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Disproofs of Bell, GHZ, and Hardy Type Theorems and the Illusion of Entanglement

Joy Christian∗

Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

An elementary topological error in Bell’s representation of the EPR elements of reality is identified.
Once recognized, it leads to a topologically correct local-realistic framework that provides exact,
deterministic, and local underpinning of at least the Bell, GHZ-3, GHZ-4, and Hardy states. The
correlations exhibited by these states are shown to be exactly the classical correlations among the
points of a 3 or 7-sphere, both of which are closed under multiplication, and hence preserve the
locality condition of Bell. The alleged non-localities of these states are thus shown to result from
misidentified topologies of the EPR elements of reality. When topologies are correctly identified,
local-realistic completion of any arbitrary entangled state is always guaranteed in our framework.
This vindicates EPR, and entails that quantum entanglement is best understood as an illusion.

I. INTRODUCTION

No-go theorems in physics are often founded on unjustified, if tacit assumptions, and Bell’s theorem is no exception.
It is no different, in this respect, from von Neumann’s theorem rejecting all hidden variables [1], or Coleman-Mandula
theorem neglecting supersymmetry [2]. Despite being in plain sight, the unjustified assumptions underlying the latter
two theorems seemed so innocuous to many that they escaped detection for decades. In the case of Coleman-Mandula
theorem—which concerned combining spacetime and internal symmetries—it took a truly imaginative development
of supersymmetry to finally bring about recognition of its limited veracity. In the curious case of von Neumann’s
theorem, however, even an explicit counterexample—namely, the pilot wave theory [3][4]—did not discourage a series
of similarly misguided “impossibility proofs” for decades [5]. Thus ensued over half a century of false belief that no
such completion of quantum mechanics is possible, even in principle. Unfortunately, as is evident from the widespread
belief in Bell’s theorem, such examples of institutionalized denial are not confined to the history of physics. Just as in
the premises of von Neumann and Coleman-Mandula theorems, the unjustified assumption underlying Bell’s theorem
is also in plain sight—in the very first equation of Bell’s paper [6]—and yet it has received little attention. As innocent
as this equation may seem, it amounts to assuming incorrect topology for the EPR elements of reality [7]. The aim
of the present paper is to bring out this topological error explicitly, and demonstrate that—once recognized and
corrected—it gives way to an intrinsically local and manifestly realistic underpinning of the EPR-type correlations,
thereby providing explicit counterexamples to Bell’s theorem and several of its variants [8][9][10][11][12].

To this end, recall that Bell begins his theorem by postulating a set of local functions A( · , · ), which are equal to
the numbers +1 or −1 once a unit vector n and a “complete” state λ are specified [6]. He writes these functions as

A(n, λ) = ± 1 ∈ {−1, +1} ⊂ IR , (1)

and takes them to represent the results of measuring spin components along the direction n, or detecting photons
through a filter along the direction n. As innocent as this equation may appear, it amounts to presuming incorrect
topology for the EPR elements of physical reality. This topological error is further obscured by Bell in the probabilistic
reformulation of his theorem, where the above function is expressed as a purely probabilistic statement of obtaining
measurement results [13]. To recognize the seriousness of this error, let us rewrite Bell’s local function as a map

An(λ) : IR3× Λ −→ S0, (2)

where IR3 is the real space of unit vectors, Λ is a space of complete states, and S0 is a unit 0-sphere. Now recall that a
unit k-sphere, Sk, is a set of points forming a compact topological space without boundary [14]. It can be understood

as a one-point compactification, IRk ∪ {∞}, of a non-compact Euclidean space IRk. Alternatively it can be understood

as a boundary of a k + 1−ball, Bk+1, within the higher dimensional space IRk+1. The sphere Sk is then said to be
embedded in IRk+1, and its points can be parameterized by a set of coordinates {n0, n1, . . . , nk} in IRk+1, satisfying

n2
0 + n2

1 + n2
2 + n2

3 + · · · + n2
k = 1. (3)

Thus, a unit 0-sphere is a set of only two points, S0 ≡ {−1, +1}, whereas a unit 2-sphere, S2, is the boundary of a
3-ball whose antipodal points are the points {−1, +1}. In other words, a unit 0-sphere is a great-great circle of a unit
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2-sphere, which in turn is a collection of all such great-great circles forming its surface. Thus, although S0 and S2 are
both sets of binary numbers, +1’s and −1’s, their topological properties are fundamentally different from one another;
S0 is parallelizable but disconnected, whereas S2 is connected as well as simply connected, but not parallelizable.
Hence Bell’s postulate of equation (1) amounts to an implicit assumption of a specific topology for the EPR elements
of reality. In what follows, we shall be concerned mainly with the topologies of the spheres S0, S1, S2, S3, and S7,
each of which is a set of binary numbers parameterized by Eq. (3), but with very different topologies from one another.
Thus, for example, the 1-sphere, S1, is connected and parallelizable, but not simply connected. The spheres S3 and
S7, on the other hand, are not only connected and parallelizable, but also simply connected. The crucial point here
is that—since the topological properties of different spheres are dramatically different from one another—mistaking
the points of one of them for the points of another is a serious error. But that is precisely what Bell has done.

To be sure, Bell’s motivation for choosing S0 for his purposes is quite understandable. It is trivially a space closed
under multiplication of its points, and hence naturally hosts the condition of locality he wished to implement [15]:

(Aa Bb)(λ) = Aa(λ)Bb(λ) ∈ S0, ∀ Aa(λ), Bb(λ) ∈ S0. (4)

In other words, apart from the operational requirements of quantum mechanics, it is the requirement of locality—or
factorizability [13]—that motivated Bell to demand that the joint “beable” (AaBb)(λ) satisfies the multiplication map

(AaBb)(λ) : S0 × S0 −→ S0, (5)

because the converse of this map implies that any point of S0 can be factorized into two or more points of the same
set. But, as we shall see, S0 is only one of the many possible topological spaces that can satisfy this demand of locality,
with S3—not S0—being the correct choice for any two-level system. That is to say, the group multiplication map

(Aa Bb)(λ) : S3 × S3 −→ S3, implying (Aa Bb)(λ) = Aa(λ)Bb(λ) ∈ S3 ∀ Aa(λ), Bb(λ) ∈ S3, (6)

is at least as good a map as the one considered by Bell for his purposes. In fact, any topological group [16], with
measurement results as group elements, would be a perfectly good target space in Eq. (2) for a locally causal theory.

More specifically, in what follows we shall demonstrate that an exact, deterministic, local, and realistic model for
the EPR correlations based on S3 already exists [8], and that it affords natural generalizations to the rotationally non-
invariant entangled states considered by GHZ and Hardy [11][12]. In particular, within a representation-independent
generalization of the local-realistic framework considered in Refs. [8][9][10], we shall derive the following results exactly :

(1) the exact quantum mechanical expectation value for the singlet state: E(a, b) = − a · b ;

(2) the exact violations of Bell-CHSH inequalities: − 2
√

2 ≤ E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) ≤ + 2
√

2 ;

(3) all sixteen predictions of the Hardy state, such as 〈Ψz |a′, +〉1 ⊗ |b , +〉2 = 0 ,

〈Ψz |a , +〉1 ⊗ |b′, +〉2 = 0 ,

〈Ψz |a , −〉1 ⊗ |b , −〉2 = 0 ,

but 〈Ψz |a′, +〉1 ⊗ |b′, +〉2 = sin θ cos2 θ√
1 + cos2 θ

6= 0 ;

(4) the exact quantum mechanical expectation value for the three-particle GHZ state:

E(n1, n2, n3) = cosα cos θ1 cos θ2 cos θ3 + sinα sin θ1 sin θ2 sin θ3 cos (φ1 + φ2 + φ3 + δ ) ; and

(5) the exact quantum mechanical expectation value for the four-particle GHZ state:

E(n1, n2, n3, n4) = cos θ1 cos θ2 cos θ3 cos θ4 − sin θ1 sin θ2 sin θ3 sin θ4 cos (φ1 + φ2 − φ3 − φ4 ).

As we shall see, all of these correlations are strictly local correlations between correctly identified EPR elements of
reality. In other words, contrary to what is mistakenly believed, these correlations are not exclusive manifestations
of some irreducible quantum mechanical effects, but purely local-realistic, topological effects. In the first three cases
of the Bell and Hardy states, the correct topological space of the EPR elements of reality is a unit 3-sphere, and
hence the correlations exhibited by these states are correlations among the points of a unit 3-sphere. In the last two
cases of the GHZ states, on the other hand, the correct topological space of the EPR elements of reality is a unit
7-sphere, and hence the correlations exhibited by these states are correlations among the points of a unit 7-sphere.
More generally, we will show that, once the topological space of the EPR elements of reality is correctly identified, an
exact local-realistic underpinning of any arbitrary entangled state is always guaranteed within our framework. The
correlations exhibited by such an arbitrary state are thus understood as local-realistic correlations among the points
of this topological space, with quantum mechanics functioning merely as a useful tool. To appreciate these results
fully, however, it would be instructive to first review the argument by Einstein, Podolsky, and Rosen [7].
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1 2

a

a′

b

b′

Source

π0 −→ γ + e− + e+

Total spin = 0

FIG. 1 A spin-less neutral pion decays into an electron-positron pair. Measurements of spin components on each separated
fermion are performed at remote stations 1 and 2, providing binary outcomes (respectively) along arbitrary directions a and b.

II. EPR ELEMENTS OF REALITY ARE POINTS OF A 2-SPHERE, NOT 0-SPHERE AS BELL ASSUMED

As Clauser and Shimony rightly emphasize [15], the reasoning of EPR is impeccable once the phrase “can predict”
in their reality criterion is understood in a non-anthropocentric sense. According to this criterion, If, without in any
way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this physical quantity. We shall follow the
logic of EPR adapted to Bohm’s spin version of their argument, which can be summarized as follows [11]:

(1) QM =⇒ Perfect Correlations

+ (2) Adherence to Local Causality

+ (3) Criterion of Objective Reality

+ (4) Notion of a Complete Theory

=⇒ (5) QM is an Incomplete Theory.

In more detail, the EPR argument proceeds as follows. Consider the physical scenario depicted in Fig. 1. Within
quantum mechanics the physical state of such an idealized spin system is described by the entangled singlet state

|Ψn〉 =
1√
2

{
|n, +〉1 ⊗ |n, −〉2 − |n, −〉1 ⊗ |n, +〉2

}
, (7)

where n indicates any unit direction in the physical space IR3; σ · n |n, ±〉 = ± |n, ±〉 describes the eigenstates in
which the particles have spin “up” or “down” in units of ~ = 2; and σ stands for the Pauli spin “vector.” Now this
state has two remarkable properties. First, it happens to be rotationally invariant. That is to say, it remains the same
for all directions in space, denoted by the unit vector n. Second, it entails perfect spin correlations: If the component
of spin along direction n is found to be “up” for particle 1, then with certainly it will be found to be “down” for
particle 2, and vice versa. Consequently, one can predict with certainly the result of measuring any component of spin
of particle 2 by previously measuring the same component of spin of particle 1. However, local causality demands
that measurements performed on particle 1 cannot bring about any real change in the remotely situated particle 2.
Therefore, according to the EPR criterion of physical reality, the chosen spin component of particle 2 is an element
of physical reality. But this argument goes through for any component of spin, and hence all infinitely many of the
spin components of particle 2 are elements of physical reality (in the strictly objective, non-anthropocentric sense
consistently maintained by Einstein [17]). However, many of these elements of physical reality have no counterpart in
the quantum mechanical description of the system, since—as is evident from (7)—there is no quantum state of particle
2 in which all components of its spin have definite values. Consequently, by the completeness criterion of EPR—which
states that “every element of the physical reality must have a counterpart in the physical theory”, quantum theory
cannot be a complete theory, because at least in the present example it does not provide a complete description of
the physical reality. That is to say, the notion of quantum entanglement merely conceals our lack of knowledge.
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S0 ≡ {+1, −1} {−1, +1} ≡ S0

±1 ∓1

EPR-Einstein
correlations

Correct topology

Bell-CHSH
correlations

Incorrect topology

S2 S2

FIG. 2 The correlations between the EPR elements of reality are correlations between the respective points of two 2-spheres.
They have nothing whatsoever to do with the correlations between the points of two 0-spheres as Bell unjustifiably assumed.

Now one of the things that clearly jumps out from this argument is that the elements of reality in question—i.e., the
measurement results of the spin components—are points of a unit 2-sphere, not 0-sphere as Bell presumed. Indeed,
simultaneous existence of elements of reality at a remote location for all components of spin (the one that was actually
predicted as well as all the others which could have been predicted) is at the heart of the EPR argument [7][11][15].
What is more, there are infinitely many spin components that could be measured locally—one corresponding to each
direction n ∈ IR3 (cf. Fig. 2). Thus there is a one-to-one correspondence between the simultaneously existing elements
of reality at-a-distance and the points of a unit 2-sphere defined by ||n|| = 1. Moreover, since the completeness criterion
of EPR demands that each one of these elements of reality must have a counterpart in a complete theory, any Bell-type
theorem can be applicable to the EPR argument if and only if it respects this 2-spherical topology of the elements.
That is to say, for the singlet state (7), the range of any Bell-type map An(λ) : IR3× Λ → Σ must be homeomorphic
to a 2-sphere, otherwise Bell’s accounting of the elements of reality would not be complete [10]. Indeed, if the range
Σ of the function An(λ) differs from S2 by even a single point, then it would not be homeomorphic to a 2-sphere, and
hence the set of all possible values that An(λ) can take would fail to be in one-to-one correspondence with the set of
EPR elements of reality. In that case there would be at least one element of reality that would not have a counterpart
in the “complete” theory, rendering the prescription An(λ) : IR3× Λ → Σ quite useless for the purposes of Bell.

