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Abstract: It is well known that quantum corre-
lations are not only more disciplined (and hence
stronger) compared to classical correlations, but
they are more disciplined in a mathematically
very precise sense. This raises an important phys-
ical question: What is responsible for making
quantum correlations so much more disciplined?
Here we explain the observed discipline of quan-
tum correlations by identifying the symmetries
of our physical space with those of a parallelized
7-sphere. We substantiate this identification by
proving that any quantum correlation can be un-
derstood as a classical, local-realistic correlation
among a set of points of a parallelized 7-sphere.
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Chapter 1

On the Origins of Quantum

Correlations

In a good mystery story the most obvious
clues often lead to the wrong suspects.

Einstein and Infeld

1.1 Introduction

In 1927, when quantum theory was still in its infancy and John Bell
was yet to be born, Albert Einstein—one of the founding fathers of
the theory—was attending the now famous 5th Solvay Conference
in Brussels. He was profoundly disturbed by what the new theory
had to say about the nature of physical reality. Among other things,
his concerns stemmed from a deep appreciation of unity in nature.
Beyond the cliché of “God does not play dice”, he had recognized
that quantum theory entailed a fundamental schism in nature. The
aphorism “God does not split reality” perhaps better captures the
true essence of his concerns [1]. What he sought was a unified picture
of nature, devoid of any subjective boundary between the classical
and the quantum. What he suspected was a deeper layer of reality,
beyond the polarized picture offered by quantum theory.

By 1935—when John Bell was seven—these worries of Einstein
had matured into a powerful logical argument against the new theory.
Published in collaboration with Boris Podolsky and Nathan Rosen,
this argument proves, once and for all, that quantum theory provides
at best an incomplete description of the physical reality [2]. Since
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the argument itself is logically impeccable, this conclusion is beyond
dispute. Any argument, however, can only be as good as its premises,
and that—as is well known—is where Bell entered the game in 1964
[3]. He attempted to show that not all of the premises of EPR are
mutually compatible. Ironically, however, it is the argument of Bell
that turns out to contain a faulty assumption, not that of EPR.
What is more, this assumption appears in the very first equation of
Bell’s famous paper [3], and yet it had escaped notice until recently.

In a series of papers, written between 2007 and 2011, I tried to
bring out Bell’s error and constructed explicit counterexamples, not
only to his original theorem, but also to several of its variants. This
book is a collection of these papers, each of which can be read more
or less independently, but their contents are interconnected, and
reveal different aspects of the fundamental flaw in Bell’s argument.
The collection as a whole, however, is better viewed as addressing a
very important physical question. Regardless of the validity of his
theorem, what Bell discovered in 1964 is physically quite significant.
He discovered that quantum correlations are far more disciplined
than any classically possible correlation. What is more, quantum
correlations are not only more disciplined, but are more disciplined
in a mathematically very precise sense. This tells us something much
more profound about the structure of the world we live in. And, at
the same time, it raises a very important physical question:

What is it that makes quantum correlations
more disciplined than classical correlations?

My goal in this book is to answer this question in mathematically and
physically as precise a sense as possible. To this end, let me begin
with an extended summary of my argument against Bell’s theorem.

As noted above, the story began with Einstein, Podolsky, and
Rosen [2]. The logic of their argument can be summarized as follows:

(1) QM =⇒ Perfect Correlations

+ (2) Adherence to Local Causality

+ (3) Criterion of Objective Reality

+ (4) Notion of a Complete Theory

=⇒ (5) QM is an Incomplete Theory.

Given their premises, the conclusion of EPR follows impeccably.
Among their premises (which are hardly unreasonable), the one that
concerns us the most is their criterion of completeness:
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The point Bell missed

← one-point compactification

IR2 ∪ {∞}

∼=

Figure 1.1: Although lines and planes contain the same number
of points, it is impossible to put the points of a line or a plane in
a one-to-one correspondence with all of the points of a 2-sphere.

every element of the physical reality must
have a counterpart in the physical theory.

Bell attempted to prove that no theory satisfying this criterion can
be locally causal. To this end, he took a complete theory to mean
any theory whose predictions are dictated by functions of the form

A (n, λ) : IR3× Λ −→ S0 ≡ {−1, +1}, (1.1)

where IR3 is the space of 3-vectors, Λ is a space of “complete” states,
and S0 ≡ {−1, +1} is a unit 0-sphere. He then claimed (correctly, as
it turns out) that no pair of functions of this form can reproduce the
correlations for the singlet state predicted by quantum mechanics:

〈A (a, λ)B(b, λ) 〉 6= − a · b . (1.2)

At first sight, this appears to be a straightforward mathematical
contradiction undermining the force of the EPR argument [3]. And
for this reason functions of this form are routinely assumed in the
Bell literature to provide complete specifications of the elements of
physical reality, or complete accounting of all possible measurement
results. As we shall see however, Bell’s prescription is not only false,
it is breathtakingly näıve and unphysical. It stems from an incorrect
underpinning of both the EPR argument and the actual topological
configurations involved in the relevant experiments [4]. In truth, for
any two-level system the EPR criterion of completeness demands
that the correct functions must necessarily be of the form

