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Abstract
In Everettian quantum mechanics, justifications for the Born rule appeal to self-
locating uncertainty or decision theory. Such justifications have focused exclu-
sively on a pure-state Everettian multiverse, represented by a wave function.
Recent works in quantum foundations suggest that it is viable to consider a mixed-
state Everettian multiverse, represented by a (mixed-state) density matrix. Here,
we develop the conceptual foundations for decoherence and branching in a mixed-
state multiverse, and extend the standard Everettian justifications for the Born
rule to this setting. This extended framework provides a unification of ‘classical’
and ‘quantum’ probabilities, and additional theoretical benefits, for the Everettian
picture.
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1 Introduction
Everettian quantum mechanics (EQM) is a minimalist interpretation of quantum me-
chanics with some counter-intuitive features (Barrett 2023; Vaidman 2021). Instead
of attempting to collapse the quantum state or adding extra variables to obtain a
definite outcome for each experiment, it proposes to take unitary quantum mechanics
as fundamental and replace our single-world ontology with a multiverse, where every
possible outcome of an experiment is realized in some branch (a parallel world). Hence
it is also sometimes called the ‘many-worlds’ interpretation.

There are two main issues with EQM, one metaphysical and the other epistemo-
logical. The metaphysical issue concerns the ontology of EQM. How do we obtain the
appearance of a classical world, with definite records and observers, from the quantum
state? A much discussed solution appeals to decoherence, with its ability to suppress
interference and give rise to an “emergent multiverse” (Wallace 2012). The universal
quantum state evolves into one with many branches, each representing an emergent
(quasi-)classical world.

The epistemological issue concerns the understanding of probability in EQM. A key
postulate of quantum mechanics, and a crucial element of its empirical confirmation,
is the Born rule: the probability of observing a certain outcome is given by the squared
amplitude of the quantum state. How should we make sense of this probability when
every measurement outcome occurs on some branch of the Everettian multiverse, and
what justifies the interpretation of the squared amplitutdes as probabilities? There are
several responses to the probability issue. The Deutsch-Wallace program understands
probability in terms of the betting preferences of agents within the multiverse, which
uses a decision-theoretic representation theorem to prove that the agent’s credences
must satisfy the Born rule, on pain of irrationality (e.g. Deutsch 1999, Wallace 2012). The
Sebens-Carroll (2018) and McQueen-Vaidman (2018) programs understand probability
in terms of self-locating uncertainty of a localized agent on some branch, employing
certain epistemic principles – such as “separability” or “symmetry” – to prove that the
agent’s self-locating uncertainty must satisfy the Born rule.

Promising as they may be, these defenses and justifications of EQM have an appar-
ent limitation. They focus exclusively on the case of a universal pure state, where the
quantum state of the multiverse is represented by a wave function. Defenders of EQM,
like many other realist interpreters, regard the universal pure state as representing
something objective and mind-independent. However, recent works in quantum foun-
dations (Allori et al. 2013; Chen 2021; Dürr et al. 2005; Maroney 2005; Robertson 2022;
Wallace 2012) suggest that the above approach to realism, based on the wave function,
is not the only possibility for realism about the quantum state. It’s also viable – and in
some circumstances even more theoretically attractive – to take a realist stance based
on the density matrix (Chen 2021). On this view, we can associate (possibly mixed-
state) density matrices, rather than (necessarily pure-state) wave functions, to isolated
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systems and even to the entire universe. While density matrices are conventionally
used to represent ignorance about some underlying wave function or the external
environment, it’s also possible to regard density matrices as fundamental. On the new
picture, the universe as a whole can be aptly represented by a fundamental density
matrix evolving unitarily according to the von Neumann equation. In contrast, on the
standard picture, it is represented as a wave function evolving unitarily according to
the Schrodinger equation. If the fundamental density matrix in this new realist picture
is mathematically the same as that of the “ignorance” density matrix in the standard
picture, the two theories will be empirically equivalent, since they make the same
statistical predictions for all experiments.

