
An Algebraic Theory of Structured ObjectsChrysa�s Hartonaschartona@cc.uoi.grAbstractWe present an algebraic theory of structured objects,1 based on andgeneralizing Aczel's theory of form systems [2]. Notions of identity ofstructured objects and of transformations of systems of such objectsare discussed. A generalization of Aczel's [2] representation theorem isproven.1 IntroductionWe develop an algebraic theory of structured objects, artifacts or otherwise,well-founded or not, based on and generalizing Aczel's theory of form sys-tems [2]. Aczel's theory, further developed by Lunnon in her doctoral thesis[9], has been originally conceived as part of a long term project to providea mathematical framework for situation theory and it has been in fact setto motion by an unpublished paper [5] of Jon Barwise, proposing a formalsketch of a model for situation theory.Considerations from situation theory lead to a need to regard the ob-jects of the theory as structured objects, objects within which other objectsmay occur as their components. The component-of relation, generalizingthe membership relation, need not be well-founded, in fact applications ofsituation theory as in Barwise and Etchemendy [7] would require an anti-founded relation, allowing for objects that are components of themselves.1A very �rst draft of this paper [8] was written some years ago, while I was still agraduate student. I have greatly bene�ted from discussions with Jon Barwise and havealso had the good fortune to discuss things with Peter Aczel and Rachel Lunnon. Itwas not until I read [10] that my interest in the subject was revitilized, even though thedirection taken in [10] is quite di�erent from that taken here. This report is a completionof these old notes of mine, written in the hope that it will contribute to the discussion onformal theories of structured objects. 1



Aczel's theory of form systems formalizes the intuitive idea of a universe ofstructured objects, well founded (wf) or anti-founded (af), under an opera-tion of replacement of components of an object by other objects.We generalize Aczel's theory of form systems to the theory of what wehave called in [8] pre-form systems and now call them simply systems ofobjects. What we have found missing in the original theory is (1) a discus-sion of appropriate concepts of identity of structured objects, (2) a studyof adequate notions of transformations of systems of structured objects and(3) some more restraint view on permissible replacement maps. We takeup these issues here, exploring natural alternatives to notions of identity ofobjects that arise by experimenting with objects with the means available,namely by replacement of components by other components. Transforma-tions of systems of objects, we insist, should respect both replacement andcomponents but they should also re
ect identity of the abstract behaviorof objects under replacement experiments. Discussing these issues leads usto a pleasant algebraic theory of systems of structured objects. We proveexistence of free systems and derive from this a representation theorem thatgeneralizes the representation theorem of [2].As in [2] and unlike the direction taken in [10] we do not seek to providea theory, �rst-order or otherwise, of universes of structured objects. Rather,we aim at modeling our pre-theoretic intuitions about structured objects,their components and change they may undergo due to replacement of com-ponents, by describing a formal model, some kind of replacement algebrathat adequately, we believe, re
ects our basic intuitions.2 Systems of Structured ObjectsTo �x a context for discussion let us denote by V the class of all objects ofour metatheory. This may include sets, atoms, structured physical objectsand whatever the reader's ontological views allow for. For a structuredobject a, we denote by Ca the set of all objects that appear as componentsof a. However, in di�erent contexts di�erent components maps C may beconsidered. If � is a map de�ned on the components of a we write �:afor the object obtained, intuitively speaking, by simultaneously replacingevery component x of a by �x. In [2] a liberal view is taken, allowingfor arbitrary replacements without imposing any constraint that the object�x replacing x as a component of a must be of the \same kind" as x.Thus, if a happens to be a physical object then �:a may or may not be2



physically realizable. Without assuming any preset notion of \sameness"we impose some restrictions on permissible replacements, thus divergingfrom and generalizing the approach of [2]. To make things more precise, letus suppose some given class X of parts, or components.De�nition 2.1 A system of objects with parts from the class X ( a systemover X) is a structure A = (A;CA; SA ; :A) where (dropping the subscript Afor simplicity)1. A is a class of structured objects,2. C is the components map and Ca is a subset of X for each objecta 2 A,3. S is a collection of maps � : Ca ! X, where a 2 A, with a partialcomposition map (denoted by concatenation) and such that3.1. for each a 2 A; � 2 S, if � : Ca! X, then �:a is also in A3.2. for each a 2 A, the identity map idCa 2 S3.3. if �; � 2 S, � : C(�:a)! X, then �� 2 Sand where4. the replacement operation :A and the components map C satisfy thefollowing axioms:4.1. C(�:a) = f�xjx 2 Cag4.2. if � = idCa, then �:a = a4.3. �:(�:a) = ��:a, for all �; � 2 S, � : Ca! X, � : C(�:a) ! X.Membership of a replacement map � in the set S is thus our notion of apermissible replacement. The form systems over some class X of [2] areexactly the systems of objects over X where S is the collection of all maps� : Ca! X , for a 2 A. An ontology is de�ned in [2] as a form system overthe class V of all objects. We recall also from [2] that an elementary universeis a form system A = (A;C; :) over the set A. Some simple examples willhelp �x the ideas.Example 1 The Instantiation Systems of [12] are examples of systems ofobjects. Replacement maps are there called instantiations, objects are re-ferred to as terms and their components are taken from a set V ar of itemscalled variables. Some �niteness conditions are imposed in [12] which makesinstantiation systems a special case of systems of objects.3



