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Failure of Bell’s Theorem and the Local Causality of the Entangled Photons
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Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

A counterexample to Bell’s theorem is presented which uses a pair of photons instead of spin-1/2
particles used in our previous counterexamples. A locally causal protocol is provided for Alice and
Bob, which allows them to simulate observing photon polarizations at various angles, and record
their results as A = ± 1 ∈ S3 and B = ± 1 ∈ S3, respectively. When these results are compared,
the correlations are seen to be exactly those predicted by quantum mechanics; namely cos 2(α− β),
where α and β are the angles of polarizers. The key ingredient in our counterexample is the topology
of 3-sphere, which remains closed under multiplication, thus preserving the locality condition of Bell.
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One of the first steps we often take towards measuring
a physical quantity is to set up a Cartesian coordinate
system {x, y, z} in the Euclidean space E3. This amounts
to modeling the Euclidean space as a 3-fold product of the
real line, IR3. This procedure has become so familiar to
us that in practice we often identify E3 with its Cartesian
model, and simply think of IR3 as the Euclidean space.
As we shall see, however, this seemingly innocuous act of
convenience comes with a very heavy price: It is largely
responsible for the illusions of “quantum non-locality.”
Once a coordinate-free geometric model of the Euclidean
space is used, the correlations observed in the EPR-type
experiments involving photon pairs [1], namely

A(α) = ± 1, B(β) = ± 1,

E(α) = 0, E(β) = 0,

E(α, β) = cos 2(α− β), (1)

are easily understood, in a strictly local-realistic terms.
Euclid himself of course did not think of E3 in terms

of triples of real numbers. He defined its representation
axiomatically, entirely in terms of primitive geometric
objects such as points and lines, together with a list of
their properties, from which his theorems of geometry
follow. Today we know, however, that it is quite tricky to
give a suitable definition of Euclidean space in the spirit
of Euclid, and hence in physics we instinctively identify
E3 with IR3 whenever possible. But there is no natural,
geometrically-determined way to identify the two spaces
without introducing an unphysical notion of arbitrarily
distinguished coordinate system. This difficulty is clearly
relevant in the study of Bell’s theorem [2], for time and
again we have learned that surreptitious introduction of
unphysical ideas in physics could lead to distorted views
of the physical reality. A coordinate-free representation
of the Euclidean space is undoubtedly preferable, if what
is at stake is the very nature of the physical reality.
Fortunately, precisely such a representation of E3, with

a rich algebraic structure, was provided by Grassmann
in 1844 [3]. As in Euclid’s geometry, the basic elements of
this powerful structure are not coordinate systems, but
points, lines, planes, and volumes, all treated on equal

footing. Today one begins this framework by postulating
a unit volume element (or a trivector) in E3, defined by

I := ex ∧ ey ∧ ez , (2)

with {ex, ey, ez} being a set of orthonormal vectors in
IR3, and “∧” the “outer” product of Grassmann [3]. Each
vector ej is then a solution of the equation I ∧ ej = 0,
and every pair of them respects the fundamental product

ej ek = ej · ek + ej ∧ ek , (3)

where ej ∧ ek are unit bivectors, with counterclockwise
sense for the cyclicly permuted indices (j, k = x, y, or z).
The resulting structure is a space spanned by the basis

{1, ex, ey, ez, ex ∧ ey, ey ∧ ez, ez ∧ ex, ex ∧ ey ∧ ez},
(4)

and encodes a graded linear algebra of dimensions eight.
This algebra intrinsically characterizes the space E3.
Our interest, however, lies in a certain subalgebra of

this algebra, the so-called even subalgebra of dimensions
four, defined by the bivector (or spinor) basis [4]:

{1, ex ∧ ey, ey ∧ ez, ez ∧ ex}. (5)

Crucially for our purposes, this subalgebra happens to
remain closed under multiplication. Consequently, it can
be used by itself to model the Euclidean space E3. In fact,
physically it provides the most consistent coordinate-free
representation of the Euclidean 3-space [4]. The vectors
and trivectors are then no longer intrinsic to the basic
subalgebra, but belong to a dual space. Only the scalars
and bivectors—treated on equal footing—are taken to be
the intrinsic parts of the algebra. This can be seen more
clearly if we use the condition I ∧ ej = 0 to rewrite the
basis bivectors in equation (5) as I · ez, I · ex, and I · ey.
Their geometric product, analogous to equation (3), then
leads to the defining equation of this subalgebra:

(I · ej) (I · ek) = − δjk − ǫjkl (I · el). (6)