All wave functions correspond to some pure-state density matrices, but not all
density matrices have corresponding wave functions. Thus, realism based on the
density matrix allows for more quantum states than realism based on the wave function.
The former is also compatible with a theoretically attractive package – the Wentaculus –
which provides a unified explanation for quantum phenomena and the thermodynamic
arrow of time (Chen 2020, Chen 2021, Chen 2022a, Chen 2022b). Following Chen (2021,
2019), we call this new picture Density Matrix Realism (DMR) and the old one Wave
Function Realism (WFR). We denote the Everettian versions of DMR and WFR as DMRE
and WFRE respectively. (Note that this is a wider conception of quantum state realism
than that of Albert (1996) and Ney (2021).)

It is an open question whether standard arguments for branching and the Born
rule generalize from WFRE to DMRE. If there’s no generalization available, then
WFRE might still be preferable to DMRE, since the former – not the latter – solves
the problems of ontology and probability. In this paper, we argue that the standard
justifications for branching and the Born rule in WFRE can be extended to DMRE. In
particular, we show how the three aforementioned programs for justifying the Born
rule – the Sebens-Carroll program (§3.1), the McQueen-Vaidman program (§3.2), and
the Deutsch-Wallace program (§3.3) – do not depend crucially on WFRE, but can also
generalize readily to DMRE.

This project has several conceptual payoffs. First, it requires us to clarify the
ontological structure of the multiverse and the requirements of decoherence. As it
turns out, branching requires decoherence but decoherence does not require a universal
pure state. The story of decoherence applies both to pure and mixed states, which has
been underappreciated in the literature.

Second, with the access to a larger state space, Everettians can explore new theo-
retical possibilities that are naturally suggested by DMR. For example, DMRE provides
the basis for a unified account of probability that may be absent on WFRE. On WFRE,
without knowing what the universal wave function is, we may assign a density matrix
ρ to represent our epistemic state. The probabilities we extract from ρ range over
various possible candidate multiverses. As such, it is not interpreted as self-locating
uncertainty or betting preferences of agents within a multiverse, and must be treated
as a distinct source of probability (e.g. statistical mechanical / classical probability of
possible initial conditions). In contrast, DMRE allows us to regard ρ as representing
the actual fundamental quantum state of the multiverse. We have the option to posit
just one source of probability, corresponding to the weights associated with branches
of the actual mixed-state multiverse.
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Finally, our results establish DMRE as a viable version of EQM and a viable rival
to WFRE, by showing the former capable of tackling EQM’s issues of ontology and
probability, via the same resources as the latter. This leads to a case of in-principle
empirical underdetermination: by Everettians’ own lights, there is an open question
which version of EQM is the correct one.

2 Decoherence and Branching
In this section, we suggest that decoherence and branching work essentially the same
way in DMRE as in WFRE.

2.1 Decoherence for Wave Function Realism
We start with a brief review of how decoherence and branching work in WFRE. (Here
we mostly follow Schlosshauer (2007).)

Consider a universal pure state Ψ describing a system S interacting with the
environment E. Given a system S in a microscopic superposition of states Sn:

|S⟩ =
∑
n

cn|Sn⟩ (1)

interacting with E, at some time t after the interaction, the universal state will become
a macroscopic superposition:

|S + E⟩ =
∑
n

cn|Sn⟩|En(t)⟩ (2)

where |En(t)⟩ is the macroscopic ‘pointer state’ associated with Sn. For a simple case,
consider n = 2. The density matrix describing the measurement outcomes on S, ρS is:

ρS = TrE(ρS+E) = TrE |S + E⟩⟨S + E|
= |a|2|S1⟩⟨S1|+ |b|2|S2⟩⟨S2|
+ ab∗|S1⟩⟨S2|⟨E2(t)|E1(t)⟩+ a∗b|S2⟩⟨S1|⟨E1(t)|E2(t)⟩

(3)

The last two terms represent the interference between the two macroscopically su-
perposed states, and depends partly on ⟨E1(t)|E2(t)⟩ and ⟨E2(t)|E1(t)⟩. Generically,
⟨Ei(t)|Ej(t)⟩ quantifies the difference between two states of the environment. Due to
innumerable interactions within its parts, the states of the environment are assumed
to become rapidly approximately orthogonal under Schrödinger evolution, such that

⟨Ei(t)|Ej(t)⟩ ∝ e−t/τd , i ̸= j (4)

holds, where τd is the characteristic decoherence timescale to be empirically determined
for specific systems. Over time, ⟨E1(t)|E2(t)⟩ and ⟨E2(t)|E1(t)⟩ approach zero, so
that:

ρS ≈ |a|2|S1⟩⟨S1|+ |b|2|S2⟩⟨S2| (5)

4



In other words, any measurement on the system S, entangled with E, effectively
ignores the quantum interference between the macroscopically superposed component
states. Notice that the interference terms show up only at the subsystem level (3) and
not explicitly at the universal level (2). In §2.2 we shall see that although the story of
decoherence applies the same way in DMR, “interference terms” also show up at the
universal level, even though, as it is still the case, they make almost no contribution to
the evolution of the component states.