Example 2 Let � be a signature, that is to say a set of operation symbolswith prescribed arities, and let T be the set of all closed �-terms. If t =f(t1; : : : ; tn), for some n-ary f 2 �, then let Ct = ft1; : : : ; tng. If � : Ct! Tis a map, then let �:t = f(�t1; : : : ; �tn). We may let equality of terms bepure syntactic equality or else assume an equational theory � and declares = t just in case `� s = t. Depending on what we are interested in, wemay allow for all possible replacements or impose restrictions. For example,permissible replacement maps may be taken to be the maps � such that forany t 2 dom(�) we have t = �t (which is more interesting when we interpretequality as `� t = �t). In any case �:(�:t) = ��:t and the rest of the axiomsalso trivially hold.2Example 3 Let HF be the set of well-founded, hereditarily �nite sets, thatis sets s that are �nite and such that every member of their transitive closureTc(s) is �nite. In the cummulative hierarchy the well-founded hereditarily�nite sets are exactly the sets of rank less than !, so that HF = R(!). LetCs = s and X = HF . If � : Cs ! X , then �:s = f�xjx 2 sg 2 HF . Thisgives us an example of an elementary universe in the sense of [2].Example 4 For a more mundaine example, let A be the set of all blocks ina Lego toy that can be possibly formed out of a given collection L of basicitems of �xed shapes and colours. In speaking of possible blocks we do notmean to refer to object-types but rather to concrete particulars di�erentiatedby the time-interval of their existence. For example suppose we form a blockout of four pieces, then take it apart and form an identical block with thesame pieces again. At the moment, we count these as two di�erent objects.We will discuss the question of identity in a minute.Now if u is such a block we let Cu � L be the set of basic items usedin the construction of the block. A replacement map is permissible only ifit replaces a basic item by another basic item of the same shape but notnecessarily of the same colour. If � : Cu ! L, then �:u has the obviousmeaning.Example 5 To outline the boundaries of the theory we give a non-example.Let M be a proper class of atoms and VM the class of all well-founded M -sets, namely sets with atoms from M possibly occurring in their build-up.2It goes without saying that we assume that the theory � is well-behaved with respectto the signature. In other words a replacement theorem holds: if `� si = ti, then`� f(s1; : : : ; sn) = f(t1; : : : ; tn). 4



For an M -set s let Cs be the set of atoms x such that x 2 s or there issome set s0 2 Tc(s) such that x 2 s0. Now let X = VM [M . Given a map� : Cs! X de�ne �:s by 2-induction:�:s = f�xjx 2 s \Mg [ f�:s0js0 2 s \ VMgThis fails to be a form system or a system of objects in the sense of De�nition2.1 because the axiom C(�:s) = f�xjx 2 Csg does not hold for any � thatassigns a pure set to atoms in Cs.Example 4 is an example of a system of objects which is not a form sys-tem, as we have imposed restrictions on the permissible replacement maps.It justi�es, we think, our generalizing the theory of form systems to that ofsystems of objects in the sense of De�nition 2.1. Restrictions on replacementcan be imposed by introducing an explicit typing of objects and their com-ponents, as well as of the replacement maps. An investigation along theselines has been carried out in [9]. The approach we take abstracts away froman awkward explicit typing but maintains the basic idea of not granting toall possible replacement maps the status of a permissible map.2.1 Identity and TransformationSuppose given a system A. Objects in A change as a result of replacementactions. On the other hand, we should be able to think of the system A itselfas being tranformed into some other system as a result of simultaneouslytransforming all objects in the system.Example 6 Suppose our system consists of all cars of a certain make andmodel. Replacement of parts by parts of the same make results in anothercar of the same make and model. Suppose, however, all cars of that makeand model turn out to be defective: their ignition system involves a seriousrisk of �re with potentially life-threatening consequences. A new part ismanifactured and replacement of the old part with the new is o�ered free ofcharge. Our system of objects has thus been transformed.To model our intuitions of structured objects we thus need to extend ourtreatment and provide for transformations of systems. There is a question,however, as to just what a legitimate transformation should be when thesubject is approached in the abstract. This relates, we think, to an intricatequestion: that of the identity of objects through change due to replacementactions. Some systems of ojects have an intrinsic relation of identity. For5



