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Abstract

We present an algebraic theory of structured objects,! based on and
generalizing Aczel’s theory of form systems [2]. Notions of identity of
structured objects and of transformations of systems of such objects
are discussed. A generalization of Aczel’s [2] representation theorem is
proven.

1 Introduction

We develop an algebraic theory of structured objects, artifacts or otherwise,
well-founded or not, based on and generalizing Aczel’s theory of form sys-
tems [2]. Aczel’s theory, further developed by Lunnon in her doctoral thesis
[9], has been originally conceived as part of a long term project to provide
a mathematical framework for situation theory and it has been in fact set
to motion by an unpublished paper [5] of Jon Barwise, proposing a formal
sketch of a model for situation theory.

Considerations from situation theory lead to a need to regard the ob-
jects of the theory as structured objects, objects within which other objects
may occur as their components. The component-of relation, generalizing
the membership relation, need not be well-founded, in fact applications of
situation theory as in Barwise and Etchemendy [7] would require an anti-
founded relation, allowing for objects that are components of themselves.

YA very first draft of this paper [8] was written some years ago, while I was still a
graduate student. [ have greatly benefited from discussions with Jon Barwise and have
also had the good fortune to discuss things with Peter Aczel and Rachel Lunnon. It
was not until T read [10] that my interest in the subject was revitilized, even though the
direction taken in [10] is quite different from that taken here. This report is a completion
of these old notes of mine, written in the hope that it will contribute to the discussion on
formal theories of structured objects.



Aczel’s theory of form systems formalizes the intuitive idea of a universe of
structured objects, well founded (wf) or anti-founded (af), under an opera-
tion of replacement of components of an object by other objects.

We generalize Aczel’s theory of form systems to the theory of what we
have called in [8] pre-form systems and now call them simply systems of
objects. What we have found missing in the original theory is (1) a discus-
sion of appropriate concepts of identity of structured objects, (2) a study
of adequate notions of transformations of systems of structured objects and
(3) some more restraint view on permissible replacement maps. We take
up these issues here, exploring natural alternatives to notions of identity of
objects that arise by experimenting with objects with the means available,
namely by replacement of components by other components. Transforma-
tions of systems of objects, we insist, should respect both replacement and
components but they should also reflect identity of the abstract behavior
of objects under replacement experiments. Discussing these issues leads us
to a pleasant algebraic theory of systems of structured objects. We prove
existence of free systems and derive from this a representation theorem that
generalizes the representation theorem of [2].

As in [2] and unlike the direction taken in [10] we do not seek to provide
a theory, first-order or otherwise, of universes of structured objects. Rather,
we aim at modeling our pre-theoretic intuitions about structured objects,
their components and change they may undergo due to replacement of com-
ponents, by describing a formal model, some kind of replacement algebra
that adequately, we believe, reflects our basic intuitions.

2 Systems of Structured Objects

To fix a context for discussion let us denote by V the class of all objects of
our metatheory. This may include sets, atoms, structured physical objects
and whatever the reader’s ontological views allow for. For a structured
object a, we denote by C'a the set of all objects that appear as components
of a. However, in different contexts different components maps C' may be
considered. If ¢ is a map defined on the components of a we write o.a
for the object obtained, intuitively speaking, by simultaneously replacing
every component x of a by ox. In [2] a liberal view is taken, allowing
for arbitrary replacements without imposing any constraint that the object
oz replacing z as a component of ¢ must be of the “same kind” as z.
Thus, if ¢ happens to be a physical object then ¢.¢ may or may not be



physically realizable. Without assuming any preset notion of “sameness”
we impose some restrictions on permissible replacements, thus diverging
from and generalizing the approach of [2]. To make things more precise, let
us suppose some given class X of parts, or components.

Definition 2.1 A system of objects with parts from the class X ( a system
over X ) is a structure A = (A,C,, 5 where (dropping the subscript A
for simplicity)

A? 'A)

1. A is a class of structured objects,

2. C' s the components map and Ca is a subset of X for each object
a € A,

3. 5 is a collection of maps o : Ca — X, where a € A, with a partial
composition map (denoted by concatenation) and such that

3.1. foreacha € A,c € 5, if o : Ca — X, then g.a is also in A

3.2. for each a € A, the identity map id,, € 5
3.3 ifo,mr€ S8, 7:C(0.a) — X, thenTo € 5

and where

4. the replacement operation and the components map C satisfy the

following axioms:

4.1. C(o.a)={oz|z € Ca}

4.2. ifo=1d,,, then c.a =a

4.3. 7.(0.a)=rT0.q, forallo,7€ 5, 0:Ca— X, 7 : C(oa) — X.

A

Membership of a replacement map o in the set 5 is thus our notion of a
permissible replacement. The form systems over some class X of [2] are
exactly the systems of objects over X where S is the collection of all maps
o:Ca— X, for a € A. An ontology is defined in [2] as a form system over
the class V' of all objects. We recall also from [2] that an elementary universe
is a form system A = (A4,C,.) over the set A. Some simple examples will
help fix the ideas.