We’ll now use the position representation for both wave functions and density
matrices, as it explicates the above story of decoherence and its approximate nature in
a more concrete fashion. However, once we have a concrete grasp of decoherence in
hand, we’ll use the bra-ket notation for generalizing the Born rule to DMRE.

Let us start with an example. Before measurement, at t1, the subsystem is about
to be measured in one of two distinct spatial regions: A and B; the environment –
including the measurement apparatus – is in a “ready” state to measure the location of
the subsystem. Suppose the (pure) universal quantum state is:

Ψt1
1 (x, y) =

1√
2

[
A(x)ϕready(y) +B(x)ϕready(y)

]
(6)

with A(x) the wave function of the subsystem located in region A and ϕready(y) the
wave function of the environment ready to measure the subsystem; likewise for B(x).
Note that y includes an enormous number of degrees of freedom since the environment,
which includes the measurement apparatus, is a macroscopic system. In contrast, x
may only have a few degrees of freedom. By t2, a measurement has been carried out.
Now, the universal quantum state has unitarily evolved into:

Ψt2
1 (x, y) =

1√
2

[
A(x)ϕA(y) +B(x)ϕB(y)

]
(7)

with ϕA(y) the wave function of the environment that indicates the subsystem is
in region A, and similarly for ϕB(y). Following the standard assumptions about
measurement outcomes and decoherence, we stipulate that ϕA(y) and ϕB(y) have
macroscopically disjoint supports, in the sense that their supports are not only disjoint
but also contain macroscopic differences, such as different orientations of the pointer.
We are then allowed to ignore the interference, so that, after measurement at t2, there
are only two branches of the wave function:

• a branch with the pointer reading “A,” represented by the pure state A(x)ϕA(y),
with branch weight 1

2 .

• a branch with the pointer reading “B,” represented by the pure stateB(x)ϕB(y),
with branch weight 1

2 .

In short, the wave functions representing the two branches start out concentrated
in nearby regions in configuration space, but after measurement their supports in
configuration space move much farther apart into distinct macrostates (macrostates
with different pointer readings) with negligible interference, and will move even further
in the future. Following Wallace (2012, p.88), we may say that “‘branching’ (relative to
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a given basis) is just the absence of interference.” Future developments of branch A
will (almost) entirely depend on A(x)ϕA(y) and receive (almost) no influence from
B(x)ϕB(y).

2.2 Decoherence for Density Matrix Realism – Pure States
We now show that the above story can also be told in DMRE.

To set up the simple case of decoherence for DMRE and a fundamental quantum
state as (possibly mixed) density matrix, let us first show how decoherence will work
out for DMRE in the case of a pure density matrix. Let us first consider two possible
pure universal density matrices at t1 before measurement:

ρt12 = Ψt1
2 (x, y)Ψt1∗

2 (x′, y′) (8)

ρt13 = Ψt1
3 (x, y)Ψt1∗

3 (x′, y′) (9)

corresponding to two universal wave functions respectively:

Ψt1
2 (x, y) =

1√
2

[
A(x)ϕready(y) +B(x)ϕready(y)

]
(10)

Ψt1
3 (x, y) =

1√
2

[
A(x− δ)ϕready(y) + C(x)ϕready(y)

]
(11)

with δ a microscopic position displacement that leaves the measurement macrostate
invariant, so that the measurement apparatus will record A(x− δ) as “A” just as it
does forA(x). In other words, the microscopic differences betweenA(x) andA(x− δ)
will not be registered by the measurement devices.

