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Local Causality in a Friedmann-Robertson-Walker Spacetime
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A local, deterministic, and realistic model within a Friedmann-Robertson-Walker spacetime with
constant spatial curvature is presented which describes simultaneous measurements of the spins of
two fermions emerging in a singlet state from the decay of a spinless boson. Exact agreement with the
probabilistic predictions of quantum theory is achieved in the model without data rejection, remote
contextuality, superdeterminism, or backward causation. An event-by-event numerical simulation
of the model is presented, which confirms our analytical results with the accuracy of 4 in 104 parts.
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Unlike our most fundamental theories of space and
time, quantum theory happens to be incompatible with
local causality [1]. This fact was famously recognized by
Einstein, Podolsky, and Rosen (EPR) in 1935 [2]. They
hoped, however, that perhaps quantum mechanics can
be completed into a locally causal theory by addition of
supplementary or hidden parameters. Today such hopes
of maintaining both locality and realism within physics
seem to have been undermined by Bell’s theorem [1], with
considerable support from experiments [3]. Bell set out to
prove that no physical theory which is realistic as well as
local in a sense espoused by Einstein can reproduce all of
the statistical predictions of quantum mechanics [1]. The
purpose of this letter is to show that it is, in fact, possible
to reproduce the statistical predictions of quantum states
such as the EPR-Bohm state in a locally causal manner,
in the familiar Friedmann-Robertson-Walker spacetime.

A locally causal description of the measurement of the
spins of two spacelike separated spin- 1

2
particles which

were products of the decay of a single spin-zero particle
has been considered by Bell [1]. Based on Bohm’s version
of the EPR thought experiment, he considered a pair of
spin- 1

2
particles, moving freely after the decay in opposite

directions, with particles 1 and 2 subject (respectively)
to spin measurements along independently chosen unit
directions a and b, which may be located at a spacelike
distance from one another. If initially the emerging pair
has vanishing total spin, then its quantum mechanical
spin state can be described by the entangled singlet state,

|Ψn〉 =
1√
2

{

|n, +〉1⊗|n, −〉2 − |n, −〉1⊗|n, +〉2
}

, (1)

with n as arbitrary direction and σ · n |n, ±〉 = ± |n, ±〉
describing the quantum mechanical eigenstates in which
the particles have spin up or down in the units of ~ = 2.

Our interest lies in an event-by-event reproduction of
the probabilistic predictions of this entangled quantum
state in a locally causal manner [1]. For any freely chosen
measurement directions a and b in space there would
be nine possible outcomes of the experiment in general,
regardless of the distance between the directions. If we
denote the angle between a and b by ηab and the local

measurement results 0, +1, or −1 about these directions
by A and B, then quantum mechanics is well known to
predict the following joint probabilities for these results:

P+−
12 (ηab)= P{A = +1, B = −1 | ηab}=

1

2
cos2

(ηab
2

)

,

(2)

P++

12 (ηab)= P{A = +1, B = +1 | ηab}=
1

2
sin2

(ηab
2

)

,

(3)

P−+

12 (ηab)= P+−
12 (ηab), P−−

12 (ηab) = P++

12 (ηab), (4)

P+0

12
(ηab)= P−0

12
(ηab) = P 0+

12
(ηab) = P 0−

12
(ηab) = 0,

(5)

and P 00
12 (ηab) = 0, (6)

where the superscript 0 indicates no detection and the
subscripts 1 and 2 label the particles [4]. The probability
that the spin of the particle 1 will be detected parallel
to a (regardless of whether particle 2 itself is detected)
is also predicted by quantum mechanics. It is given by

P+

1 (a) = P−
1 (a) =

1

2
, (7)

and likewise for particle 2 being detected parallel to b. In
what follows our goal is to demonstrate that, at least in
the Friedmann-Robertson-Walker spacetime IR× Σ with
a constant spatial curvature, the above probabilities can
be reproduced within the original local model of Bell [1].

To this end, consider a spacelike hypersurface Σ = S3

in a Friedmann-Robertson-Walker solution with κ = +1,

ds2 = dt2 − a2(t) dΣ2, dΣ2 =

[

dρ2

1− κ ρ2
+ ρ2dΩ2

]

, (8)

where Σ=S3 can be recovered by introducing χ= sin−1ρ.
Now, for κ = +1, the tangent bundle of S3 happens to
be trivial: TS3 = S3 × IR3. The triviality of TS3 means
that S3 is parallelizable [5]. Thus, a global anholonomic
frame can be specified on S3 that fixes each of its points
uniquely [5][6]. Such a frame renders S3 diffeomorphic to
the group SU(2) — i.e., to the set of all unit quaternions:

S3 =

{

H(I · v, η)
∣

∣

∣

∣

||H(I · v, η) || = 1

}

. (9)

http://arxiv.org/abs/1405.2355v1


2

Here we have parameterized each quaternion H ∈ S3 as

H(I · v, η) = exp { (I · v) η } (10)

such that I · v, with a trivector I, is a bivector rotating
about some vector v ∈ IR3, and η is half of the angle by
which H stands rotated about v. As in these definitions,
in what follows we will be using the notation of geometric
algebra [6][7]. Accordingly, all vector fields in IR3 such as
v and w will be assumed to satisfy the geometric product

vw = v ·w + v ∧w, (11)

with the duality relation v ∧w = I · (v ×w). In the next
steps it will be useful to recall that (v ∧w)† = −(v ∧w).

