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The Conserved Quantity Theory of
Causation and Closed Systems*

Sungho Choi†‡

Advocates of the conserved quantity (CQ) theory of causation have their own peculiar
problem with conservation laws. Since they analyze causal process and interaction in
terms of conserved quantities that are in turn defined as physical quantities governed
by conservation laws, they must formulate conservation laws in a way that does not
invoke causation, or else circularity threatens. In this paper I will propose an adequate
formulation of a conservation law that serves CQ theorists’ purpose.

1. Causation and Conservation Laws. For advocates of the conserved quan-
tity (CQ) theory of causation, causation is closely related to conservation
laws in that they analyze the notions of causal process and interaction in
terms of conserved quantities that are in turn defined as physical quan-
tities governed by conservation laws. Hence their CQ theory will reach
its complete form only if the exact formulation of a conservation law is
offered. Unfortunately, however, it is difficult to find a general formu-
lation of a conservation law of an arbitrary physical quantity in the
literature of physics. Instead, we can find formulations of conservation
laws of such particular physical quantities as linear momentum, electric
charge, etc. For example, in well-known physics textbooks, the linear
momentum conservation law and the electric charge conservation law
are respectively formulated as follows:
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1. I will use “closed system” interchangeably with “isolated system”.

2. In formulating (CL) I am indebted to an anonymous referee.

3. This is not a philosopher’s prodigious view. It does not take much effort to find out
something like Hitchcock’s view in textbooks of physics (Marion 1970, 214; Arya 1990,
470): a system that does not interact with anything outside the system is called a closed
system.

The Linear Momentum Conservation Law. For an isolated system,
subject only to internal forces (forces between members of the
system), the total linear momentum is a constant (Kittel, Knight, and
Ruderman 1973, 83).

The Electric Charge Conservation Law. The total electric charge in an
isolated system, that is, the algebraic sum of the positive and negative
charge present at any time, never change (Purcell 1985, 5).

These two formulations suggest that a conservation law of a physical
quantity Q follows the pattern that the total amount of Q possessed by a
closed system1 does not change through time. Or, to be precise,

CL. For every system that possesses Q, if it is closed from outside, the
total amount of Q possessed by it remains constant through time.2

The requirement to possess the physical quantity Q is indispensable because,
for example, the electric charge conservation law does not apply to such
entities as moving spots and shadows that do not possess electric charge.

The notion of closed system in (CL) cries out for a definition. And,
(CL) will be available to CQ theorists only if a closed system can be defined
without invoking the notions of causal process and interaction. In fact,
Hitchcock (1995, 315–316) objects to the CQ theory that a closed system
is just a system that does not engage in any causal interactions.3 On Hitch-
cock’s view, a conservation law presupposes the notion of causal inter-
action because a closed system is defined in terms of causal interaction. If
so, the CQ theory comes out as being circular since according to the CQ
theory causal interactions are analyzed in terms of conserved quantities
that are defined as physical quantities governed by conservation laws.

The crucial question is thus whether or not a closed system in (CL) can
be defined without invoking the notion of causal interaction: whether the
CQ theory comes out as being circular or not depends on the answer to
this question. I believe that we can define a closed system without invoking
the notion of causal interaction. In the following I will propose such a
definition.

2. Hitchcock’s Definition. Let me start by pointing out that Hitchcock’s
definition that a closed system is just a system that does not engage in any
causal interactions does not work. First of all, it allows an obvious coun-
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4. Here I thank an anonymous referee for pointing out my previous mistake.

5. To be precise, the free-falling body does not possess a constant amount of the com-
ponent of linear momentum along the direction of the line joining it with the center of
the earth; thereby it is not closed with respect to the component of linear momentum
in that direction. A similar remark will be pertinent to the following case of the two
far distant electrons.

6. Hitchcock might respond to my objection by modifying his definition such that a
system is closed with respect to a physical quantity Q iff it engages in no causal inter-
actions involving Q: the free falling body is not closed with respect to linear momentum
because it engages in causal interactions with the gravitational field and the causal

terexample. The total energy of a system is equal to the sum of its kinetic
energy and total potential energy, where the total potential energy is in
turn the sum of the external potential energy due to the external forces on
it and the internal potential energy due to the internal forces within it. It
is clear that physicists will deny that (kinetic energy � internal potential
energy)—for later references call it “internal energy”—is a conserved
quantity. They will argue that, for example, the internal energy possessed
by a free falling rigid body classically described is not conserved during
its fall; what is conserved is the total energy of the rigid body, which is
equal to the sum of the internal energy and the gravitational potential
energy. Let us now consider a system that is closed from outside according
to Hitchcock’s definition. This system does not engage in any causal in-
teractions with the outside and, therefore, no external forces act on it
because force is a species of causal relation (Bigelow, Ellis, and Pargetter
1988). But if no external forces act on a system, then its internal energy
will remain constant over time (Symon 1985, 167; Arya 1990, 278). This
means that, according to Hitchcock’s definition of a closed system, a
closed system invariably possesses a constant amount of internal energy
through time. Thus, internal energy comes out as a conserved quantity by
Hitchcock’s definition. But, as noted above, internal energy is not a con-
served quantity.4

What is worse, I am afraid that Hitchcock’s definition has a more se-
rious problem. It is clear that a free falling body that is described classically
does engage in continuous interactions with the gravitational field. Does
this mean that the free falling body is not closed from outside? In a sense
yes, but in a sense no. Notice that the causal interactions between the free
falling body and the gravitation field involve exchanges of linear momen-
tum and yet do not involve exchanges of energy; thereby, the free falling
body does not possess a constant amount of linear momentum but pos-
sesses a constant amount of energy. Hence physicists will say that the free
falling body is closed with respect to energy but not with respect to linear
momentum.5 This means that we have another good reason to reject
Hitchcock’s definition.6
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interactions involve linear momentum; yet it is closed with respect to energy because
the causal interactions do not involve energy. But I am afraid that this response does
not work. First, it is not at all clear how we can clarify “causal interactions involving
Q” in an innocuous way, especially when Q is not a conserved quantity. Furthermore,
even if we grant that Hitchcock’s possible response is successful, it cannot completely
save Hitchcock’s definition because, as stated above, Hitchcock’s definition suffers from
an obvious counterexample. Hitchcock’s possible response was brought to my attention
by an anonymous referee.