At t2, the subsystem has undergone a measurement procedure. The above density
matrices have unitarily evolved into these:

ρt22 = Ψt2
2 (x, y)Ψt2∗

2 (x′, y′) (12)

ρt23 = Ψt2
3 (x, y)Ψt2∗

3 (x′, y′) (13)

corresponding to the respective wave functions:

Ψt2
2 (x, y) =

1√
2

[
A(x)ϕA(y) +B(x)ϕB(y)

]
(14)

Ψt2
3 (x, y) =

1√
2

[
A(x− δ)ϕA(y) + C(x)ϕC(y)

]
(15)

If the universe were in either of the states (8) or (9), then its quantum state will be
given by (12) or (13) respectively after unitary time evolution. For this case, essentially
the same story for decoherence as WFRE can be given for DMRE.

However, there is an interesting feature of the density-matrix representation. In
DMRE, even when the universal quantum state is pure, the “interference terms” will
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be formally present at the universal level after expansion into component states. For
example, let us first expand the universal density matrix represented by (12):

ρt22 =
1

2
Ψt2

2 (x, y)Ψt2∗
2 (x′, y′) =

1

2

[
A(x)A∗(x′)ϕA(y)ϕA∗(y′)

+A(x)B∗(x′)ϕA(y)ϕB∗(y′)

+B(x)A∗(x′)ϕB(y)ϕA∗(y′)

+B(x)B∗(x′)ϕB(y)ϕB∗(y′)

] (16)

The second and the third terms in the middle will become almost zero only after taking
the partial trace over the environmental degrees of freedom y. Note that such terms
show up in the universal density matrix (even when it is pure) but do not appear in the
wave function representation (14), an interesting difference worth keeping in mind.
Let us group such terms together and call them c.t. for “cross terms.” Since they make
negligible contributions to locally measurable quantities, the cross terms are irrelevant
to the emergent branching structure. Rewriting (16), we have:

ρt22 = Ψt2
2 (x, y)Ψt2∗

2 (x′, y′) =
1

2

[
A(x)A∗(x′)ϕA(y)ϕA∗(y′)

+B(x)B∗(x′)ϕB(y)ϕB∗(y′)

]
+ c.t.

(17)

In this case, the universal density matrix ρt22 will have two branches:

• a branch with the pointer reading “A,” represented by the pure density matrix
A(x)A∗(x′)ϕA(y)ϕA∗(y′), with branch weight 1

2 .

• a branch with the pointer reading “B,” represented by the pure density matrix
B(x)B∗(x′)ϕB(y)ϕB∗(y′), with branch weight 1

2 .

Future developments of the first branch will (almost) entirely depend onA(x)A∗(x′)ϕA(y)ϕA∗(y′)
and receive (almost) no contribution from B(x)B∗(x′)ϕB(y)ϕB∗(y′) or the cross
terms. And similarly for the second branch.

For the other universal density matrix, we have:

ρt23 = Ψt2
3 (x, y)Ψt2∗

3 (x′, y′) =
1

2

[
A(x− δ)A∗(x′ − δ)ϕA(y)ϕA∗(y′)

+ C(x)C∗(x′)ϕC(y)ϕC∗(y′)

]
+ c.t.

(18)

In this case, the universal density matrix ρt23 will have two branches:

• a branch with the pointer reading “A,” represented by the pure density matrix
A(x− δ)A∗(x′ − δ)ϕA(y)ϕA∗(y′), with branch weight 1

2 .

• a branch with the pointer reading “C ,” represented by the pure density matrix
C(x)C∗(x′)ϕC(y)ϕC∗(y′), with branch weight 1

2 .
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Future developments of the first branch will (almost) entirely depend on A(x −
δ)A∗(x′−δ)ϕA(y)ϕA∗(y′) and receive (almost) no contribution fromC(x)C∗(x′)ϕC(y)ϕC∗(y′)
or the cross terms. And similarly for the second branch.