± 1 = A (n, λ) : IR3× Λ −→ S3 →֒ IR4, (1.3)
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with the simply-connected codomain S3 of A (n, λ) replacing the
totally disconnected codomain S0 assumed by Bell. It is important to
note here that this correction does not affect the actual measurement
results. For a specific vector n and an initial state λ we still have

A (n, λ) = +1 or − 1 (1.4)

as demanded by Bell, but now the topology of the codomain of the
function A (n, λ) has changed from a 0-sphere to a 3-sphere, with the
latter embedded in IR4 in such a manner that the above constraint is
satisfied. On the other hand, as is evident from Fig. (1.1) (and will be
further clarified in the following pages), without this topological cor-
rection it is impossible to provide a complete account of all possible
measurement results. Thus the selection of the codomain S3 →֒ IR4

in equation (1.3) is not a matter of choice but necessity. What is
responsible for the EPR correlations is the topology of the set of all
possible measurement results [4]. And for a two-level system this set
happens to be an equatorial 2-sphere within a parallelized 3-sphere.
But once the codomain of the functions A (n, λ) is so corrected, the
proof of Bell’s theorem (as given in Ref. [3]) simply falls apart. In
fact, as we shall repeatedly see in the following pages, the strength
of the correlation for any physical system is entirely determined by
the topology of the codomain of the local functions A (n, λ). It has
nothing whatsoever to do with entanglement or nonlocality.

1.2 Local Origins of the EPR-BohmCorrelations

Put differently, once the measurement results are represented by
functions of the form (1.3), it is quite easy to reproduce the quantum
correlations purely classically, in a manifestly local-realistic manner.
For example, suppose Alice and Bob are equipped with the variables

A (a, λ) = {− aj βj } { ak βk(λ) } =

{
+1 if λ = +1

− 1 if λ = − 1
(1.5)

and

B(b, λ) = {+ bk βk } { bj βj(λ) } =

{
− 1 if λ = +1

+1 if λ = − 1 ,
(1.6)

where the repeated indices are summed over x, y, and z; the fixed
bivector basis {βx, βy, βz} is defined by the algebra

βj βk = − δjk − ǫjkl βl ; (1.7)
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n

µ · n

Figure 1.2: A unit bivector represents an equatorial point of a unit,
parallelized 3-sphere. It is an abstraction of a directed plane segment,
with only a magnitude and a sense of rotation—i.e., clockwise (−) or
counterclockwise (+). Neither the depicted oval shape of its plane,
nor its axis of rotation n, is an intrinsic part of the bivector µ · n.

and—together with βj(λ) = λβj—the λ-dependent bivector basis
{βx(λ), βy(λ), βz(λ)} is defined by the algebra

βj βk = − δjk − λ ǫjkl βl , (1.8)

where λ = ± 1 is a fair coin representing two alternative orientations
of the 3-sphere, δjk is the Kronecker delta, ǫjkl is the Levi-Civita
symbol, and a = aj ej and b = bj ej are unit vectors [5]. Evidently,
the variables A (a, λ) and B(b, λ) belonging to S3—in addition to
being manifestly realistic—are strictly local variables. In fact, they
are not even contextual [6]. Alice’s measurement result—although
it refers to a freely chosen direction a—depends only on the initial
state λ; and likewise, Bob’s measurement result—although it refers
to a freely chosen direction b—depends only on the initial state λ.

In the subsequent chapters we shall mainly use the standard
notations of Clifford algebra Cl3,0. The bivector algebras (1.7) and
(1.8) will then be seen as even subalgebras of Cl3,0. The latter is a

linear vector space, IR8, spanned by the graded orthonormal basis

{1, ex, ey, ez, ex ∧ ey, ey ∧ ez, ez ∧ ex, ex ∧ ey ∧ ez}, (1.9)

where “∧” is the outer product, and the trivector I ≡ ex ∧ ey ∧ ez
defines the fundamental volume form of the physical space. In terms
of these notations we can rewrite the bivector { aj βj(λ) } as
µ · a ≡ { aj βj(λ) } ≡ λ { ax ey ∧ ez + ay ez ∧ ex + az ex ∧ ey},

(1.10)
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with µ = λ I now representing the hidden variable of the model. The
variables A (a, λ) and B(b, λ) defined above then take the form

S3 ∋ A (a, µ) = (− I ·a ) (+µ ·a ) =

{
+1 if µ = + I

− 1 if µ = − I
(1.11)

and

S3 ∋ B(b, µ) = (+ I ·b ) (+µ·b ) =

{
− 1 if µ = + I

+1 if µ = − I,
(1.12)

with the trivector µ being either + I or − I with equal probability. In
what follows we shall view the fixed bivectors (− I · a ) and (+ I · b )
as representing the measuring instruments for detecting the random
bivectors (+µ · a ) and (+µ · b ), which represent the spins.