I take it that a closed system is always closed with respect to a certain
physical quantity. Moreover, a closed system with respect to a physical
quantity may not be closed with respect to another physical quantity. To
take another example, suppose that the universe has only two far distant
free electrons that exert gravitational and electrical forces on each other.
In this case, the amounts of linear momentum possessed by them will
change, respectively. Therefore, they are not closed systems with respect
to linear momentum. But we can say that each of them is a closed system
with respect to electric charge since they will not exchange electric charge.
Thus each electron is not closed with respect to linear momentum but
closed with respect to electric charge.

In view of this, we have to amend (CL) by inserting “with respect to
Q” in the clause, “if it is closed from outside [with respect to Q], the total
amount of Q possessed by it remains constant through time.” The linear
momentum conservation law does not apply to either the free falling body
or the two electrons since they are not closed with respect to linear mo-
mentum.Yet, the energy conservation law does apply to the free falling
body because it is closed with respect to energy and the electric charge
conservation law does apply to each of the two electrons because each is
closed with respect to electric charge.

3. Definitions of Closed Systems in the Literature of Physics. What is a
closed system with respect to a physical quantity? It seems to be a sensible
strategy to examine the physics literature to seek out an answer to this
question. Unfortunately, physicists seem to have little concern for an-
swering the question. However, we can infer definitions of closed systems
with respect to such conserved quantities as energy, linear momentum,
etc., from textbook formulations of the corresponding conservation laws
(Goldstein 1980, Chapter 1; Marion 1970, 62–75; Purcell 1985, 4–5). Take
some examples:

(1) A system is closed at a time t with respect to the component of linear
momentum along a direction iff the totality of external forces acting
on it has a zero component along the direction at t. And, a system
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7. Purcell is one of the rare physicists who explicitly state what a closed system with
respect to electric charge is. He (1985, 4) says, “By isolated we mean that no matter is
allowed to cross the boundary of the system. We could let light pass into or out of the
system, since the “particle” of light, called photons, carry no charge at all.”

is closed at a time t with respect to linear momentum iff it is closed
at t with respect to every component of linear momentum.

(2) A system is closed at a time t with respect to the component of
angular momentum along a direction iff the totality of external
torques has a zero component along the direction at t, where external
torques are torques due to external forces acting on the system. And,
a system is closed at a time t with respect to angular momentum iff
it is closed at t with respect to every component of angular momen-
tum.

(3) A system is closed at a time t with respect to energy iff there are no
non-conservative external forces acting on it at t, where a force is

r
F

non-conservative iff � � � 0.
r
F

(4) A system is closed at a time t with respect to electric charge iff no
matter with non-zero amount of electric charge goes out of or into
it at t.7

A closed system with respect to such a conserved quantity as baryon num-
ber and lepton number can be defined in the same way as (4). Thus we
seem to have definitions of closed systems with respect to conserved quan-
tities.

On the one hand, according to (1), the free falling body is not closed
with respect to the component of linear momentum along the direction
(call it z-direction) of the line linking it with the center of the earth because
of the gravitational force. But, the free falling body is closed with respect
to the component of linear momentum along a direction vertical to the
z-direction since that component of linear momentum is unaffected by the
gravitational force. Moreover, the gravitational force is conservative.
Therefore, according to (3), the free falling body is closed with respect to
energy. On the other hand, each of the two far distant electrons is closed
with respect to electric charge according to (4) since no matter with non-
zero amount of electric charge go into or out of it. Yet, according to (1),
each of them is not closed with respect to the component of linear mo-
mentum along the direction of the line linking them because of the elec-
tromagnetic and gravitational forces.

Unfortunately, I take it that the definitions (1) to (4) are not satisfac-
tory. Note that we need to define closed systems with respect to such non-
conserved quantities as length, volume, rotational inertia, velocity of cen-
ter of mass, force, potential energy, etc., as well as those with respect to
conserved quantities. Take the example of force. To say that force is not
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8. I thank Jeayoung Ghim for raising this issue.

9. For a simple and straightforward presentation of the classical version of Noether’s
theorem see (Desloge and Karch 1977) and (Nilo Bobillo-Ares 1988). For a detailed
discussion of Noether’s theorem see (Doughty 1990).

a conserved quantity is roughly to say that “the force conservation law”
does not hold true in our actual world. And, according to (CL), “the force
conservation law” would go that a closed system from outside with respect
to force possesses a constant amount of force through time. Hence we can
make sense of the statement that force is not a conserved quantity only if
we have gotten an appropriate definition of a closed system with respect
to force. However, physicists have had no concern for providing such a
definition and so we cannot rely on the literature of physics in searching
for it. What is worse, the above-mentioned definitions of closed systems
with respect to conserved quantities give us no clue to how a closed system
with respect to force can be defined. Thus, given (1) to (4), it is not at all
clear how we can define closed systems with respect to non-conserved
quantities like force. This suggests that (1) to (4) are not on the right track
for providing adequate definitions of closed systems.

More importantly, since the concept of force is closely entwined with
the concept of causation, such definitions as (1), (2) and (3) are not avail-
able to CQ theorists. Bigelow, Ellis, and Pargetter (1988) argue that force
is a species of causal relation between a change in a field and an action on
a particle or particles. On their view, “Forces are constituents within
causal interactions: they are the causal relations which hold between sa-
lient participants in the causal interaction” (Bigelow, Ellis, and Pargetter
1988, 624–625). I do not wish to be committed to all the details of their
view on forces, but I agree with them that the concept of force should be
analyzed in terms of causation. Hence, in my opinion, definitions of closed
systems invoking the concept of force render the CQ theory circular since,
according to them, closed systems are ultimately defined in terms of cau-
sation—or causal interaction. This means that CQ theorists cannot help
themselves to those definitions.