example, in the system of hereditarily �nite sets (Example 3) identity ofobjects is pure extensional identity of sets. When either intensional objectsor physical objects such as artifacts constitute the universe of a system ofobjects identity is not a straightforward issue. One option is to postulatesome relation R of identity on the system and then modify the presentationof a system so as to axiomatize the interaction of identity and replacement.Another option, which is the one we take here, is to classify various notionsof identity that naturally arise in the system itself. What we are concernedwith can, perhaps, better be described in a pragmatic and experimentallanguage. Given a system of objects we can \experiment" with them withthe means that we have available and that is to say by replacing components.What we would like to have is some notion of an abstract behavior of anobject through this experimentation. Roughly then, we can construe twoobjects as being of the same type, identical, if they exhibit the same abstractbehavior.As it turns out there are di�erent notions of identity we can formulate.We discuss two natural options below. To simplify the discussion we oftenavoid explicit mention of what the domain of a replacement map � is whenthis can be unambiguously inferred from the context of the discussion. Forexample, in stating something like 8�9� �:a = �:b we really mean to say thatfor any permissible � with domain the set Ca, there exists a permissible �with domain Cb such that �:a = �:b.By abstact identity of objects in a system A we mean identity of thebehaviors of the objects under the operation of replacement. A generalnotion of abstract identity may be taken to be a binary relation � on Asuch that a � b i� (8�9� �:a � �:b and 8�9� �:a � �:b) (1)Call this double implication the condition (I). The intuition should be clear:Two objects a and b are to be deemed abstractly identical just in case everyway to change one of them by a permissible replacement of componentscan be matched by a way to change the other, resulting again in abstractlyidentical objects. Note that identity of abstract behaviors is thus dependenton the collection S of available replacement experiments. This concept ofidentity is very broad and it covers a number of particular cases.Example 7 In [12], two objects a; b are deemed of the same type, denotedby a ' b just in case there exist instantiations � and � such that a = �:b andb = �:a. Identity is thus construed as the possibility for mutual reduction ofeach object to the other by replacement of components. Assuming we have6



a broad notion of identity � satisfying condition (I), it is immediate thata ' b implies a � b, for any objects a and b.There is a notion of bisimilarity in the literature on process algebras that ourconcept of abstract identity is a generalization of. Unfortunately, as processlanguages cannot be described as systems of objects we cannot make theconnection more clear.Obviously, now, we cannot take (1) as a de�nition of � because of thecircularity involved. However, there is a standard way around this problem.De�nition 2.2 Let A and B be systems of objects (not necessarily over thesame class of components). A binary relation R from A to B is a pre-identity i� for any a 2 A and b 2 B, aRb implies� 8�9� �:aR�:b, and� 8�9� �:aR�:b.Let F be the operator on binary relations R from A to B de�ned byF(R) = f(a; b)j8�9� �:aR�:b and 8�9� �:aR�:bgThen F is clearly monotone and a relation R is a pre-identity just in caseR � F(R). Let � be the largest �xed point of F . Explicitly,�=[fR � A�Bj R � F(R)gLemma 2.3 The relation � is a (in fact, the largest) pre-identity and itsatis�es condition (I).Proof: That � is a pre-identity follows from the way we constructed thisrelation. For condition (I), the direction from left to right is straightforward.For the converse, let R be the binary relation de�ned byaRb i� 8�9� �:a � �:b and 8�9� �:a � �:bIt is enough to verify that R is a pre-identity. So assume aRb holds. Given�, let � be such that �:a � �:b. Then we have that for any �0 there is some� 0 such that �0:(�:a) � � 0:(�:b). Conversely, for any � 0 we can �nd �0 suchthat �0:(�:a) � � 0:(�:b). Thus �:aR�:b holds by de�nition of R. We maythen conclude that R is a pre-identity. Hence � satis�es condition (I). 27



Identity as � is a very broad notion and it is probably best to think of itas re
ecting structural similarity of objects. Objects that are identi�ed by� need not even have the same components and this is perhaps too liberala notion of identity for many examples. Consider Example 3. It should beclear that the relation of equinumerosity of (hereditarily �nite) sets satis�escondition (I). In a sense, then, it abstracts away too much structure.We now de�ne a more stringent notion of abstract identity, requiringthat identity in the new sense implies that the two objects are built on thesame set of components (but of course not at the same time, if temporal con-siderations are relevant to some particular case, like the Lego toy example).For our new notion of identity, denoted by �, we would like to havea � b i� Ca = Cb and 8� �:a � �:b (2)We call this condition (II). As this cannot be taken for a de�nition of �, weproceed again as we did for the relation �.De�nition 2.4 Let A and B be systems of objects. A binary relation 	from A to B is a congruence i� a	b implies that Ca = Cb and for all�; �:a	�:b.If G is the operator on binary relations from A to B such thatG(R) = f(a; b)j Ca = Cb and 8� �:aR�:bgthen clearly G is monotone and a relation 	 is a congruence just in case	 � G(	). We then let � be the largest �xpoint of G. Explicitly,�= [f	 � A �Bj	 � G(	)gAs for the relation � we can verify (by similar argument) the followinglemma.Lemma 2.5 The relation � is a (in fact, the largest) congruence from Ato B and a re�nement of �. Furthermore, it satis�es condition (II). 2To get some intuition on what sense of identity is captured by � and � wereturn to the Lego toy example (Example 4). There are two intuitive notionsof abstract identity we can have. We may say that temporal instances ofthe \same" object are to be identi�ed. We alluded to that when we �rstdescribed the example. Given some object constructed from the basic items8