It is crucial to note that the variables A (a, λ) and B(b, λ) are
generated with different bivectorial scales of dispersion (or different
standard deviations) for each direction a and b. Consequently, in
statistical terms these variables are raw scores, as opposed to stan-
dard scores [7]. Recall that a standard score indicates how many
standard deviations an observation or datum is above or below the
mean. If x is a raw (or unnormalized) score and x is its mean value,
then the standard (or normalized) score, z(x), is defined by

z(x) =
x − x

σ(x)
, (1.13)

where σ(x) is the standard deviation of x. A standard score thus
represents the distance between a raw score and the population mean
in the units of standard deviation, and allows us to make comparisons
of raw scores that may have come from very different sources. In
other words, the mean value of the standard score itself is always
zero, with standard deviation unity. In terms of these concepts the
bivariate correlation between raw scores x and y is defined as

E(x, y) =

lim
n≫ 1

[
1

n

n∑

i=1

(xi − x ) (yi − y )

]

σ(x) σ(y)
(1.14)

= lim
n≫ 1

[
1

n

n∑

i=1

z(xi) z(yi)

]
. (1.15)

It is vital to appreciate that covariance by itself—i.e., the numerator
of equation (1.14) by itself—does not provide the correct measure of
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association between the raw scores, not the least because it depends
on different units and scales (or different scales of dispersion) that
may have been used (advertently or inadvertently) in the measure-
ments of such scores [7]. Therefore, to arrive at the correct measure
of association between the raw scores one must either use equation
(1.14), with the product of standard deviations in the denominator,
or use covariance of the standardized variables, as in Eq. (1.15).

These basic statistical concepts are crucial for understanding the
EPR correlations. As defined above, the random variables A (a, λ)
and B(b, λ) are products of two factors—one random and another
non-random. Within A (a, λ) the factor { ak βk(λ) } is a random
factor—a function of the hidden variable λ, whereas {− aj βj } is a
non-random factor, independent of the hidden variable λ. Thus, as
a random variable each number A (a, λ) and B(b, λ) is generated
with a different standard deviation—i.e., a different size of typical
error. More specifically, A (a, λ) is generated with the standard
deviation {− aj βj }, whereas B(b, λ) is generated with a different
standard deviation, namely {+ bk βk }. These two deviations can be
calculated easily. Since errors in linear relations propagate linearly,
the standard deviation of A (a, λ) is equal to {− aj βj } times the
standard deviation of { ak βk(λ) } (which we write as σ(A)), whereas
the standard deviation of B(b, λ) is equal to {+ bk βk } times the
standard deviation of { bj βj(λ) } (which we write as σ(B)):

σ(A ) = {− aj βj } σ(A)
and σ(B ) = {+ bk βk } σ(B). (1.16)

But since all the bivectors we have been considering are normalized
to unity, and since the mean of { ak βk(λ) } vanishes on the account
of λ being a fair coin, its standard deviation is easy to calculate, and
it turns out to be equal to unity:

σ(A) =

√√√√ 1

n

n∑

i=1

∣∣∣
∣∣∣A(a, λi) − A(a, λi)

∣∣∣
∣∣∣
2

=

√√√√ 1

n

n∑

i=1

|| { ak βk(λ
i) } − 0 ||2 = 1, (1.17)

where the last equality follows from the fact that { ak βk(λ
i) } are

normalized to unity. Similarly, we find that σ(B) is also equal to 1.
As a result, the standard deviation of A (a, λ) works out to be equal
to {− aj βj }, and the standard deviation of B(b, λ) works out to
be equal to {+ bk βk }. Putting these two results together, we arrive
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S3

4D Ball

t
λ

A

B

Figure 1.3: An initial EPR state λ originated at time t = 0 evolves
into measurement results A and B at a later time, occurring at two
spacelike separated locations on a parallelized 3-sphere, S3, which
can be thought of as a boundary of a 4-dimensional ball of radius t.
In what follows we shall assume that t has been normalized to unity.

at the following standardized scores corresponding to the raw scores:

A(a, λ) =
A (a, λ) − A (a, λ)

σ(A )

=
A (a, λ) − 0

{− aj βj }
= { ak βk(λ) } (1.18)

and B(b, λ) =
B(b, λ) − B(b, λ)

σ(B)

=
B(b, λ) − 0

{+ bk βk }
= { bj βj(λ) }, (1.19)

where we have used the identities such as {+ ak βk }{− ak βk } = +1.
Not surprisingly, just like the raw scores A (a, λ) and B(b, λ), these
standard scores are also strictly local variables: A(a, λ) depends only
on the freely chosen local direction a and the common cause λ, and
likewise B(b, λ) depends only on the freely chosen local direction b
and the common cause λ . Moreover, despite appearances, A(a, λ)
and B(b, λ) are simply binary numbers, ± 1, albeit occurring within
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the compact topology of the 3-sphere rather than the real line:

S3 ⊃ S2 ∋ A(a, λ) = { ak βk(λ) } = ± 1 about a ∈ IR3, (1.20)

S3 ⊃ S2 ∋ B(b, λ) = { bj βj(λ) } = ± 1 about b ∈ IR3. (1.21)

In fact, since the space of all bivectors { ak βk(λ) } is isomorphic
to the equatorial 2-sphere contained within the 3-sphere [4], each
standard score A(a, λ) of Alice is uniquely identified with a definite
point of this 2-sphere, and likewise for the standard scores of Bob.

In the following chapters we shall tacitly assume
that this procedure of standardizing from the raw
scores to standard scores has been performed for
all measurement results, taken either as points of a
3-sphere, or more generally as points of a 7-sphere.