Example 1 The Instantiation Systems of [12] are examples of systems of
objects. Replacement maps are there called instantiations, objects are re-
ferred to as terms and their components are taken from a set Var of items
called variables. Some finiteness conditions are imposed in [12] which makes
instantiation systems a special case of systems of objects.



Example 2 Let X be a signature, that is to say a set of operation symbols
with prescribed arities, and let T" be the set of all closed X-terms. If t =
f(t1,...,t,), for some n-ary f € ¥, thenlet Ct = {t1,...,t,}. fo: Ct =T
is a map, then let 0.t = f(oty,...,0t,). We may let equality of terms be
pure syntactic equality or else assume an equational theory © and declare
s =t just in case , s = t. Depending on what we are interested in, we
may allow for all possible replacements or impose restrictions. For example,
permissible replacement maps may be taken to be the maps ¢ such that for
any t € dom(o) we have t = ot (which is more interesting when we interpret
equality as -, t = ot). In any case 7.(0.t) = 7o.t and the rest of the axioms
also trivially hold.?

Example 3 Let HF be the set of well-founded, hereditarily finite sets, that
is sets s that are finite and such that every member of their transitive closure
Te(s) is finite. In the cammulative hierarchy the well-founded hereditarily
finite sets are exactly the sets of rank less than w, so that H F' = R(w). Let
Cs=sand X = HI. If 0 : Cs — X, then 0.s = {oz|z € s} € HF. This
gives us an example of an elementary universe in the sense of [2].

Example 4 For a more mundaine example, let A be the set of all blocks in
a Lego toy that can be possibly formed out of a given collection L of basic
items of fixed shapes and colours. In speaking of possible blocks we do not
mean to refer to object-types but rather to concrete particulars differentiated
by the time-interval of their existence. For example suppose we form a block
out of four pieces, then take it apart and form an identical block with the
same pieces again. At the moment, we count these as two different objects.
We will discuss the question of identity in a minute.

Now if u is such a block we let C'u C L be the set of basic items used
in the construction of the block. A replacement map is permissible only if
it replaces a basic item by another basic item of the same shape but not
necessarily of the same colour. If ¢ : Cu — L, then o.u has the obvious
meaning.

Example 5 To outline the boundaries of the theory we give a non-example.
Let M be a proper class of atoms and V,, the class of all well-founded M-
sets, namely sets with atoms from M possibly occurring in their build-up.

21t goes without saying that we assume that the theory © is well-behaved with respect
to the signature. In other words a replacement theorem holds: if -, s; = ¢;, then

"e f(S1,...,Sn) = f(t1,...,tn).



For an M-set s let C's be the set of atoms z such that 2 € s or there is
some set s € T'¢(s) such that € s'. Now let X = V,, U M. Given a map
o :(Cs— X define 0.5 by €-induction:

os={ozlvesnM}U{os|sd esnV,}

This fails to be a form system or a system of objects in the sense of Definition
2.1 because the axiom C(o.s) = {oz|z € Cs} does not hold for any o that
assigns a pure set to atoms in C's.

Example 4 is an example of a system of objects which is not a form sys-
tem, as we have imposed restrictions on the permissible replacement maps.
It justifies, we think, our generalizing the theory of form systems to that of
systems of objects in the sense of Definition 2.1. Restrictions on replacement
can be imposed by introducing an explicit typing of objects and their com-
ponents, as well as of the replacement maps. An investigation along these
lines has been carried out in [9]. The approach we take abstracts away from
an awkward explicit typing but maintains the basic idea of not granting to
all possible replacement maps the status of a permissible map.

2.1 Identity and Transformation

Suppose given a system A. Objects in A change as a result of replacement
actions. On the other hand, we should be able to think of the system A itself
as being tranformed into some other system as a result of simultaneously
transforming all objects in the system.

Example 6 Suppose our system consists of all cars of a certain make and
model. Replacement of parts by parts of the same make results in another
car of the same make and model. Suppose, however, all cars of that make
and model turn out to be defective: their ignition system involves a serious
risk of fire with potentially life-threatening consequences. A new part is
manifactured and replacement of the old part with the new is offered free of
charge. Our system of objects has thus been transformed.

To model our intuitions of structured objects we thus need to extend our
treatment and provide for transformations of systems. There is a question,
however, as to just what a legitimate transformation should be when the
subject is approached in the abstract. This relates, we think, to an intricate
question: that of the identity of objects through change due to replacement
actions. Some systems of ojects have an intrinsic relation of identity. For



example, in the system of hereditarily finite sets (Example 3) identity of
objects is pure extensional identity of sets. When either intensional objects
or physical objects such as artifacts constitute the universe of a system of
objects identity is not a straightforward issue. One option is to postulate
some relation R of identity on the system and then modify the presentation
of a system so as to axiomatize the interaction of identity and replacement.
Another option, which is the one we take here, is to classify various notions
of identity that naturally arise in the system itself. What we are concerned
with can, perhaps, better be described in a pragmatic and experimental
language. Given a system of objects we can “experiment” with them with
the means that we have available and that is to say by replacing components.
What we would like to have is some notion of an abstract behavior of an
object through this experimentation. Roughly then, we can construe two
objects as being of the same type, identical, if they exhibit the same abstract
behavior.