Consider now two unit quaternions from the closed set
S3, say Po(n ∧ eo, ηneo

) and Qo(z ∧ so, ηzso), defined as

Po = cos( ηneo
) +

n ∧ eo

||n ∧ eo||
sin( ηneo

) (12)

and

Qo = cos( ηzso) +
z ∧ so

||z ∧ so||
sin( ηzso), (13)

where n ∈ TpS
3 ∼= IR3 is an arbitrary unit vector in the

tangent space TpS
3 at some point p of S3, z is a fixed

reference vector in TqS
3 at a different point q of S3, and

eo and so are two other tangential vectors in TqS
3. Here

the bivector I · eo may be thought of as representing an
individual spin within the pair of decaying particles in the
singlet state, and the bivector I · so may be thought of as
representing the spin of the composite pair [4]. Note that,
although Po and Qo are normalized to unity, their sum
Po +Qo need not be. In fact, they satisfy the following
triangle inequality for arbitrary pairs of such quaternions,

||Po + Qo|| 6 ||Po|| + ||Qo|| , (14)

reflecting the metrical structure of S3. Moreover, since S3

is closed under multiplication, we also have ||PoQo|| = 1.

These constraints lead us to the following choice for
the set of initial states (Po, Qo) of our physical system:

Λ =
{

(Po, Qo)
∣

∣

∣
||Po +Qo|| = N ( ηneo

, ηzso) ∀n
}

,

(15)
where the value N of the norm is given by the variable

N ( ηneo
, ηzso) = 1+ sin2(ηneo

)+



−1 +
2

√

1 + 3
(ηzso

κπ

)





2

,

(16)
which is necessarily a function of the angles ηneo

and ηzso .
Note that we have allowed all three possible curvatures
of Σ, with κ = −1 being equivalent to ηzso → 2π − ηzso .
The significance of this form of N will become clear soon.

If we now substitute expression (16) into the inequality

||Po||2 > ||Po + Qo|| − 1 , (17)

t

S3
A = ±1

a

(eo, so)

B = ±1

b

FIG. 1: The local results A (a; eo, so) and B(b; eo, so) are
deterministically determined by the common cause (eo, so).

which follows from multiplying the inequality (14) with
||Po|| = 1 on both sides and simplifying, then [upon using

||Po||2 = cos2( ηneo
) + sin2( ηneo

) (18)

from Eq. (12)] the triangle inequality (14) simplifies to

| cos( ηneo
)| > −1 +

2
√

1 + 3
(ηzso

κπ

)

. (19)

In what follows it is very important to recognize that this
constraint is simply an expression of the intrinsic metrical
and topological structures of S3, and as such it holds for
all vectors n for a given pair of initial states (eo, so); and,
conversely, for all pairs of initial states (eo, so) for a given
choice of vector n. This can be easily verified by starting,
for example, with a different pair of quaternions, say with
the pair P′

o(n
′ ∧ eo, ηn′eo

) and Qo(z ∧ so, ηzso), where

P′
o = cos( ηn′eo

) +
n′ ∧ eo

||n′ ∧ eo||
sin( ηn′eo

), (20)

and arriving at a similar constraint as the one in Eq. (19):

| cos( ηn′eo
)| > −1 +

2
√

1 + 3
(ηzso

κπ

)

. (21)

This procedure can then be repeated for all vectors n′,
and—for a given vector n—for all pairs of states (e′o, s

′
o).

If we now let eo ∈ TqS
3 and so ∈ TqS

3 be two random
vectors, uniformly distributed over S2, and let ηzso be a
random scalar, uniformly distributed over [0, π], then we
can simplify the set (15) of complete or initial states as

Λ=







(Po, Qo)

∣

∣

∣

∣

∣

| cos( ηneo
)| > −1 +

2
√

1 + 3
(ηzso

κπ

)

∀n







.