Now, since we have assumed that initially there was 50/50 chance
between the right-handed and left-handed orientations of the 3-sphere
(i.e., equal chance between the initial states λ = +1 and λ = − 1),
the expectation values of the local outcomes vanish trivially. On the
other hand, as discussed above, to determine the correct correlation
between the joint observations of Alice and Bob we must calculate
covariance between the corresponding standard scores A(a, λ) and
B(b, λ), not the raw scores themselves. The correlation between the
raw scores A (a, λ) and B(b, λ) then works out to be

E(a, b) = lim
n≫ 1

[
1

n

n∑

i=1

A(a, λi)B(b, λi)

]
(1.22)

= lim
n≫ 1

[
1

n

n∑

i=1

{
aj βj(λ

i)
} {

bk βk(λ
i)
}
]

(1.23)

= − aj bj − lim
n≫ 1

[
1

n

n∑

i=1

{
λi ǫjkl aj bk βl

}
]

(1.24)

= − aj bj + 0 = − a · b , (1.25)

where we have used the algebra defined in (1.8). Consequently, when
the raw scores A = ± 1 and B = ± 1 are compared in practice by
coincidence counts [8][9], the normalized expectation value of their
product will inevitably yield

E(a, b) =

[
C++(a, b) + C−−(a, b) − C+−(a, b) − C−+(a, b)

]

[
C++(a, b) + C−−(a, b) + C+−(a, b) + C−+(a, b)

]

= − a · b , (1.26)
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Figure 1.4: Local-realistic correlations can be stronger within S3.

where C+−(a, b) etc. represent the number of joint occurrences of
detections + 1 along a and − 1 along b etc.

The above equation simply describes covariance of the numbers
A = ± 1 and B = ± 1 yielding the “impossible” strong correlation:

E(a, b) = lim
n≫ 1

[
1

n

n∑

i=1

A (a, λi) B(b, λi)

]
= − a · b . (1.27)

How is this “impossible” result possible? After all, Bell seems to have
proved mathematically [3] that correlation between such numbers
can never exceed the linear limit. The answer is that, apart from the
statistical differences we discussed above, there are also topological
differences between the above expression and what Bell considered
in his theorem. In particular, in the above equation the numbers
A = ± 1 and B = ± 1 are points of a parallelized 3-sphere,

± 1 = A (n, λ) : IR3× Λ −→ S3 →֒ IR4, (1.28)

and since a parallelized 3-sphere is a compact, simply-connected
topological space, it should not be surprising that correlation among
its points is stronger-than-linear. By contrast in Bell’s argument the
measurement functions are implicitly assumed to be of the form

± 1 = A (n, λ) : IR3× Λ −→ I ⊆ IR , (1.29)

and since the topology of the real line is far less disciplined than
that of a 3-sphere, it is impossible to generate strong correlation
among its points. In other words, the strength of the correlation is
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entirely dependent on how disciplined the codomain of the functions
A (n, λ) is. Now it turns out that the parallelized spheres S3 and S7

have maximally disciplined topology in this respect [4]. And since
the 3-sphere can be parallelized by unit quaternions, the covariance
between its equatorial points represented by pure quaternions (or
unit bivectors) is precisely the EPR correlation

E(a, b) = lim
n≫ 1

[
1

n

n∑

i=1

A(a, λi) B(b, λi)

]
= − a · b , (1.30)

where the bivectorsA(a, λ) = { ak βk(λ)} andB(b, λ) = { bk βk(λ)}
are the standardized variables in the statistical terms discussed above.
Then, for arbitrary four directions a, a′, b, and b′, the corresponding
CHSH string of expectation values immediately gives

|E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′)|
≤ 2

√
1− (a× a′) · (b′ × b) ≤ 2

√
2 , (1.31)

which squarely contradicts Bell’s theorem and exactly reproduces
the quantum mechanical prediction. So much for Bell’s theorem.

1.3 Local Origins of ALL Quantum Correlations

What the above example shows is that the correlation among the
raw scores observed by Alice and Bob are entirely determined by the
topology of the codomain of the local functions A (a, λ) and B(b, λ).
In particular, correlations among the points of a unit parallelized
3-sphere are stronger than those among the points of the real line.
Moreover, as we shall see in the following chapters, once the topology
of the codomain is correctly specified, not only the EPR correlations,
but also the correlations predicted by the rotationally non-invariant
quantum states—such as the GHZ states and Hardy state—can be
exactly reproduced in a purely local-realistic manner. Thus, contrary
to the widespread belief, the correlations exhibited by such states
are not some irreducible quantum effects, but purely local-realistic,
topological effects. In the cases of EPR and Hardy states the correct
topology of the codomain is a parallelized 3-sphere, and consequently
the correlations exhibited by these states are classical correlations
among the points of a parallelized 3-sphere. In the case of GHZ states
on the other hand the correct topology of the codomain is a paral-
lelized 7-sphere, and consequently the correlations exhibited by these
states are classical correlations among the points of a parallelized
7-sphere. More generally, all quantum mechanical correlations can
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be understood as purely classical, local-realistic correlations among
the points of a parallelized 7-sphere. Needless to say, this vindicates
Einstein’s suspicion that a quantum state merely describes a statisti-
cal ensemble of physical systems, not an individual physical system.