As it turns out there are different notions of identity we can formulate.
We discuss two natural options below. To simplify the discussion we often
avoid explicit mention of what the domain of a replacement map o is when
this can be unambiguously inferred from the context of the discussion. For
example, in stating something like Vo7 0.6 = 7.b we really mean to say that
for any permissible ¢ with domain the set C'a, there exists a permissible 7
with domain C'b such that o.a = 7.b.

By abstact identity of objects in a system A we mean identity of the
behaviors of the objects under the operation of replacement. A general
notion of abstract identity may be taken to be a binary relation ~ on A
such that

a~biff (Vodr o.a ~ 7.b and V730 0.a ~ 7.b) (1)

Call this double implication the condition (I). The intuition should be clear:
Two objects a and b are to be deemed abstractly identical just in case every
way to change one of them by a permissible replacement of components
can be matched by a way to change the other, resulting again in abstractly
identical objects. Note that identity of abstract behaviors is thus dependent
on the collection 5 of available replacement experiments. This concept of
identity is very broad and it covers a number of particular cases.

Example 7 In [12], two objects a,b are deemed of the same type, denoted
by a ~ b just in case there exist instantiations ¢ and 7 such that a = ¢.b and
b = 7.a. Identity is thus construed as the possibility for mutual reduction of
each object to the other by replacement of components. Assuming we have



a broad notion of identity ~ satisfying condition (I), it is immediate that
a ~ b implies a ~ b, for any objects a and b.

There is a notion of bisimilarity in the literature on process algebras that our
concept of abstract identity is a generalization of. Unfortunately, as process
languages cannot be described as systems of objects we cannot make the
connection more clear.

Obviously, now, we cannot take (1) as a definition of ~ because of the
circularity involved. However, there is a standard way around this problem.

Definition 2.2 Let A and B be systems of objects (not necessarily over the
same class of components). A binary relation R from A to B is a pre-
identity iff for any a € A and b € B, aRb implies

e Yodr g.aRt.b, and
o V7do g.aR7.D.

Let F be the operator on binary relations R from A to B defined by
F(R)=A{(a,b)|Vo3r 0.aR7.b and V3o o.aRT.b}

Then F is clearly monotone and a relation R is a pre-identity just in case
R C F(R). Let ~ be the largest fixed point of F. Explicitly,

~=| {RC Ax B| RC F(R)}

Lemma 2.3 The relation ~ is a (in fact, the largest) pre-identity and it
satisfies condition (1).

Proof: That ~ is a pre-identity follows from the way we constructed this
relation. For condition (1), the direction from left to right is straightforward.
For the converse, let R be the binary relation defined by

aRb iff Vodr 0.a ~ 7.0 and V7do c.a ~ 1.b

It is enough to verify that R is a pre-identity. So assume aRb holds. Given
o, let 7 be such that ¢.a ~ 7.b. Then we have that for any ¢’ there is some
7" such that o'.(0.a) ~ 7/.(7.b). Conversely, for any 7’ we can find ¢’ such

that o’.(c.a) ~ 7’.(7.b). Thus o.aR7.b holds by definition of R. We may
then conclude that R is a pre-identity. Hence ~ satisfies condition (I). O



Identity as ~ is a very broad notion and it is probably best to think of it
as reflecting structural similarity of objects. Objects that are identified by
~ need not even have the same components and this is perhaps too liberal
a notion of identity for many examples. Consider Example 3. It should be
clear that the relation of equinumerosity of (hereditarily finite) sets satisfies
condition (I). In a sense, then, it abstracts away too much structure.

We now define a more stringent notion of abstract identity, requiring
that identity in the new sense implies that the two objects are built on the
same set of components (but of course not at the same time, if temporal con-
siderations are relevant to some particular case, like the Lego toy example).
For our new notion of identity, denoted by =, we would like to have

a=biff Ca=Cband Vo o.a=0.b (2)

We call this condition (II). As this cannot be taken for a definition of =, we

proceed again as we did for the relation ~.

Definition 2.4 Let A and B be systems of objects. A binary relation ¥
from A to B is a congruence iff aW¥b implies that Ca = Cb and for all
o, 0.aVo.b.

If G is the operator on binary relations from A to B such that
G(R)=A{(a,b)|Ca= Cband Yo 0.aRo.b}

then clearly G is monotone and a relation V¥ is a congruence just in case
U C G(V). We then let = be the largest fixpoint of G. Explicitly,

== {¥ CAx B|¥ CG(¥)}

As for the relation ~ we can verify (by similar argument) the following
lemma.