(22)
By the previous results this set is invariant under the
rotations of n. Consequently, we identify n as a detector
direction, and define the measurement events observed by
(say) Alice and Bob—along their freely chosen detector
directions n = a and n = b—by two functions of the form

± 1 = A (a; eo, so) : IR
3× Λ −→ S3. (23)
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These functions are identical to those considered by
Bell [1] apart from the choice of their codomain, which is
now the compact space S3 instead of a subset of IR. That
such maps indeed exist can be seen easily by noting that
Po → ±1 as ηneo

→ 0 or π. More explicitly, we construct

A (a; eo, so) = − sign{cos(ηaeo
)} for a given so (24)

and

B(b; eo, so) = + sign{cos(ηbeo
)} for the same so. (25)

Evidently, these functions define strictly local, realistic,
and deterministically determined measurement events.
Apart from the common cause (eo, so), which originates
in the overlap of the backward lightcones of Alice and
Bob as shown in Fig. 1, the event A = ±1 depends only
on the measurement direction a chosen freely by Alice;
and analogously, apart from the common cause (eo, so),
the event B = ±1 depends only on the measurement
direction b chosen freely by Bob. In particular, the event
A (a; eo, so) does not depend on either b or B, and the
event B(b; eo, so) does not depend on either a or A .

Now, to calculate the joint probabilities for observing
the events A = ±1 and B = ±1 simultaneously along
the directions a and b, we follow the well known analysis
carried out by Pearle for a formally similar local model
[4]. Pearle begins by representing each pair of decaying
particles by a point r in a state space made out of a ball
of unit radius in IR3. His state space is thus a well known
representation of the group SO(3), each point of which
corresponding to a rotation, with the direction r of length
0 6 r 6 1 from the origin representing the axis of rotation
and the angle πr representing the angle of rotation. The
identity rotation corresponds to the point at the center
of the ball. If we now identify the boundaries of two such
unit balls, then we recover our 3-sphere, diffeomorphic
to the double covering group of SO(3), namely SU(2).
The pair of particles in this state space is represented by
the quaternion Qo defined in Eq. (13), which is rotating
about the axis z×so

|| z×so||
by the angle 2ηzso , with the unit

vector so sweeping a 2-sphere within the 3-sphere [6].

The relationship between the rotation angle πr within
Pearle’s state space SO(3) and the rotation angle 2ηzso
within our state space SU(2) ∼= S3 turns out to be simple:

cos
(π

2
r
)

=



























−1 +
2

√

1 + 3
(ηzso

κπ

)

= f(ηzso), (26)

−1 +
2

√

4− 3
(ηzso

κπ

)

= f(π − ηzso). (27)

This can be recognized by first solving Eq. (26) for
ηzso

κπ

and then differentiating the solution with respect to r,
which gives the probability density worked out by Pearle:

p(r) =
1

κπ

dηzso
dr

(r) =
4π

3

sin(π
2
r)

{

1 + cos
(

π
2
r
)}3

, 0 6 r 6 1.

(28)

This function specifies the distribution of probability that
a pair of particles is represented by the point r in the unit
ball. Integrating this distribution from 0 to r we may also
obtain the cumulative probability distribution in the ball:

C(r) =

∫ r

0

p(u) du = −1

3
+

4

3
{

1 + cos
(

π
2
r
)}2

. (29)

This function specifies the probability of finding the pair
in any state up to the state r within Pearle’s state space.
From solving Eq. (26) we see, however, that it is equal to
our ratio

ηzso

κπ
, and therefore also specifies the probability

of finding the pair in any initial state up to the state so.

For a given reference vector z, the above relations allow
us to translate between our representation in terms of the
states (eo, so) in SU(2) and Pearle’s representation in
terms of the states r in SO(3). We can therefore rewrite
our geometrical constraint (19) in terms of his state r as

| cos( ηaeo
)| > cos

(π

2
r
)

and | cos( ηbeo
)| > cos

(π

2
r
)

,

(30)
where our vector eo is related to his vector r as eo = r/r.
We are thus treating the axis eo and the angle πr of the
rotation of the spin as two independent random variables.

The equalities in the above inequalities correspond to
the boundaries of the two circular caps on the spherical
surface of radius r within the SO(3) ball considered by
Pearle. The intersection of the two circular caps is then

I(πr, ηab) = 4r2
∫ π

2
r

η
ab

2

dξ

√

√

√

√1−
{

cos
(

π
2
r
)

cos(ξ)

}2

if ηab 6 πr,

(31)
and zero otherwise. This area is derived by Pearle in the
Appendix A of his paper. It is, however, not the correct
overlap area for our model. What has been overlooked
in Pearle’s derivation are the contributions to I(πr, ηab)
from the relative rotations of the state eo = r/r along the
directions a and b. While the state eo can be common to
both a and b, the corresponding rotations πr cannot be
the same in general about both a and b. An example of
the difference can be readily seen from the relations (26)
and (27), while heeding to the double covering in SU(2):

π∆r =











































2 cos−1



−1 +
2

√

1 + 3
(

ηab

π

)



 if 0 6 ηab 6 π
2
,

(32)

2 cos−1



−1 +
2

√

4− 3
(

ηab

π

)



 if π
2
6 ηab 6 π.