One might respond that from Noether’s theorem, we can infer alter-
native definitions of closed systems with respect to conserved quantities
that do not invoke the concept of force.8 It is said that Noether’s theorem
enables physicists to get conserved quantities from symmetries of the laws
of nature.9 For example, it follows from the theorem that whenever a
physical system whose dynamical behavior can be described by Lagrange’s
equation of motion has a Lagrangian that is invariant under translations
in a direction, the component of its linear momentum along that direction
is a constant of motion. In light of this consideration, one might propose
that a system is closed with respect to the component of linear momentum
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10. On this proposal, Noether’s theorem could be taken as proving that the linear mo-
mentum conservation law holds for any physical system whose dynamical behaviour
can be described by Lagrange’s equation of motion.

11. One might insist that the particle is not closed with respect to linear momentum
since gravitational force, though fictitious, acts on it. But this has the unacceptable
consequence that no physical system is closed with respect to linear momentum; for,
every physical system when described in a non-inertial reference frame is subject to a
fictitious force.

along a direction iff its Lagrangian is invariant under translations in that
direction.10 Likewise, it follows from Noether’s theorem that whenever a
physical system whose dynamical behaviour can be described by La-
grange’s equation of motion has a Lagrangian that is invariant under
translations in time, the Hamiltonian of the system is a constant of motion.
And under natural assumptions, the Hamiltonian is equal to the total
energy of the system (Goldstein 1980, 62). Hence it seems natural to sug-
gest that a system is closed with respect to energy iff its Lagrangian is
invariant under translations in time.

On this proposal, the free falling body described classically is not closed
with respect to the component of linear momentum along the z-direction
since its Lagrangian depends explicitly on the z-coordinate and, therefore,
is not invariant under translations in the z-direction. By contrast, it is
closed with respect to energy since its Lagrangian does not depend explic-
itly on the time and, therefore, is invariant under translations in time. Note
that the two definitions of closed systems inferred from Noether’s theorem
do not invoke the concept of force. Hence they do not render the CQ
theory of causation circular.

I am afraid, however, that we cannot draw adequate definitions of
closed systems from Noether’s theorem. Suppose that we describe a par-
ticle near a strong source of gravitation in general relativity. In the curved
spacetime interpretation of general relativity, the space around the particle
is not “homogeneous” in that particular positions where the particle is
located are relevant to its lawlike behavior. To be specific, as the particle
moves toward the source of gravitation the Lagrangian varies solely be-
cause of qualitative differences of positions in space itself. If so, the La-
grangian would not be invariant under translations in space. But in general
relativity gravitation is a kind of fictitious force akin to the centrifugal
force that is due to non-uniform motion by the observer’s reference frame.
Therefore, we would have to say that the particle is closed with respect to
linear momentum since no external “real” forces act on it.11 This suggests
that if space is not homogeneous, even a closed system with respect to
linear momentum may have a Lagrangian that is not invariant under
translations in space. For this reason I believe that the reference to the
homogeneity of space is indispensable in Marion’s (1970, 216) following
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12. The expression “energy inside the system” means energy possessed by the system.
And, the expression “energy outside the system” means energy possessed by the rest of
the world outside of the system.

statement: “Since space is homogeneous in an inertial reference frame, the
Lagrangian of a closed system will be unaffected by a translation of the
entire system in space.”

Thus as long as space is not homogenous, the concept of closed system
with respect to linear momentum is extensionally different from the con-
cept of invariance of Lagrangian under translations in space. This means
that we cannot define the former in terms of the latter. In my opinion,
what Noether’s theorem implies is that “if the Lagrangian of a system,
closed or otherwise, is invariant with respect to a translation in a certain
direction, then the linear momentum of the system in that direction is
constant in time” (Arya 1990, 471; my italic). If so, it is unpromising to
draw adequate definitions of closed systems from Noether’s theorem.

4. Dowe’s Proposal. In the previous section we have seen that we cannot
draw adequate definitions of closed systems from textbook formulations
of conservation laws nor from Noether’s theorem. Dowe, in his recent
book, takes another tack. He says:

. . . we need to explicate the notion of a closed system in terms only
of the quantities concerned. For example, energy is conserved in
chemical reactions, on the assumption that there is no net flow of
energy into or out of the system. (Dowe 2000, 95)

In this passage, Dowe seems to propose a definition of a closed system
with respect to energy: a system is closed with respect to energy at a time
t iff there is no net flow of energy into or out of the system at t. But it is
not clear what Dowe means by the metaphorical expression “net flow of
energy”. In fact, Schaffer (2001, 811) complains that he does not see what
alternative explication of a closed system Dowe is offering. McDaniel
(2002, 261) goes so far as to say “there doesn’t seem to be a way to ex-
plicate the concept of energy flow without appealing to the concept of
causation.”

However, I take it that there is one obvious, though ultimately wrong,
way to define energy flow without appealing to the concept of causation:
we can define it by invoking the notion of identity of physical quantity
over time, which is similar to the notion of identity of substance over time.
On this view, whenever an amount of energy outside a system before a
time t is genidentical with a numerically identical amount of energy inside
the system after t,12 we can say that this amount of energy “flows” from
the outside of the system to the inside about t. And there is a net flow of
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energy into (out of) a system at a time t iff the total amount of energy
flow from the outside of the system to the inside is larger (smaller) than
the total amount of energy flow from the inside of the system to the outside
at t.

In general, whenever an amount of a physical quantity Q outside a
system before a time t is genidentical with a numerically identical amount
of Q inside the system after t, the amount of Q “flows” from the outside
of the system to the inside about t. Similarly, whenever an amount of Q
inside a system before t is genidentical with a numerically identical amount
of Q outside the system after t, the amount of Q “flows” from the inside
of the system to the outside about t. Then Dowe’s definition of a closed
system with respect to a physical quantity Q will go as follows: a system
is closed with respect to Q at a time t iff there is no net flow of Q into or
out of the system at t, where there is no net flow of Q into or out of a
system at t iff the total amount of Q that flows from the outside of the
system to the inside is equal to the total amount of Q that flows from the
inside of the system to the outside at t. This definition does not invoke
the notions of causal process and interaction. Hence it does not render
Dowe’s CQ theory circular.