Lemma 2.5 The relation = is a (in fact, the largest) congruence from A
to B and a refinement of ~. Furthermore, it satisfies condition (11). O

To get some intuition on what sense of identity is captured by ~ and = we
return to the Lego toy example (Example 4). There are two intuitive notions
of abstract identity we can have. We may say that temporal instances of
the “same” object are to be identified. We alluded to that when we first
described the example. Given some object constructed from the basic items



x,y,z, decompose the object and then recompose “it” again at a different
time, using exactly the same basic items z,y, z. Regarding objects strictly
as particulars as we do, we are forced to see the two instances as distinct
objects. This leaves us with the need for a notion of abstract identity that
counts the two instances as the same object.

The second intutive notion of identity is that of two objects being copies
of each other. We may say that the blocks a and b are copies of each other
when they have exactly the same structure and they are composed by basic
items that are copies of each other. Basic items are to be considered copies of
each other if they have the same shape, but not necessarily the same colour
(of course we can change the convention and require sameness of colour as
well).

Given the constraints we have imposed on replacement maps it should be
clear that the relation ~ formalizes the second intuitive notion of abstract
identity, which is probably better described as structural similarity. On the
other hand, = captures the first, more stringent notion of identity.

Some Other Options: If the system A = (A,C,S,.)is a universe (a
system of objects over A), then it is natural to consider a further notion of
identity, in-between = and ~.

Definition 2.6 Define a relation R C A x A to be a partial-identity if « Rb
implies

o Vo' € Cadb € Cb o' RY
Yo' € ChIa' € Ca o' RY

o Vodr c.aRt.b
Vrido o.aRT.b

We may then let &~ be the union of all partial identities and verify that =
itself is a partial identity. It is clear that =CxC~.

We can also relativize the definitions of pre-identity and congruence for
arbitrary systems to some given relation r C X X Y on components. Thus
a pre-identity can be defined as a relation R C (AU X) x (B UY) such
that z Ry iff zry and then by requiring that a Rb satisfies conditions similar
to these of Definition 2.6. We will not explore these notions further but
perhaps they may be useful for potential applications.



2.2 Transformations of Systems of Objects

Our concept of a permissible transformation of a system A (over some class
X) to a system B (over some class Y') must reflect what we perceive to
be important in the structure of systems of objects. Hence transformations
must be well-behaved with respect to components and replacement and they
must reflect abstract identity of objects. We do not require that transforma-
tions should only be allowed for systems over the same class of components
as this seems to be an undue restriction. This complicates the question of
specifying what a transformation should be, since we have to provide both a
map @ taking an object a € A to some object fa € B as well as a map that
changes components from X to such from Y. There is the option of doing
the latter globally, by assuming a map ¢z : X — Y, or locally by assuming a
family of maps ¢,, one for each object a € A, such that ¢, : C',a — Y. As the
global option is a special case of the pointwise option (take the restriction
iq = 1|cq) we prefer to first describe the general notion of a transformation.?
The most significant difference of the two views is that in the global view ¢
is taken to be a function from X to Y while in the local view it is a relation
¢t C X XY allowing for the same component to be changed in different ways
depending on the object it is a component of.

Definition 2.7 A transformation (homomorphism) of systems of objects
A=(A,CLS8,,.,) —B=(B,C,,5,,.,), over clusses X and Y respec-
tively, is a pair (0,t) such that 8 : A — B and i is a family of maps
i = (ta)gens Where i, : C a —Y, and the following hold:

o preservation of components: Cy(0a) = 1,(C a) ={is(z)| 2z € C,a}

o for each a € A and map o € 5,
ot €S, 0 :Ch(ba) =Y satisfying isq00 =0'0i,, and

o:C,a— X, there is a unique map

e preservation of replacement: o'.,(8a) = 8(o. , a).

Composition A(—eﬁB(é—’jQC is defined by (¢, 7)o (0,1) = (¢, ji), where (ji), =

j@a o 7;a .
The conditions of preservation of components and of replacement should be

intuitively clear. The second condition is a technical requirement as we need
to make sure that components are changed in a coherent way.

*There are also some technical arguments for the local version, based on some simple
category-theoretic considerations, detailed in [8].
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Remark 2.8 Our definition of a legitimate transformation imposes strong
restrictions. It is justified by our desire to investigate transformations that
respect both components and replacement while also reflecting abstract iden-
tity of objects. There are of course contexts where the objectives may be
different. For example, intuitively every replacement map ¢ may be thought
of as inducing a transformation of a system of objects. Given a system of
objects over X consider all maps w, where dom(w) is a subset of X. Given
an object a, let 7.a = 7|,.a where

oo = re  if @ € dom(m)N Ca
et = 2 if z € Ca\ dom(r)

For the purpose of this remark we may drop the restriction to permissible
maps. Then we can think of 7 as inducing a transformation of the system
A, m: A — B, where B = {r.a|a € A} and the replacement operation and
component maps in B are as in A. The transformation is the pair (7, 7),
where 7 is once viewed as a map acting on objects and then also as a map
changing components i = © = (7|q)aca. Preservation of components is
no problem. But an arbitrary replacement map 7 will fail in general our
definition of a legitimate transformation as we will not be able to find the
unique map 7 required in the definition. We may relax requirements as
follows. Given an arbitrary object ¢ and a replacement map o : Ca — X,
call 7 compatible with o iff

Va,y € Carne = 1y = 7w(ox) = n(0oy)

Given a and o the assumption of compatibility implies that there exists a
map 7 as required in our definition. Simply let 7 : C(m.a) — X be the
map 7' (rz) = (o).