What is more, as we shall see in Chapter 7 in greater detail, there
are profound mathematical and conceptual reasons why the topology
of the 7-sphere plays such a significant role in the manifestation of
all quantum correlations. As is well known, quantum correlations
are more disciplined (or stronger) than classical correlations in a
mathematically precise sense. It turns out that it is the discipline
of parallelization in the manifold of all possible measurement results
that is responsible for the strength of quantum correlations. In fact,
both the existence as well as the strength of all quantum correlations
are dictated by the parallelizability of the spheres S0, S1, S3, and S7,
with the 7-sphere being homeomorphic to the most general possible
division algebra. And it is the property of division that is responsible
for maintaining the strict local causality in the world we live in.
These considerations lead us to the following remarkable theorem:

Theorema Egregium:

Every quantum mechanical correlation can be understood
as a classical, local-realistic correlation among a set of points
of a parallelized 7-sphere, represented by maps of the form

± 1 = A (n, λ) : IR3× Λ −→ S7 →֒ IR8. (1.32)

The corresponding physical picture is the same as in Figure 1.3, but
with S3 replaced by S7, the 4D ball replaced by the 8D ball, and
the number of statistically significant measurement events, A , B,
C , D , etc., generalized to an arbitrary number. It is important to
note, however, that despite appearances neither S3 nor S7 is a round
sphere. The Riemann curvature of both S3 and S7 is zero, because
they are both parallelized spheres [4].

S7, however, has a much richer topological structure than S3.
As noted above, it happens to be homeomorphic to the space of unit
octonions, which are well known to form the most general division
algebra possible. In the language of fiber bundles one can thus view a
7-sphere as a 4-sphere worth of 3-spheres. Each of its fiber is then a 3-
sphere, and each one of these 3-spheres is a 2-sphere worth of circles.
Thus the four parallelizable spheres—S0, S1, S3, and S7—can all
be viewed as nested within a 7-sphere. The EPR-Bohm correlations
can then be understood as correlations among the equatorial points
of one of the fibers of this 7-sphere, as we saw above. Alternatively,
a 7-sphere can be thought of as a 6-sphere worth of circles. Thus the
above theorem can be framed entirely in terms of circles, each one of
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which described by a classical, octonionic spinor with a well-defined
sense of rotation (i.e., whether it describes a clockwise rotation about
a point within the 7-sphere or a counterclockwise rotation). This
sense of rotation in turn defines a definite handedness (or orientation)
about every point of the 7-sphere. If we designate this handedness
by a random number λ = ± 1, then local measurement results for
any physical scenario can be represented by raw scores of the form

S7 ∋ A (a, µ) = (− J ·N(a) ) (+µ ·N(a) ) =

{
+1 if µ = + J

− 1 if µ = − J,

(1.33)
where a ∈ IR3 and N(a) ∈ IR7 are unit vectors, and µ = λJ is the
hidden variable analogous to µ = λ I with I = exeyez replaced by

J = e1e2e4 + e2e3e5 + e3e4e6 + e4e5e7 + e5e6e1 + e6e7e2 + e7e1e3.
(1.34)

The standard scores corresponding to these raw scores are then given
by µ ·N(a), which geometrically represent the equatorial points of a
parallelized 7-sphere, just as µ · a represented the equatorial points
of a parallelized 3-sphere. In Chapters 6 and 7 we shall see explicit
examples of the functions N(a) ∈ IR7 corresponding to measurement
directions a ∈ IR3. The correlations between the raw scores are then
calculated as covariance between the standard scores µ ·N(a). Note
also that, just as in the EPR case, both the raw scores (1.33) and
the standard scores µ ·N(a) are manifestly non-contextual.

Equipped with these variables, we are now in a position to prove
the above theorem [4]. To this end, recall that no matter which model
of physics we are concerned with—the quantum mechanical model,
the hidden variable model, or any other—for theoretical purposes all
we need to understand are the expectation values of the observables
measured in various states of the physical systems [10]. Accordingly,
consider an arbitrary quantum state |Ψ〉 ∈ H, where H is a Hilbert
space of arbitrary dimensions, which may or may not be finite. We
impose no restrictions on either |Ψ〉 or H, apart from their usual
quantum mechanical meanings. In particular, the state |Ψ〉 can be as
entangled as one may like, and the spaceH can be as large or small as

one may like. Next consider a self-adjoint operator Ô(a, b, c, d, . . . )
on this Hilbert space, parameterized by an arbitrary number of local
contexts a, b, c, d, etc. The quantum mechanical expectation value
of this observable in the state |Ψ〉 is then given by:

E
Q.M.

(a, b, c, d, . . . ) = 〈Ψ| Ô(a, b, c, d, . . . ) |Ψ〉 . (1.35)

More generally, if the system happens to be in a mixed state, then

E
Q.M.

(a, b, c, d, . . . ) = Tr
{
W Ô(a, b, c, d, . . . )

}
, (1.36)
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where W is a statistical operator of unit trace representing the state.

Our goal now is to show that this expectation value can always
be reproduced as a local-realistic expectation value of a set of binary
points of a parallelized 7-sphere. To this end, let

± 1 = Aa(λ) : IR
3×Λ −→ S7, ± 1 = Bb(λ) : IR

3×Λ −→ S7, etc.
(1.37)

be the raw scores of the form (1.33). Using prescriptions analogous
to (1.18) the corresponding standard scores then work out to be

µ ·N(a) : IR3× Λ −→ S6, µ ·N(b) : IR3× Λ −→ S6, etc. (1.38)

Here N(a), N(b), etc. may not necessarily be the same function for
all n ∈ IR3. They may be different functions for different directions.