Evidently, despite the occurrences of trivectors and basis
vectors, only the basis scalar and bivectors are involved in
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this definition. Consequently, in what follows only scalars
and bivectors (and their combinations) will have direct
physical significance—vectors and trivectors will merely
facilitate computational ease, or “hidden variables.”
Given the bivector basis defined by equation (5), any

generic bivector I · a can be expanded in this basis as

I · a = { ax ey ∧ ez + ay ez ∧ ex + az ex ∧ ey}. (7)

It is worth stressing here that, although there is clearly
isomorphism between the Euclidean vector space and the
bivector space, a bivector is an abstract entity of its own,
with properties quite distinct from those of a vector [3].
Given two such unit bivectors, say I · a and I · b, the
bivector subalgebra (6) leads to the well known identity

(I · a)(I · b) = − a · b − I · (a× b), (8)

provided we use the duality relation a ∧ b = I · (a× b).
As we have discussed elsewhere [5], the above identity

provides a natural representation for the points of a unit
3-sphere. The bivectors I · a and I · b, appearing on its
L.H.S., represent the equatorial points of a unit 3-sphere,
and the real quaternion appearing on its R.H.S represents
a non-equatorial point of the same sphere. An equator
of a 3-sphere, however, which of course is a 2-sphere,
does not remain closed under multiplication. Therefore
it is not surprising that a product of any two points of
a 2-sphere is not confined to the 2-sphere, but belongs
to a 3-sphere. The 3-sphere itself, however, does remain
closed under multiplication, thereby correctly encoding
the topology underlying the subalgebra (6). Indeed, the
R.H.S. of the above identity is not a pure bivector, but a
sum of a scalar and a bivector. And as we have discussed
elsewhere [5][7], it is this local-realistic interplay between
the points of a 3-sphere and its equatorial 2-sphere—not
the quantum entanglement—that is truly responsible for
the EPR-type correlations manifested in nature.
In particular, the fact that both the 3-sphere and

its algebraic representation given by (8) remain closed
under multiplication has profound implications for Bell’s
theorem. In any Bell-type experiment the measurement
results of Alice and Bob are usually taken to be numbers
lying in some subset of the real line [2]. We have argued
elsewhere [5][7], however, that it is both physically and
mathematically incorrect to regard measurement results
as points of the real line. In fact, unless they are taken
to be the equatorial points of a 3-sphere, Bell’s picture of
the physical reality would not be complete in the sense
required by EPR. That is to say, unless the measurement
results are represented by maps of the form

A(n, λ) : IR3× Λ −→ S3, (9)

the standard Bell-type prescription for a complete theory
would be necessarily incomplete, and then there would
be no question of “non-locality” to begin with, because

b
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FIG. 1: Stereographic projection of S2 onto the plane IR2.
Both S2 and IR2 contain infinite number of points. Each point
p of S2 can be mapped to a point p′ of IR2, except the north
pole, which has no meaningful image under this projection.

then Bell’s argument simply would not get off the ground.
Indeed, without completeness, there is no theorem.
The conceptual reasons for this are fairly elementary.

Recall that the functions A(n, λ) postulated by Bell are
not only supposed to represent the measurement results,
but also the end-points of a dynamical process within a
yet-to-be-discovered complete theory of physics. Indeed,
as Bell himself puts it: “In a complete physical theory
of the type envisaged by Einstein, the hidden variables
would have dynamical significance and laws of motion;
our λ can then be thought of as initial values of these
variables at some suitable instant” [2]. Accordingly, we
may think of the functions A(n, λ) as solutions of some
differential equation, with λ and n as the “initial” and
“final” conditions, respectively. However one may think
of them, A(n, λ) are functions, and as such they have a
domain set, IR3× Λ, from which they take-in values, and
a codomain set, Σ, to which they end up belonging:

A(n, λ) :




n1

n2

.

nj

.

.




×




λ1

λ2

.

.

λk

.




−→




A(n1, λ2) = +1
A(n2, λ1) = − 1

.

A(nj , λk) = +1
.

.



.

(10)
The question then is: What is the codomain of A(n, λ)?
Usually it is assumed to be some subset of IR. Although
näıve, this choice is good enough if one is concerned only
with a finite number of measurement results. But what
if Alice decides to measure along all infinitely many of
the possible directions? After all, simultaneous existence
of all elements of reality is central to the EPR argument.
And a theory that cannot accommodate every possible
measurement result can hardly be considered complete.
It is however mathematically impossible to account for all
possible measurement results by means of A(n, λ), unless
its codomain is a 2-sphere. Here is the reason why:
In the standard EPR-Bell scenario there are infinitely

many possible spin components that could be measured
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by Alice—one corresponding to each direction n ∈ IR3.
Thus there is a one-to-one correspondence between the
set of measurement results obtainable by Alice and the
points of a unit 2-sphere defined by ||n|| = 1. As depicted
in Fig. 1 however, a 2-sphere is not homeomorphic to IR2