Despite this danger of incompleteness, neither Bell nor his followers offer any explanation for why the topology of
S2 has been dropped from Eq. (2) in favor of the ad hoc choice of S0 (or some other I ⊆ IR for that matter). In fact,
this is simply a gross error. It stems from adapting the premises of EPR in too disjoint a manner than is warranted.
The argument of EPR—based on their four premises—is a package-deal, and it must be respected as such by any
Bell-type theorem if it were to claim inconsistencies within these premises. Moreover, as we noted above, S0 is not
even connected, whereas S2 is both connected and simply connected. If instead of S0 some other interval of IR is
chosen, then is this interval supposed to be open or closed? For an open interval of IR is homeomorphic to IR, but
a closed one is not. It is common practice, however, to assume the closed interval [−1, +1] in the proofs of Bell’s
theorem, with the numbers lying within it representing the EPR elements of reality. But why assume that these
elements of reality are all “lined up” as points of the real line, respecting its very specific1 order topology? What
justifies the presumption of such a one dimensional topological space in the first place? Is it not evident from the
above argument of EPR that the topology of the real line—or that of any of its subsets—has nothing whatsoever
to do with the topology of the EPR elements of reality? In fact, let alone IR, the evident topological space of these
elements—namely S2—is not even homeomorphic to IR2, but rather a one-point compactification of IR2. Hence to
reduce S2 to IR2 requires a highly nontrivial topological operation (that of surgically removing a point), let alone
then going from IR2 to IR, and finally from IR to S0. Of course, one can also try to reduce S2 to S0 directly, but that
requires surgically removing an entire equatorial circle of points from S2. In other words, reducing S2 to S0 requires

1 Recall that real line is a topological space of dimension one, with very specific order topology. It is paracompact and second-countable as
well as contractible and locally compact. It also has a standard differentiable structure defined on it, making it a differentiable manifold.
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neglecting an entire infinity of elements of reality from consideration [10]. Moreover, since each of these spaces—S0,
[−1, +1], IR, IR2, and S2—correspond to imposing a different topological order on the set of numbers representing the
EPR elements of reality, for each choice the correlations among these numbers would be different in general. Hence
no choice of a space can be accepted without a detailed topological justification. And yet, neither S0 nor any other
subset of IR has any topological credentials to represent the EPR elements of reality, as it is abundantly clear from
the argument of EPR that it is the topology of S2 that necessarily captures the correct order of these elements.

Actually, since the argument of EPR goes through for the spins of both particles, the elements of reality in question
are the points of two copies of S2, one for each particle, as shown in Fig. 2. If we view these copies as embedded in
IR3, then the set of their points can be parameterized by the coordinates {nx, ny, nz} of IR3, satisfying the constraint

n2
x + n2

y + n2
z = 1. (8)

It is important to stress here that when a space such as Sk is embedded into IRk+1 by a map f : Sk →֒ IRk+1, then
f(Sk) remains diffeomorphic to Sk. This is because an embedding of a given space into a higher-dimensional space
does not affect the intrinsic properties of that space, but merely provides a useful set of coordinates on it. Moreover,
it is a matter of indifference which set of coordinates are chosen, as long as they are a well-defined set of coordinates
in IRk+1. Thus, just as classical physics does not care whether we choose one frame of reference or another to perform
our experiments, the topological structure of the sphere Sk—which is a totality in itself—does not care whether we
choose one set of coordinates or another in IRk+1 to perform our calculations. In other words, as useful as it is, the
vector n ≡ (nx, ny, nz) corresponding to the coordinates {nx, ny, nz} chosen above is not only not an intrinsic part
of the 2-sphere, but is also completely dispensable, even as a tool. It merely provides a useful pointer to the points of
S2. That is to say, each point of S2 representing a specific EPR element of reality is merely indexed by the vector n.
Consequently, in close analogy with the local functions (1) postulated by Bell, each point of S2 can be represented as

A(n, λ) = ± 1 ∈ S2, about the direction n in IR3. (9)

This amounts to replacing the incorrect local maps (2) of Bell with the topologically correct local maps

An(λ) : IR3× Λ −→ S2. (10)

Evidently, the range of these maps is still the set of points describing the binary results, ±1, but this set now has the
topology of a 2-sphere rather than a 0-sphere. Consequently, the correlations computed using these maps would be
correlations between the points of S2, and not between the points of some irrelevant space like S0 or IR presumed by
Bell. Since it is the space S2, and not S0, that correctly represents the EPR elements of reality, the choice between
the maps (10) and (2) is clearly a choice between the correct and incorrect representations of the physical reality.

III. BELL’S THEOREM, ITS VARIANTS, AND THEIR SPINOFFS ARE ALL NON-STARTERS AT BEST

Since Bell begins his theorem with a pair of incorrect maps like (2), he forfeits his game from the start. For the
straw man he thereby knocks off has nothing to do with the EPR elements of reality. Recall that Bell begins by
considering a “complete” physical state λ for the EPR-Bohm system, and assumes a normalized probability measure
ρ(λ) on the space Λ of all such states. He then postulates the expectation value for a pair of spin measurements,

E(a, b) =

∫

Λ

(AaBb)(λ) dρ(λ) =

∫

Λ

Aa(λ)Bb(λ) dρ(λ) , (11)

and requires this (supposedly) local-realistic value to satisfy the perfect correlation constraint,

E(n, n) = −1 , (12)

which he borrows from EPR, who in turn adapted it from quantum mechanics. Here the local outcome functions

Aa(λ) : IR3× Λ −→ S0 and Bb(λ) : IR3× Λ −→ S0 (13)

are the functions we discussed in equations (1) and (2) above. It should be clear by now, however, that this expectation
value has nothing whatsoever to do with the correlations between the EPR elements of reality. For what it provides
is correlations between the points of the real line, whereas EPR elements of reality in the present case are points of a
2-sphere, not the real line, or any other interval I ⊆ IR. In fact, it is quite astonishing that Bell thought correlations
between the points of a real line have anything at all to do with the correlations between the elements of reality.
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S3
h−1(q)

h−1(p)

qb

pb

S2

base space

h : S3 → S2

Hopf fibration

h−1 : S2 → S3

FIG. 3 The tangled web of linked Hopf circles depicting the topological non-triviality of the EPR elements of physical reality.

To appreciate our amazement further, recall that Bell’s ultimate goal was to conclude that
∫

Λ

Aa(λ)Bb(λ) dρ(λ) cannot be equal to 〈Ψn|σ · a ⊗ σ · b |Ψn〉 (14)

for the entangled state (7), and hence no local-realistic correlations can reproduce the quantum mechanical correlations.
But this is quite a meaningless comparison, because the right hand side of the above expression describes correlations
between the points of a 2-sphere, whereas the left hand side describes those between the points of the real line. Indeed,
the matrices iσ · n on the right hand side are elements of the Lie algebra of the group SU(2), which is homeomorphic
to a 3-sphere, and a 3-sphere is a principal U(1) bundle over a 2-sphere [18]. Hence, in their true essence, the matrices
iσ · n represent nothing but the points of a 2-sphere (cf. Fig. 3 and Ref. [10]). Therefore comparing the left and right
hand sides of the above expression is like comparing correlations between cars in one narrow lane of a highway with
correlations between cars on the surface of the planet. The absurdity of the comparison is breathtaking. Regardless
of locality, realism, quantum mechanics, or classical mechanics, the two sides of the above expression cannot possibly
be the same, for they describe correlations between the points of two entirely different topological spaces. Even the
dimensions of these two spaces do not match! If any meaningful conclusion about local realism is to be drawn from
such a comparison, then it can only be drawn by comparing apples with apples. That is to say, in any such comparison
the two sides of the above expression must correspond to correlations between the points of the same topological space
Ω, whatever Ω happens to be. In other words, if we denote the quantum mechanical expectation functional by E

Q.M.

and the corresponding local-realistic one by E
L.R.

, then the correct Bell-type question in general should be

whether E
L.R.

(Ω)
?
= E

Q.M.
(Ω) , and not whether E

L.R.
(I ⊆ IR)

?
= E

Q.M.
(Ω) . (15)

For any disagreement between E
L.R.

(I ⊆ IR) and E
Q.M.

(Ω) cannot be attributed to incompatibility between locality and
realism, because it can be entirely due to the topological differences between the spaces I ⊆ IR and Ω.

At this stage one may wonder why the topology of the EPR elements of reality should play a significant role here
when one can always reformulate the expectation functionals purely in terms of probabilities of obtaining measurement
results [13]. But no amount of probabilistic reformulation can reduce the dimensional and topological absurdities of
the comparison (14). For, surely, if the probability of falling off the edge of the earth turns out to be the same for
both the flat-earthers (B2) and the round-earthers (S2), then there is something seriously wrong with the way one
has calculated these probabilities. That is to say, whatever scheme is used to calculate the correlations between the
EPR elements of reality, it must account for the fact that these elements are the points of a 2-sphere, not the real line.
Simply by reformulating the derivation of the Bell-CHSH inequality in terms of conditional probabilities of obtaining
measurement results (as done by Bell in Ref. [13]) does not alter the fact that the correlations thus being calculated
are still those between the points of the real line, which have nothing to do with the correlations between the EPR
elements of reality. The same must be said about the numerous variants and spinoffs of Bell’s theorem, such as the
GHZ [11], Hardy [12], or Leggett [19] type theorems against local or nonlocal realism. As long as such theorems rely on
the maps like (13) (or like An(λ) : IR3× Λ → I ⊆ IR), they are presupposing incorrect topology for the EPR elements
of reality, and hence are as irrelevant to the concerns of EPR as the original theorem by Bell. To be sure, some of
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these variant theorems do not make explicit commitment to IR, but employ only hand-waving arguments involving
incommensurate, or counterfactual measurement results. But numbers do not exist in a mathematical void. As soon
as a Bell-type theorem associates a number to an EPR element of reality, it is making a commitment to a topological
space of one kind or another. And if there is a mismatch between this space and the space of the corresponding EPR
elements of reality, then that would inevitably lead to an illusion of inconsistency within the premises of EPR.

Suppose now we consider the familiar string of expectation functionals studied by CHSH [20], namely

E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) . (16)

With a questionable practical assumption (which we will not question) that the distribution ρ(λ) remains the same
for all four of these functionals, this string can be rewritten in terms of the products of the local functions as

∫

Λ

[ Aa(λ)Bb(λ) + Aa(λ)Bb′(λ) + Aa′(λ)Bb(λ) − Aa′(λ)Bb′(λ) ] dρ(λ) . (17)

And since Bell assumes that all local functions An(λ) and Bn(λ) involved in this integral are elements of the real line
IR (which of course corresponds to a commutative algebra), they necessarily satisfy

[An(λ), Bn′(λ) ] = 0 , ∀ n and n′ ∈ IR3. (18)

If we now square the integrand of Eq. (17), use the above commutation relations, and use the fact that, by definition,
all local functions square to unity (the algebra goes through even when the squares of the local functions are allowed
to be −1), then the absolute value of the CHSH string leads to the following form of variance inequality [9]:

|E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′)| ≤
√∫

Λ

{ 4 + [Aa(λ), Aa′(λ) ] [Bb′(λ), Bb(λ) ] } dρ(λ) . (19)

And since all An(λ) ∈ IR commute with each other, this inequality finally leads to the Bell-CHSH inequalities:

− 2 ≤ E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) ≤ + 2 . (20)

But, once again, these inequalities have nothing whatsoever to do with the correlations between the EPR elements
of reality. For the correlations between the EPR elements of reality are correlations between the points of a 2-sphere,
whereas the correlations from which these inequalities are derived are those between the points of the real line.

IV. TOPOLOGICALLY CORRECT LOCAL-REALISTIC FRAMEWORK FOR THE EPR-TYPE CORRELATIONS

The criticism we have presented so far constitutes “the faulty-premise side” of our rejection of Bell’s theorem and
its variants (nego majorem, nihil ad rem). On the counterexample side, the question then is: how should one correctly
calculate the correlations between the EPR elements of reality in general? As it turns out, the answer to this question
would have been obvious to Pauli (and even to Hamilton to some extent), but remains neglected within the literature on
Bell’s theorem. It amounts to understanding the profound topological structure of the 3-sphere (cf. Fig. 3), which we
have already discussed elsewhere [10]. As we shall see, for any two-level system the correct local-realistic correlations
can be computed by analyzing the interplay between the points of the corresponding 2-sphere and 3-sphere.

This can be demonstrated most transparently in the case of the original theorem by Bell, as we have done previously
in terms of a Clifford-algebraic model [8][9][10]. Unfortunately, as powerful as this Clifford-algebraic framework is,
unfamiliarity with it has led some skeptics to misinterpret the model and obfuscate its message [21]. The main
stumbling block of the skeptics seems to be their inability to distinguish between the concept of a point of S2 and its
bivectorial representation in our model. To spare us from the possibility of such a spurious difficulty, in this paper
we shall keep the use of Clifford algebra to a minimum. Instead, we shall bring out the main message of our model
in purely topological terms. To this end, let us stress once again that the correct local-realistic correlations in the
present case can be obtained if the incorrect local maps (13) assumed by Bell are replaced with the correct local maps

Aa(λ) : IR3× Λ −→ S2 and Bb(λ) : IR3× Λ −→ S2, (21)

each of which—in the light of Eq. (9), and for the case of uniform distribution ρ(λ)—naturally satisfies the condition
∫

Λ

An(λ) dρ(λ) = 0, about any direction n in IR3. (22)
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Evidently, these maps are just as local as the original maps of Bell. The measurement results A and B they represent
do not depend either on each other, or on the settings of the remote polarizers b and a (respectively), but only on the
local polarizers a and b, and on the past common causes λ. Moreover, just as in Bell’s case, the range of these local
maps is still simply a collection of binary numbers, +1’s and −1’s, but now—instead of lying on the real line—these
numbers lie on the surface of a unit ball—i.e., they are points of a unit 2-sphere. Given these local maps, we can now
define a local-realistic theory just as Bell did—by imposing the locality condition on the joint “beable” (AaBb)(λ) :

(AaBb)(λ) = Aa(λ)Bb(λ). (23)

Locality thus implies that, once the state λ is specified and the two particles have separated, measurements of A can
depend only upon λ and a, but not b, and likewise measurements of B can depend only upon λ and b, but not a.
The correlations between the EPR elements of reality can now be calculated by using the expectation functional

E(a, b) =

∫

Λ

(AaBb)(λ) dρ(λ) =

∫

Λ

Aa(λ)Bb(λ) dρ(λ) . (24)

It is worth recalling here that—following the pioneering analysis by von Neumann [1] and Segal [22]—the above
expectation functional is understood to be a strongly continuous linear functional, E : A 7→ E(A), defined on the set
of general-valued functions such as A(λ) defined above—with Λ ∋ λ being the measure space—such that

(a) E(e) = 1 for the unit element e in the set of A’s,

(b) E(A∗A) ≥ 0 ∀ A with E(A2) = 0 only if A = 0,

and (c) E(B∗AB) ≤ α
A
E(B∗B) for some real constant α

A
,

where the “ ∗ ” represents an appropriate conjugation operation. The important point here is that, in this remarkably
general formulation of the standard probability theory, the codomain of the functions A(λ) is not restricted to be a
subset of the real line. In particular, this formulation is quite well suited for calculating correlations between the local
functions such as those taken in Eq. (21). More generally, any local functions of the form

Aa(λ) : IR3× Λ −→ Ω and Bb(λ) : IR3× Λ −→ Ω (25)

are admissible within this formulation, where Ω is an arbitrary topological space composed of measurement results,
binary or otherwise. In section VI below we shall have more to say about such general topological codomains.