This idealized prescription of raw scores and standard scores can,
and should, be further generalized. So far we have presumed that
randomness in these scores originates entirely from the initial state
λ representing the orientation of the 7-sphere. In other words, we
have presumed that the local interactions of the measuring devices
(− J ·N(a) ) with the physical variables µ ·N(a) do not introduce
additional randomness in the scores Aa(λ). Any realistic interaction
between (− J ·N(a) ) and µ ·N(a), however, would introduce such a
randomness of purely local origin. We can model it by an additional
random variable ν = ± 1 with probability 0 ≤ p( ν | a, λ ) ≤ 1 , so
that the bivectors (− J ·N(a) ) representing the measuring devices
may now also take the random form (− ν J ·N(a) ). The average of
the corresponding raw scores Aa(λ) = ± 1 would then satisfy

− 1 ≤ Aa(λ) ≤ +1 , (1.39)

with Aa(λ) =
∑

ν

p( ν | a, λ )Aa(ν, λ)

=

[
∑

ν

p( ν | a, λ ) (− ν J ·N(a) )

]
(+µ ·N(a) )

= (− J ·N(a) ) (+µ ·N(a) ) . (1.40)

Not surprisingly, this does not affect the corresponding standard
scores (1.38) worked out earlier. But if, in addition, we assume that
the common cause λ = ± 1 itself is also distributed non-uniformly
between its values + 1 or − 1, then the standard scores modify to

µ ·N(a) −→ κ(λ)µ ·N(a), µ ·N(b) −→ κ(λ)µ ·N(b) etc., (1.41)
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where κ(λ) =
1− λλ√
1−

(
λ
)2 , (1.42)

with λ being the average over the probability distribution of λ.
The correlation among the raw scores Aa(λ) = ± 1, Bb(λ) = ± 1,
Cc(λ) = ± 1, etc. can now be easily calculated as covariance among
the standard scores Aa(λ) = µ ·N(a), Bb(λ) = µ ·N(b), etc. as

E
L.R.

(a, b, c, d, . . . ) =

∫

Λ

Aa(λ)Bb(λ)Cc(λ) . . . ρ(λ) dλ , (1.43)

where the overall probability distribution ρ(λ) = κm(λ) is allowed to
be both a non-uniform and continuous function of λ, with m being
the total number of local contexts a, b, c, d, . . . in the experiment.

To evaluate these correlations, note that the standard scores
Aa(λ) = µ ·N(a), Bb(λ) = µ ·N(b), Cc(λ) = µ ·N(c), etc. are in
fact bivectors representing the equatorial points of the 7-sphere,
which remains as closed under multiplication as the 3-sphere. As a
result, the product of the standard scores can be written as

Aa(λ)Bb(λ)Cc(λ) · · · = f(a, b, c, . . . ) + P
N̂
(λ) g (a, b, c, . . . ) ,

(1.44)
where the RHS is an octonionic spinor representing a non-equatorial

point of the 7-sphere, the vector N̂(a, b, c, d, . . . ) ∈ IR7 is a function

of all 3D vectors, P
N̂
(λ) ≡ µ · N̂(a, b, c, d, . . . ) is a unit bivector

representing an equatorial point of S7 that is different from the ones
represented by the bivectorsAa(λ), Bb(λ), Cc(λ), etc., and the scalar
functions f(a, b, c, . . . ) and g(a, b, c, . . . ) satisfy f2+ g2 = 1 with
f identified as the quantum mechanical expectation value (1.36):

f(a, b, c, d, . . . ) = Tr
{
W Ô(a, b, c, d, . . . )

}
. (1.45)

Conversely, any arbitrary point of the 7-sphere (or joint beable)

(Aa Bb Cc Dd . . . )(λ) = f(a, b, c, . . . ) + P
N̂
(λ) g (a, b, c, . . . )

(1.46)

corresponding to the quantum mechanical operator Ô(a, b, c, d, . . . )
can always be factorized into any number of local parts as

S7 ∋ (Aa Bb Cc Dd . . . )(λ) = Aa(λ)Bb(λ)Cc(λ)Dd(λ) . . . ,
(1.47)

since, as we have already noted, the 7-sphere remains closed under
multiplication of any number of its points. Using the identity (1.44),
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the local realistic expectation value (1.43) can now be rewritten as

E
L.R.

(a, b, c, d, . . . ) = f(a, b, c, d, . . . )

∫

Λ

ρ(λ) dλ

+ g (a, b, c, d, . . . )

∫

Λ

P
N̂(n)(λ) ρ(λ) dλ . (1.48)

Note, however, that the vector N̂(n) ∈ IR7 appearing in the second
term here corresponds to a 3D direction n ∈ IR3 that is necessarily
exclusive to all the other measurement directions a, b, c, d, . . . As

a result, the bivector P
N̂(n)(λ) = µ · N̂(n) necessarily corresponds

to a null measurement result, reducing the second integral in (1.48)
to zero [4][11]. If we next assume that the probability distribution,
although not necessarily uniform, remains normalized to unity,

∫

Λ

ρ(λ) dλ = 1 , (1.49)

then the above expectation value reduces to

E
L.R.