(or to IR for that matter, for both IR and IR2 have the
same cardinality). Thus it is mathematically impossible
to account for every possible measurement result using a
function like A(n, λ), unless its codomain is a 2-sphere.
Indeed, it is evident from Fig. 1 that if the codomain
of A(n, λ) differs from 2-sphere by even a single point,
then the set of possible values it can take would fail to
be in one-to-one correspondence with the set of results
Alice could obtain in principle. And then there would be
at least one measurement result that would not have a
counterpart in a complete theory, rendering the function
A(n, λ) worthless for the purposes of Bell (whose aim was
to prove that no complete theory can be locally causal).
Actually, even the 2-sphere does not quite capture the

complete picture of local reality because it fails to remain
closed under multiplication [5]. For any two-level system
completeness and locality necessitates that the 2-sphere
be taken as an equator of a 3-sphere [5][7]. That is to
say, for any two-level system it is both necessary and
sufficient to take maps of the form (9) for a complete local
theory. Then not only the measurement results, but also
their products would remain within the 3-sphere—i.e.,
remain within the same topological space—respecting the
locality (or factorizability) condition of Bell. Conversely,
given any arbitrary point P of a 3-sphere, it can always
be factorized into any number of points: P = ABCD...

Needless to say, this is a highly nontrivial and powerful
property of the 3-sphere. To appreciate its non-triviality,
consider a product of infinitely many points of a 3-sphere.
Such a product will simply be another point of the same
sphere [5]. By contrast, this will not be true in the case
of 2-sphere, even for just two points. As we shall see, it
is this non-trivial property of the 3-sphere that sustains
the local causality of the entangled photons.
So far we have considered the bivector subalgebra with

arbitrarily fixed basis as in definition (5). The convention
usually is to assume a right-handed set of basis bivectors,
and so far we have followed this convention. The algebra
itself, however, does not fix the handedness of the basis.
We could have equally well started out with a left-handed
set of bivectors, by letting − I instead of + I fix the basis.
Equation (6) would have then had the alternate form:

(−I · ej) (−I · ek) = − δjk − ǫjkl (−I · el). (11)

Comparing this equation with equation (6) we see that
there remains a sign ambiguity in the definition of our
subalgebra (cf. Refs. [3] and [4]):

(I · ej) (I · ek) = − δjk ± ǫjkl (I · el). (12)

Consequently, following the time-honored mathematical
practice of turning an ambiguity of sign into virtue, we

define the handedness of this entire algebra as a “hidden
variable”, just as in our previous counterexamples [6]. In
other words, we specify the complete state of the photons
we are about to study as µ = ± I, thereby defining the
basis of our entire subalgebra by the equation

(µ · ej) (µ · ek) = − δjk − ǫjkl (µ · el). (13)

The identity (8) for the generic bivectors then becomes

(µ · a)(µ · b) = − a · b − µ · (a× b), (14)

along with the duality relation a ∧ b = µ · (a × b). In
other words, the duality between the wedge product and
cross product within our subalgebra alternates between
the right-hand and left-hand rules [6]. Clearly, then, our
complete state µ = ± I represents a far deeper hidden
structure than the simpleminded variables considered by
Bell. It un-fixes the basis of an entire algebra, and turns
it into a shared randomness between Alice and Bob.
We are now well equipped—both conceptually and

mathematically—to take up the question of EPR-Bohm
correlations exhibited by a pair of entangled photons.
This question of course has been well scrutinized in the
literature. We will restrict to the most basic aspects of
the question, and follow its treatment by Peres [1].
In quantum mechanical description of the experiment

involving photon polarizations one usually assumes that
the system has been prepared in the state

|Ψ+〉 =
1√
2

{
|H 〉1 ⊗ |H 〉2 + |V 〉1 ⊗ |V 〉2

}
, (15)

where |H 〉 and |V 〉 denote the horizontal and vertical
polarization states of the photons along the directions ex
and ey, respectively; and the subscripts 1 and 2 refer to
the photons 1 and 2, respectively. The photons are thus
assumed to be propagating in the ez direction. We could
equally well consider the singlet state |Ψ−〉, but that
would not add anything significant to our concerns here.
Both polarization states, |Ψ+〉 and |Ψ−〉, are invariant
under rotations about the ez axis, but the state |Ψ+〉 is
even under reflections, whereas the state |Ψ−〉 is odd.
In a typical experimental run Alice and Bob measure

polarizations of the photons along two different directions
in the plane perpendicular to the ez axis. Alice measures
polarizations along the direction a, which makes an angle
α with the ex axis, whereas Bob measures polarizations
along the direction b, which makes an angle β with the ex
axis. Individually, the binary results observed by Alice
and Bob, namely A(α) = ± 1 and B(β) = ± 1, are found
to be random, with equal numbers of + 1 and − 1. When
these results are compared, however, they are found to
be correlated, in agreement with the quantum mechanical
predictions we have summarized in equation (1).
Our goal is to reproduce these quantum mechanical

predictions exactly, within the local-realistic framework
discussed above (see also Refs. [5] to [7]). To this end, we
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have let the complete state of the photons be given by
µ = ± I, where I is the basic trivector defined in equation
(2). The photon polarizations observed by Alice and Bob
along their respective axes a and b, for a given “basis” µ,
are then represented by the following two local beables:

A(α, µ) = +µ · ã , ã := ex sin 2α + ey cos 2α , (16)

B(β, µ) = −µ · b̃ , b̃ := ex sin 2β + ey cos 2β . (17)

To begin with, note that A(α, µ) and B(β, µ) are strictly
local variables. Alice’s measurement result depends only
on her freely chosen angle α and the initial state µ, and
likewise Bob’s measurement result depends only on his
freely chosen angle β and the initial state µ . Moreover,
despite appearances, A(α, µ) and B(β, µ) are simply
binary outcomes, +1 or −1, albeit occurring within the
compact topology of a 3-sphere rather than the real line:

A(α, µ) ∼= ± 1 ∈ S2 ∈ S3 about ã ∈ IR3, (18)

B(β, µ) ∼= ± 1 ∈ S2 ∈ S3 about b̃ ∈ IR3. (19)

In fact, since the space of all µ · ã is isomorphic to the
equatorial 2-sphere contained within a 3-sphere [8], each
measurement result A(α, µ) of Alice—corresponding to a
preexisting element of reality of the photon—is uniquely
identified with a definite point of this 2-sphere. In other
words, every preexisting polarization of a given photon
gives rise to a unique measurement outcome A(α, µ),
which in turn is unambiguously represented by a definite
point of the equatorial 2-sphere [5]. Note also that, since
we are working entirely within the bivector model of the
Euclidean space defined by (5) and (13), parallel crystals
of Alice and Bob will yield identical outcomes despite the
apparent sign difference between A(α, µ) and B(β, µ).
If we now assume that initially there was 50/50 chance

between right-handed and left-handed orientations of the
Euclidean space—i.e., equal chance between the complete
states µ = + I and µ = − I, then the expectation values
of the above two points in S2 trivially work out to be [6]

E(θ) = lim
n→∞

{
1

n

n∑

i=1

A(θ, µi)

}
= 0 , (20)

where θ = α or β. On the other hand, the product of
these two points is a non-equatorial point lying within
the 3-sphere, and hence it too would have a definite value:

A(α, µ)B(β, µ) ∼= ± 1 ∈ S3. (21)

In fact, our 3-sphere is entirely made of all such product
points, each of definite value + 1 or − 1. More precisely,
the space of all products P = AB is isomorphic to a unit
3-sphere, P 2

1 + P 2
2 + P 2

3 + P 2
4 = 1 [5][8]. This can be seen

more clearly if we expand AB using equation (14):

A(α, µ)B(β, µ) = {+µ · ã }{−µ · b̃ }

= + ã · b̃ + µ ·
(
ã× b̃

)
(22)

= cos 2(α− β) + (µ · ez) sin 2(α− β).

Evidently, AB describes a circle of points within S3 [8],
each of definite value + 1 or − 1, depending on α, β, and
µ · ez ∼= ± 1 ∈ S2 ∈ S3. With this parameterization of
the points of S3, the joint expectation value E(α, β) of
the measurement results of Alice and Bob is easily seen
to reproduce the quantum mechanical prediction:

E(α, β) = lim
n→∞

{
1

n

n∑

i=1

A(α, µi) B(β, µi)

}

= cos 2(α− β) + lim
n→∞

{
1

n

n∑

i=1

(µ · ez)i sin 2(α− β)

}

= cos 2(α− β). (23)

It is important to note here that the summation in both
the first and the second line above is over the bivectors
such as µ · ã, since we are working entirely within the
bivector basis defined by equations (5) and (13). Finally,
as discussed in Ref. [1], the violations of CHSH inequality
follow trivially from the above expectation value:

| E(α, β) + E(α, β ′) + E(α ′, β) − E(α ′, β ′) | 6 2
√
2 .

This example is but one in a series of examples [5][6][7]
which show that the illusion of “quantum non-locality”
stems from a topologically incomplete accounting of the
elements of physical reality. The illusion evaporates when
every possible measurement result is correctly accounted
for, in a topologically coherent manner. In our example
this is achieved by modeling the Euclidean space—not
as IR3—but in terms of abstract coordinate-free geometry
of points and planes introduced by Grassmann [3].
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