It may be of interest to relax the definition of a legitimate transformation
by making preservation of replacement depend on some compatibility con-
dition. This approach is taken in [4]. We will maintain here the requirement
for strict preservation of replacement for two reasons. First, replacement is
the backbone of the structures we have called systems of objects. The com-
ponents map is secondary and it arises only because we regard replacement
maps concretely as functions. The abstract structure of a system of objects
consists in some monoid-like set 5 of items we call replacement maps and
an action of 5 to a set A of structured objects S x A — A. If anything is to
be preserved then it seems that this should be the action of replacement.

11



On the other hand, there is no compelling reason why we should want
to model our notion of transformation on the behavior of replacement maps
when considered as transformations. The functional behavior of replacement
maps in the way components are changed is not always desirable as our next
example demonstrates.

Example 8 Consider a collection of human individuals, the citizens of an
imaginary state, a fixed set of tasks to be accomplished and committees
formed to undertake these tasks. The structured objects we consider are all
the possible committees that can be formed for the given set of tasks.The
components map delivers the set of individuals making up a committee.
Membership of an individual to a committee changes over time for various
reasons. We assume that every citizen is eligible for membership to any
committee and thus all replacement maps are permissible. Suppose Charles
Smith is in the committees for energy preservation and for the protection
of the environment and that he wishes to resign from both. After replacing
Mr Smith from these two committees we have a new system of committees.
In the global view of transformations of systems of objects Charles Smith
should be replaced by the same individual in both committees. This seems
to be unduely restrictive, however, hence there is potential usefulness in
considering the more general class of transformations we have described in
Definition 2.7.

We have gone a good way towards satisfying our requirements as the
maps we have described as legitimate transformations are well-behaved with
respect to both components and replacement. But we would also like for a
legitimate transformation € to reflect identity of abstract behavior of objects,
in the sense that for any two objects a,a’ € A, fa = fa’ only if a and o’ are
abstractly identical. This is a minimal criterion by which transformations
respect identity of objects. The reason for the failure of reflecting identities
is that the second condition in the definition is too weak. We strengthen it
in the following;:

Definition 2.9 (6,7) : A — B is a full transformation if it satisfies the
conditions of Definition 2.7 and, in addition, the following holds

o for all replacement maps p € S, if p: C(0a) — Y for some a € A,
then there is some replacement map o € S, such that o : C,a — X

and p.,(0a) = 6(0. a).

12



Of course in the light of the other conditions on transformations this is
equivalent to saying that every replacement map p € 5, defined on the
components of an object of the form fa in B is of the form ¢¢, for some
o € 5,. In other words, in transforming a system of objects abstract identity
is reflected provided that in the system {fa|la € A} no “new” experiments
have been added. Every replacement experiment on fa is the reflection of
some replacement experiment on a. Though strong, the requirement seems
to be natural.

Lemma 2.10 Full transformations respect abstract identity in the sense

that 8a = 6b only if a ~ b.

Proof: Enought to show that the relation R defined by aRb iff 8a = 0b is
a pre-identity. Suppose aRb and let o : Ca — X. Then 6(0.a) = o'.(fa) =

Ui.(Ob). Let o = p. Since @ is full, there is a replacement map 7 : Cb — X
such that p = 7¢. Thus, 8(c.a) = p.(6b) = 6(7.b), hence o.aR7.b. o

The refinement = of ~, however, is not necessarily respected even by full
transformations. Thus, if for certain applications = is our desired notion of
identity of abstract behavior then further restrictions need to be imposed.

Definition 2.11 (6,7) : A — B is a normal transformation if it satisfies
the conditions of Definition 2.7 and, in addition, i is an injective function
1: X =Y.

Lemma 2.12 Normal transformations reflect =-identity of objects.

Proof: Enough to show that the relation R defined by aRb iff 8a = 0b is a
congruence. If a = b, then C(6a) = {iz|z € Ca} = {iy|ly € Cb} = C(6b).
Since ¢ is an injection C'a = Cb follows. If ¢ : Ca — X, let 7 = ¢ and
observe that §(c.a) = 6(c.b), hence we may conclude that o.aR7.b holds.
Thus a = b. a

When restricting to systems over the same class X of components it is
useful to consider a special class of transformations, defined below.