For now, we simply stress that—like Eq. (11)—the expectation functional (24) provides perfectly adequate means for
calculating the local-realistic correlations between measurement results. There is, however, a major difference between
Eqs. (11) and (24). The product beable Aa(λ)Bb(λ) appearing in Eq. (24) is necessarily a point of a 3-sphere,

Aa(λ)Bb(λ) : IR3× IR3× Λ −→ S3, (26)

as dictated by the following elementary theorem.

The Product Point Theorem: The product of any two points of a 2-sphere is a point of a 3-sphere.

Proof: A 3-sphere is a set of points equidistant from a fixed point in IR4. Thus it is a boundary of a 4-ball in
four dimensions. And as such, it is not the easiest space for us to visualize (although it is not impossible to
do so [23]). Therefore, let us first consider the theorem in one lower dimension. Consider two copies of a unit
2-ball (i.e., two ordinary disks). The boundary of this 2-ball is a unit 1-sphere (i.e., a circle) of points ±1. Now
glue (or identify) these boundaries together point-by-point. The resulting topological space is a unit 2-sphere
(i.e, the boundary of a unit 3-ball). Any point of this 2-sphere is thus a product of two points, each belonging
to one of the two copies of a 1-sphere analogous to the one we started out with. Thus, if A = +1 is a point
of one of the copies of a 1-sphere and B = −1 is a point of the other copy, then the product AB = −1 is the
corresponding point of the 2-sphere constructed by identifying such points. The proof in the case of 3-sphere is
exactly analogous: Consider two copies of a unit 3-ball (i.e., two ordinary solid balls). The boundary of each of
these 3-balls is of course a unit 2-sphere. Now glue (or identify) these boundaries, point-by-point (cf. Ref. [23]).
The resulting topological space is a unit 3-sphere. Each point of this 3-sphere is thus a product of the two points
belonging to two copies of a 2-sphere analogous to the one we started out with. Conversely, if A = +1 is a point
of one of the 2-spheres and B = −1 is a point of the other, then the product AB = −1 is the corresponding
point of the 3-sphere, constructed out of these 2-spheres. (Formal details of this proof can be found in Ref. [16].)
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Of course, the values of the points A and B used here are only one of the pairs of possibilities. If instead of A = +1
and B = −1 we take A = −1 and B = +1 as our gluing points, then the corresponding point of the 3-sphere would
still be AB = −1. But if we instead take A = +1 and B = +1 or A = −1 and B = −1, then the corresponding point
of the 3-sphere would be AB = +1. In other words, the points of the 3-sphere satisfy the multiplication map

F (A, B) = AB , (27)

with the following properties:

F (+1, +1) = +1 , F (+1, −1) = −1 , F (−1, +1) = −1 , and F (−1, −1) = +1 . (28)

These are important properties, not only because they are demanded by Bell’s formulation of local causality [9], but
also because they are in harmony with how the data from the two ends of the apparatus is usually analyzed in a
typical Bell-type experiment. And as such they must be respected by any local-realistic model for the EPR-Bohm
correlations. As we shall soon begin to appreciate, these properties are naturally satisfied by our local model of Ref. [8].
More importantly, they will soon be incorporated within our current framework in a much more cogent manner.

The upshot of the above theorem is that a 3-sphere, in the present context, is a set of all product points AB = ±1,
equidistant from a fixed origin in the higher-dimensional space IR4. That is to say, when viewed as embedded in IR4,
a 3-sphere is best seen as parameterized by the coordinates of this embedding space, satisfying the constraint

n2
o + n2

x + n2
y + n2

z = 1. (29)

Once again we stress the obvious that the corresponding four dimensional vector (no, nx, ny, nz) is not an intrinsic
part of the 3-sphere itself, but merely provides an external index to one of its points. In fact, it represents a non-pure
quaternionic number—making S3 a set of unit quaternions, { q ∈ IH : || q || = 1 }—as we have discussed elsewhere [10].
Suppose now that the two copies of the 2-sphere which make up these points are themselves similarly parameterized
by the coordinates of IR3; say by the vectors a and b. Then the above constraint, together with the perfect correlation
condition (12), dictates that the following relation among the points of the 2 and 3-spheres is necessarily satisfied:

Aa(λ)Bb(λ) = − cos θab − Cc(λ) sin θab (30)

= ± 1 ∈ S3, about the direction (− cos θab , − cx sin θab , − cy sin θab , − cz sin θab) in IR4, (31)

where Aa(λ), Bb(λ), and Cc(λ) are points of the 2-sphere, θab is the angle between a and b, and the vector c is
defined as c := a×b

|a×b| . This expression is a well known parameterization of the quaternionic numbers. Although it

implies Aa(λ)Aa(λ) = − 1, there is nothing “complex” or “non-real” about it. Such nontrivial but real products are
bread and butter to the aviation engineers, and they simply reflect the fact that the projective plane of a 2-sphere
is not orientable [24]. But the 2-sphere itself is orientable, with its points furnishing the road map of a 3-sphere as
above, whose projective space then turns out to be orientable [24]. Within the embedding space IR3, this map can be
used to represent a counterclockwise rotation by angle 2 θab about the c axis. Once again, it should be noted that the
vectors a, b, and c in this parameterization are not intrinsic to the 2-sphere, but merely external parameters within
the embedding space IR3. That is to say, they merely index the respective points Aa(λ), Bb(λ), and Cc(λ) of the
2-sphere (each of which representing an EPR element of reality). This allows us then to visualize these points as

Aa(λ) = ± 1 ∈ S2, about the direction a in IR3,

Bb(λ) = ± 1 ∈ S2, about the direction b in IR3,

and Cc(λ) = ± 1 ∈ S2, about the direction c in IR3, (32)

as we have already done in the context of equations (9) and (10). Thus, if C+c(λ) = −1 about +c, then C−c(λ) will
be +1 about −c, since C+c(λ) = −1 and C−c(λ) = +1 are then antipodal points of the 2-sphere, along the direction
c. On the other hand, despite appearances, the right hand side of equation (31), namely − cos θab − Cc(λ) sin θab,
is simply a binary number in disguise, +1 or −1, and a bona fide intrinsic point of the corresponding 3-sphere.

This last point is rather difficult to see at first sight, and has been a major stumbling block for several skeptics
of Ref. [8]. The spurious difficulty entertained by the skeptics quickly evaporates, however, once some intuition is
developed about the interior structure of the 3-sphere. As we noted above, a 3-sphere can be constructed by gluing
the boundaries of two copies of a 3-ball (i.e., ordinary, solid, ball). Imagine then that we have two copies of a 3-ball,
and that these copies are superimposed so that their 2-spherical boundaries match—i.e., they occupy the same space
(not in the quantum mechanical sense, but in the topological sense). Imagine further that these boundaries are then
glued together, point-by-point. Thus each point of the boundary of one of the two balls is really the same point as the
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corresponding point of the boundary of the other ball. The resulting space is a 3-sphere. The points of this 3-sphere
are then all of the interior points of the 3-ball counted twice, plus all of the boundary points counted once. Every one
of these sum total of points is then an interior point of the 3-sphere, with the boundary of the original 3-ball being
its 2-spherical equator. Thus, a 3-sphere itself has no boundary at all. In fact, we might actually be living in such a
3-spherical universe without being aware of it [25]. A 3-sphere is thus much like the 3-dimensional space we are familiar
with, but with some counterintuitive properties. Imagine now an insect crawling radially upwards from the center of
the 3-ball (which is now one of the hemispheres of S3), and being watched by an inhabitant of IR4. When the insect
reaches the boundary of the 3-ball (which is now the equator of S3), it will be completely oblivious to its existence,
and will carry on its journey without noticing anything unusual. The inhabitant of IR4, however, will witness the
insect reach the boundary, flip its IR3 direction, and continue its journey back towards the center of the 3-ball.

It should now be easy to see how the right hand side of equation (30), namely − cos θab − Cc(λ) sin θab, represents
all of the points of S3 along the direction c traversed by the insect, when the vectors a and b are moved within the
plane perpendicular to its radial line of motion. The point Cc(λ) then represents the turning point of the insect at the
boundary of the 3-ball, and − cos θab plays the role of the fourth dimension within the embedding space IR4. Each
point traversed by the insect is thus either a +1 or a −1 point of S3, depending on the angle θab and the complete
state λ. The points Aa(λ), Bb(λ), and Cc(λ) are still confined to the 2-spherical boundary of the 3-ball, but this
boundary is now the equator of the 3-sphere. If the directions a and b are also allowed to move outside the confines
of the perpendicular plane, then the radial direction c of the motion of the insect too begins to vary (since c is defined
as a×b

|a×b|), providing a complete sweep of every single point of the 3-sphere. Thus, far from being mysterious, the right

hand side of equation (30) is actually a very natural (and quite well known [16][18]) representation of the points of
the 3-sphere, each one being either +1 or −1, and representing a product of the two EPR elements of reality. Finally,
as alluded to in the Fig. 3 above, an alternative, more analytical dissection of the 3-sphere by means of the celebrated
Hopf fibration, as a U(1) bundle over S2, may also be useful in this context, as we have suggested in Ref.[10].

We are now well equipped to compute the topologically correct local-realistic correlations between the EPR elements
of reality—i.e., correlations between the points of a 2-sphere rather than the real line. Using equation (30) (which
corresponds to an embedded picture of S2 into IR3), we immediately see that the correct correlations are given by

E(a, b) =

∫

Λ

Aa(λ)Bb(λ) dρ(λ) = − cos θab

∫

Λ

dρ(λ) − sin θab

∫

Λ

Cc(λ) dρ(λ). (33)

Now the second term on the right hand side of this result vanishes identically for more than one reason. To begin
with, it involves an average of the functions Cc(λ), and hence is necessarily zero, thanks to the relations (9) and (22).
Moreover, operationally the functions Cc(λ) themselves are necessarily zero, because they represent measurement
results along the direction that is not only orthogonal to both a and b, but also strictly exclusive to them both.
That is to say, any detector along the direction c would necessarily yield a null result, provided the detectors along
the directions a and b have yielded non-null results, because the direction c is defined as a×b

|a×b| . Consequently, by

substituting the above equation in the CHSH string of expectation values, we arrive at the topologically correct result

E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) = [− cos θab − cos θab′ − cos θa′b + cos θa′b′ ]

∫

Λ

dρ(λ). (34)

Assuming now that the distribution ρ(λ) is normalized on the space Λ, we finally arrive at the inequalities

− 2
√

2 ≤ E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) ≤ + 2
√

2. (35)

This is of course exactly what is predicted by quantum mechanics. What is more, we have arrived at this result
without having to specify what the complete state λ actually is. In fact, it is easy to see that we can arrive at these
inequalities without even having to specify whether the distribution ρ(λ) is uniform or not, or having to assume
whether or not it remains the same for all four of the functionals involved in the CHSH string of expectation values.
All we need to assume, in fact, is that the distribution ρ(λ) remains normalized on the space Λ of the complete states.
This implies that the violations of Bell inequalities are purely topological phenomena that have nothing to do with
quantum mechanics per se, whether interpreted locally or “non-locally”, realistically or “non-realistically.”

This almost completes our refutation of Bell’s theorem. Almost, because we have yet to deal with the formal part of
Bell’s proof, which—as we noted after Eq.(19)—requires an assumption of commutativity. The 3-sphere, on the other
hand, containing a rather subtle form of non-commutativity within itself. Although this non-commutativity is purely
classical, it is important to demystify it to eliminate any lingering doubts about our model. One way to demystify
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this non-commutativity is to note that the point BA on the 3-sphere is a different point from the point AB:

Bb(λ)Aa(λ) = − cos θba − C b×a

|b×a|
(λ) sin θba (36)

= − cos θab − C(− c)(λ) sin θab (37)

= ± 1 ∈ S3, about the direction (− cos θab , + cx sin θab , + cy sin θab , + cz sin θab) in IR4. (38)

Indeed, comparing equation (30) with equation (37) we immediately see that AB and BA are two different points
of the 3-sphere, but with the same value. That is to say, both are equal to either +1 or −1, but located at two
different locations within S3. Thus the factorized beable Aa(λ)Bb(λ) in our model would always yield the same
value, regardless of the procedure used to detect it. And yet, it is easy to see that Aa(λ) and Bb(λ) do not commute:

[Aa(λ), Bb(λ) ] = − 2Cc(λ) sin θab ≡ − 2Ca×b(λ) . (39)

How is this possible? In fact, there is nothing mysterious about this classical non-commutativity. It simply amounts
to a vector addition in the embedding space IR4. This can be easily seen by rewriting the above equation as

Aa(λ)Bb(λ) = Bb(λ)Aa(λ) − 2Cc(λ) sin θab . (40)

As we noted earlier, the left hand side of this equation is a point of S3, which can be indexed by its coordinates in
IR4, as spelt out in Eq. (31). The first term on the right hand side, on the other hand, is another point of S3, which
can be indexed by its coordinates in IR4, as spelt out in Eq. (38). And the remaining term is proportional to a third
point of S3, indexed by the coordinates ( 0 , cx , cy , cz) in IR4. Using these three sets of coordinates it is now easy to

see that the non-commutativity in (39) simply amounts to a vector addition in IR4. The embedding space IR4 thus
facilitates a metric on S3, and respecting equation (39) then amounts to respecting this metric topology of S3.