x; y; z, decompose the object and then recompose \it" again at a di�erenttime, using exactly the same basic items x; y; z. Regarding objects strictlyas particulars as we do, we are forced to see the two instances as distinctobjects. This leaves us with the need for a notion of abstract identity thatcounts the two instances as the same object.The second intutive notion of identity is that of two objects being copiesof each other. We may say that the blocks a and b are copies of each otherwhen they have exactly the same structure and they are composed by basicitems that are copies of each other. Basic items are to be considered copies ofeach other if they have the same shape, but not necessarily the same colour(of course we can change the convention and require sameness of colour aswell).Given the constraints we have imposed on replacement maps it should beclear that the relation � formalizes the second intuitive notion of abstractidentity, which is probably better described as structural similarity. On theother hand, � captures the �rst, more stringent notion of identity.Some Other Options: If the system A = (A;C; S; :) is a universe (asystem of objects over A), then it is natural to consider a further notion ofidentity, in-between � and �.De�nition 2.6 De�ne a relation R � A�A to be a partial-identity if aRbimplies� 8a0 2 Ca9b0 2 Cb a0Rb08b0 2 Cb9a0 2 Ca a0Rb0� 8�9� �:aR�:b8�9� �:aR�:bWe may then let � be the union of all partial identities and verify that �itself is a partial identity. It is clear that �����.We can also relativize the de�nitions of pre-identity and congruence forarbitrary systems to some given relation r � X � Y on components. Thusa pre-identity can be de�ned as a relation R � (A [ X) � (B [ Y ) suchthat xRy i� xry and then by requiring that aRb satis�es conditions similarto these of De�nition 2.6. We will not explore these notions further butperhaps they may be useful for potential applications.9



2.2 Transformations of Systems of ObjectsOur concept of a permissible transformation of a system A (over some classX) to a system B (over some class Y ) must re
ect what we perceive tobe important in the structure of systems of objects. Hence transformationsmust be well-behaved with respect to components and replacement and theymust re
ect abstract identity of objects. We do not require that transforma-tions should only be allowed for systems over the same class of componentsas this seems to be an undue restriction. This complicates the question ofspecifying what a transformation should be, since we have to provide both amap � taking an object a 2 A to some object �a 2 B as well as a map thatchanges components from X to such from Y . There is the option of doingthe latter globally, by assuming a map i : X ! Y , or locally by assuming afamily of maps ia, one for each object a 2 A, such that ia : CAa! Y . As theglobal option is a special case of the pointwise option (take the restrictionia = ijCa) we prefer to �rst describe the general notion of a transformation.3The most signi�cant di�erence of the two views is that in the global view iis taken to be a function from X to Y while in the local view it is a relationi � X �Y allowing for the same component to be changed in di�erent waysdepending on the object it is a component of.De�nition 2.7 A transformation (homomorphism) of systems of objectsA = (A;CA; SA; :A) ! B = (B;CB ; SB ; :B), over classes X and Y respec-tively, is a pair (�; i) such that � : A ! B and i is a family of mapsi = (ia)a2A, where ia : CAa! Y , and the following hold:� preservation of components: CB(�a) = ia(CAa) = fia(x)j x 2 CAag� for each a 2 A and map � 2 SA ; � : CAa! X, there is a unique map�i 2 SB , �i : CB(�a)! Y satisfying i�:a � � = �i � ia, and� preservation of replacement: �i:B(�a) = �(�:Aa).Composition A(�;i)�!B(�;j)�!C is de�ned by (�; j)�(�; i) = (��; ji), where (ji)a =j�a � ia.The conditions of preservation of components and of replacement should beintuitively clear. The second condition is a technical requirement as we needto make sure that components are changed in a coherent way.3There are also some technical arguments for the local version, based on some simplecategory-theoretic considerations, detailed in [8].10