But, as Dowe (1995, 369) correctly points out, we do not think of a
quantitative property as having such an identity over time. We do not
want to say that the height of this tree at a time is identical to the height
of it at a later time in the same sense as this book at a time is identical to
it at a later time. In everyday speech, we say that the height of this tree at
a time is identical to the height of it at a later time only in the sense that
the tree instantiates the one universal at different times. Hence Dowe con-
cludes that, as far as a physical quantity is a property that cannot stand
possessed by nothing, the notion of identity of physical quantity over time
is not at all clear.

Another problem for the above-mentioned definition of flow of physical
quantity is that it is unclear how we can identify a physical quantity over
time. It may be argued that we can identify energy and momentum
through time by using the energy and momentum conservation laws, re-
spectively (Fair 1979, 234). For example, we can identify the amount of
energy possessed by a free particle at a time with the amount of its energy
at a later time by relying on the energy conservation law. But in such cases
of many body problems as Fair’s (1979, 238) and Ehring’s (1986, 256),
the energy conservation law cannot determine which energy is genidentical
to which energy. For this reason, Dowe (1995, 370) says “whenever we
move to many body problems the conservation laws leave the question of
identity over time of the energy indeterminate.” If so, we cannot always
identify energy and momentum through time by relying on the energy and
momentum conservation laws.
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13. Readers should beware of misinterpreting dQin/dt and dQout/dt. What I have in mind
is that dQin/dt represents the rate at which the amount of Q inside the system changes
and dQout/dt the rate at which the amount of Q outside the system changes. Hence it is
incorrect to interpret, for example, dQin/dt as representing the rate at which Q “enters”
the system from the outside and dQout/dt the rate at which Q “leaves” the system. I
thank an anonymous referee for pointing out that there is a need to take precautions.

I take it that Dowe’s objection to genidentity of physical quantity is
absolutely plausible. Then it is misdirected to define the flow of physical
quantity by invoking genidentity of physical quantity. Thus one obvious
answer to how to define a net flow of physical quantity goes nowhere.
However, this failure itself does not pose a conclusive problem for Dowe’s
definition that a system is closed with respect to a physical quantity Q iff
there is no net flow of Q into or out of the system. In my opinion, the
conclusive problem for Dowe’s definition is that the notion of flow of
physical quantity seems to make sense only if the quantity is a conserved
quantity. Note that physicists speak of “flow of physical quantity” only if
the quantity is a conserved quantity: they speak of “energy flow” or “elec-
tric charge flow (i.e., electric current)” but do not speak of “flow of speed”
nor “flow of force”. In fact, it is very unclear what “flow of speed” or
“flow of force” may mean. I believe that this is because the metaphorical
expression “flow” implies a kind of conservation. If energy could be cre-
ated ex nihilo, then we would no longer say that an amount of energy
flows from here to there. This suggests that the notion of flow of physical
quantity assumes that the quantity in question is a conserved quantity. If
so, the notion of flow of physical quantity will be conceptually dependent
on the notion of closed system in the end because a conserved quantity is
a quantity governed by a conservation law that is in turn formulated in
terms of a closed system. Therefore, I conclude that Dowe’s definition
faces a blatant circularity.

In my opinion, Dowe is wrong that a closed system with respect to a
physical quantity can be defined in terms of net flow of the physical quan-
tity. Nevertheless I believe that Dowe is right that the notion of closed
system should be defined only in terms only of the quantities concerned.
I will now provide such a definition.

5. What Is a Closed System? Let us first consider the following definition
of a closed system with respect to a scalar quantity:

DC. A system is closed with respect to a physical quantity Q at a time t
iff (a) dQin/dt � dQout/dt � 0 at t or, (b) dQin/dt � �dQout/dt at t,

where Qin is the amount of Q inside the system and Qout is the amount of
Q outside the system.13 In case a physical quantity Q is a vector or a tensor,
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14. Physicists believe that physical quantities like energy that are known as conserved
quantities remain constant in the world as a whole. For those quantities, (b) of (DC)
cannot be fulfilled since it require that Qin � Qout, which is the total amount of Q in
the world, should not remain constant. Accordingly, a system is closed with respect to
such a quantity iff (a) of (DC) is fulfilled. But since the quantity remains constant in
the world as a whole, we can state that a system is closed with respect to it iff the system
possesses a constant amount of it.

we can say that a system is closed with respect to Q iff all the components
of Q satisfy the definiens of (DC).

We can state what (DC) means in a more succinct way by considering
what is not a closed system with respect to Q according to (DC):

(5) A system is not closed with respect to Q at a time t iff dQin/dt �
�dQout/dt � 0 at t.

When Qin increases and Qout decreases at the same non-zero rate, or when
Qin decreases and Qout increases at the same non-zero rate, the system is
not closed with respect to Q according to (5). Otherwise, the system is
closed with respect to Q according to (DC).

Take some examples. A free falling body possesses a constant amount
of energy. According to (DC), this means that it is closed with respect to
energy regardless of whether the energy outside it remains constant or not.
Let Pz denote the component of linear momentum along the direction of
the line linking the free falling body with the center of the earth. During
the fall, the Pzs possessed by the free falling body and possessed by the
earth increase in opposite directions at the same rate. Hence, the free fall-
ing body does not count as being closed with respect to Pz by (DC); so it
is not closed with respect to linear momentum. According to (DC), two
far distant free electrons are closed with respect to electric charge, respec-
tively, because each of them possesses a constant amount of electric
charge. Let Px denote the component of linear momentum in the direction
of the line joining the two electrons. Since they are free, the Pxs possessed
by them increase in opposite directions at the same rate. Hence, each elec-
tron does not count as being closed with respect to Px by (DC); therefore,
it is not closed with respect to linear momentum. An object sliding on a
surface with friction present possesses a decreasing amount of energy.
And, the energy decrease of the object is exactly equal in magnitude to
the energy increase of molecules constituting the surface (Feynman, Leigh-
ton and Sands 1989, 14–7). This means that, according to (DC), the object
is not closed with respect to energy. Thus (DC) does justice to physicists’
common-sense understanding of closed systems. Hence I believe that
(DC)—and its generalization to vector or tensor quantities—is an ade-
quate definition of a closed system with respect to a physical quantity.14

In the following I will provide a motivating argument for (DC). Before
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going into the matters, let me introduce some terminology that will help
express my idea more clearly. When a system is such that if it is closed
from outside with respect to Q then it possesses a constant amount of Q,
I will say “Q is conserved in the system”. It is clear that (CL) is true iff Q
is conserved in every Q-possessing system.