Now, as we have already noted, operationally the right hand side of Eq. (39) would always vanish, because Cc(λ)
represents a measurement result along the direction that is both orthogonal and exclusive to the directions a and
b on the left hand side. In other words, operationally AB and BA are identical to each other, which is consistent
with the fact that they are the same numerical numbers to begin with. In general, however, we must respect the
non-commutativity in Eq. (39), because otherwise we would be making the same mistake that Bell made, and end
up calculating correlations between the points of the real line instead of a 2-sphere. This brings us to the stage of
Eq. (18) in our derivation of the standard Bell-CHSH inequalities. Let us then try to complete this derivation in our
case, in the light of the above non-commutativity. Let us begin with Eq. (19), which we rewrite here for convenience:

|E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′)| ≤
√∫

Λ

{ 4 + [Aa(λ), Aa′(λ) ] [Bb′(λ), Bb(λ) ] } dρ(λ) . (41)

Using Eq. (39) this inequality can be rewritten as:

|E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′)| ≤
√∫

Λ

{ 4 + [− 2Aa×a′(λ)] [− 2Bb′×b(λ)] } dρ(λ) . (42)

And using Eq. (30) (i.e., using the product point theorem), which we now rewrite as

Aa(λ)Bb(λ) = − a · b − Ca×b(λ) , (43)

it can be further reduced to

|E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′)| ≤
√∫

Λ

{
4 + 4

[
− (a × a′) · (b′ × b) − C(a×a′)×(b′×b)(λ)

] }
dρ(λ)

(44)

≤
√

{ 4 − 4 (a × a′) · (b′ × b)}
∫

Λ

dρ(λ) − 4

∫

Λ

C(a×a′)×(b′×b)(λ) dρ(λ) .

(45)

Now the last integral under the radical is proportional to the integral
∫

Λ

Cz(λ) dρ(λ) , where z :=
(a × a′) × (b′ × b)

|(a × a′) × (b′ × b)| , (46)
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which—as we have already noted—vanishes identically for more than one reason. If, moreover, we assume that the
distribution ρ(λ) remains normalized on the space Λ, then the above inequality reduces to

|E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′)| ≤ 2
√

1 − (a × a′) · (b′ × b) . (47)

Finally, by noticing that −1 ≤ (a × a′) · (b′ × b) ≤ +1 , we arrive at the inequalities

− 2
√

2 ≤ E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) ≤ + 2
√

2 , (48)

which are again exactly the inequalities predicted by quantum mechanics. We have derived these inequalities, however,
entirely local-realistically, by respecting the correct topological structure of the EPR elements of reality. Moreover, we
have derived them without specifying the complete state λ, without employing any averaging procedure involving the
third direction Cz(λ), and without assuming that the distribution ρ(λ) remains uniform throughout the experiment.
This time, however, we did have to assume that it remains the same for all four of the expectation functionals of the
CHSH string, in addition to assuming that it remains normalized on the space Λ of the complete states.

By now readers familiar with our Clifford-algebraic model of Refs. [8][9][10] would have recognized that it is a special
case of the above described local-realistic framework. In the model we explicitly specify the complete state λ, and
take it to be a trivector µ with unspecified handedness: µ := ± I. Here I is the fundamental trivector that determines
the entire structure of the Euclidean space [10]. The sign ambiguity in µ thus leaves the handedness of the Euclidean
space unspecified. And it is this freedom of choice between the right and left-handed Euclidean spaces that is the
local hidden variable in our model. Given there unit directions a, b, c in IR3, the projections µ · a, µ · b, and µ · c
are then unit bivectors (2-blades), which represent the EPR elements of reality (i.e., measurement results) as before:

µ · a = ± 1 ∈ S2, about the direction a in IR3,

µ · b = ± 1 ∈ S2, about the direction b in IR3,

and µ · c = ± 1 ∈ S2, about the direction c in IR3, (49)

These equations are thus special cases of the equations (32), with the special case of equation (43) being

(µ · a)(µ · b) = − a · b − µ · (a × b). (50)

Unfortunately, this model has been grossly misunderstood by the critics, mainly because of a rather spurious issue of
representation [21]. What the critics have failed to comprehend is that the bivectors µ · a and µ · b—no matter how
they may “look like”—simply represent points of a 2-sphere [10], with no properties apart from the ones specified in
the above equations. In particular, despite appearances, neither the trivector µ nor the vector n is an intrinsic part of
the bivector µ · n. The reader should therefore guard against any psychological tendency to see structure within the
symbol µ · n, other than a binary measurement result “± 1 about n.” Within Clifford algebra the symbol µ · n stands
for an abstract entity—sometimes referred to as a “2-blade”—with quite a distinct meaning from a similar looking
symbol within vector algebra. In fact, because they are simply the points of a unit 2-sphere, these 2-blades provide
the correct representations of the EPR elements of reality. Therefore, any suggestion of “extracting information” form
the symbol µ · n—as insisted by some of the critics [21]—completely misses the very meaning of this two-centuries
old concept. It is the desired information. It is the correct measurement result. It is the true EPR element of reality.
Once this is understood, it is easy to see that both sides of Eq. (50) represent nothing but a point of a 3-sphere, which
satisfies the map (27), together with the properties (28). Again, neither the trivector µ nor the vectors a and b are
intrinsic parts of this point, but live rather in the embedding space IR3. Consequently, Eq.(19) of Ref. [8], namely

Ec.v.(a, b) =

∫

V3

(µ · a )(µ · b ) dρ(µ) = − a · b , (51)

provides the correct correlations between the points of a 2-sphere, and hence between the EPR elements of reality.
The remaining details of the model are exactly the same as those of the general framework discussed above [9].

Despite the elegance of this model, however, we have refrained from using it in this paper, for we do not wish to
alienate the readers not familiar with the Clifford-algebraic representations of the 3-sphere. But it is worth noting
that the notations of this model allow a straightforward generalization of the theorem discussed above to arbitrary
number of points of a 2-sphere. For example the product of any three points of a 2-sphere immediately gives

(µ · a)(µ · b)(µ · c) = a · (b × c) + µ · {a × (b × c) − a (b · c) } , (52)
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which—being a scalar plus a bivector—is clearly a point of a 3-sphere. Conversely, the points of any 3-sphere can
always be represented by a sum of a scalar and a bivector. For example, the product of any four points of a 2-sphere,

(µ · a)(µ · b)(µ · c)(µ · d) = (a · b)(c · d) − (a × b) · (c × d) +

µ · { (a · b)(c × d) + (c · d)(a × b) − (a × b) · (c × d) } , (53)

is clearly a scalar plus a bivector, and hence a point of a 3-sphere. In fact, the last equation can also be written as

{− a · b − µ · (a × b) } {− c · d − µ · (c × d)} = (a · b)(c · d) − (a × b) · (c × d) +

µ · { (a · b)(c × d) + (c · d)(a × b) − (a × b) · (c × d) } , (54)

which shows that the product of any two points of a 3-sphere itself remains within the 3-sphere. Indeed, it is well
known that S3—being homeomorphic to the Lie group SU(2)—remains closed under multiplication of its points.

It is from this unique property of S3 that the conceptual power and economy of our local-realistic framework stems.
Let us then conclude this section by using this property to further consolidate our framework. Inspired by the EPR
argument, we began this section with the maps Aa(λ) : IR3× Λ → S2 and Bb(λ) : IR3× Λ → S2. That is, we began
by recognizing that the EPR elements of reality for the singlet state are points of a unit 2-sphere. As we saw above,
however, a 2-sphere is simply an equator, or one of the great-spheres of the 3-sphere, just as a 1-sphere is an equator
or a great-circle of a 2-sphere. Thus, for the singlet state (7), an EPR element of reality is just as much a point of a
3-sphere as it is of a 2-sphere: It is a point of S3 that has a vanishing value for one of its four embedding parameters
within IR4. But this is generally not easy for us to visualize, because 3-sphere is not as intuitively accessible to us
as the 2-sphere. In fact, as we have discussed elsewhere [10], there are deeper reasons why the EPR elements of
reality should be represented as points of a 3-sphere rather than a 2-sphere. To begin with, the 3-sphere is the only
sphere related to an associative algebra that is connected, simply connected, and parallelizable, with both it and its
projective space being orientable (the 2-sphere, on the other hand, is neither parallelizable, nor is its projective plane
orientable [24]). In physical terms this means that every point of a 3-sphere can be unambiguously associated with a
measurement result of the spin of a spin-1/2 particle. Conversely, for a given quantum state the correct topology of
the EPR elements of reality is not difficult to determine, at least in the simple cases. Take, for example, the general
case of two-level systems we have been considering. The most general form of such a system is of course

|ψ〉 = ξ1 | + −〉 + ξ2 | − + 〉 , (55)

where ξ1 and ξ2 are complex numbers satisfying the normalization condition | ξ1 |2 + | ξ2 |2 = 1, which is equivalent to

ξ21r + ξ21i + ξ22r + ξ22i = 1 , with ξ1 := ξ1r + i ξ1i and ξ2 := ξ2r + i ξ2i . (56)

But this is evidently the defining equation of a unit 3-sphere, embedded in IR4. On the other hand, | ξ1 |2 and | ξ2 |2,
respectively, are the probabilities of realizing (or actualizing) the states | + −〉 and | − + 〉. Consequently, recalling
the EPR argument for the singlet state from Section II, it is easy to see that there is a one-to-one correspondence in
the present case between the points of a 3-sphere and the EPR elements of reality. Thus the correct topological space
of the EPR elements of reality in the present case is a unit 3-sphere. More generally, for any n−level system the most
likely candidate for the correct topological space of the EPR elements of reality would be a unit (2n−1)-sphere.

These considerations then lead us to consolidate our local-realistic framework for any two-level system as follows.
We begin by replacing our tentative local maps (21) with more general and appropriate local maps

Aa(λ) : IR3× Λ −→ S3, Bb(λ) : IR3× Λ −→ S3, Cc(λ) : IR3× Λ −→ S3, Dd(λ) : IR3× Λ −→ S3, . . . , (57)

(which are simply points of S3), and impose the following locality condition on the joint beable (Aa Bb Cc Dd . . . )(λ):

(Aa Bb Cc Dd . . . )(λ) = Aa(λ)Bb(λ)Cc(λ)Dd(λ) . . . = ± 1 ∈ S3. (58)

The crucial observation here is that, since 3-sphere happens to be closed under multiplication of its points, the product
on the right hand side of this equation is necessarily a point of the 3-sphere. Consequently, our generalized framework
respects the notion of local causality—or factorizability—just as strictly as the framework considered by Bell. That
is to say, just as in Bell’s case (cf. Eq. (5)), the joint beable (Aa Bb Cc Dd . . . )(λ) necessarily satisfies the map

(Aa Bb Cc Dd . . . )(λ) : S3 × S3 × S3 × S3 . . . −→ S3, (59)

and hence any point of a 3-sphere—such as Pn(λ)—can always be factorized into two or more points of the same
sphere. The analogous map considered by Bell for the points of a 0-sphere is then clearly a rather simplistic choice,
if at all a correct one. More importantly, with the above multiplication map exhibiting the locality of our manifestly
realistic framework, the internal consistency of the counterexample in [8][9][10] is now beyond the shadow of doubt.
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V. EXACT, LOCAL, AND REALISTIC COMPLETIONS OF THE GHZ-3, GHZ-4, AND HARDY STATES

Let us now turn to some variants of Bell’s theorem—such as the GHZ or Hardy theorems [11][12]—to show that the
local-realistic framework introduced above has a much wider validity. In many presentations of such theorems certain
hand-waving narratives are employed to accentuate the mystique of quantum mechanics. But at the heart of these
theorems is nothing but an old-fashioned comparison of expectation values, just as it is in the case of Bell’s theorem.
In this respect, Ref. [11]—with its detailed calculations—is a welcome exception, and we shall follow it closely.

A. Exact Local-Realistic Completion of the Hardy State

As our second example of a Bell-type theorem, let us consider Hardy’s “non-locality proof” [12], which has been
hailed as the best version of Bell’s theorem [26]. The two-particle entangled state considered by Hardy is of the form

|Ψz〉 =
1√

1 + cos2 θ

{
cos θ

(
|z, +〉1 ⊗ |z, −〉2 + |z, −〉1 ⊗ |z, +〉2

)
− sin θ

(
|z, +〉1 ⊗ |z, +〉2

)}
, (60)

which represents an ensemble of spin-1/2 particles, just as the state (7), but unlike (7) it is not a rotationally invariant
state. In fact it is characterized by a single parameter θ ∈ {0, π/2} such that, depending on the value of this parameter,
it is either an entangled state or a product state. For instance, for θ = π/2 it is a product state, whereas for θ = 0 it is
a maximally entangled state (belonging to the triplet family of the spin-1/2 particles). If we now consider measuring
spin components of the particles along the directions a and a′ at the one end of the observation station and along the
directions b and b′ at the other end, then the above state leads to the following quantum mechanical predictions:

〈Ψz |a′, +〉1 ⊗ |b , +〉2 = 0 , (61)

〈Ψz |a , +〉1 ⊗ |b′, +〉2 = 0 , (62)

〈Ψz |a , −〉1 ⊗ |b , −〉2 = 0 , (63)

〈Ψz |a′, +〉1 ⊗ |b′, +〉2 =
sin θ cos2 θ√
1 + cos2 θ

, (64)

〈Ψz |a′, +〉1 ⊗ |b , −〉2 =
cos2 θ√

1 + cos2 θ
, 〈Ψz |a , −〉1 ⊗ |b′, +〉2 =

cos2 θ√
1 + cos2 θ

, (65)

〈Ψz |a′, +〉1 ⊗ |b′, −〉2 =
cos3 θ√

1 + cos2 θ
, 〈Ψz |a , +〉1 ⊗ |b , −〉2 =

cos θ√
1 + cos2 θ

, (66)

〈Ψz |a′, −〉1 ⊗ |b , +〉2 =
1√

1 + cos2 θ
, 〈Ψz |a , +〉1 ⊗ |b′, −〉2 =

1√
1 + cos2 θ

, (67)

〈Ψz |a′, −〉1 ⊗ |b′, +〉2 =
cos3 θ√

1 + cos2 θ
, 〈Ψz |a , −〉1 ⊗ |b , +〉2 =

cos θ√
1 + cos2 θ

, (68)

