A simplified local-realistic derivation of the EPR-Bohm correlation

Joy Christian

Einstein Centre for Local-Realistic Physics, 15 Thackley End, Oxford OX2 6LB, United Kingdom
We illustrate an explicit counterexample to Bell's theorem by constructing a pair of spin variables within S^{3} that exactly reproduces the EPR-Bohm correlation in a manifestly local-realistic manner.

We begin by defining the detections of spin bivectors $\mathbf{L}\left(\mathbf{s}, \lambda^{k}\right)$ by the detector bivectors $\mathbf{D}(\mathbf{a})$ and $\mathbf{D}(\mathbf{b})\{$ Ref. [1]\}:

$$
\begin{align*}
& S^{3} \ni \mathscr{A}\left(\mathbf{a}, \lambda^{k}\right):=\lim _{\mathbf{s} \rightarrow \mathbf{a}}\left\{-\mathbf{D}(\mathbf{a}) \mathbf{L}\left(\mathbf{s}, \lambda^{k}\right)\right\}=\left\{\begin{array}{lll}
+1 & \text { if } & \lambda^{k}=+1 \\
-1 & \text { if } & \lambda^{k}=-1
\end{array}\right. \tag{1}\\
& \text { and } \quad S^{3} \ni \mathscr{B}\left(\mathbf{b}, \lambda^{k}\right):=\lim _{\mathbf{s} \rightarrow \mathbf{b}}\left\{+\mathbf{L}\left(\mathbf{s}, \lambda^{k}\right) \mathbf{D}(\mathbf{b})\right\}=\left\{\begin{array}{lll}
-1 & \text { if } & \lambda^{k}=+1 \\
+1 & \text { if } & \lambda^{k}=-1
\end{array}\right. \tag{2}
\end{align*}
$$

where the orientation λ of S^{3} is assumed to be a random variable with $50 / 50$ chance of being +1 or -1 at the moment of the pair-creation, making the spinning bivector $\mathbf{L}(\mathbf{n}, \lambda)$ a random variable relative to the detector bivector $\mathbf{D}(\mathbf{n})$:

$$
\begin{equation*}
\mathbf{L}(\mathbf{n}, \lambda)=\lambda \mathbf{D}(\mathbf{n}) \Longleftrightarrow \mathbf{D}(\mathbf{n})=\lambda \mathbf{L}(\mathbf{n}, \lambda) \tag{3}
\end{equation*}
$$

The expectation value of the simultaneous outcomes $\mathscr{A}\left(\mathbf{a}, \lambda^{k}\right)= \pm 1$ and $\mathscr{B}\left(\mathbf{b}, \lambda^{k}\right)= \pm 1$ is then worked out as follows:

$$
\begin{align*}
\mathcal{E}(\mathbf{a}, \mathbf{b}) & =\lim _{n \gg 1}\left[\frac{1}{n} \sum_{k=1}^{n} \mathscr{A}\left(\mathbf{a}, \lambda^{k}\right) \mathscr{B}\left(\mathbf{b}, \lambda^{k}\right)\right] \text { within } S^{3}:=\text { the set of all unit (left-handed) quaternions } \tag{4}\\
& =\lim _{n \gg 1}\left[\frac{1}{n} \sum_{k=1}^{n}\left[\lim _{\mathbf{s} \rightarrow \mathbf{a}}\left\{-\mathbf{D}(\mathbf{a}) \mathbf{L}\left(\mathbf{s}, \lambda^{k}\right)\right\}\right]\left[\lim _{\mathbf{s} \rightarrow \mathbf{b}}\left\{+\mathbf{L}\left(\mathbf{s}, \lambda^{k}\right) \mathbf{D}(\mathbf{b})\right\}\right]\right] \quad \text { (conserving total spin }=0 \text {) } \tag{5}\\
& =\lim _{n \gg 1}\left[\frac{1}{n} \sum_{k=1}^{n} \lim _{\mathbf{s} \rightarrow \mathbf{a}}\left\{-\mathbf{D}(\mathbf{a}) \mathbf{L}\left(\mathbf{s}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{s}, \lambda^{k}\right) \mathbf{D}(\mathbf{b}) \equiv \mathbf{q}\left(\mathbf{a}, \mathbf{b} ; \mathbf{s}, \lambda^{k}\right) \in S^{3}\right\}\right] \tag{6}\\
& =\lim _{n \gg 1}\left[\frac{1}{n} \sum_{k=1}^{n} \lim _{\substack{\mathbf{s} \rightarrow \mathbf{a} \\
\mathbf{s} \rightarrow \mathbf{b}}}\left\{-\lambda^{k} \mathbf{L}\left(\mathbf{a}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{s}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{s}, \lambda^{k}\right) \lambda^{k} \mathbf{L}\left(\mathbf{b}, \lambda^{k}\right)\right\}\right] \tag{7}\\
& =\lim _{n \gg 1}\left[\frac{1}{n} \sum_{k=1}^{n} \lim _{\mathbf{s} \rightarrow \mathbf{a}}\left\{-\mathbf{L}\left(\mathbf{a}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{s}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{s}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{b}, \lambda^{k}\right)\right\}\right] \tag{8}\\
& =\lim _{n \gg 1}\left[\frac{1}{n} \sum_{k=1}^{n} \mathbf{L}\left(\mathbf{a}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{b}, \lambda^{k}\right)\right] \quad\{\text { cf. Appendix B of Ref. }[1]\} . \tag{9}
\end{align*}
$$

Here the integrand of (6) is necessarily a unit quaternion $\mathbf{q}\left(\mathbf{a}, \mathbf{b} ; \mathbf{s}, \lambda^{k}\right) \in S^{3}$ since S^{3} is closed under multiplication; (7) follows upon using (3); (8) follows upon using $\lambda^{2}=+1$; and (9) follows from the fact that all unit bivectors such as $\mathbf{L}(\mathbf{s}, \lambda)$ square to -1 . Using $I:=\mathbf{e}_{x} \wedge \mathbf{e}_{y} \wedge \mathbf{e}_{z}$ with $I^{2}=-1$, the final sum can now be evaluated by recognizing that the spins in the right and left oriented S^{3} satisfy the following geometrical relations \{cf. Appendix A of Ref. [1]\}:

$$
\begin{align*}
\mathbf{L}\left(\mathbf{a}, \lambda^{k}\right. & =+1) \mathbf{L}\left(\mathbf{b}, \lambda^{k}=+1\right) \tag{10}
\end{align*}=(+I \cdot \mathbf{a})(+I \cdot \mathbf{b}), ~ 子 \quad \mathbf{L}\left(\mathbf{b}, \lambda^{k}=-1\right)=(+I \cdot \mathbf{b})(+I \cdot \mathbf{a}) .
$$

In other words, when λ^{k} happens to be equal to $+1, \mathbf{L}\left(\mathbf{a}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{b}, \lambda^{k}\right)=(+I \cdot \mathbf{a})(+I \cdot \mathbf{b})$, and when λ^{k} happens to be equal to $-1, \mathbf{L}\left(\mathbf{a}, \lambda^{k}\right) \mathbf{L}\left(\mathbf{b}, \lambda^{k}\right)=(+I \cdot \mathbf{b})(+I \cdot \mathbf{a})$. Consequently, the above expectation value reduces at once to

$$
\begin{equation*}
\mathcal{E}(\mathbf{a}, \mathbf{b})=\frac{1}{2}(+I \cdot \mathbf{a})(+I \cdot \mathbf{b})+\frac{1}{2}(+I \cdot \mathbf{b})(+I \cdot \mathbf{a})=-\frac{1}{2}\{\mathbf{a b}+\mathbf{b} \mathbf{a}\}=-\mathbf{a} \cdot \mathbf{b}+0 \tag{12}
\end{equation*}
$$

because the orientation λ of S^{3} is a fair coin. Here the last equality follows from the definition of the inner product.
[1] J. Christian, Macroscopic Observability of Spinorial Sign Changes: A Reply to Gill, arXiv:1501.03393; arXiv:1211.0784.