Evidently, ∆r = 0 when ηab = 0 or π, and maximum
when ηab=

π
2
. More generally, the effective radius of the

spherical surface to which the circular caps belong must
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be “phase-shifted” to r′ = r
√

h(ηab) in our model, where

h(ηab) =
3π

8

{

sin2(ηab)

π sin2
(

1

2
ηab

)

+ ηab cos(ηab)− sin(ηab)

}

(33)
is the inverse of the function derived in Pearle’s Eq. (23).
The correct overlap area is then obtained by replacing r
by r′ in the differential area dA=r2dω in Eq. (31) so that

I(πr, ηab) −→ J (πr, ηab) = h(ηab) I(πr, ηab). (34)

Using the probability density (28) and the overlap area
(34), we can now calculate various joint probabilities as

P+−
12

(ηab) = P−+

12
(ηab) =

∫ 1

η
ab

π

p(r)
J (πr, ηab)

4πr2
dr

=
1

2
cos2

(ηab
2

)

(35)

and

P++

12 (ηab) = P−−
12 (ηab) =

∫ 1

1−
η
ab

π

p(r)
J (πr, π − ηab)

4πr2
dr

=
1

2
sin2

(ηab
2

)

. (36)

These calculations of the joint probabilities are analogous
to those by Pearle, except for using the area J (πr, ηab).

Although the statistical effects of the constraints (30)
in our model turn out to be almost identical to those in
Pearle’s model, the characteristics of the two models are
markedly different. In our model the vectors eo and so
ensure in tandem that there are no initial states for which

| cos( ηneo
)| < cos

(π

2
r
)

= −1 +
2

√

1 + 3
(ηzso

κπ

)

. (37)

Consequently, the detectors of Alice and Bob can receive
the spin states eo only if the constraints (30) are satisfied.
In other words, unlike Pearle’s model, our model is not
concerned about data rejection or detection loophole. In
particular, in our model the fraction g(ηab) of events in
which both particles are detected is exactly equal to 1:

g(ηab) =
P+−
12 (ηab)

1

2
cos2

(

ηab

2

) =
P++

12 (ηab)
1

2
sin2

(

ηab

2

) = 1 ∀ ηab ∈ [0, π].

(38)
Clearly, a measurement event cannot occur if there does
not exist a state which can bring about that event. Since
the initial state of the system is specified by the pair
(eo, so) and not just by the vector eo, there are no states
of the system for which | cos( ηneo

)| < f(ηzso) for any

vector n. Thus a measurement event cannot occur for
| cos( ηneo

)| < f(ηzso), no matter what n is. As a result,
there is a one-to-one correspondence between the initial
state (eo, so) and the measurement events A and B.
This means the “fraction” g(ηab) in our model is equal to
1 for all ηab, dictating the vanishing of the probabilities

P 00
12 (ηab) = 1 + g(ηab)− 2 g(0) = 0, (39)

which follows from Pearle’s Eq. (9). Moreover, from his
Eq. (8) we also have P+0

12 (ηab) =
1

2
[ g(0)− g(ηab)], giving

P+0

12 (ηab) = P−0

12 (ηab) = P 0+

12 (ηab) = P 0−
12 (ηab) = 0.

(40)
Together with the probabilities for individual detections,

P+

1 (a) = P−
1 (a) = P+

2 (b) = P−
2 (b) =

1

2
g(0) =

1

2
,

(41)
the correlation between A and B then works out to be

E(a, b) = lim
n≫ 1

[

1

n

n
∑

i=1

A (a; eio, s
i
o) B(b; eio, s

i
o)

]

=
P++

12 + P−−
12 − P+−

12 − P−+

12

P++

12
+ P−−

12
+ P+−

12
+ P−+

12

= − cos (ηab) . (42)

Since all of the probabilities predicted by our local model
in S3 match exactly with the corresponding predictions of
quantum mechanics, the violations of not only the CHSH
inequality, but also Clauser-Horne inequality follow [3].

We have verified the above results in an event-by-event
numerical simulation [8], which provides further insights
into the strength of the correlation for different values of
κ. As we discussed above, the rotation angle ηzso and the
cumulative distribution function C(r) are related by κ as

ηzso
π

= κC(r), (43)

where |κ| 6 ∞ can be interpreted as a strength constant.
It is easy to verify in the simulation [8] that EPR-Bohm
correlation results for κ = +1, whereas linear correlation
results for κ = 0. The unphysical, or PR box correlation
can also be generated in the simulation by letting κ > +1.
On the other hand, setting κ = −1 [which is equivalent
to letting ηzso → 2π − ηzso in Eq. (19)] leads back to the
linear correlation [8]. The crucial observation here is that
the quantum correlation is manifested only for κ = +1.
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