(a, b, c, d, . . . ) = f(a, b, c, d, . . . ) . (1.50)

This finally proves our main theorem: Every quantum mechanical
correlation can be understood as a classical, local-realistic correlation
among a set of points of a parallelized 7-sphere. Q.E.D.

1.4 The Raison D’être of Quantum Correlations

The above result demonstrates that the discipline of parallelization in
the manifold of all possible measurement results is responsible for the
existence and strength of all quantum correlations. More precisely,
it identifies quantum correlations as evidence that the physical space
we live in respects the symmetries and topologies of a parallelized
7-sphere. As we shall see in greater detail in Chapter 7, there are
profound mathematical and conceptual reasons why the topology
of the 7-sphere plays such a significant role in the manifestation of
quantum correlations. Essentially it is because 7-sphere happens
to be homeomorphic to the most general possible division algebra.
And it is the property of division that turns out to be responsible
for maintaining strict local causality in the world we live in.

To understand this chain of reasoning better, recall that, just as a
parallelized 3-sphere is a 2-sphere worth of 1-spheres but with a twist
in the manifold S3 (6= S2 × S1), a parallelized 7-sphere is a 4-sphere
worth of 3-spheres but with a twist in the manifold S7 (6= S4 × S3).

16



More precisely, just as S3 is a nontrivial fiber bundle over S2 with
Clifford parallels S1 as its linked fibers, S7 is also a nontrivial fiber
bundle, but over S4, and with entire 3-dimensional spheres S3 as
its linked fibers. Now it is the twist in the bundle S3 that forces
one to forgo the commutativity of complex numbers (corresponding
to the circles S1) in favor of the non-commutativity of quaternions.
In other words, a 3-sphere is not parallelizable by the commuting
complex numbers but only by the non-commuting quaternions. In
a similar vein, the twist in the bundle S7 6= S4 × S3 forces one to
forgo the associativity of quaternions (corresponding to the fibers
S3) in favor of the non-associativity of octonions. In other words,
a 7-sphere is not parallelizable by the associative quaternions but
only by the non-associative octonions. And the reason why it can be
parallelized at all is because its tangent bundle happens to be trivial:

TS7 =
⋃

p∈S7

{p} × TpS
7 ≡ S7 × IR7. (1.51)

Once parallelized by a set of unit octonions, both the 7-sphere
and each of its 3-spherical fibers remain closed under multiplication.
This, in turn, means that the factorizability or locality condition of
Bell is automatically satisfied within a parallelized 7-sphere. The lack
of associativity of octonions, however, entails that, unlike the unit
3-sphere (which is homeomorphic to the Lie group SU(2)), a 7-sphere
is not a group manifold, but forms only a quasi-group. As a result,
the torsion within the 7-sphere continuously varies from one point to
another of the manifold [4]. It is this variability of the parallelizing
torsion within S7 that is ultimately responsible for the diversity and
non-linearity of the quantum correlations we observe in nature:

Parallelizing Torsion T γ
αβ 6= 0 ⇐⇒ Quantum Correlations.

The upper bound on all possible quantum correlations is thus set by
the maximum of possible torsion within the 7-sphere:

Maximum of Torsion T γ
α β 6= 0 =⇒ The Upper Bound 2

√
2.

These last two results will be proved rigorously in Chapter 7.

1.5 Local Causality and the Division Algebras

In the last few sections we saw the crucial role played by the 3- and
7-dimensional spheres in understanding the existence of quantum
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correlations. What is so special about 3 and 7 dimensions? Why
is the vector cross product definable only in 3 and 7 dimensions
and no other? Why are R, C, H, and O the only possible normed
division algebras? Why are only the 3- and 7-dimensional spheres
nontrivially parallelizable out of infinitely many possible spheres?
Why is it possible to derive all quantum mechanical correlations as
local-realistic correlations among the points of only the 7-sphere?

The answers to all of these questions are intimately connected
to the notion of factorizability introduced by Bell within the context
of his theorem. Mathematicians have long been asking: When is a
product of two squares itself a square: x2 y2 = z2 ? If the number
z is factorizable, then it can be written as a product of two other
numbers, z = x y, and then the above equality is seen to hold for the
numbers x, y, and z. For ordinary numbers this is easy to check.
The number 8 can be factorized into a product of 2 and 4, and we
then have 64 = 82 = (2× 4)2 = 22 × 42 = 64. But what about sums
of squares? A more profound equality holds, in fact, for a sum of two
squares times a sum of two squares as a third sum of two squares:

(x2
1 + x2

2) (y
2
1 + y22) = (x1y1 − x2y2)

2 + (x1y2 + x2y1)
2 = z21 + z22 .

(1.52)
There is also an identity like this one for the sums of four squares. It
was first discovered by Euler, and then rediscovered and popularized
by Hamilton in the 19th century through his work on quaternions.
It is also known that Graves and Cayley independently discovered a
similar identity for the sums of eight squares. This naturally leads
to the question of whether the product of two sums of squares of
n different numbers can be a sum of n different squares? In other
words, does the following equality hold in general for any n?