Suppose that two systems, R1 and R2, each of which is closed with
respect to energy, possess certain amounts of energy at a time t1. Suppose
further that energy is conserved in each of R1 and R2. Then we can predict
the total amount of energy possessed by the two systems at a later time
t2—for short, E-amount—by applying the energy conservation law to each
of R1 and R2 and then summing their respective amounts of energy at t2.
In this case, it seems clear that we can also predict the E-amount by ap-
plying the energy conservation law to a large system Rt composed of the
two systems and then getting the amount of energy possessed by Rt at t2.
This is because if energy is conserved in each of R1 and R2, then it is also
conserved in Rt. This line of thought suggests the following principle:

CP. Suppose a system S is composed of subsystems S1, S2, . . . Sn. Then
energy is conserved in S iff, for every i, energy is conserved in Si.

(CP), together with the supposition that energy is conserved in each of R1

and R2, implies that it is also conserved in Rt.
It should be noted that, given that both R1 and R2 are closed with

respect to energy, Rt is also closed with respect to energy. It is obvious
that this is the case according to (3) or Dowe’s definition. Moreover, this
is the case according to (DC). Let ER1 and E*R1 be the amount of energy
inside R1 and the amount of energy outside R1, respectively. Likewise, let
ER2, E*R2, ERt and E*Rt be the amount of energy inside R2, the amount of
energy outside R2, the amount of energy inside Rt and the amount of
energy outside Rt, respectively. Suppose that Rt is not closed with respect
to energy. Then dERt/dt � �dE*Rt/dt � 0. Since ER1 � ER2 � ERt, we
have dER1/dt � dERt/dt�dER2/dt. Therefore, we have dER1/dt �
�dE*Rt/dt�dER2/dt � �d(E*Rt � ER2) /dt. But, (E*Rt � ER2) is exactly
the amount of energy outside R1, that is, E*R1. Hence we have the result
that dER1/dt � �dE*R1 /dt. We can get a similar result for R2: dER2/dt �
�dE*R2 /dt. Notice that at least one of dER1/dt and dER2/dt is non-zero
because dERt/dt is supposed to be non-zero and dERt/dt � dER1/dt �
dER2/dt. This means that, according to (DC), at least one of R1 and R2 is
not closed with respect to energy. Therefore, we can conclude that, ac-
cording to (DC), if both of the two subsystems are closed with respect to
energy, then the large system is also closed with respect to energy.

As stated above, (CP) implies that energy is conserved in Rt. Since both
R1 and R2 are supposed to be closed with respect to energy, Rt is also
closed with respect to energy. If so, the amount of energy possessed by Rt
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remains constant over time. Thus (CP) ensures that whenever we can pre-
dict the E-amount by applying the energy conservation law to each of R1

and R2, we can also predict the E-amount by applying the energy conser-
vation law to Rt. I take it that (CP) is reasonably plausible and so I will
assume it in the following.

It is clear that our world St as a whole is a closed system with respect
to energy. If not, what else could be? In fact, St counts as being closed with
respect to energy by (3) stated in Section 3 because there are no non-
conservative external forces acting on it; and, it counts as such by Dowe’s
definition because there is no net flow of energy into or out of it; and, it
counts as such by (DC) because the amount of energy outside St is always
zero. Note that we can construe a physical system S1 and the rest of the
world S2 outside of S1 as two mutually exclusive and jointly exhaustive
subsystems of the world St. Let ES1 be the amount of energy possessed by
S1 and ES2 be the amount of energy possessed by S2. Now imagine the
three following cases that are mutually exclusive and jointly exhaustive:

Case 1. Suppose that dES1/dt � dES2/dt � 0 during a time interval I. Then
both ES1 and ES2 remains constant over the time interval I; thereby, the
total amount of energy possessed by St, i.e., (ES1�ES2) also remains con-
stant over the time interval I. Since St is closed with respect to energy,
energy is conserved in St. Therefore, according to (CP), energy must be
conserved in S1 and S2, respectively. This is the case according to (DC).
Since each subsystem is supposed to possess a constant amount of energy,
energy will be conserved in it if it is closed with respect to energy. And,
according to (DC), each subsystem is closed with respect to energy during
the time interval I since both the amount of energy inside it and the
amount of energy outside it remain constant.

Case 2. Suppose that dES1/dt � �dES2/dt � 0 during a time interval I.
Then ES1 increases and ES2 decreases at the same rate during the time
interval I; thereby, the total amount of energy possessed by St, i.e.,
�ES1�ES2� remains constant over the time interval I. Since St is closed
with respect to energy, energy is conserved in St. According to (CP), it
follows from this that energy is also conserved in S1 and S2, respectively.
But if either of the two subsystems, say, S1 is closed with respect to energy,
then energy would not be conserved in S1 because ES1 does not remain
constant over the time interval I. This means that, for (CP) not to be
violated by S1, S1 must not be a closed system with respect to energy during
the time interval I. This is the case according to (5) since the energy inside
it and the energy outside it change in opposite ways at the same rate.
Likewise, S2 does not count as being closed with respect to energy during
the time interval I by (5), wherefore (CP) is not violated by S2. We can get
the same result for the case where dES1/dt � �dES2/dt � 0.
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15. I admit that I have not provided a strong enough argument for (CP). Those who
do not think (CP) plausible may not take my motivation for (DC) seriously.