Remark 2.8 Our de�nition of a legitimate transformation imposes strongrestrictions. It is justi�ed by our desire to investigate transformations thatrespect both components and replacement while also re
ecting abstract iden-tity of objects. There are of course contexts where the objectives may bedi�erent. For example, intuitively every replacement map � may be thoughtof as inducing a transformation of a system of objects. Given a system ofobjects over X consider all maps �, where dom(�) is a subset of X . Givenan object a, let �:a = �ja:a where�jax = ( �x if x 2 dom(�)\ Cax if x 2 Ca n dom(�)For the purpose of this remark we may drop the restriction to permissiblemaps. Then we can think of � as inducing a transformation of the systemA, � : A ! B, where B = f�:aja 2 Ag and the replacement operation andcomponent maps in B are as in A. The transformation is the pair (�; �),where � is once viewed as a map acting on objects and then also as a mapchanging components i = � = (�ja)a2A. Preservation of components isno problem. But an arbitrary replacement map � will fail in general ourde�nition of a legitimate transformation as we will not be able to �nd theunique map �i required in the de�nition. We may relax requirements asfollows. Given an arbitrary object a and a replacement map � : Ca ! X ,call � compatible with � i�8x; y 2 Ca �x = �y =) �(�x) = �(�y)Given a and � the assumption of compatibility implies that there exists amap �i as required in our de�nition. Simply let �i : C(�:a) ! X be themap �i(�x) = �(�x).It may be of interest to relax the de�nition of a legitimate transformationby making preservation of replacement depend on some compatibility con-dition. This approach is taken in [4]. We will maintain here the requirementfor strict preservation of replacement for two reasons. First, replacement isthe backbone of the structures we have called systems of objects. The com-ponents map is secondary and it arises only because we regard replacementmaps concretely as functions. The abstract structure of a system of objectsconsists in some monoid-like set S of items we call replacement maps andan action of S to a set A of structured objects S�A! A. If anything is tobe preserved then it seems that this should be the action of replacement.11



On the other hand, there is no compelling reason why we should wantto model our notion of transformation on the behavior of replacement mapswhen considered as transformations. The functional behavior of replacementmaps in the way components are changed is not always desirable as our nextexample demonstrates.Example 8 Consider a collection of human individuals, the citizens of animaginary state, a �xed set of tasks to be accomplished and committeesformed to undertake these tasks. The structured objects we consider are allthe possible committees that can be formed for the given set of tasks.Thecomponents map delivers the set of individuals making up a committee.Membership of an individual to a committee changes over time for variousreasons. We assume that every citizen is eligible for membership to anycommittee and thus all replacement maps are permissible. Suppose CharlesSmith is in the committees for energy preservation and for the protectionof the environment and that he wishes to resign from both. After replacingMr Smith from these two committees we have a new system of committees.In the global view of transformations of systems of objects Charles Smithshould be replaced by the same individual in both committees. This seemsto be unduely restrictive, however, hence there is potential usefulness inconsidering the more general class of transformations we have described inDe�nition 2.7.We have gone a good way towards satisfying our requirements as themaps we have described as legitimate transformations are well-behaved withrespect to both components and replacement. But we would also like for alegitimate transformation � to re
ect identity of abstract behavior of objects,in the sense that for any two objects a; a0 2 A, �a = �a0 only if a and a0 areabstractly identical. This is a minimal criterion by which transformationsrespect identity of objects. The reason for the failure of re
ecting identitiesis that the second condition in the de�nition is too weak. We strengthen itin the following:De�nition 2.9 (�; i) : A ! B is a full transformation if it satis�es theconditions of De�nition 2.7 and, in addition, the following holds� for all replacement maps � 2 SB , if � : CB(�a) ! Y for some a 2 A,then there is some replacement map � 2 SA such that � : CAa ! Xand �:B(�a) = �(�:Aa). 12



Of course in the light of the other conditions on transformations this isequivalent to saying that every replacement map � 2 SB de�ned on thecomponents of an object of the form �a in B is of the form �i, for some� 2 SA . In other words, in transforming a system of objects abstract identityis re
ected provided that in the system f�aja 2 Ag no \new" experimentshave been added. Every replacement experiment on �a is the re
ection ofsome replacement experiment on a. Though strong, the requirement seemsto be natural.Lemma 2.10 Full transformations respect abstract identity in the sensethat �a = �b only if a � b.Proof: Enought to show that the relation R de�ned by aRb i� �a = �b isa pre-identity. Suppose aRb and let � : Ca! X . Then �(�:a) = �i:(�a) =�i:(�b). Let �i = �. Since � is full, there is a replacement map � : Cb! Xsuch that � = � i. Thus, �(�:a) = �:(�b) = �(�:b), hence �:aR�:b. 2The re�nement � of �, however, is not necessarily respected even by fulltransformations. Thus, if for certain applications � is our desired notion ofidentity of abstract behavior then further restrictions need to be imposed.De�nition 2.11 (�; i) : A ! B is a normal transformation if it satis�esthe conditions of De�nition 2.7 and, in addition, i is an injective functioni : X ,! Y .Lemma 2.12 Normal transformations re
ect �-identity of objects.Proof: Enough to show that the relation R de�ned by aRb i� �a = �b is acongruence. If �a = �b, then C(�a) = fixjx 2 Cag = fiyjy 2 Cbg = C(�b).Since i is an injection Ca = Cb follows. If � : Ca ! X , let � = � andobserve that �(�:a) = �(�:b), hence we may conclude that �:aR�:b holds.Thus a � b. 2When restricting to systems over the same class X of components it isuseful to consider a special class of transformations, de�ned below.De�nition 2.13 A standard transformation A ! B of systems over thesame class X is a transformation (�; i) where ia = idCa, for each a 2 A. 2When referring to standard transformations we will not make mention ofthe map i (since ia = idCa) and regard it simply as a map � : A ! B.Lemma 2.14 Standard transformations re
ect �-identity of objects. 213