Definition 2.13 A standard transformation A — B of systems over the
same class X is a transformation (6,1) where i, = idcy, for each a € A. O
When referring to standard transformations we will not make mention of
the map ¢ (since i, = id¢,) and regard it simply as a map 6 : A — B.

Lemma 2.14 Standard transformations reflect =-identity of objects. O
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3 Representation of Systems of Objects

We develop in this section the algebraic theory of systems of objects, con-
cluded with the Representation Theorem (Theorem 3.12) for systems of
objects over some fixed class X. We show that every system is isomorphic
to a quotient of a restriction of a free ontology. We discuss first the oper-
ations of restriction and quotient. To make use of quotients we establish
a Homomorphism Theorem (Theorem 3.4). We then turn to proving exis-
tence of free ontologies and form systems thus leading to our representation
theorems.

Restriction: We will have use of two operations of restriction. The sim-
plest one is to restrict to a class X of components, introduced in [2]. This
operation will be very useful in the proof of the Representation Theorem
for Form Systems 3.11. If A is a system over the class X of components
then the restriction A|Y to a subclass ¥ C X is the new system with uni-
verse of objects A[Y] = {a € A|Ca C Y} and permissible replacement maps
SY] = {o € Slo CY xY}. The components map and the replacement
operation are the obvious restrictions of the corresponding maps in A. In
particular, we will have use of the restriction of ontologies, that is form sys-
tems (all replacement maps are perimissible) over the class V' of all objects.

For the second restriction operation define first a partial monoid of func-
tions as a set of functions o : dom(o) — V such that if 7,0 € 5 and
dom(t) = rng(o), then 7o € S. Furthermore, for each o € 9, both the left
and the right identities idyopm (o), 1dyny(s) are in 5.

Given a system A = (A,C, 5 ,,.) and a partial monoid § C 5, let A5
be the system with

¢ universe of objects A[S] = {a € Alidc, € 5}
e components map C'.a = Ca
e replacement 0. a = 0.a

For representation purposes we will be only interested in restrictions |5 of
ontologies to partial monoids. a

Quotient Systems: These are systems obtained by factoring out by con-
gruences, Definition 2.4. Since systems may be large, that is to say their

14



universes may be proper classes, we need to make sure that we have avail-
able some form of a quotient existence principle. Thus we assume global
choice, which allows us to pick representatives from possibly proper classes
of congruent objects. If A is a system of objects over some class X and 0 is
a congruence on A we let [a]o (or simply [a] when no confusion is possible)
be a representative of the congruence class of a. Since a®b implies C'a = C'b,

we may let Cla] = Ca. Furthermore, since @b implies that ¢.a©c.b, for
any permissible replacement map o : C'a — X, the replacement operation
can be defined by o.[a] = [0.a]. Strictly speaking quotient systems are not

unique. However, uniqueness up to isomorphism can be established.

Proposition 3.1 Let A be a system and © a congruence on A. Let [.] and
[.]" be choice functions selecting representatives of the congruence classes.
Let Ag and (Ae)’ be the two quotient systems obtained. Then the standard
transformation ¢ : Ae — (Ae)' is an isomorphism, where ¢([a]) = [a]'.

Proof: The only interesting point is preservation of replacement. However,
given o : Cla] — X, let ¢* = ¢ and observe that

¢(a.[a]) = ¢([0.d]) = [0.a]) = 0.[a]' = 0.¢([a])
The rest is immediate. a

In the sequel we will feel free to refer to the quotient system Ag since
any two such are isomorphic. a

Operations of product and disjoint sum can be defined in the natural
way. In defining disjoint sum we have to take “copies” of the original systems
to make sure that the operation of replacement in the new system is well
defined. We point out the following;:

Proposition 3.2 If j : X ~ Y is a bijection and U is an ontology, then
there is a normal isomorphism U|X ~ U|Y .

Proof: Let (6,7) : U|X — U|Y be defined by j, = jlcq and fa = j,.a
for each @ € U[X]. Since j is injective, given o : C'a — V we can define
07 = jyqa000(j,)" . Thus (6,7)is a legitimate normal transformation. But
so is also the map (¢,7) : U|Y — U|X, where i = 7% and ¢b = (57 1)p.0.
Given a € U[X],b € U[Y] we clearly have ¢fa = a and 6¢b = b, hence
UX ~UlY. 0

Corollary 3.3 Assume global choice. Then for every ontology U and cardi-
nal k the form system U|k is the unique, up to normal isomorphism, X -form
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system with |X| = k. In particular, if X is a proper class, then there is a
normal isomorphism U ~ U|X . O

In view of the Representation Theorem, form systems over sets X, Y of the
same cardinality are normally isomorphic.

We turn now to establishing a Homomorphism Theorem (Theorem 3.4).
Next we prove existence of free systems (Theorem 3.6, 3.9) for an appropriate
notion of freedom (Definition 3.5).