16. Here I am indebted to an anonymous referee.

Case 3. Suppose that dES1/dt � �dES2/dt during a time interval I. Then
the total amount of energy possessed by St does not remain constant over
the time interval I. Therefore, energy is not conserved in St because St is
a closed system with respect to energy. According to (CP), it follows from
this that energy is not conserved in at least one of the two subsystems.
That is, (CP) implies that at least one of the two subsystems is closed with
respect to energy and yet does not possess a constant amount of energy
during the time interval I, which is the case according to (DC). Notice
that the two subsystems, S1 and S2, count as being closed with respect to
energy by (DC). Moreover, since dES1/dt and �dES2/dt are not equal, at
least one of them is non-zero; thereby, at least one of ES1 and ES2 does not
remain constant; that is, at least one of the two subsystems does not pos-
sess a constant amount of energy during the time interval I. As a result,
energy is not conserved in at least one of the two subsystems.

To sum up, (DC) ensures that (CP) is not violated in the three mutually
exclusive and jointly exhaustive cases. Given that (CP) is assumed as a
reasonably plausible principle, this gives us a good reason to accept (DC)
as an adequate definition of a closed system with respect to energy.15

6. Further Advertisements. (DC) has a number of advantages as a definition
of a closed system. First, (DC) implies that a system is closed with respect
to a physical quantity iff the outside of it is closed with respect to that
quantity, which is in accordance with physicists’ common sense. Second,
(DC) explains how it is possible that scientists justifiably idealize many
systems that are not in fact closed as approximately closed systems.16 Ac-
cording to (DC), when a system is such that dQin/dt � �dQout/dt � 0, the
system is not closed with respect to a physical quantity Q. However, if
|Qin| » |dQin/dt|, then we are justified in ignoring dQin/dt and dQout/dt and
idealizing the system as an approximately closed system. For example, a
heavy body that falls in air is strictly not closed with respect to energy
since during its fall it exchanges energy with air molecules. However, its
energy is much larger than the energy that it exchanges with air molecules
and scientists can justifiably idealize the body as being approximately
closed with respect to energy. By contrast, in case such a light body as a
feather falls in air, scientists do not idealize it as being approximately
closed with respect to energy because its energy is comparable to the en-
ergy that it exchanges with air molecules. Thus (DC) explains one of well-
established scientific practices.
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Third, and more importantly, (DC) invokes only such concepts as
numerical equality and inequality between physical quantities so that it
does not presuppose that the quantity Q in question is a conserved quan-
tity. Hence we can say what are closed systems with respect to such non-
conserved quantities as force and velocity of center of mass by relying on
(DC). Moreover, (DC) defines a closed system with respect to a physical
quantity in terms only of the physical quantity without invoking the no-
tions of causal process and interaction. This means that (DC) does not
render the CQ theory of causation circular.

According to (CL), a conservation law of a physical quantity Q is roughly
that every Q-possessing system that is closed with respect to Q possesses a
constant amount of Q through time. According to (DC), this conservation
law is equivalent to the statement that, for every Q-possessing system, if
dQin/dt � 0 then dQin/dt � �dQout/dt. On this view, the electric charge
conservation law has been supported by such an experimental result as
reports that when the electric charge inside a system increases at a non-
zero rate, the electric charge outside it invariably decreases at the same
rate.

By contrast, “the velocity of center of mass—for short, Vcm—conser-
vation law” has been refuted by such an experimental result as reports
that, when a system’s Vcm increases in a direction at a non-zero rate, the
Vcm of the rest of the world outside of it does not regularly increase in the
opposite direction at the same rate. For example, suppose that the universe
has only two free (electrically neutral) particles with different masses that
exert gravitational forces on each other. Then the light particle will move
with a greater acceleration than the heavy one. In this case, the Vcm of the
light particle increases in a direction at a non-zero rate and yet the Vcm of
its outside, i.e., the Vcm of the heavy particle does not increase in the op-
posite direction at the same rate. To put another way, the light particle
that, according to (DC), is closed from outside with respect to Vcm does
not possess a constant amount of Vcm. Hence, “the Vcm conservation law”
is refuted, wherefore velocity of center of mass is not a conserved quantity.

In Section 2 I argued that internal energy serves as a counterexample
to Hitchcock’s definition. It will be instructive to see that (DC) overcomes
the counterexample. Let us reconsider the above-mentioned case of two
particles with different masses. When we assume that the particles are
point-particles, their internal potential energies vanish. Therefore, their
internal energies are equal to their kinetic energies, respectively. It is clear
that, as the two particles exert gravitational force on each other, both of
the kinetic energies possessed by them increases because they are free. It
follows from this that the internal energy of the light particle increases at
a non-zero rate and yet the internal energy of the heavy particle does not
decrease at the same rate. To put another way, the light particle that,
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17. The strong version of Newton’s third law goes that the forces between the two
particles, in addition to being equal and opposite, also lie along the line joining the
particles (Goldstein 1980, 7).

according to (DC), is closed from outside with respect to internal energy
does not possess a constant amount of internal energy. Hence, “the inter-
nal energy conservation law” is refuted. In consequence, internal energy
does not come out as a conserved quantity by (DC).