2.3 Decoherence for Density Matrix Realism – Mixed States
Now, consider the case when the fundamental universal quantum state is an impure
(mixed-state) density matrix, the equal mixture of ρt12 and ρt13 :

ρt1(x, y, x′, y′) =
1

2
ρt12 +

1

2
ρt13

=
1

2
Ψt1

2 (x, y)Ψt1∗
2 (x′, y′) +

1

2
Ψt1

3 (x, y)Ψt1∗
3 (x′, y′)

(19)

What is the story for decoherence here? As before, the subsystem has undergone a
measurement procedure by t2. The universal quantum state has unitarily evolved into
an equal mixture of ρt22 and ρt23 :

ρt2(x, y, x′, y′) =
1

2
ρt22 +

1

2
ρt23

=
1

2
Ψt2

2 (x, y)Ψt2∗
2 (x′, y′) +

1

2
Ψt2

3 (x, y)Ψt2∗
3 (x′, y′)

(20)

The first term on the right hand side of (20) can be expanded as follows:

1

2
ρt22 =

1

2
Ψt2

2 (x, y)Ψt2∗
2 (x′, y′) =

1

4

[
A(x)A∗(x′)ϕA(y)ϕA∗(y′)

+B(x)B∗(x′)ϕB(y)ϕB∗(y′)

]
+ c.t.

(21)

Similarly, the second term on the right hand side of equation (20) is:

1

2
ρt23 =

1

2
Ψt2

3 (x, y)Ψt2∗
3 (x′, y′) =

1

4

[
A(x− δ)A∗(x′ − δ)ϕA(y)ϕA∗(y′)

+ C(x)C∗(x′)ϕC(y)ϕC∗(y′)

]
+ c.t.

(22)

Hence, putting (21) and (22) together, we see that the universal impure density matrix
after measurement at t2 is:

ρt2 =
1

4

[
A(x)A∗(x′)ϕA(y)ϕA∗(y′)

+A(x− δ)A∗(x′ − δ)ϕA(y)ϕA∗(y′)

+B(x)B∗(x′)ϕB(y)ϕB∗(y′)

+ C(x)C∗(x′)ϕC(y)ϕC∗(y′)

]
+ c.t.

(23)

In this case, we can say that there are not four branches for the universal density
matrix (23), but three:
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• A branch with the pointer reading “A,” represented by that part of the density
matrix with the mixed state:

1

4
A(x)A∗(x′)ϕA(y)ϕA∗(y′) +

1

4
A(x− δ)A∗(x′ − δ)ϕA(y)ϕA∗(y′)

=
1

2

[
1

2
A(x)A∗(x′) +

1

2
A(x− δ)A∗(x′ − δ)

]
ϕA(y)ϕA∗(y′)

with overall branch weight 1
2 . The subsystem density matrix is a mixed state

while the environmental density matrix is a pure state. (Of course, this case
involves some idealization, as the environmental density matrix in general is
also mixed rather than pure.)

• A branch with the pointer reading “B,” represented by that part of the density
matrix with the pure state:

1

4
B(x)B∗(x′)ϕB(y)ϕB∗(y′)

with branch weight 1
4 .

• A branch with the pointer reading “C ,” represented by that part of the density
matrix with the pure state:

1

4
C(x)C∗(x′)ϕC(y)ϕC∗(y′)

with branch weight 1
4 .

Compared to the two multiverses (17 and 18) considered in the previous section, this
multiverse is more expansive. It contains all the branches of the previous two.

Decoherence is approximate, and so is branching of the Everettian multiverse.
They both somewhat depend on how we define macrostates and what counts as
macroscopically indistinguishable. For example, with a more fine-grained partition of
macrostates, we may as well count the multiverse (23) as having four branches instead
of three. While this example is a toy model, we believe it’s representative of how
branching occurs in a mixed-state multiverse, and is in line with the general Everettian
stance on branching and decoherence.

One worry we want to immediately defuse is the thought that the branching
involved in pure states somehow differs from the branching of mixed states, since
mixed states can be decomposed non-uniquely into different mixtures of pure states.
But that is not a problem for the multiverse – the set of quasi-classical emergent worlds
– to emerge from a fundamental mixed state. Recall that there’s also a preferred basis
problem for WFRE. There, decoherence is used to justify the choice of a particular
basis (modulo the artificial precision of the macrostates and pointer basis). Given a
particular measurement setup, there’s usually a well-defined pointer basis. Associated
with this well-defined pointer basis is a specific choice of macrostates (e.g. A, B or C).
These determine what the emergent branches are. The same story about decoherence
holds in DMRE: nothing in this story essentially depends on there being pure states.
There is no more mystery to branching in DMRE than in WFRE.
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3 The Born Rule
We now turn to the promised task of generalizing standard derivations of the Born
rule from WFRE to DMRE.