〈Ψz |a′, −〉1 ⊗ |b , −〉2 =
− sin θ cos θ√

1 + cos2 θ
, 〈Ψz |a , −〉1 ⊗ |b′, −〉2 =

− sin θ cos θ√
1 + cos2 θ

, (69)

〈Ψz |a′, −〉1 ⊗ |b′, −〉2 =
− sin θ (1 + cos2 θ)√

1 + cos2 θ
, 〈Ψz |a , +〉1 ⊗ |b , +〉2 =

− sin θ√
1 + cos2 θ

, (70)

provided we assume that a′ · z = b′ · z = cos 2θ and a · z = b · z = 1. That is to say, provided we assume that

|a′ , +〉1 = + cos θ |a, +〉1 + sin θ |a, −〉1 (71)

|a′ , −〉1 = − sin θ |a, +〉1 + cos θ |a, −〉1 (72)

|b′ , +〉2 = + cos θ |b, +〉2 + sin θ |b, −〉2 (73)

and |b′ , −〉2 = − sin θ |b, +〉2 + cos θ |b, −〉2 , (74)

with the directions a′ and b′ kept confined to the polar plane. Hardy’s claim then is that no local-realistic theory
can reproduce these counterintuitive predictions of quantum mechanics. The claim would be true of course, if the
corresponding elements of reality were “lined up” as points of the real line, but by now we know that they are not. By
now we know that the elements of reality corresponding to any two-level system are organized as points of a 3-sphere.
Therefore, the correct question to ask in this context is: whether or not local-realistic maps of the form

Aa(θ, λ) : IR3× Λ −→ S3 and Bb(θ, λ) : IR3× Λ −→ S3 (75)
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(with θ being the known common cause [13]) can reproduce the above quantum mechanical predictions. The answer
to this question is of course in the affirmative. In fact, the above predictions are exhibiting nothing more than
correlations among various points of a 3-sphere. We can see this by specifying these points as follows (cf. Eq. (30)):

A
(+)
a

(θ, λ) = cos[α(θ)] + Aa(λ) sin[α(θ)] , A
(−)
a

(θ, λ) = cos[η(θ)] − Aa(λ) sin[η(θ)] , (76)

B
(+)
b

(θ, λ) = cos[β(θ)] + Bb(λ) sin[β(θ)] , B
(−)
b

(θ, λ) = sin[η(θ)] − Bb(λ) cos[η(θ)] , (77)

A
(+)
a′ (θ, λ) = cos[γ(θ)] + Aa′(λ) sin[γ(θ)] , A

(−)
a′ (θ, λ) = cos[ρ(θ)] − Aa′(λ) sin[ρ(θ)] , (78)

B
(+)
b′ (θ, λ) = cos[δ(θ)] + Bb′(λ) sin[δ(θ)] , B

(−)
b′ (θ, λ) = cos[ν(θ)] − Bb′(λ) sin[ν(θ)] , (79)

where Aa(λ), Aa′(λ), Bb(λ), and Bb′(λ) are points on the equator of S3 (which, as we have noted, is a 2-sphere), and
the angles α(θ), β(θ), γ(θ), δ(θ), η(θ), ρ(θ), and ν(θ) are functions only of the known common cause θ, defined by

cot[γ(θ)] cot[β(θ)] = 1 − 2 sin2 θ = cot[α(θ)] cot[δ(θ)] , (80)

cos[α(θ) + β(θ)] =
− sin θ√

1 + cos2 θ
= cos[ρ(θ) + ν(θ)] + cos[γ(θ) + δ(θ)] , (81)

cos[γ(θ) + δ(θ)] =
sin θ cos2 θ√
1 + cos2 θ

, (82)

cos[ρ(θ)] sin[η(θ)] − cos[ν(θ)] cos[η(θ)]

sin[ρ(θ)] cos[η(θ)] − sin[ν(θ)] sin[η(θ)]
= 1 − 2 sin2 θ =

cos[γ(θ)] sin[η(θ)] − cos[δ(θ)] cos[η(θ)]

sin[δ(θ)] sin[η(θ)] − sin[γ(θ)] cos[η(θ)]
, (83)

cos[α(θ)] cos[ν(θ)] − cos[ρ(θ)] cos[β(θ)]

sin[ρ(θ)] sin[β(θ)] − sin[α(θ)] sin[ν(θ)]
= 1 − 2 sin2 θ =

cos[ρ(θ)] sin[η(θ)] − cos[ν(θ)] cos[η(θ)]

sin[ρ(θ)] cos[η(θ)] − sin[ν(θ)] sin[η(θ)]
, (84)

cos[γ(θ) − ν(θ)] =
cos3 θ√

1 + cos2 θ
= cos[ρ(θ) − δ(θ)] , (85)

and sin[α(θ) + η(θ)] =
cos θ√

1 + cos2 θ
= cos[η(θ) − β(θ)] . (86)

These constraining relations among the functions α(θ) to ν(θ) arise for a number of reasons. First, the local maps
(76) to (79), and hence the angles α(θ) to ν(θ), must respect the topology of the 3-sphere if they are to be the genuine
points of the 3-sphere. Thus, to begin with, each point must remain normalized to unity. Moreover, since S3 remains
closed under multiplication, the end result of a product of any number of these points (performed in any order,
combination, or permutation) must also be normalized to unity, while maintaining the general form (30), in order to
remain within the 3-sphere. Secondly, they must also respect the fact that the state (60) is rotationally non-invariant
in a very specific manner. Consequently, the corresponding elements of reality are not isotropically distributed over the
3-sphere. More precisely, there is no perfect democracy among the points of the 3-sphere, and this lack of democracy is
manifested by the above constraints on the parameters of the embedding space. This can be readily seen, for example,
by setting θ = 0 and θ = π/2, for which the state (60) reduces to a maximally entangled state and a product state,
respectively. In both of these extremal cases the above constraints reduce to trivial shifts among the angles, thereby
restoring most of the symmetries of the system. The corresponding 3-sphere can never be devoid of all asymmetries,
however, because the state (60) can never be reduced to the rotationally invariant state such as (7). Indeed, as we
saw in the case of Bell’s theorem, for the state (7) the analogous angles are always identically equal to π/2, with the
corresponding elements of reality always being on the equator of the 3-sphere. More importantly, explicit expressions
of the functions α(θ), β(θ), γ(θ), δ(θ), η(θ), ρ(θ), and ν(θ) can be easily obtained by solving the above constraints,
for example by the method of elimination. The eight points specified in the equations (76) to (79) are thus not only
the bona fide points of the 3-sphere, but are also completely characterized by a single known parameter θ, just like
the quantum state (60) itself. We will not need these explicit expressions for our calculations, however. All we need
to note for the calculations is that our local-realistic model for the Hardy state is also completely characterized by the
single known common cause θ. Together with the complete state λ, the correlations among the points (76) to (79) of
the 3-sphere would then exactly reproduce the quantum mechanical predictions (61) to (70), as we now show.

The local-realistic derivation of the first of the predictions of the Hardy state, namely (61), proceeds as follows:
∫

Λ

A
(+)
a′ (θ, λ) B

(+)
b

(θ, λ) dρ(λ) =

∫

Λ

{
cos[γ(θ)] + Aa′(λ) sin[γ(θ)]

} {
cos[β(θ)] + Bb(λ) sin[β(θ)]

}
dρ(λ) (87)

=

∫

Λ

{
cos[γ(θ)] cos[β(θ)] + Aa′(λ) sin[γ(θ)] cos[β(θ)]

+ Bb(λ) sin[β(θ)] cos[γ(θ)] + Aa′(λ)Bb(λ) sin[γ(θ)] sin[β(θ)]
}
dρ(λ) . (88)
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Using the product rule Aa′(λ)Bb(λ) = − a′ · b − Ca′×b(λ) from Eq. (43), this integral can be reduced to

∫

Λ

A
(+)
a′ (θ, λ) B

(+)
b

(θ, λ) dρ(λ) =
{

cos[γ(θ)] cos[β(θ)] − (a′ · b) sin[γ(θ)] sin[β(θ)]
} ∫

Λ

dρ(λ)

+

∫

Λ

{
Aa′(λ) sin[γ(θ)] cos[β(θ)] + Bb(λ) sin[β(θ)] cos[γ(θ)]

− Ca′×b(λ) sin[γ(θ)] sin[β(θ)]
}
dρ(λ) . (89)

Now both terms on the right hand side of this equation vanish for different reasons. The first term vanishes because
of the relation (80), whereas the second term vanishes because of more than one reasons. To begin with, each term
within the integrand of the second term involves an average of the function like An(λ), and hence is necessarily zero,
thanks to the relations (9) and (22). But such an averaging procedure is not necessary, since the entire integrand of
the second term is proportional to a point of the 2-sphere about the direction exclusive to both a′ and b, and hence
operationally it would necessarily vanish. In other words, with the first term vanished, the above equation reduces to

∫

Λ

A
(+)
a′ (θ, λ) B

(+)
b

(θ, λ) dρ(λ) = 0 + |d|
∫

Λ

D d

|d|
(λ) dρ(λ) , (90)

where D d

|d|
(λ) = ±1 ∈ S2, and d := { a′ sin[γ(θ)] cos[β(θ)] + b sin[β(θ)] cos[γ(θ)] − (a′ × b) sin[γ(θ)] sin[β(θ)] } is a

direction exclusive to both a′ and b. This can be recognized most transparently in the Clifford-algebraic representation
of Refs. [8][9][10], in which Dd(µ) ≡ µ · { a′ sin[γ(θ)] cos[β(θ)] + b sin[β(θ)] cos[γ(θ)] − (a′ × b) sin[γ(θ)] sin[β(θ)] }.
It is now easy to see that any detector along the direction d would necessarily yield a null result, provided the detectors
along the directions a′ and b have yielded non-null results, and hence operationally the integrand on the right hand
side of the above equation would be necessarily zero. Thus, without needing to specify the complete state λ or its
distribution ρ(λ), and without needing to invoke any averaging procedure, we arrive at the desired result:

∫

Λ

A
(+)
a′ (θ, λ) B

(+)
b

(θ, λ) dρ(λ) = 0 . (91)

This is of course exactly the quantum mechanical prediction (61), but we have derived it entirely local-realistically.

The next two predictions, (62) and (63), can be derived by using similar steps, so we simply make a note of them,

∫

Λ

A
(+)
a

(θ, λ) B
(+)
b′ (θ, λ) dρ(λ) = 0 and

∫

Λ

A
(−)
a

(θ, λ) B
(−)
b

(θ, λ) dρ(λ) = 0 , (92)

and leave them as exercises. The prediction (64), on the other hand, plays a crucial role in Hardy’s “non-locality
proof”, and so we derive it here explicitly. As before, we proceed with our local-realistic derivation as follows:

∫

Λ

A
(+)
a′ (θ, λ) B

(+)
b′ (θ, λ) dρ(λ) =

∫

Λ

{
cos[γ(θ)] + Aa′(λ) sin[γ(θ)]

} {
cos[δ(θ)] + Bb′(λ) sin[δ(θ)]

}
dρ(λ) (93)

=

∫

Λ

{
cos[γ(θ)] cos[δ(θ)] + Aa′(λ) sin[γ(θ)] cos[δ(θ)]

+ Bb′(λ) sin[δ(θ)] cos[γ(θ)] + Aa′(λ)Bb(λ) sin[γ(θ)] sin[δ(θ)]
}
dρ(λ) .

(94)

Using the product rule Aa′(λ)Bb′(λ) = − a′ · b′ − Ca′×b′(λ) from Eq. (43), this integral can be reduced to

∫

Λ

A
(+)
a′ (θ, λ) B

(+)
b′ (θ, λ) dρ(λ) =

{
cos[γ(θ)] cos[δ(θ)] − (a′ · b′) sin[γ(θ)] sin[δ(θ)]

} ∫

Λ

dρ(λ)

+

∫

Λ

{
Aa′(λ) sin[γ(θ)] cos[δ(θ)] + Bb′(λ) sin[δ(θ)] cos[γ(θ)]

− Ca′×b′(λ) sin[γ(θ)] sin[δ(θ)]
}
dρ(λ) . (95)

Now, in close analogy with the previous derivation, the second term on the right hand side of this equation vanishes
identically, because it involves averages of functions like An(λ), all of which vanish necessarily, thanks to the relations
(9) and (22). But once again such averaging procedures are not necessary, since the entire integrand of the second
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term is proportional to a point of the 2-sphere about the direction exclusive to both a′ and b′, and hence operationally
it itself would vanish identically. On the other hand, thanks to the relation (82) and the normalization condition for
the distribution ρ(λ), the first term on the right hand side of the above equation is non-zero, and works out to be

∫

Λ

A
(+)
a′ (θ, λ) B

(+)
b′ (θ, λ) dρ(λ) =

sin θ cos2 θ√
1 + cos2 θ

. (96)

Thus, once again, without needing to specify the complete state λ or its distribution ρ(λ), and without needing to
invoke any averaging procedure, we have local-realistically reproduced the exact quantum mechanical prediction.

In fact, the remaining twelve predictions of quantum mechanics—namely the predictions from (65) to (70)—also
follow from analogous steps. (We leave their derivations as exercises since they do not play a direct role in Hardy’s
theorem.) This shows that all sixteen predictions of the Hardy state, from (61) to (70), are simply local-realistic
correlations between the eight points (given by (76) to (79)) of a unit 3-sphere. Moreover, since we have derived them
without specifying either λ or ρ(λ), it is clear that these correlations are purely topological effects. In other words,
contrary to the conventional wisdom, they have nothing whatsoever to do with “non-locality” or “non-reality.”