(DC) has the interesting consequence that, as far as classical mechanics
is concerned, force is conserved. Let us assume the weak version of New-
ton’s third law of action and reaction that forces between two particles
are equal and opposite (Goldstein 1980, 5).17 Then the total vector sum of
internal forces inside a system always vanishes since a force on a subsystem
i due to another subsystem j is equal in magnitude and opposite in direc-
tion to a force on the subsystem j due to the subsystem i. Hence the amount
of force acting on a system is equal to the total vector sum of external
forces exerted on the system. Let us reconsider the system S1 and the rest
of the world S2 outside of S1. Suppose now that the amount of force acting
on S1 increases in a direction at a non-zero rate. Given the weak version
of Newton’s third law, this means that the total vector sum of forces ex-
erted by S2 on S1 increases in that direction at the same rate; then the total
vector sum of forces exerted by S1 on S2 would increase in the opposite
direction at the same rate. Note that, according to the weak version of
Newton’s third law, the amount of force acting on S2 is equal to the total
vector sum of forces exerted by S1 on S2. Therefore, we come to the con-
clusion that when the amount of force acting on S1 increases in a direction
at a non-zero rate, then the amount of force acting on S2, i.e., the outside
of S1 increases in the opposite direction at the same rate. By a similar
reasoning, we can draw the conclusion that when the amount of force
acting on S1 decreases in a direction at a non-zero rate, then the amount
of force acting on the outside of S1 decreases in the opposite direction at
the same rate. In consequence, as long as the weak version of Newton’s
third law is valid, “the force conservation law” holds good: the total
amount of force inside a closed system with respect to force remains con-
stant through time.

When we take electromagnetism into account, however, the weak ver-
sion of Newton’s third law does no longer hold good; and so neither does
the force conservation law. Consider two charged particles moving (in-
stantaneously) so as to “cross the T”, i.e., one charged particle moving
directly at the other, which in turn is moving at right angles to the first
(Goldstein 1980, 7–8). According to Biot-Savart law, the magnetic field
due to the first particle vanishes at the location of the second; thereby, the
first particle exerts no magnetic force on the second. By contrast, the sec-
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ond particle exerts a non-zero amount of magnetic force on the first since
the magnetic field due to the second does not vanish at the location of the
first. Thus, as the two particles instantaneously move, the total force ex-
erted on the first particle change at a non-zero rate and yet the total force
exerted on the second does not. Thus the first particle that is closed with
respect to force according to (DC) is not subject to a constant amount of
force. Therefore, “the force conservation law” is violated, wherefore force
is not a conserved quantity after all.

I think that (DC) makes it clear how a conservation law of a physical
quantity Q is connected with a “continuity equation for Q”. Let us recon-
sider the system S1 and the rest of the world S2 outside of S1. Suppose that
Q is conserved in each of S1 and S2. Then, for each system, if it is closed
from outside with respect to Q then it possesses a constant amount of Q
through time. According to (DC), this means that if dQS1/dt � 0 then
dQS1/dt � �dQS2/dt and if dQS2/dt � 0 then dQS1/dt � �dQS2/dt, where
QS1 is the amount of Q inside S1 and QS2 is the amount of Q inside S2, i.e.,
outside S1. Therefore, we have the result that Q is conserved in each of S1

and S2 iff, if dQS1/dt � 0 or dQS2/dt � 0, then dQS1/dt � �dQS2/dt. The
right hand side of the biconditional is logically equivalent to “dQS1/dt �
�dQS2/dt” since when both dQS1/dt and dQS2/dt are vanishing, dQS1/dt �
�dQS1/dt. In short, Q is conserved in both S1 and S2 iff dQS1/dt � �dQS2/dt.

Suppose now that (CL) is true. Then Q is conserved in every
Q-possessing system and, therefore, we can apply the above line of rea-
soning to every Q-possessing system. So we have the result that, for every
Q-possessing system S, dQin/dt � �dQout/dt, where Qin is the amount of
Q inside S and Qout is the amount of Q outside S. Hence we can say that
if (CL) is true, then for every Q-possessing system, dQin/dt � �dQout/dt.
On the other hand, suppose that for every Q-possessing system, dQin/dt �
�dQout/dt. Then, for every Q-possessing system, if dQin/dt � 0 then
dQin/dt � �dQout/dt. According to (DC), this means that Q is conserved in
every Q-possessing system. Hence we can say that if for every Q-possessing
system, dQin/dt � �dQout/dt, then (CL) is true. In consequence, (CL), i.e.,
the conservation law of Q, is true iff, for every Q-possessing system,
dQin/dt � �dQout/dt.

Another claim I want to make is that “dQin/dt � �dQout/dt” can be
taken as a “continuity equation for Q”. Let us consider a well-known
continuity equation, say, the continuity equation for electric charge den-
sity: when a system occupies a volume V enclosed by a surface A,

J a⋅ = − ∫∫ d
d

dt
dv

VA

ρ , (6)

where J is the current density vector—the amount of electric charge mov-
ing through a unit volume in a unit time—and q is the charge density. The
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volume integral of the charge density is the total amount of electric charge
inside the system in question, Cin, for short. And, the left hand side of the
equation means the instantaneous rate at which electric charge is leaving
the enclosed volume; therefore, it means the instantaneous rate at which
the electric charge outside the system changes. When we let Cout be the
total amount of electric charge outside the system, we have,

J a⋅ =∫ d dC dtout

A

/ (7)

Therefore, we have “dCout/dt � �dCin/dt”. Thus we can understand the
continuity equation for electric charge density as saying that dCout/dt �
�dCin/dt. This naturally suggests that we can take “dQin/dt � �dQout/dt”
as a “continuity equation for Q”. So I conclude that (CL) is true iff, for
every Q-possessing system, the continuity equation for Q holds true.

It should be noted that the continuity equation is equivalent to the
statement that �Qin � Qout� remains constant over time and that, what-
ever the system in question is, �Qin � Qout� is the total amount of Q in
the world as a whole. This means that for every Q-possessing system the
continuity equation for Q holds true iff the total amount of Q in the world
remains constant over time as a whole. In consequence, (CL) is true iff
the total amount of Q in the world remains constant over time as a whole.

7. Reconsideration of Hitchcock’s and Dowe’s Definitions. According to the
CQ theory of causation, causal interaction is analyzed in the following
way (Dowe 2000, 90; Salmon 1997, 462):

CQI. A causal interaction is an intersection of world lines that involves
exchange of a conserved quantity.