Theorem 3.4 (Homomorphism Theorem) Let 0 : A — B be a stan-
dard transformation of systems over the class X of components and © a
congruence on A such that © C ker(8), that is to say a©a’ implies 0a = fa’.
Let Ag be the quotient by © and 7 : A — Ag the standard epimorphism
ma = [a]. Then there exists a unique standard transformation 0: Ao — B
such that B o = 6.

Furthermore, 9 is an isomorphism iff 8 is surjective and © = ker(9).

Proof: The transformation 6 is simply defined by é([a]) = f#a. By the
assumption that © C ker(6), g is well-defined. Now suppose that 8 : Ag =
B. Then clearly # must be surjective. If fa = 6b, then 8([a]) = 6([b]), hence
[a] = [b], that is to say a©b holds. The converse is immediate, too. 0

By a signature we mean, as in [2], a pair (€2, a) where Q is a class and
for each w € 2, aw is a set. However, for technical reasons we need to also
consider here transformations of signatures, which we define by analogy to
transformations for systems of objects. Thus (6,7) : (2,a) — (,a/) is a
morphism of signatures if 6 : @ — Q' and 7 = (4, )weq is a collection of maps
iy : aw — V such that o/(fw) = {iyz|r € aw}. A standard morphism of
signatures is a morphism (,¢) where i, = idy,. When (6,7) is standard we
simply refer to it as the morphism 6 : (Q,a) — (', ¢’). Technically, we have
two distinct categories of signatures, depending on what signature-maps we
consider. We let SGN be the category of signatures with standard signature
morphisms and SGN* the category of signatures with the more general notion
of map described above. Similarly, we let ON be the category of ontologies
with standard ontology transformations and ON* the category of ontologies
with the more general notion of transformation.

3.1 Ontologies

For a given signature (2, a), the signature ontology Uq is defined in [2] as

the ontology U = (Q[V],C,.), where
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o QV]=A{(w,fllwe Qand f:aw —V}
o Clw,f)={fz]x € aw} = rng(f)
o o.(w,f)=(w,0f),ifoc:rng(f)—V.

Given any system A = (A,C,S,.) of objects we may take (A,(C) as its
underlying signature. We denote the map A — (A, C') by |A|. Note that the
map |.| acts on transformations of systems, too, delivering transformations
of signatures (by just forgetting properties about replacement). Specifying
in our particular context the notion of free objects we have the following:

Definition 3.5 An ontology U in ON* is free over a signature (2, ) in
SGN * if there is a signature map (¢,1) : (2, a) — |U| such that for any on-
tology U' and signature map (6,7):(Q,a) — |U'| there is a unique ontology
transformation (0 ]) U — U such that (0 ]) (¢,1) = (0,7). Similarly for

U in ON and (2, ) in SGN, in which case we restrict to standard morphisms.

Theorem 3.6 (Free Ontologies) For every signature (2, a) there is an
ontology U free over (2, a).

Proof: We give the proof for the case where general ontology and signa-
ture morphisms are considered. The proof for the restriction to standard
transfromations is similar and simpler.

Given (Q,a), let Ug be the signature ontology and let (¢,¢) : (Q,a) —
|Uq| be the map j, = id,, and ¢w = (w, jo).

Now let ¢/ be any ontology and (6,j) : (,a) — |U| a signature map.
Define the ontology transformation (0 7) :Ug — U by j'(wﬂ) = jo,if o =
1dy. and otherwise let J(w,cr) = ildppg(o)-

Define also o/ : C(¢w) — V by ¢’ 0 j, = 0, if ¢ # id,., and otherwise
let O'Al = idrng( )

Finally, define f(w, o) = ol buw.

Verification that ( ,j) is an ontology transformation is immediate and
the equation (é(b,]l) = (0,j) is easily seen to hold. Uniqueness of the
ontology transformation (é j) with the prescribed property is also easy to
see. O

By uniqueness of free objects, up to isomorphism, when they exist we
can conclude that
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Corollary 3.7 The free ontologies over a signature (2, ) are exactly the
ontologies isomorphic to the signature ontology Ug . a

Theorem 3.8 (Ontology Representation) For every ontology U there
is a signature (2, ) and a congruence © on the signature ontology Uq such
that there is a standard isomorphism U = Uq e .

Proof: Ugqe is the quotient of the signature ontology Uy when factored
out by the congruence ©. For the proof, given an ontology ¢ = (U,C,.)
let (2, ) be the signature U] = (U,C') and Ug the signature ontology.
Since the identity is a morphism (,a) — |U| and Uq is free over (2, a)
there must be a (unique) morphism (é,j) s Uq — U. Tt is easy to see that
this morphism is surjective. Let then @ = ker(é). By the Homomorphism
Theorem (Theorem 3.4) it follows that Ug e = U. Tt is also clear that (8, 5) is
a standard morphism since both the identity (2, &) — |U| and the morphism
(¢,1) : (2, ) — |Uq| are standard. ]