B. Exact Local-Realistic Completion of the Four-Particle GHZ State

As our third explicit example, consider the four-particle Greenberger, Horne, Zeilinger state [11]:

|Ψz〉 =
1√
2

{
|z, +〉1 ⊗ |z, +〉2 ⊗ |z, −〉3 ⊗ |z, −〉4 − |z, −〉1 ⊗ |z, −〉2 ⊗ |z, +〉3 ⊗ |z, +〉4

}
. (97)

Just like the Hardy state, this state too is rotationally non-invariant. There is a privileged direction, and this direction
is taken to be the z-direction of the experimental setup [11]. The z-direction is thus the axis of anisotropy of the system.
The quantum mechanical expectation value in this state, of the product of outcomes of the spin components—namely,
the products of finding the spin of particle 1 along n1, the spin of particle 2 along n2, etc.—is given by

EΨz

Q.M.
(n1, n2, n3, n4) := 〈Ψz|σ · n1 ⊗ σ · n2 ⊗ σ · n3 ⊗ σ · n4 |Ψz〉. (98)

This expectation value has been calculated in the Appendix F of Ref. [11]. In the spherical coordinates—with angles
θ1 and φ2 representing the polar and azimuthal angles, respectively, of the direction n1, etc.—it works out to be

EΨz

Q.M.
(n1, n2, n3, n4) = cos θ1 cos θ2 cos θ3 cos θ4 − sin θ1 sin θ2 sin θ3 sin θ4 cos (φ1 + φ2 − φ3 − φ4 ) . (99)

Our goal now is to reproduce this result exactly within our local-realistic framework. The mystifying narratives that
usually accompany the above prediction would then become irrelevant. To this end, our first task is to determine the
correct topological space of the corresponding EPR elements of reality. As we will soon see, it cannot be a 3-sphere,
for the state (97) represents, not a two-level, but a four-level system. Each of the two pairs of the spin-1/2 particles
it represents has four alternatives available to it. These alternatives can be represented by a state-vector of the form

|ψ〉 = ξ1 | + + 〉 + ξ2 | + −〉 + ξ3 | − + 〉 + ξ4 | − − 〉 , (100)

where ξ1, ξ2, ξ3, and ξ4 are complex numbers satisfying the normalization condition | ξ1 |2 + | ξ2 |2 + | ξ3 |2 + | ξ4 |2 = 1.
This condition is equivalent to

ξ21r + ξ21i + ξ22r + ξ22i + ξ23r + ξ23i + ξ24r + ξ24i = 1 , (101)

which is the defining equation of a unit 7-sphere, embedded in IR8. And | ξ1 |2, | ξ2 |2, | ξ3 |2, and | ξ4 |2 are of course
the probabilities of realizing or actualizing the states | + + 〉, | + −〉, | − + 〉, and | − − 〉, respectively. Therefore,
in analogy with the cases we discussed earlier, there is a one-to-one correspondence in this case between the points
of a 7-sphere and the EPR elements of reality. In other words, the correct topological space of the EPR elements of
reality in this case is a unit 7-sphere. Hence we begin our local-realistic description with four local maps of the form

An1
(λ) : IR3× Λ −→ S7, Bn2

(λ) : IR3× Λ −→ S7, Cn3
(λ) : IR3× Λ −→ S7, and Dn4

(λ) : IR3× Λ −→ S7 . (102)

The crucial point to note here is that, just as the 0 and 3-spheres we discussed earlier, the 7-sphere is also closed
under multiplication of its points, and hence it too naturally preserves the locality condition of Bell:

(An1
Bn2

Cn3
Dn4

)(λ) = An1
(λ) Bn2

(λ) Cn3
(λ) Dn4

(λ) = ± 1 ∈ S7. (103)
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That is to say, just as in Bell’s case (cf. Eq. (5)), the joint beable (An1
Bn2

Cn3
Dn4

)(λ) necessarily satisfies the map

(An1
Bn2

Cn3
Dn4

)(λ) : S7 × S7 × S7 × S7 −→ S7. (104)

Consequently, the product of any number of points of a 7-sphere is also a point of the 7-sphere, and—as would have
been demanded by Bell—any point of a 7-sphere can always be factorized into two or more points of the 7-sphere.

Equipped with this powerful mathematical constraint, we take our local beables An1
(λ), Bn2

(λ), Cn3
(λ), and Dn4

(λ)
to be the following four points on the equator of a unit 7-sphere (which is of course a unit 6-sphere):

An1
(λ) = ± 1 ∈ S7, about the direction N1 := (−n1x, +n1y, −n1z, 0, 0, 0, 0 ) ∈ IR7, (105)

Bn2
(λ) = ± 1 ∈ S7, about the direction N2 := (+n2x, +n2y, 0, +n2z, 0, 0, 0 ) ∈ IR7, (106)

Cn3
(λ) = ± 1 ∈ S7, about the direction N3 := (+n3x, +n3y, 0, 0, +n3z, 0, 0 ) ∈ IR7, (107)

Dn4
(λ) = ± 1 ∈ S7, about the direction N4 := (+n4x, −n4y, 0, 0, 0, −n4z, 0 ) ∈ IR7, (108)

with n1x, n1y, and n1z being the components of n1 ∈ IR3; n2x, n2y, and n2z being the components of n2 ∈ IR3; etc.
Thus, with these identifications between the points of the equators S2 of S3 and S6 of S7 (with S3 and S7 being the
fiber and the total space of the corresponding Hopf bundle [27]), a specification of the experimental directions n1, n2,
n3, and n4 in IR3 is equivalent to a specification of the directions N1, N2, N3, and N4 in IR7. One may wonder on
what basis the choices of these specific four points on S7 have been made. They have to do with the symmetries and
asymmetries of the system under consideration. For a four-level system different from the GHZ-4 system the choices
of points would indeed have to be different. Using the above identifications, we can now rewrite the maps (102) as

AN1
(λ) : IR7×Λ −→ S7, BN2

(λ) : IR7×Λ −→ S7, CN3
(λ) : IR7×Λ −→ S7, and DN4

(λ) : IR7×Λ −→ S7. (109)

The local-realistic expectation value for the four particle GHZ system is then given by

E
L.R.

(n1, n2, n3, n4) =

∫

Λ

AN1
(λ) BN2

(λ) CN3
(λ) DN4

(λ) dρ(λ) . (110)

Next, using the product rule (43) (which remains formally the same in the present case2) we obtain the products

AN1
(λ) BN2

(λ) = −N1 ·N2 − EN1×N2
(λ) and CN3

(λ) DN4
(λ) = −N3 ·N4 − FN3×N4

(λ) . (111)

These products in turn allow us to decompose the integrand of (110) into the following five terms

AN1
(λ) BN2

(λ) CN3
(λ) DN4

(λ) = (N1 · N2) (N3 · N4) − (N1 × N2) · (N3 × N4)

+ (N3 · N4) EN1×N2
(λ) + (N1 ·N2) FN3×N4

(λ) − G(N1×N2)×(N3×N4)(λ) . (112)

It is worth remembering here that both sides of the above expression simply represent a bona fide point of S7, which
is equal to ± 1. Substituting it into equation (110) then reduces the local-realistic expectation value functional to

E
L.R.

(n1, n2, n3, n4) = [ (N1 · N2) (N3 · N4) − (N1 × N2) · (N3 × N4) ]

∫

Λ

dρ(λ)

+

∫

Λ

{
(N3 ·N4) EN1×N2

(λ) + (N1 ·N2) FN3×N4
(λ) − G(N1×N2)×(N3×N4)(λ)

}
dρ(λ) . (113)

Now, as we recognized before in the analogous case of equation (89), the integrand in the last term of this expression is
proportional to a single binary point on the equator S6 of the sphere S7, located about the direction N ∈ IR7, which is
given by N := (N3 ·N4)(N1 × N2) + (N1 · N2)(N3 × N4) − (N1 × N2) × (N3 × N4). Once again, this can be seen
most transparently in the elegant language of Clifford algebra Cl7,0 (see, for example, Ref. [30]), but we will avoid this
language here, because of the inability of some critics of Refs. [8][9][10] to understand the Clifford-algebraic concepts.
But whichever language is used, the integrand in question can be easily simplified to a binary point on S6, yielding

E
L.R.

(n1, n2, n3, n4) = [ (N1 · N2) (N3 · N4) − (N1 × N2) · (N3 × N4) ]

∫

Λ

dρ(λ) + |N|
∫

Λ

P N

|N|
(λ) dρ(λ) , (114)

2 More generally, if a + X and b + Y are two points of S7, then their product is given by the point ab − X · Y + aX + bY − X × Y ∈ S7,
where a and b are real numbers, and X × Y is a choice of a cross product in IR7. For further details, see, for example, Ref. [30].
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with P N

|N|
(λ) = ± 1 ∈ S6. Moreover, it is evident from its definition that N is a direction in IR7 that is exclusive to all

four experimentally relevant directions N1, N2, N3, and N4 in IR7. But the latter four directions, by construction,
are equivalent to the directions n1, n2, n3, and n4 in IR3 (cf. Eqs.(105) to (108)), and therefore the direction n in IR3

(defined to be equivalent to the direction N in IR7 by reverse construction) will also be exclusive to the directions n1,
n2, n3, and n4 in IR3. In other words, a detector along the direction n—and hence equivalently along the direction
N—would necessarily yield a null result, provided the detectors along any pair of the directions n1, n2, n3, and n4

have yielded non-null results. As a result, the last term on the right hand side of the above equation is zero for more
than one reason. To begin with, it involves an average of a function analogous to the function Cc(λ) of equation (33),
and hence is necessarily zero, thanks to the relations analogous to the relations (9) and (22). Moreover, operationally
the integrand of the term itself is necessarily zero, for the reasons we just spelled out. Consequently, without specifying
the complete state λ or its distribution ρ(λ), and without invoking any averaging procedure, we arrive at the result

E
L.R.

(n1, n2, n3, n4) = (N1 · N2) (N3 · N4) − (N1 × N2) · (N3 × N4) . (115)

The explicit evaluation of the above equation requires understanding of the vector product in seven dimensions.
So far we have employed vector products in our equations without mentioning the profound fact that they exist only
in three and seven dimensions [29][30]. In seven dimensions, however, they are not invariant under the full rotation
group SO(7). An additional vector—say Z—is required to characterize the vector space IR7, and the vector product
is then defined only with respect to this characterizing vector. The essential reason for this has to do with the fact
that in dimensions greater than four there are more than one planes orthogonal to a given direction. Once the vector
Z is chosen, however, the algebraic structure of the space IR7 is complete [29][30]. The corresponding vector product
is then invariant under the subgroup G2 of the group SO(7), which is an exceptional Lie group that preserves the
structure of the 7-sphere. More precisely, the group G2 is the automorphism group of the vectors in IR8, and hence
is homeomorphic to S7. All this information can be neatly captured by a generalized form of Lagrange’s identity:

(N1 × N2) · (N3 × N4) = (N1 · N3) (N2 · N4) − (N1 · N4) (N2 · N3) + N1 · Z . (116)

In three dimensions the last term on the right hand side of this identity vanishes identically, because Z ≡ 0, and we
recover the familiar Lagrange’s identity [29]. In seven dimensions, however, the last term is non-vanishing in general,
because Z := N2 × (N3 × N4) − N3 (N2 ·N4) + N4 (N2 · N3) is a non-zero function of N2, N3, and N4 such that

Z ·N2 = Z · N3 = Z ·N4 = Z · (N2 × N3) = Z · (N3 × N4) = Z · (N4 × N2) = 0. (117)

Note that the very definition of the vector product in all of the above equations depends on the choice of Z itself.
Given such a choice of Z and the corresponding vector product, the expectation value (115), via (116), simplifies to

E
L.R.

(n1, n2, n3, n4) = (N1 · N2) (N3 · N4) − (N1 · N3) (N2 · N4) + (N1 · N4) (N2 · N3) − N1 · Z , (118)

which involves only a sequence of benign scalar products in seven dimensions. More importantly, this expression of
the expectation value is now guaranteed to be invariant under the group G2 ⊂ SO(7), thereby respecting the structure
of S7. Considering that the z ∈ IR3 is a privileged direction for our GHZ-4 system, the natural choice of Z for us is

Z := ê3 [n2z n3z n4z ] + ê7 [ f(N1, N2, N3, N4 ) ] , (119)

where { ê1, ê2, ê3, ê4, ê5, ê6, ê7} are the basis vectors in IR7, and f(N1, N2, N3, N4 ) is a scalar function. With a
little bit of intuition developed for both the GHZ-4 system (easy) and the 7-sphere (not easy), it is not difficult to
appreciate that this choice of Z correctly characterizes the anisotropy or the rotational non-invariance of the GHZ-4
system within the space IR7. With this Z, and the definitions (105) to (108), the expectation value (118) reduces to

E
L.R.

(n1, n2, n3, n4) = + n1z n2z n3z n4z

− n1y n2y n3y n4y − n1x n2y n3x n4y − n1y n2x n3y n4x − n1x n2x n3x n4x

+ n1x n2x n3y n4y − n1x n2y n3y n4x − n1y n2x n3x n4y + n1y n2y n3x n4x . (120)

In the spherical coordinates—with angles θ1 and φ2 representing respectively the polar and azimuthal angles of the
direction n1, etc.—this expression can be further simplified to

E
L.R.