Elsewhere I have argued that, to block a serious counterexample to (CQI),
“exchange” in (CQI) should be understood to be governed by a conser-
vation law (Choi 2002, 115). Suppose now that a system causally interacts
with the outside of it. Then, according to (CQI), there exists such a con-
served quantity Q that dQin/dt � �dQout/dt � 0 since, as noted above, a
conservation law of Q implies that if dQin/dt � 0 then dQin/dt � �dQout/dt.
Therefore, there exists such a conserved quantity Q that the system is not
closed from outside with respect to Q according to (DC). As a result, we
can say that if a system causally interacts with the outside of it, then there
is such a conserved quantity Q that the system is not closed from outside
with respect to Q.

Suppose now that there is such a conserved quantity Q that a system
is not closed with respect to Q. Then, according to (DC), the system is
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18. This idea was pointed out by Inkyo Chung.

such that dQin/dt � �dQout/dt � 0. Given the natural assumption that a
system does not possess a constant amount of a conserved quantity
through time only if the system intersects with the outside of it, we can
infer that the system intersects with the outside of it involving exchange
of Q. According to (CQI), this means that the system causally interacts
with the outside of it. Therefore, we can say that, if there is such a con-
served quantity Q that a system is not closed with respect to Q, then the
system causally interacts with the outside of it.

In short, a system is closed from outside with respect to every conserved
quantity according to (DC) iff it does not causally interact with the outside
of it. In my opinion, when physicists say that a system is closed from
outside simpliciter, what they have in mind is that the system is closed
from outside with respect to every conserved quantity. This leads to the
conclusion that a system is closed from outside simpliciter iff it does not
engage in any causal interactions with the outside of it. This is exactly
Hitchcock’s definition! Thus (DC), together with the CQ theory of cau-
sation, explains a prima facie plausibility of Hitchcock’s definition: it is
extensionally correct as long as “a closed system simpliciter” means a
closed system with respect to every conserved quantity.18

Let us now turn to Dowe’s definition. We have seen that a system is
not closed with respect to energy at a time t iff dEin/dt � �dEout/dt � 0
at t. I believe that the right hand side of this biconditional proposition can
be taken as defining the notion of net flow of energy. To be specific, there
is a net flow of energy into (out of) a system at a time t iff dEin/dt �
�dEout/dt � (�) 0 at t. In general,

(8) For a conserved quantity Q, there is a net flow of Q into (out of) a
system at a time t iff dQin/dt � �dQout/dt � (�) 0 at t.

Since the quantity Q is a conserved quantity, for every Q-possessing sys-
tem, the continuity equation for Q holds true. This means that the right
hand side of (8) can be shortened into “dQin/dt � (�) 0”.

In my opinion, whatever details of the correct definition of flow of
conserved quantity may be, the following statement must be true:

(9) For a conserved quantity Q, dQin/dt � (the total amount of Q that
flows from the outside of the system in question to the inside per a
unit time) � (the total amount of Q that flows from the inside of
the system to the outside per a unit time).

(9) joins with (8) to imply that for a conserved quantity Q, there is a net
flow of Q into (out of ) a system at a time t iff the total amount of Q that
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19. In Section 6, we found out that, according to (DC), (CL) is true iff the total amount
of Q in the world remains constant over time as a whole. This suggests a simple and
straightforward alternative way of defining a conserved quantity: a physical quantity
is a conserved quantity iff it is a law of nature that the total amount of the quantity in
the world remains constant over time as a whole. This point has been brought to my
attention by an anonymous referee.

flows from the outside of the system to the inside is larger (smaller) than
the total amount of Q that flows from the inside of the system to the
outside at t. This is just what I have proposed in developing Dowe’s pro-
posal in Section 4.

It is important to note that the notion of net flow of physical quantity
presupposes that the quantity is a conserved quantity. Even though S1’s
Vcm and S2’s Vcm increases in opposite directions at the same rate, we would
not say that there is a net flow of Vcm from the outside of S1 into the inside.
This is because the metaphorical expression “flow” implies a kind of con-
servation. If so, (8) cannot be extended to physical quantities that are not
conserved quantities.

It is remarkable that, according to (8) and (DC), for a conserved quan-
tity Q, a system is closed with respect to Q at a time t iff there is no net
flow of Q into or out of the system at t. This is exactly Dowe’s definition.
Thus, I admit that, as far as conserved quantities are concerned, Dowe’s
definition works. This explains why Dowe’s definition, at first sight, seems
to be plausible. Dowe’s definition, however, does not amount to a defi-
nition of a closed system since, as noted above, it cannot be generalized
to non-conserved quantities.

8. Conclusion. We have seen that we can provide such a definition of a
closed system that CQ theorists can help themselves to (CL). Let us now
consider exactly how CQ theorists can define the notion of conserved
quantity by using (CL). Dowe (2000, 91) defines a conserved quantity as
“any quantity that is governed by a conservation law.” Given that (CL)
is the exact formulation of conservation law, we can put Dowe’s idea in
a more precise way: a physical quantity Q is a conserved quantity iff it is
a law of nature that for every Q-possessing system, if it is closed from
outside with respect to Q, the total amount of Q possessed by it remains
constant through time.19

Note that the definiens has subjunctive force because it is a law-
statement. Hence, the definiens implies that a Q-possessing system that
is not actually closed is such that if it were to be closed from outside with
respect to Q, then the amount of Q possessed by it would remain constant.
Therefore, it does not follow from the definition of conserved quantity
that if no Q-possessing systems are actually closed with respect to Q, then
Q is a conserved quantity; even though (CL) is true of Q, it does not follow
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that Q is a conserved quantity. A physical quantity Q is a conserved quan-
tity only if it is not only a true generalization but also a law of nature that
every Q-possessing system that is closed with respect to Q possesses a
constant amount of Q through time.

The CQ theory of causation analyzes causal process and interaction in
terms of conserved quantities such as energy, electric charge, etc., which
raises the question of exactly what such notions as conserved quantity,
conservation law and closed system are. In the foregoing, we have seen
that (DC) is an adequate definition of a closed system; and that (CL),
together with (DC), provides the exact formulation of a conservation law
that serves CQ theorist’s purpose; and finally that we can answer what a
conserved quantity is by relying on (CL). Thus it turns out that a number
of problems that advocates of CQ theory of causation have been facing
can be solved.
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