(x2
1 +x2

2+ · · ·+x2
n) (y

2
1 + y22 + · · ·+ y2n) = z21 + z22 + · · ·+ z2n. (1.53)

It turns out that this equality holds only for n = 1, 2, 4, and 8. This
was proved by Hurwitz in 1898 [13]. It reveals a deep and surprising
fact about the world we live in. Much of what we see around us, from
elementary particles to distant galaxies, is an inevitable consequence
of this simple mathematical fact. The world is the way it is because
the above equality holds only for n = 1, 2, 4, and 8. For example,
the above identity is equivalent to the existence of a division algebra
of dimension n over the field R of real numbers. Indeed, if we define
vectors x = (x1, . . . , xn), y = (y1, . . . , yn), and z = x ∗ y in R

n such
that zi’s are functions of xj ’s and yk’s determined by (1.53), then

||x|| ||y|| = ||x ∗ y|| . (1.54)

Thus the division algebras R (real), C (complex), H (quaternion),
and O (octonion) we use in much of our science are intimately related
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to the dimensions n = 1, 2, 4, and 8. Moreover, from the equation
of a unit sphere,

x2
1 + x2

2 + · · ·+ x2
n = 1 , (1.55)

it is easy to see that the four parallelizable spheres S0, S1, S3, and
S7 correspond to n = 1, 2, 4, and 8, which are the dimensions of
the respective embedding spaces of these four spheres. What is not
so easy to see, however, is the fact that there is a deep connection
between Hurwitz’s theorem and the quantum correlations [4]. As we
saw in the previous sections, all quantum correlations are inevitable
consequences of the parallelizability of the 7-sphere, which in turn is a
consequence of Hurwitz’s theorem. So the innocent looking algebraic
equality (1.53) has far reaching consequences, not only for the entire
edifice of mathematics, but also for that of quantum physics.

1.6 Concluding Remarks

The results obtained in the preceding sections (and in the chapters
that are to follow [4]) go far deeper and well beyond the boundaries
of Bell’s theorem. In any physical experiment what is observed are
“clicks” of the event detectors corresponding to yes/no answers to
our questions. As in the EPR experiment [9][12], when we compare
the answers recorded by various observers in quantum experiments
conducted at mutually remote locations, we find that their answers
are correlated in a mathematically and statistically very disciplined
manner. The natural question then clearly is: why are these answers
correlated in such a disciplined manner when there appears to be no
predetermined common cause dictating the correlations. Bell and his
followers claimed that the observed correlations are the evidence of
a radical non-locality in nature. The stronger adherents of this view
often claim that “nature is non-local.” Here we have rejected this
view. Instead, we have demonstrated how a perfectly natural local
explanation of the observed correlations is possible. In our view these
correlations are the evidence, not of non-locality, but the fact that
the physical space we live in respects the symmetries and topologies
of a parallelized 7-sphere [4]. The 3-dimensional space we normally
presume as our reality is then simply one of the many fibers of this
7-sphere. Our observations are still confined to various 3-dimensional
subspaces of this 7-sphere, but the correlations among the results of
our experiments are revealing that the observed measurement events
are actually occurring within a 7-dimensional manifold. The radical
non-locality of Bell is thus traded off for the extra dimensions going
beyond our immediate experiences in the macroscopic world.

The methodology that has led us to this conclusion is similar to
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that used by Einstein to arrive at his local field theory of gravity. Just
as the demand of locality in the face of Newton’s non-local theory of
gravity led Einstein to general relativity, the demand of locality in
the face of quantum correlations has led us to a parallelized 7-sphere.
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Appendix: The Meaning of a Geometric Product

The concept of a geometric product was first introduced by Hermann
Grassmann to characterize what he called “extensive magnitudes.”
Nowadays Hestenes refers to “extensive magnitudes” as “directed
numbers” [5]. To understand the meaning of the geometric product
between two such directed numbers, let us first look at the “inner
product” between two vectors, say a and b :

a · b =
1

2
(ab + ba) = cos θab = b · a , (1.56)

where θab is the angle between a and b. Clearly, this product is a
grade-lowering operation. It takes two grade-1 numbers, or vectors,
and gives back a grade-0 number, or a scalar.

Next, let us look at the “outer product” between a and b, as
defined by Grassmann:

a ∧ b =
1

2
(ab − ba) = I · (a× b) = −b ∧ a , (1.57)

where I (in the modern parlance) is a trivector. Unlike the previous
product this product is a grade-raising operation. It takes two grade-1
numbers, or vectors, and gives back a new directed number of grade
2; i.e., a bivector. Although an abstract entity, the bivector a ∧ b
may be visualized as an oriented plane segment, hovering orthogonal
to the vector a× b.

Using the products (1.56) and (1.57), the geometric product
between the two directed numbers a and b can now be expressed as

ab = a · b + a ∧ b . (1.58)

This product also takes two grade-1 numbers, or vectors, but gives
back an entity that is neither a scalar nor a bivector in general, but
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rather a quaternion (or a spinor), made out of the grade-lowering
operation a · b and the grade-raising operation a ∧ b. To appreciate
this, let us express the two components of the geometric product
(1.58) more explicitly as

ab = a · b + I · (a× b)

= cos θab + ( I · c ) sin θab
= exp{( I · c ) θab } , (1.59)

where c = a× b/|a× b|. It is now clear that the product ab is a
quaternion (or a spinor) that represents a rotation by an angle 2θab
about the c-axis. The geometric product, ab, thus takes two grade-1
numbers, or vectors a and b, and gives back a pure act of rotation.
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