3.2 Form Systems

We dealt with ontologies first because this case is quite simple. In this sec-
tion we turn to considering form systems over some fixed class X. Again,
depending on what transformations we consider we distinguish between the
categories X-Fs, with standard transformations, and X-Fs*, with the gen-
eral notion of transformation. To prove existence of free form systems and
representation we restrict the class of signatures to the X-bounded signa-
tures, that is to say signatures (€2, «) such that for each w € ©, aw can be
injected into X. If A = (A, C,.)is a form system over X, then its underlying
signature |A| = (A,C) is obviously X-bounded. The definition of what it
means for a form system (over X) to be free over an X-bounded signature
(2, a) is completely analogous to Definition 3.5. Without further ado we
state and prove:

Theorem 3.9 (Free Form Systems) For every X -bounded signature (2, o),
there is an X -form system A free over (2, a).

Proof: If (,«) is X-bounded, we may in fact assume that aw C X, for
each w € Q. For if not let i, : aw — X be the injections and consider
the signature (@, a’), where o/w = {1 2|z € aw}. The two signatures are
isomorphic and so we may as well assume at the outset that aw C X.
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Given the signature (2, ), let Ug be the signature ontology free over
(2, a) and consider the restriction Ug|X. By a completely analogous argu-
ment to that in the proof of Theorem 3.6 we can verify that Ug|X is free
over the X-bounded signature (£, a). ]

Corollary 3.10 The free X-form systems over the X -bounded signature
(2, a) are exactly the systems isomorphic to the system Ug|X . O

Theorem 3.11 (Representation of Form Systems) For every X -form
system A, there is an X -bounded signature (,a) and a congruence © on
the system Uq|X such that there is a standard isomorphism A = (Uq|X )e.
O

3.2.1 General Systems of Objects

We will prove here directly a representation theorem without detouring
through a proof of existence of free systems. We can define a suitable notion
of an S-bounded signature, for a partial monoid 9, as a signature (92, a)
such that for every w € € the trivial replacement map o = id,, € 5. We
can then proceed, in principle at least, as we did for the case of ontologies
and form systems and derive a result on free systems of objects over a given
S-bounded signature. The interested reader might want to carry out the
details. Here we constrain ourselves to the following:

Theorem 3.12 (Representation of Systems of Objects) For every sys-
tem A= (A,C,5,.), there is a (in fact, an S-bounded) signature (Q, o) and
a congruence © on the restriction Uq|S such that there is a standard iso-

morphism A = (Ug|9)e.
Proof:  Given A, let |A] = (Q,a) be its underlying signature (A, ) and

consider the restriction Uq|S of the signature ontology Ug. The universe of
objects in Uq|S consists of pairs (a,0), e € A = Q and dom(o) = aa = Ca.
Let 7 : Uq|S — A be the map 7(a,0) = 0.a. Then 7 is a standard morphism.
Satisfaction of the requirement for components of Definition 2.7 is obviously
satisfied since

C'(a,0) = rng(c) = {oz|r € aa = Ca}

Given 7 € § with dom(7) = rng(o), 7(7.(a,0)) = 7(a,70) = 7.(0.a). Hence
a map 7° = 7 exists such that the replacement requirement of Definition
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2.7 is satisfied. In fact 7 is the unique such map since if p were another
one it should satisfy i, 07 = poi,. Given that 7 is a standard map, the
components maps ¢, are identities and thereby p = 7.

Now clearly 7 is surjective, since for each a € A the pair (a,idc,) is
in the universe Uq[S] of the system Uqg|S. Let then © = ker(w). By the
Homomorphism Theorem 3.4 it follows that 7 is a standard isomorphism

F:A%(UQ|S)@. a

Summary

We have developed a model for our pre-theoretic intuitions of structured ob-
jects subject to change under permissible replacement of components. Our
notion of a system of objects generalizes that of a form system presented
in [2]. We approached the question of identity of objects through change
describing the question in an experimental-like language. The general idea
is that objects are to be classified as of the same type (abstractly identical) if
they exhibit the same abstract behavior under replacement experiments. We
distinguished some notions of identity, =, & and ~, where = is a refinement
of =~ and &~ a refinement of ~. Systems of objects are, themselves, entities
subject to change. We introduced a broad notion of permissible transfor-
mations that respect both components and replacement experiments. We
also investigated further restrictions on transformations that will guaran-
tee that abstract identity of objects is reflected. Systems of objects can be
regarded as replacement algebras. It is then natural to raise some purely
algebraic questions, such as the question of representation, also raised in
[2]. For ontologies and form systems we obtained our representation results
by essentially algebraic means, proving first existence of free systems and
a homomorphism theorem. A representation theorem for form systems was
first given in [2]. Our proof is different (and much shorter!). We also gen-
eralized the result here to a representation for arbitrary systems of objects.
An essentially algebraic development for ontologies was also started in an
Appendix in [2]. Ontologies are there regarded as some kind of many-sorted
algebras. We have taken a much simpler approach here that, nevertheless,
allows us to recapture and strengthen results of [2].
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