(n1, n2, n3, n4) = cos θ1 cos θ2 cos θ3 cos θ4 − sin θ1 sin θ2 sin θ3 sin θ4 cos (φ1 + φ2 − φ3 − φ4 ) . (121)

This is of course exactly the quantum mechanical prediction (99) for the GHZ-4 state (97). We have, however,
derived this result within our purely local-realistic framework. Moreover, we have derived it without specifying what
the complete state λ, or the distribution ρ(λ) is, and without employing any averaging procedure over this complete
state. This shows that the correlations exhibited by this expectation value are purely topological effects. They are
simply the classical, deterministic, local, and realistic correlations among four points of a unit 7-sphere.
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C. Exact Local-Realistic Completion of the Three-Particle GHZ State

As our fourth explicit example, consider the three-particle Greenberger, Horne, Zeilinger state [11][28]:

|Ψz〉 = cos
(α

2

) {
|z, +〉1 ⊗ |z, +〉2 ⊗ |z, +〉3

}
+ sin

(α
2

)
exp

(
− i δ

){
|z, −〉1 ⊗ |z, −〉2 ⊗ |z, −〉3

}
. (122)

Just like the Hardy state and the four-particle GHZ state, this state too is rotationally non-invariant. There is a
privileged direction, and this direction is taken to be the z-direction of the experimental setup [11]. In their discussion
of this case GHZ and Shimony [11] emphasize that Bell’s theorem does not hinge on spin. And neither do our
refutations of the theorem. By now it should be clear that all of the so-called quantum correlations in such examples
are in fact purely topological effects, and hence they should not—and do not—hinge on spin. It is less cumbersome,
however, to formulate Bell’s theorem and its refutations in terms of spin, and so we continue this trend. The quantum
mechanical expectation value in the above state, of the product of outcomes of the spin components—namely, the
products of finding the spin of particle 1 along n1, the spin of particle 2 along n2, etc.—is given by

EΨz

Q.M.
(n1, n2, n3) := 〈Ψz|σ · n1 ⊗ σ · n2 ⊗ σ · n3 |Ψz〉. (123)

For a special case, this expectation value has been calculated in Appendix G of Ref. [11], but we shall use the most
general quantum mechanical prediction, as stated, for example, in Ref. [28]. In the spherical coordinates—with angles
θ1 and φ2 representing the polar and azimuthal angles, respectively, of the direction n1, etc.—it can be expressed as

EΨz

Q.M.
(n1, n2, n3) = cosα cos θ1 cos θ2 cos θ3 + sinα sin θ1 sin θ2 sin θ3 cos (φ1 + φ2 + φ3 + δ ) . (124)

Once again, this result can be derived exactly within our local-realistic framework. To accomplish this, however,
we must first determine the correct topological space of the corresponding EPR elements of reality. It turn out that
this space is again a unit 7-sphere. The most general form of the three-particle state such as (122) can be written as

|ψ〉 = ζ1 | + + + 〉 + ζ2 |− + + 〉 + ζ3 |+ −+ 〉 + ζ4 |+ +−〉 + ζ5 |+ −−〉 + ζ6 |− +−〉 + ζ7 |− −+ 〉 + ζ8 | − −− 〉.
(125)

From this state it is easy to see that when one of the particles is in a definite spin state, the remaining pair of particles
has four alternative states available to it. These alternative states can be represented by a state-vector of the form

|χ〉 = ξ1 | + + 〉 + ξ2 | + −〉 + ξ3 | − + 〉 + ξ4 | − − 〉 , (126)

where ξ1, ξ2, ξ3, and ξ4 are complex numbers satisfying the normalization condition | ξ1 |2 + | ξ2 |2 + | ξ3 |2 + | ξ4 |2 = 1.
This condition is equivalent to

ξ21r + ξ21i + ξ22r + ξ22i + ξ23r + ξ23i + ξ24r + ξ24i = 1 , (127)

which is the defining equation of a unit 7-sphere, embedded in IR8. And | ξ1 |2, | ξ2 |2, | ξ3 |2, and | ξ4 |2 are of course the
probabilities of realizing or actualizing the states | + + 〉, | + −〉, | − + 〉, and | − − 〉, respectively. Therefore, in
analogy with the previous case, in this case too there is a one-to-one correspondence between the points of a 7-sphere
and the EPR elements of reality. In other words, the correct topological space of the EPR elements of reality in the
present case is again a unit 7-sphere. Hence we begin our local-realistic description with three local maps of the form

An1
(λ) : IR3× Λ −→ S7, Bn2

(λ) : IR3× Λ −→ S7, and Cn3
(λ) : IR3× Λ −→ S7 , (128)

and take them to be the following three points on the equator of a unit 7-sphere (which is of course a unit 6-sphere):

An1
(λ) = ± 1 ∈ S7, about the direction N1 := (+n1x, +n1y, 0, +n1z, 0, 0, 0 ) ∈ IR7, (129)

Bn2
(λ) = ± 1 ∈ S7, about the direction N2 := (+n2x, −n2y, 0, 0, −n2z, 0, 0 ) ∈ IR7, (130)

Cn3
(λ) = ± 1 ∈ S7, about the direction N3 := (−n3x, −n3y, 0, 0, 0, +n3z, 0 ) ∈ IR7. (131)

Here n1x, n1y, and n1z are the components of n1 ∈ IR3; n2x, n2y, and n2z are the components of n2 ∈ IR3; and so on.

Thus, just as in the previous case, a specification of the directions n1, n2, and n3 in IR3 is equivalent to a specification
of the directions N1, N2, and N3 in IR7. Once again the choice of these three points are motivated by the symmetries
and asymmetries of the state under consideration. Using these identifications, we can now rewrite the maps (128) as

AN1
(λ) : IR7× Λ −→ S7, BN2

(λ) : IR7× Λ −→ S7, and CN3
(λ) : IR7× Λ −→ S7. (132)
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The local-realistic expectation value for the three particle GHZ system is then given by

E
L.R.

(n1, n2, n3) =

∫

Λ

PN0
AN1

(λ) BN2
(λ) CN3

(λ) dρ(λ) , (133)

where PN0
∈ S7 about the direction N0 := (−n0x, +n0y, −n0z, 0, 0, 0, 0 ) ∈ IR7 is a fixed reference point on S7, with

n0x = sinα cos δ, n0y = sinα sin δ, and n0z = cosα being its Cartesian and spherical coordinates in IR3. In other
words, the point PN0

∈ S7 in the expression (133) specifies the relative and overall phases of the state (122).

Next, using the product rule (43) (which again remains the same in the present case3) we obtain the products

PN0
AN1

(λ) = −N0 ·N1 − EN0×N1
(λ) and BN2

(λ) CN3
(λ) = −N2 · N3 − FN2×N3

(λ) . (134)

These products in turn allow us to decompose the integrand of (133) into the following five terms

PN0
AN1

(λ) BN2
(λ) CN3

(λ) = (N0 · N1) (N2 · N3) − (N0 × N1) · (N2 × N3)

+ (N2 · N3) EN0×N1
(λ) + (N0 · N1) FN2×N3

(λ) − G(N0×N1)×(N2×N3)(λ) . (135)

It is worth remembering here that both sides of the above expression simply represent a bona fide point of S7, which
is equal to ± 1. Substituting it into equation (133) then reduces the local-realistic expectation value functional to

E
L.R.

(n1, n2, n3) = [ (N0 · N1) (N2 · N3) − (N0 × N1) · (N2 × N3) ]

∫

Λ

dρ(λ)

+

∫

Λ

{
(N2 ·N3) EN0×N1

(λ) + (N0 ·N1) FN2×N3
(λ) − G(N0×N1)×(N2×N3)(λ)

}
dρ(λ) . (136)

Now, just as we saw in the case of equation (113), we see that the integrand in the last term of this equation is
proportional to a point on the equator S6 of the sphere S7, located about the direction N ∈ IR7, which is given by
N := (N2 · N3)(N0 × N1) + (N0 ·N1)(N2 × N3) − (N0 × N1) × (N2 × N3). And hence this equation simplifies to

E
L.R.

(n1, n2, n3) = [ (N0 · N1) (N2 · N3) − (N0 × N1) · (N2 × N3) ]

∫

Λ

dρ(λ) + |N|
∫

Λ

P N

|N|
(λ) dρ(λ) , (137)

with P N

|N|
(λ) = ± 1 ∈ S6. Moreover, it is evident from the above definition that N is a direction in IR7 that is exclusive

to all three experimentally relevant directions N1, N2, and N3 in IR7. But the latter three directions, by construction,
are equivalent to the directions n1, n2, and n3 in IR3 (cf. Eqs.(129) to (131)), and therefore the direction n in IR3

(defined to be equivalent to the direction N in IR7 by reverse construction) will also be exclusive to the directions
n1, n2, and n3 in IR3. In other words, a detector along the direction n—and hence equivalently along the direction
N—would necessarily yield a null result, provided the detectors along any pair of the directions n1, n2, and n3 have
yielded non-null results. As a result, the last term on the right hand side of the above equation is zero for more than
one reason. To begin with, it involves an average of a function analogous to the function Cc(λ) of equation (33), and
hence is necessarily zero, thanks to the relations analogous to the relations (9) and (22). Moreover, operationally the
integrand of the term itself is necessarily zero, for the reasons we just spelled out. Consequently, without specifying
the complete state λ or its distribution ρ(λ), and without invoking any averaging procedure, we arrive at the result

E
L.R.

(n1, n2, n3) = (N0 · N1) (N2 · N3) − (N0 × N1) · (N2 × N3) . (138)

This equation can now be explicitly evaluated just as before. First, using the generalized Lagrange’s identity

(N0 × N1) · (N2 × N3) = (N0 · N2) (N1 · N3) − (N0 · N3) (N1 · N2) + N0 · Z (139)

it can be simplified to

E
L.R.

(n1, n2, n3) = (N0 · N1) (N2 · N3) − (N0 · N2) (N1 · N3) + (N0 · N3) (N1 · N2) − N0 · Z . (140)

Next, noting that the z ∈ IR3 is a privileged direction for the GHZ-3 system, Z can be recognized to be of the form

Z := ê3 [n1z n2z n3z ] + ê7 [ f(N0, N1, N2, N3 ) ] , (141)
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where { ê1, ê2, ê3, ê4, ê5, ê6, ê7} are the basis vectors in IR7, and f(N0, N1, N2, N3 ) is a scalar function. Then,
using this Z, the vector N0, and the definitions (129) to (131), the expectation value (140) can be simplified to

E
L.R.

(n1, n2, n3) = + n0z n1z n2z n3z

+ n0y n1y n2y n3y − n0x n1y n2x n3y − n0y n1x n2y n3x + n0x n1x n2x n3x

− n0x n1x n2y n3y − n0x n1y n2y n3x − n0y n1x n2x n3y − n0y n1y n2x n3x . (142)

In the spherical coordinates—with angles θ1 and φ2 representing respectively the polar and azimuthal angles of the
direction n1, etc.—this expression can then be further reduced to

E
L.R.

(n1, n2, n3) = cosα cos θ1 cos θ2 cos θ3 + sinα sin θ1 sin θ2 sin θ3 cos (φ1 + φ2 + φ3 + δ ) . (143)

This is of course exactly the quantum mechanical prediction (124) for the GHZ-3 state (122). We have, however,
derived this result within our purely local-realistic framework. Moreover, we have derived it without specifying what
the complete state λ, or the distribution ρ(λ) is, and without employing any averaging procedure over the complete
state. This shows that the correlations expressed in this expectation value are purely topological effects. They are
simply the classical, deterministic, local, and realistic correlations among three points of a unit 7-sphere.

VI. EXACT LOCAL-REALISTIC COMPLETION OF ANY ARBITRARY ENTANGLED STATE IS ALWAYS POSSIBLE

Amidst all the details, we learned in the previous sections that correlations between the points of two different
topological spaces cannot be the same in general. For example, correlations between the points of the real line are
necessarily linear, whereas correlations between the points of a 3-sphere, or a 7-sphere are sinusoidal. Moreover, we
learned that local-realistic completions of the quantum states of any two, three, or four-level systems—such as the
Bell, Hardy, or GHZ states—are easy to achieve, as long as the topological spaces of the corresponding EPR elements
of reality are correctly identified. Now for the Bell, Hardy, and GHZ states the correct topological spaces turn out
to be the 3 and 7-spheres. And unlike many of their cousins these spheres have some very desirable properties [10].
The most significant among these is the fact that they remain closed under multiplication, and hence their points
necessarily preserve the locality condition of Bell. More precisely, both of these spheres are topological groups3 [14],
which are topological spaces tailor-made to preserve the locality condition of Bell. To see this more clearly, recall that
a topological group G, by definition, is a group that is also a topological space, such that the group operation map

G× G −→ G , sending (x, y) 7−→ x y , (144)

and the inversion map G −→ G , sending x 7−→ x−1, (145)

are both continuous maps. Consequently, any point of the space G can be factorized into two or more points of the
same space, and hence such a space is a tailor-made target space for hosting the locality condition of Bell. In addition
to these two maps, of course, there exists an identity element e ∈ G (as in any group) such that

x e = e x = x and x−1 x = xx−1 = e ∀ x, x−1 ∈ G . (146)

With these observations, and drawing from the four examples we discussed in the previous sections, we now proceed
to show that a local-realistic completion of any arbitrary entangled state is always guaranteed within our framework. To
this end, consider an arbitrary quantum state |Ψ〉 ∈ H, where H is a Hilbert space of arbitrary dimensions, which may
or may not be finite. It is important to note that we impose no restrictions on either |Ψ〉 or H, apart from their usual
quantum mechanical meanings. In particular, the state |Ψ〉 can be as entangled as one may like, and the space H can

be as large or small as one may like. Next consider a self-adjoint operator Ô(a, b, c, d, . . . ) on this Hilbert space,
parameterized by a number of local parameters, a, b, c, d, etc., with their usual contextual meaning [31], as in any
Bell-type setup [15]. The quantum mechanical expectation value of this observable in the state |Ψ〉 is then given by:

E
Q.M.

(a, b, c, d, . . . ) = 〈Ψ| Ô(a, b, c, d, . . . ) |Ψ〉 . (147)

3 Actually, 7-sphere, satisfying the octonionic multiplication rules, is not associative, and hence it is only a topological quasi-group. A
quasi-group satisfies all the axioms of a group except the axiom of associativity. Thus a group, by definition, is an associative quasi-group.
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Our goal now is to show that this expectation value can always be reproduced within our local-realistic framework.
To this end, our first task would be to determine the correct topological space of the corresponding EPR elements of
reality. This would be the space composed of all possible measurement results, and our task would be to determine the
correct topology of this space. Depending on how complicated the state |Ψ〉 is, in practice this could be a formidable
task. In the cases of Bell, Hardy, and GHZ states, however, we were able to determine this space without difficulty.
Thus there is no in-principle reason why it cannot always be determined in practice. In fact, whether determinable in
practice or not, all that is required for the locality condition of Bell to hold in general is that this space is a topological
space that satisfies the properties (144) to (146). For the Bell, Hardy, and GHZ states the correct topological spaces
do indeed turn out to be the spaces that satisfy these properties, and, as we shall see, those are not exceptions.