3 Representation of Systems of ObjectsWe develop in this section the algebraic theory of systems of objects, con-cluded with the Representation Theorem (Theorem 3.12) for systems ofobjects over some �xed class X . We show that every system is isomorphicto a quotient of a restriction of a free ontology. We discuss �rst the oper-ations of restriction and quotient. To make use of quotients we establisha Homomorphism Theorem (Theorem 3.4). We then turn to proving exis-tence of free ontologies and form systems thus leading to our representationtheorems.Restriction: We will have use of two operations of restriction. The sim-plest one is to restrict to a class X of components, introduced in [2]. Thisoperation will be very useful in the proof of the Representation Theoremfor Form Systems 3.11. If A is a system over the class X of componentsthen the restriction AjY to a subclass Y � X is the new system with uni-verse of objects A[Y ] = fa 2 AjCa � Y g and permissible replacement mapsS[Y ] = f� 2 Sj� � Y � Y g. The components map and the replacementoperation are the obvious restrictions of the corresponding maps in A. Inparticular, we will have use of the restriction of ontologies, that is form sys-tems (all replacement maps are perimissible) over the class V of all objects.For the second restriction operation de�ne �rst a partial monoid of func-tions as a set of functions � : dom(�) ! V such that if �; � 2 S anddom(�) = rng(�), then �� 2 S. Furthermore, for each � 2 S, both the leftand the right identities iddom(�); idrng(�) are in S.Given a system A = (A;C; SA; :) and a partial monoid S � SA let AjSbe the system with� universe of objects A[S] = fa 2 AjidCa 2 Sg� components map CSa = Ca� replacement �:Sa = �:aFor representation purposes we will be only interested in restrictions UjS ofontologies to partial monoids. 2Quotient Systems: These are systems obtained by factoring out by con-gruences, De�nition 2.4. Since systems may be large, that is to say their14



universes may be proper classes, we need to make sure that we have avail-able some form of a quotient existence principle. Thus we assume globalchoice, which allows us to pick representatives from possibly proper classesof congruent objects. If A is a system of objects over some class X and � isa congruence on A we let [a]� (or simply [a] when no confusion is possible)be a representative of the congruence class of a. Since a�b implies Ca = Cb,we may let C[a] = Ca. Furthermore, since a�b implies that �:a��:b, forany permissible replacement map � : Ca ! X , the replacement operationcan be de�ned by �:[a] = [�:a]. Strictly speaking quotient systems are notunique. However, uniqueness up to isomorphism can be established.Proposition 3.1 Let A be a system and � a congruence on A. Let [:] and[:]0 be choice functions selecting representatives of the congruence classes.Let A� and (A�)0 be the two quotient systems obtained. Then the standardtransformation � : A� ! (A�)0 is an isomorphism, where �([a]) = [a]0.Proof: The only interesting point is preservation of replacement. However,given � : C[a]! X , let �i = � and observe that�(�:[a]) = �([�:a]) = [�:a]0 = �:[a]0 = �:�([a])The rest is immediate. 2In the sequel we will feel free to refer to the quotient system A� sinceany two such are isomorphic. 2Operations of product and disjoint sum can be de�ned in the naturalway. In de�ning disjoint sum we have to take \copies" of the original systemsto make sure that the operation of replacement in the new system is wellde�ned. We point out the following:Proposition 3.2 If j : X ' Y is a bijection and U is an ontology, thenthere is a normal isomorphism UjX ' UjY .Proof: Let (�; j) : UjX ! UjY be de�ned by ja = jjCa and �a = ja:afor each a 2 U [X ]. Since j is injective, given � : Ca ! V we can de�ne�j = j�:a �� � (ja)�1. Thus (�; j) is a legitimate normal transformation. Butso is also the map (�; i) : UjY ! UjX , where i = j�1 and �b = (j�1)b:b.Given a 2 U [X ]; b 2 U [Y ] we clearly have ��a = a and ��b = b, henceUjX ' UjY . 2Corollary 3.3 Assume global choice. Then for every ontology U and cardi-nal � the form system Uj� is the unique, up to normal isomorphism, X-form15