The motivation for deriving the Born rule derives from the fact that WFRE runs
into a problem of probability: given that every branch of the wave function exists,
how can one make sense of quantum-mechanical probabilities? The Born rule tells us
that the squared-amplitudes associated with each branch should be interpreted as the
probabilities of outcomes on that branch. Intuitively, for an outcome to occur with
some probability (that isn’t 1) is for it to possibly not occur. In WFRE, though, every
branch – every possible outcome of a measurement – always obtains. How, then, can
we defend the Born rule and the probabilities it prescribes?

Consider Alice, an experimenter, performing an x-spin measurement on an electron
prepared in |↓z⟩, a state of equal superposition of x-spin-up and x-spin-down:

|↓z⟩ =
1√
2

[
|↑x⟩ − |↓x⟩

]
(24)

Then, pre-measurement, the universal wave function is in the ‘ready’ state R:

ΨR = |↓z⟩|RA⟩|RD1
⟩|RE⟩ (25)

where Alice, A, is in the ‘ready’ state |RA⟩, the measurement device D1 in the state
|RD1

⟩ is ‘ready’ to display one of two measurement outcomes {↑, ↓} , and the envi-
ronment E (everything else) is ‘ready’ for the measurement by being in the state |RE⟩.
After measurement, ΨR unitarily evolves into ΨM :

ΨM =
1√
2

[
|↑x⟩|x↑A⟩|↑D1

⟩|↑E⟩ − |↓x⟩|x↓A⟩|↓D1
⟩|↓E⟩

]
(26)

with two outcomes with equal amplitudes 1√
2

. The Born rule prescribes that the
probability of each outcome occurring is the squared-amplitude (or weight) associated
with that outcome, i.e. ( 1√

2
)2 = 1

2 . But in WFRE, both branches exist – they’re
equally real, and (a copy of) Alice exists on each branch, observing both measurement
outcomes. How can one make sense of the weights being probabilities?

Much work has been done by defenders of WFRE to justify the Born rule. There are
three programs we wish to discuss: the Sebens-Carroll program, the McQueen-Vaidman
program, and the Deutsch-Wallace program. Each proposes a rational justification of
Born rule probabilities by appealing to certain epistemic principles.

Here, we’ll show that if we accept any of these programs, as Everettian defenders
of Born rule probabilities do, then DMRE can accomplish what WFRE does: by the
Everettian’s own lights, DMRE provides the same justifications as WFRE for using
squared-amplitude branch weights as bona fide probabilities and, hence, the Born rule.

We emphasize that we’re not committing ourselves here to any of these programs.
They remain debated, and we won’t join the fray. (See e.g. Vaidman 2020 for discussion.)
We simply note that these programs implicitly assume WFRE by assuming that a
system’s quantum state is given by a pure-state wave function. If this assumption
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is necessary for defending the Born rule, then DMRE is dead in the water: DMRE
assumes that the possible fundamental quantum states of the universe are not only
pure density matrices (associated with pure-state wave functions) but also impure
density matrices (associated with arbitrary mixtures of pure states). On the contrary,
if these justifications do not necessarily depend on pure-state wave functions but
generalize to mixed-state density matrices, then DMRE seems to be conceptually on a
par with WFRE. This supports the view that DMRE is a viable competitor to WFRE.

Furthermore, we won’t discuss the well-known problems of circularity surrounding
the use of decoherence in the Everettian justification of probability, as we don’t offer
any new solutions to them. In any case, these problems will affect WFRE just as much
as DMRE. (See Baker (2007) and Kent (2010).)