To appreciate this fact, recall how we determined the topological spaces in our four examples (cf. Eqs. (56), (101),
and (127)). Although we did not spell this out before, in each case we began by noting that a Hilbert space in general
is a topological vector space whose topology is given by a norm. Then, by using the normalization condition on its
elements we recognized—say, for the two-level system—that the corresponding Hilbert space has the topology of a
3-sphere. Then, recalling the EPR argument from Section II, we recognized that there is a one-to-one correspondence
between the points of this 3-sphere and the corresponding EPR elements of reality for the system. The 3-sphere,
however, is a topological group. That is to say, it is a topological space that is also a group, satisfying the properties
(144) to (146). And any Hilbert space—being a vector space—is also a topological group, with addition of its vectors
as the group operation. Moreover, at least in the case of the 3-sphere, the multiplicative group of the EPR elements
of reality is homomorphic to the additive group of the corresponding Hilbert space. That is to say, if |Ψa 〉 and |Ψb 〉
are two vectors in H and Aa and Bb are two points of S3, then there exist a homomorphism h : H → S3 such that

h( |Ψa 〉 + |Ψb 〉 ) = h( |Ψa 〉 ) h( |Ψb 〉 ) = Aa Bb ∈ S3. (148)

Thus—since any such group homomorphism is designed to preserve the group structure—we see that in this case the
group properties (144) to (146) of S3 are inherited from the group properties of H itself (viewed as an additive group).
Similar observations hold also for the cases of the three and four-level systems, except that the 7-sphere of these cases
is not a group, but a topological quasi-group4. Nevertheless, even in this case the basic properties (144) to (146)
continue to hold, since they are inherited from the additive group of the corresponding Hilbert spaces themselves.

Generalizing from these lessons, we now identify the topological spaces of the EPR elements of reality for arbitrary
quantum systems as follows. If |Ψa 〉 and |Ψb 〉 are two vectors in a Hilbert space H representing a quantum system,
and Aa and Bb are two points of a topological space Ω, then Ω is the topological space of the corresponding EPR
elements of reality if there exists a morphism m : H → Ω (in the concrete category of topological spaces) such that

m( |Ψa 〉 + |Ψb 〉 ) = m( |Ψa 〉 ) m( |Ψb 〉 ) = Aa Bb ∈ Ω . (149)

We need not go into the technical details of the category theory to understand the basic properties of this morphism
(but here is a convenient reference: [32]). All we need to know for our purposes is that, (1) given a Hilbert space H,
one can always find a topological space Ω and a morphism m : H → Ω such that the above equation is satisfied; and
(2) the points of the so-defined topological space—whether it is a group or not—would necessarily satisfy the condition
(144). That is to say, since by definition any Hilbert space remains closed under addition of its vectors, the space Ω
will necessarily be a topological space closed under multiplication of its points. In other words, the space of the EPR
elements of reality (or measurement results) identified by the above morphism will automatically satisfy the locality
condition of Bell. In particular, if—with the intention of reproducing (147)—we consider a collection of local maps

Aa(λ) : IR3× Λ −→ ΩH, Bb(λ) : IR3× Λ −→ ΩH, Cc(λ) : IR3× Λ −→ ΩH, Dd(λ) : IR3× Λ −→ ΩH, . . . , (150)

then the joint beable (Aa Bb Cc Dd . . . )(λ) corresponding to the operator Ô(a, b, c, d, . . . ) can always be factorized as

(Aa Bb Cc Dd . . . )(λ) = Aa(λ) Bb(λ) Cc(λ) Dd(λ) . . . ∈ ΩH , (151)

such that [ Aa(λ) Bb(λ) Cc(λ) Dd(λ) . . . ] : ΩH × ΩH × ΩH × ΩH . . . −→ ΩH ∋ (Aa Bb Cc Dd . . . )(λ) . (152)

It is now straightforward to calculate the local-realistic counterpart of the quantum mechanical prediction (147) as

E
L.R.

(a, b, c, d, . . . ) =

∫

Λ

(Aa Bb Cc Dd . . . )(λ) dρ(λ) =

∫

Λ

Aa(λ) Bb(λ) Cc(λ) Dd(λ) . . . dρ(λ) . (153)

Suppose now the space ΩH is a k-dimensional space, say Ωk. Then this space can be embedded into the space IRk+1,
say by a map i : Ωk →֒ IRk+1, and normalized to unity, so that the points of its set can be enumerated as binary
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numbers, ± 1, just as in the cases of the spheres Sk. And again in analogy with the spheres (cf. Eqs. (30) and (31)),

the integrand of the above equation can be represented in terms of the parameters of the embedding space IRk+1 as

Aa(λ) Bb(λ) Cc(λ) Dd(λ) . . . = f(a, b, c, d, . . . ) + PN(λ) g (a, b, c, d, . . . ) . (154)

Here f(a, b, c, d, . . . ) and g (a, b, c, d, . . . ) are scalar functions in IR, PN(λ) = ± 1 is a binary point on the “equator”

Ωk−1 of the space Ωk, and N(a, b, c, d, . . . ) is a k-dimensional vector in IRk. Note that both sides of this equation
simply represent a point of the space Ωk, which is either +1 or −1, but in two different parameterizations. The left
hand side is parameterized in terms of the vectors a, b, c, d, etc. in IR3, whereas the right hand side is parameterized
in terms of the coordinates of the embedding space IRk+1. That such a decomposition of a point of Ωk can always be
achieved is clear enough from the elementary vector analysis, but it is also amply exemplified by the four examples we
discussed in the previous sections. What may be less obvious is the fact that one can always choose local maps (150) so
that the scalar functions f(a, b, c, d, . . . ) and g (a, b, c, d, . . . ) of the above decomposition are rendered independent

of the complete state λ, and the 3-vector n in IR3 contained in N ∈ IRk is rendered exclusive to the experimental
directions a, b, c, d, etc. in IR3. In other words, for any arbitrary quantum state |Ψ〉 and a self-adjoint operator

Ô(a, b, c, d, . . . ), one can always choose the local maps (150) representing the EPR elements of reality such that the
expectation functional (153) is simplified to the canonical form exemplified by the Eqs. (33), (90), (114), and (137):

E
L.R.

(a, b, c, d, . . . ) = f(a, b, c, d, . . . )

∫

Λ

dρ(λ) + g (a, b, c, d, . . . )

∫

Λ

PN(λ) dρ(λ) . (155)

Moreover, since PN(λ) is a binary point on Ωk−1 about the direction N exclusive to the experimental directions, the
second term on the right hand side of this equation—just as in our explicit examples—will necessarily vanish for more
than one reason. Consequently, for any normalized distribution ρ(λ), the above equation can always be reduced to

E
L.R.

(a, b, c, d, . . . ) = f(a, b, c, d, . . . ) . (156)

Thus, regardless of what the complete state λ or its distribution ρ(λ) is, and without having to use any averaging
procedure, we can always reproduce the quantum mechanical expectation value (147) for any state |Ψ〉, provided we
make judicious choices for the maps (150)—based on the symmetries and asymmetries of the system—to ensure that

f(a, b, c, d, . . . ) = 〈Ψ| Ô(a, b, c, d, . . . ) |Ψ〉 . (157)

For example, for the four-particle GHZ state we were able to identify the correct points of a 7-sphere to ensure that

f(n1, n2, n3, n4) = cos θ1 cos θ2 cos θ3 cos θ4 − sin θ1 sin θ2 sin θ3 sin θ4 cos (φ1 + φ2 − φ3 − φ4 ) . (158)

Of course, this example, as well as the examples of the three-particle GHZ state, the Hardy State, and the Bell state,
are all trivial examples compared to how nontrivial a general quantum state can be. Hence, to follow through the above
local-realistic framework in general would clearly be a formidable task. But it can be followed trough in principle,
for any quantum state |Ψ〉, and then the result would be a bona fide local-realistic completion of that quantum state,
without requiring explicit knowledge of the corresponding complete state. Thus, as suspected all along by Einstein,
Podolsky, and Rosen [7][17], quantum mechanical stochasticity and entanglement are both entirely dispensable. And
although any future theory of physics may well have to respect contextuality in general [31], it need not respect remote
contextuality, for we have just shown that the latter can be understood as a purely classical, topological effect.

VII. CONCLUDING REMARKS

When a bizarre result occurs at the end of an experiment, one usually suspects that a systematic error has slipped-in
during the course of its execution. Occurrence of a systematic error in theoretical work is rather rare, but that is
precisely what has happened in the case of Bell’s theorem. What is astonishing, however, is that, despite the fact
that the error in this case is in plain sight—in the very first equation of Bell’s paper—it remains unrecognized, even
after being exposed explicitly [8][9][10]. To be sure, the error is considerably obscured by the probabilistic narratives
of Bell’s theorem, but it becomes plainly obvious as soon as one leaves behind the insularity of these narratives, goes
back to the original EPR argument, and recognizes the correct topological structure of the EPR elements of reality.
It then becomes obvious that a belief in Bell’s theorem is no better than the beliefs of those Linelanders [33] who
were unaware of the second dimension (let alone the third). Once the “Sphereland” is glimpsed and the fictitiousness
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of the “Lineland” is recognized, however, it only takes a few lessons in elementary topology to rectify Bell’s error.
Without justification, Bell presumed incorrect topology for the EPR elements of reality, and thus forfeited his game
from the start. The same is true of all of the variants and spinoffs of Bell’s theorem, such as, for example, the GHZ
or Hardy type theorems. With complete disregard for topology, all such theorems represent EPR elements of reality
as points of the real line, and consequently begin their arguments by blissfully presuming local maps such as

Aa(λ) : IR3× Λ −→ I ⊆ IR , with (AaBb)(λ) : I × I −→ I . (159)

But these maps are a pure fiction. The EPR elements of reality have nothing whatsoever to do with the points of the
real line. They are not “lined up”, as it were, forming a real line. More precisely, the topology of the EPR elements
of realty is anything but the order topology of the real line1. Hence what is usually called “local realism” in the
literature is a pure fiction. And what are usually called “classical correlations” have nothing whatsoever to do with
the classical reality. These are straw men, erected just to be knocked off. As is evident from the Hopf fibrations of
S3 and S7 [10][27], classical reality has far deeper topological structure than what Bell theorists seem to recognize.
You may search the vast literature on Bell’s theorem in vain, but you will not find the slightest sensitivity to this
deep structure. If, in an ad hoc manner, this structure is replaced with the fictitious structure of the real line, then
Bell’s theorem follows; but why would any physicist be interested in such a fictitious theorem? Put differently: just
as Newtonians—with their Kantian commitments to “non-locality”—believed that spacetime is always flat and rigid
regardless of what matter fields are present, Bell theorists believe that EPR elements of reality are always lined up as
points of the real line, regardless of which system is being considered. But it is abundantly clear from the argument
of EPR that the elements of reality they argued for are ordered as points of a 2-sphere (in the case of the singlet
state), not lined up as the real line. More generally, in the cases considered by Hardy and GHZ, the elements of reality
are ordered as points of a 3 or 7-sphere. And since both of these spheres remain as closed under multiplication as
the real line, they respect the locality condition of Bell just as strictly as the real line. Consequently, any physically
meaningful Bell type theorem ought to begin by representing the EPR elements of reality by local maps such as

Aa(λ) : IR3× Λ −→ S3 , with (Aa Bb)(λ) : S3 × S3 −→ S3. (160)

And instead of comparing the quantum correlations with the correlations between the points of the real line, it ought
to be comparing them with the correlations between the points of a 3 or 7-sphere, as we have done in this paper and
elsewhere [8][9][10]. When this is done correctly, no incompatibility between the predictions of quantum mechanics
and local realism arises. In fact, as we demonstrated above, an exact, deterministic, local, and realistic model for the
EPR correlations is easy to construct, with natural extensions to the cases of rotationally non-invariant entangled
states considered by GHZ and Hardy. In particular, within our local-realistic framework we are able to reproduce

(1) the exact quantum mechanical expectation value for the singlet state: E(a, b) = − a · b ;

(2) the exact violations of Bell-CHSH inequalities: − 2
√

2 ≤ E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) ≤ + 2
√

2 ;

(3) all sixteen predictions of the Hardy state, such as 〈Ψz |a′, +〉1 ⊗ |b , +〉2 = 0 ,

〈Ψz |a , +〉1 ⊗ |b′, +〉2 = 0 ,

〈Ψz |a , −〉1 ⊗ |b , −〉2 = 0 ,

but 〈Ψz |a′, +〉1 ⊗ |b′, +〉2 = sin θ cos2 θ√
1 + cos2 θ

6= 0 ;

(4) the exact quantum mechanical expectation value for the three-particle GHZ state:

E(n1, n2, n3) = cosα cos θ1 cos θ2 cos θ3 + sinα sin θ1 sin θ2 sin θ3 cos (φ1 + φ2 + φ3 + δ ) ; and

(5) the exact quantum mechanical expectation value for the four-particle GHZ state:

E(n1, n2, n3, n4) = cos θ1 cos θ2 cos θ3 cos θ4 − sin θ1 sin θ2 sin θ3 sin θ4 cos (φ1 + φ2 − φ3 − φ4 ).

These results should not be surprising to anyone who is familiar with classical mechanics. In particular, they would
not have been surprising to Hamilton, Hopf, or Grassmann. For the first three of these results simply express classical
correlations among the points of a 3-sphere, whereas the last two express those among the points of a 7-sphere. In
fact, since we have been able to derive these results without specifying what the complete state λ is or the distribution
ρ(λ) is, and without employing any averaging procedure, they show that the correlations in each of the above cases
are purely topological effects. They are simply the local, realistic, and deterministic correlations among certain points
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of the two topological spaces—namely, S3 and S7. In particular, they have nothing to do with the monstrosities like
“non-locality” or “non-reality.” What the quantum mechanical descriptions of the Bell, GHZ, and Hardy states are
providing us is nothing more than a useful shortcut to the local correlations between the EPR elements of reality.
Thus the conclusion of EPR stands as firmly today as it did in 1935. In fact, there is nothing special about the above
four entangled states. As we saw in the previous section, exact local-realistic completion of any arbitrary entangled
state can be easily achieved within our framework, at least in principle, by employing local maps of the from

Aa(λ) : IR3× Λ −→ ΩH and (Aa Bb)(λ) : ΩH × ΩH −→ ΩH , (161)

where ΩH is an arbitrary topological space composed of possible measurement results. Consequently, it is clear that
all any Bell type theorem can possibly prove is that correlations between the points of a sphere—or a more general
topological space—cannot be reproduced by the correlations between the points of the real line. But any eighteenth
century student would have known that long before the advent of quantum mechanics. Indeed, it is hard to find claims
in physics more vacuous than those of Bell-type theorems. In fact, they sound a lot like the impossibility claims of
those Linelanders [33], whose entire totality was the real line. But what may be impossible for the Linelanders is
a child’s play for the Flatlanders. And what may be miraculous to the Flatlanders is a mundane tedium to the
Spacelanders. Hence the follies of a one-dimensional world can hardly be taken as proofs of universal impossibility.
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