system with jX j = �. In particular, if X is a proper class, then there is anormal isomorphism U ' UjX. 2In view of the Representation Theorem, form systems over sets X; Y of thesame cardinality are normally isomorphic.We turn now to establishing a Homomorphism Theorem (Theorem 3.4).Next we prove existence of free systems (Theorem 3.6, 3.9) for an appropriatenotion of freedom (De�nition 3.5).Theorem 3.4 (Homomorphism Theorem) Let � : A ! B be a stan-dard transformation of systems over the class X of components and � acongruence on A such that � � ker(�), that is to say a�a0 implies �a = �a0.Let A� be the quotient by � and � : A ! A� the standard epimorphism�a = [a]. Then there exists a unique standard transformation �̂ : A� ! Bsuch that �̂ � � = �.Furthermore, �̂ is an isomorphism i� � is surjective and � = ker(�).Proof: The transformation �̂ is simply de�ned by �̂([a]) = �a. By theassumption that � � ker(�), �̂ is well-de�ned. Now suppose that �̂ : A� �=B. Then clearly � must be surjective. If �a = �b, then �̂([a]) = �̂([b]), hence[a] = [b], that is to say a�b holds. The converse is immediate, too. 2By a signature we mean, as in [2], a pair (
; �) where 
 is a class andfor each ! 2 
; �! is a set. However, for technical reasons we need to alsoconsider here transformations of signatures, which we de�ne by analogy totransformations for systems of objects. Thus (�; i) : (
; �) ! (
0; �0) is amorphism of signatures if � : 
! 
0 and i = (i!)!2
 is a collection of mapsi! : �! ! V such that �0(�!) = fi!xjx 2 �!g. A standard morphism ofsignatures is a morphism (�; i) where i! = id�!. When (�; i) is standard wesimply refer to it as the morphism � : (
; �)! (
0; �0). Technically, we havetwo distinct categories of signatures, depending on what signature-maps weconsider. We let Sgn be the category of signatures with standard signaturemorphisms and Sgn* the category of signatures with the more general notionof map described above. Similarly, we let On be the category of ontologieswith standard ontology transformations and On* the category of ontologieswith the more general notion of transformation.3.1 OntologiesFor a given signature (
; �), the signature ontology U
 is de�ned in [2] asthe ontology U
 = (
[V ]; C; :), where16



� 
[V ] = f(!; f)j! 2 
 and f : �! ! V g� C(!; f) = ffxjx 2 �!g = rng(f)� �:(!; f) = (!; �f), if � : rng(f)! V .Given any system A = (A;C; S; :) of objects we may take (A;C) as itsunderlying signature. We denote the map A 7! (A;C) by jAj. Note that themap j:j acts on transformations of systems, too, delivering transformationsof signatures (by just forgetting properties about replacement). Specifyingin our particular context the notion of free objects we have the following:De�nition 3.5 An ontology U in On* is free over a signature (
; �) inSgn* if there is a signature map (�; i) : (
; �)! jUj such that for any on-tology U 0 and signature map (�; j) : (
; �)! jU 0j there is a unique ontologytransformation (�̂; ĵ) : U ! U 0 such that (�̂; ĵ) � (�; i) = (�; j). Similarly forU in On and (
; �) in Sgn, in which case we restrict to standard morphisms.Theorem 3.6 (Free Ontologies) For every signature (
; �) there is anontology U free over (
; �).Proof: We give the proof for the case where general ontology and signa-ture morphisms are considered. The proof for the restriction to standardtransfromations is similar and simpler.Given (
; �), let U
 be the signature ontology and let (�; i) : (
; �) !jU
j be the map j! = id�! and �! = (!; j!).Now let U be any ontology and (�; j) : (
; �) ! jUj a signature map.De�ne the ontology transformation (�̂; ĵ) : U
 ! U by ĵ(!;�) = j!, if � =id�! and otherwise let ĵ(!;�) = idrng(�).De�ne also �ĵ : C(�!) ! V by �ĵ � j! = �, if � 6= id�! and otherwiselet �ĵ = idrng(�).Finally, de�ne �̂(!; �) = �ĵ :�!.Veri�cation that (�̂; ĵ) is an ontology transformation is immediate andthe equation (�̂�; ĵi) = (�; j) is easily seen to hold. Uniqueness of theontology transformation (�̂; ĵ) with the prescribed property is also easy tosee. 2By uniqueness of free objects, up to isomorphism, when they exist wecan conclude that 17



Corollary 3.7 The free ontologies over a signature (
; �) are exactly theontologies isomorphic to the signature ontology U
. 2Theorem 3.8 (Ontology Representation) For every ontology U thereis a signature (
; �) and a congruence � on the signature ontology U
 suchthat there is a standard isomorphism U �= U
;�.Proof: U
;� is the quotient of the signature ontology U
 when factoredout by the congruence �. For the proof, given an ontology U = (U;C; :)let (
; �) be the signature jUj = (U;C) and U
 the signature ontology.Since the identity is a morphism (
; �) ! jUj and U
 is free over (
; �)there must be a (unique) morphism (�̂; ĵ) : U
 ! U . It is easy to see thatthis morphism is surjective. Let then � = ker(�̂). By the HomomorphismTheorem (Theorem 3.4) it follows that U
;� �= U . It is also clear that (�̂; ĵ) isa standard morphism since both the identity (
; �)! jUj and the morphism(�; i) : (
; �)! jU
j are standard. 23.2 Form SystemsWe dealt with ontologies �rst because this case is quite simple. In this sec-tion we turn to considering form systems over some �xed class X . Again,depending on what transformations we consider we distinguish between thecategories X-Fs, with standard transformations, and X-Fs*, with the gen-eral notion of transformation. To prove existence of free form systems andrepresentation we restrict the class of signatures to the X-bounded signa-tures, that is to say signatures (
; �) such that for each ! 2 
, �! can beinjected into X . If A = (A;C; :) is a form system overX , then its underlyingsignature jAj = (A;C) is obviously X-bounded. The de�nition of what itmeans for a form system (over X) to be free over an X-bounded signature(
; �) is completely analogous to De�nition 3.5. Without further ado westate and prove:Theorem 3.9 (Free Form Systems) For every X-bounded signature (
; �),there is an X-form system A free over (
; �).Proof: If (
; �) is X-bounded, we may in fact assume that �! � X , foreach ! 2 
. For if not let i! : �! ,! X be the injections and considerthe signature (
; �0), where �0! = f�!xjx 2 �!g. The two signatures areisomorphic and so we may as well assume at the outset that �! � X .18



