actually effective even though the two deaths in 
the placebo condition may be an accident. The professed reason is that saving two more 
lives is important (so important that the researcher is willing to accept data that may be 
brought about by an accident). However, this reason is disingenuous for the following 
reasons. 
 
To begin with, the choice of the original sample size is not be a haphazard decision in a 
properly designed study. At the very least, the sample sizes should be comparable to 
those used in other drug trials. It would be foolhardy to use a sample size of ten (or 200) 
when other drug trials employ a larger (or smaller) sample size. In other words, the 
sample size is never too small when it is a well-informed choice. Hence, in choosing a 
sample size, the researcher is, in fact, acknowledging that the sample size is appropriate. 
 
The said commitment means that, if the data turn out to be non-significant, the researcher 
would not (and cannot) attribute the failure to the sample size. By the same token, critics 
of the study also cannot (and should not) simply evoke "insufficient sample size" when 
(a) there is no theoretical reason to do so, and (b) the sample size used is within the 
typical range used in related studies. The onus is on the one who suggests a change in 
sample size to show how the sample size is responsible for the non-significant result. As 
it will shown later, the appeal to statistical power does not work. 
 
Suppose one is a disinterested, serious researcher. One would examine various aspects of 
the experiment, namely, the adequacy of the design, the subject-selection or assignment 
procedure, the dosage used, the control variables, the control procedures, the adequacy of 
the instruction, the competence of the data collector, the stability of the independent 
variable (Chow, 1985), and the like. Re-do the experiment with the same sample sizes 
with the improved design or procedure. 
 
If the concern in the example is to save more lives, the researcher should test another 
drug rather than ignoring the evidence that does not support the drug on the mere pretext 
of insufficient sample size. That the researcher would persevere with Wonder Drug in the 
face of non-significance means that the researcher has some vested interests in Wonder 
Drug (rather than saving lives). For example, there are some theoretical reasons for using 
Wonder Drug. These issues are admittedly important and worth pursuing. However, they 
are not statistical problems. Obtaining statistical significance cannot solve them. Nor can 
they be ascertained by increasing the sample size (even if the "size-dependent 
significance thesis" were true). 
 
Further Ado With Power Analysis 
 
Why are researchers asked to select their sample size with reference to the power of the 
to-be-tested statistical test? The reason is "The power of a statistical test is the probability 
that it will yield statistically significant results" (Cohen, 1987, p. 1; italicized emphasis 
added). What is said in the quote is inconsistent with the fact that the statistical power is a 
conditional probability. Apologists of statistical power have not shown us how to resolve 
the inconsistence. Nor have they given an account of why researchers are asked to carry 



out power analysis when (a) they know that statistical power is a conditional probability, 
and (2) a conditional probability cannot do not what the quote says. 
 
Figure 2 may be used to allay Green's (2002) misgivings about Chow's (2002a) critique 
of power analysis. From top to bottom, it depicts the transition from the population 
distributions (Panels A and B) to two separate sampling distribution of differences (Panel 
C and D) to the t-distribution in Panel E. 

 
 
Figure 2.  The graphical representation of two effect sizes (Panels A and B) and the corresponding 
differences between two means in raw-score units (Panels C and D), as well as in standard error units 
(Panel E) (adopted from Chow, 1996, Figure 6.2, p. 134). 



 
The Population Distributions 

 
Suppose that 20 15-year old boys are randomly selected. They are randomly assigned to 
the control and experimental conditions of the 1-factor, 2-level experiment (i.e., ten boys 
in each condition). It helps to recall Winer's (1962) insight that the researcher in the 
present example is dealing with samples from two underlying statistical populations (viz., 
15-year old boys given no experimental treatment and 15-year old boys that are given the 
experimental treatment). Hence, there is a pair of distributions in Panels A and B of 
Figure 2. 
 
The pair of distributions in Panel A represents a small effect size (d), whereas the pair in 
Panel B represents a larger effect size (where d = (X XE − )C / SC; i.e., the difference 
between the two sample means divided by the standard deviation of the control sample). 
Also shown is the fact that statistical power is larger in Panel B than the pair on in Panel 
A (see the area shaded with slanting lines). It may be seen from the x-axis, as well as 
from the denominator of the effect size, that the unit of analysis is the individual score. 
Despite the presence of the decision axis in either Panel A or Panel B, the decision about 
statistical power is not made at this level. 
 

The Level of the Sampling Distribution 
 
The probability foundation of inferential statistics is the sampling distribution of the test 
statistics. In the present example, it is the sampling distribution of differences between 
means. It is represented by Panel C or Panel D of Figure 2. Note the ranges of the two 
x-axes. The range goes from -2,5 through 4.5 in Panel C, but from -0.5 through 6.5 in 
Panel D. That is, a larger effect size (viz., the pair in Panel B) is represented by a 
sampling distribution displaced more to the right on the continuum of all possible mean 
differences between sample means. 
 
The visual distance between the two population distributions found at the level of raw 
scores is not (and cannot be) represented at the level of sampling distribution. The two 
sampling distribution has the same dispersion means that they have the same standard 
error of differences. The unit of analysis at this level is a sample-pair. Again, despite the 
presence of the decision axis, statistical significance is not decided with the sampling 
distribution. 
 

The Level of the t-distribution 
 
The decision about statistical significance is made in terms of the t-distribution, as 
witnessed by the equation of the t-statistic, [El]. 
 
[El] t = ( ) ( )X XE C E Cu u− − − / 

)( CXEXs −  

 



As may be seen from [El], the t-statistic is the standardization of the sampling 
distribution of differences between means. The result is that, regardless of the position of 
the sampling distribution on the continuum of all possible sample means, the mean 
difference is always represented by t = 0. The decision about statistical significance is 
made with the t-distribution. The unit of analysis at the level is also a sample-pair. 
 
The visual distance between the two population distributions found at the level of raw 
scores is not (and cannot be) represented at the level of the t-distribution. How may one 
represent statistical power at the level? 
 
In short, it has been shown that effect size or statistical power is defined at the level of 
raw scores (viz., Panel A or B). The graphical representation of these two concepts 
require two distributions. The statistical decision is not made at the level of raw scores. 
Instead, it is made at the level of the standardized difference between two sample means. 
It is based on a lone t-distribution that is more abstract than the two statistical 
populations. At the same time, as may be recalled from Panels A and B, statistical power 
is not defined at the same level of abstraction as is the t-distribution. It is not clear how 
knowing the statistical power can inform the researcher about the probability of obtaining 
statistical significance. 
 
Summary and Conclusions 
 
Green (2002) begins with a general defense of Wilkinson et al.'s (1999) report on 
statistical inference in general and the use of the term "contrast group" in particular. The 
latter point is well made. In response to his defense of the experimenter expectancy 
effects (EEE), it is necessary to discuss (a) the difficulties with non-refutable theories, (b) 
the reason for the paradoxical nature of EEE, (c) the distinction between measurement 
and experiment, (d) the distinction between experiment and meta-experiment, and (e) the 
difference between NHSTP and modus tollens. Green's explication of the reasoning 
behind the "size-dependent significance thesis" is helpful to making explicit what is 
amiss in the thesis. Revisiting power analysis makes it possible to describe the transition 
from the level of raw data to the level of sampling distribution and, finally, to the level of 
the t-distribution. This exercise helps to show why the power-analytic argument is 
debatable. 
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