Given the signature (
; �), let U
 be the signature ontology free over(
; �) and consider the restriction U
jX . By a completely analogous argu-ment to that in the proof of Theorem 3.6 we can verify that U
jX is freeover the X-bounded signature (
; �). 2Corollary 3.10 The free X-form systems over the X-bounded signature(
; �) are exactly the systems isomorphic to the system U
jX. 2Theorem 3.11 (Representation of Form Systems) For every X-formsystem A, there is an X-bounded signature (
; �) and a congruence � onthe system U
jX such that there is a standard isomorphism A �= (U
jX)�.23.2.1 General Systems of ObjectsWe will prove here directly a representation theorem without detouringthrough a proof of existence of free systems. We can de�ne a suitable notionof an S-bounded signature, for a partial monoid S, as a signature (
; �)such that for every ! 2 
 the trivial replacement map � = id�! 2 S. Wecan then proceed, in principle at least, as we did for the case of ontologiesand form systems and derive a result on free systems of objects over a givenS-bounded signature. The interested reader might want to carry out thedetails. Here we constrain ourselves to the following:Theorem 3.12 (Representation of Systems of Objects) For every sys-tem A = (A;C; S; :), there is a (in fact, an S-bounded) signature (
; �) anda congruence � on the restriction U
jS such that there is a standard iso-morphism A �= (U
jS)�.Proof: Given A, let jAj = (
; �) be its underlying signature (A;C) andconsider the restriction U
jS of the signature ontology U
. The universe ofobjects in U
jS consists of pairs (a; �), a 2 A = 
 and dom(�) = �a = Ca.Let � : U
jS !A be the map �(a; �) = �:a. Then � is a standard morphism.Satisfaction of the requirement for components of De�nition 2.7 is obviouslysatis�ed since C 0(a; �) = rng(�) = f�xjx 2 �a = CagGiven � 2 S with dom(�) = rng(�), �(�:(a; �)) = �(a; ��) = �:(�:a). Hencea map � i = � exists such that the replacement requirement of De�nition19



2.7 is satis�ed. In fact � is the unique such map since if � were anotherone it should satisfy i�:a � � = � � ia. Given that � is a standard map, thecomponents maps ia are identities and thereby � = � .Now clearly � is surjective, since for each a 2 A the pair (a; idCa) isin the universe U
[S] of the system U
jS. Let then � = ker(�). By theHomomorphism Theorem 3.4 it follows that � is a standard isomorphism� : A �= (U
jS)�. 2SummaryWe have developed a model for our pre-theoretic intuitions of structured ob-jects subject to change under permissible replacement of components. Ournotion of a system of objects generalizes that of a form system presentedin [2]. We approached the question of identity of objects through changedescribing the question in an experimental-like language. The general ideais that objects are to be classi�ed as of the same type (abstractly identical) ifthey exhibit the same abstract behavior under replacement experiments. Wedistinguished some notions of identity, �;� and �, where � is a re�nementof � and � a re�nement of �. Systems of objects are, themselves, entitiessubject to change. We introduced a broad notion of permissible transfor-mations that respect both components and replacement experiments. Wealso investigated further restrictions on transformations that will guaran-tee that abstract identity of objects is re
ected. Systems of objects can beregarded as replacement algebras. It is then natural to raise some purelyalgebraic questions, such as the question of representation, also raised in[2]. For ontologies and form systems we obtained our representation resultsby essentially algebraic means, proving �rst existence of free systems anda homomorphism theorem. A representation theorem for form systems was�rst given in [2]. Our proof is di�erent (and much shorter!). We also gen-eralized the result here to a representation for arbitrary systems of objects.An essentially algebraic development for ontologies was also started in anAppendix in [2]. Ontologies are there regarded as some kind of many-sortedalgebras. We have taken a much simpler approach here that, nevertheless,allows us to recapture and strengthen results of [2].References[1] Peter Aczel. Non-Well-Founded Sets. CSLI Lecture Notes, 1988.20
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