3.1 The Sebens-Carroll Program
Sebens and Carroll (2018) proposes a strategy for justifying the Born rule for Al-
ice above: the probabilities ascribed to each branch by the Born rule are to be in-
terpreted as Alice’s self-locating uncertainty as to which branch they’re located in,
post-measurement but before they observe the measurement outcome. In their words:

If we assume that the experimenter knows the relevant information about
the wave function, it’s unclear what the agent might be uncertain of before
a measurement is made. They know that every outcome will occur and
that they will have a successor who sees each possible result. […] We must
answer the question: What can one assign probabilities to? Our answer
will be that agents performing measurements pass through a period of
self-locating uncertainty, in which they can assign probabilities to being
one of several identical copies, each on a different branch of the wave
function. (ibid., 33)

To elaborate, their strategy relies on (i) the fact that Alice knows the universal wave
function, (ii) has undergone branching due to some measurement having been per-
formed, but (iii) may not be able to discern which branch they’re on prior to observing
the measurement outcome due to each copy of Alice, post-branching, having qualita-
tively identical internal states as each other. For Sebens and Carroll, “two agents are in
the same internal qualitative state if they have identical current evidence: the patterns
of colors in their visual fields are identical, they recall the same apparent memories,
they both feel equally hungry, etc.” (2018, 36)

In this ‘post-measurement pre-observation’ period, as they call it, the universal
wave function is:

ΨP =
1√
2

[
|↑x⟩|RA⟩|↑D1

⟩|↑E⟩+ |↓x⟩|RA⟩|↓D1
⟩|↓E⟩

]
(27)

That is, while the measurement has been performed and branching has occurred
resulting in two branches associated with |↑x⟩ and |↓x⟩ respectively, Alice remains in
the ‘ready’ state because they have not observed the measurement outcome yet. They
thus have self-locating uncertainty – subjective credences – as to which branch of the
wave function they might be in.
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Sebens and Carroll (2018) then proposes an intuitive epistemic principle with which
they justify Alice’s use of the Born rule, where the probabilities are now interpreted in
terms of subjective credences:

Epistemic Separability Principle (ESP): Suppose that universe U con-
tains within it a set of subsystems S such that every agent in an internally
qualitatively identical state to agentA is located in some subsystem which
is an element of S. The probability that A ought to assign to being located
in a particular subsystem S given that they’re in U is identical in any pos-
sible universe which also contains subsystems S in the same exact states
(and does not contain any copies of the agent in an internally qualitatively
identical state that are not located in S).

P (X | U) = P (X | S) (28)

where P (A | B) is the conditional probability of A given B. An agent, when ascribing
credences to each branch, should restrict attention only to those subsystems containing
copies of themselves which are internally qualitatively identical. Given ESP, agents
ought to ignore everything outside of those subsystems of concern because they
are irrelevant to the agent’s consideration of credences. In quantum mechanics, the
standard way to do that is to construct a density matrix for e.g. ΨP and then trace
out the irrelevant degrees of freedom, ending up with the relevant reduced density
matrix. Supposing that the subsystem which an agent, such as Alice, cares about is the
subsystem containing (copies of) Alice and the n measurement outcomes On on D1,
then the reduced density matrix of interest for Alice is simply ρAD1 and the credences
should be assigned according to:

P (On | ΨP ) = P (On | ρAD1) (29)

While ESP seems tame, it does heavy-lifting in their argument for the Born rule. Cru-
cially, it allows agents to consider different possible multiverses in which the universal
wave function could have been different: the environment beyond the subsystems of
interest for agents, such as ρAD1 , could have contained different possible configura-
tions which leave the subsystems unchanged. As we’ll see, such modal considerations
can be used to construct constraints on an agent’s self-locating uncertainty about
being in a particular branch. This rationally prescribes certain numerical credences for
the agent being in a specific branch of the wave function, allowing them to derive the
Born rule.

3.1.1 Generalizing the Sebens-Carroll Program to DMRE

We’ll now show precisely how this strategy, which depends on ESP and self-locating
uncertainty, can be generalized to DMRE. This demonstrates that their strategy does
not depend on WFRE; they can be employed by DMRE too. We should also regard the
branch weights, such as the 1

4 -weight of theB branch discussed in §2.3, as self-locating
probabilities.
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Case 1: Pure states

Let’s start with the simple case of a pure state. Here, the strategy is essentially identical
to Seben & Carroll’s for WFRE via pure wave functions, except it’s in terms of DMRE
via pure density matrices.

An observer, Alice, is about to make a z-spin measurement of some subsystem, say,
an electron prepared in the x-spin-down state |↓x⟩. D1 is in the state |RD1

⟩, ready
to show the measurement outcome. Alice is in the state |RA⟩, ready to observe the
measurement outcome. The rest of the universe, i.e. the environment, is also in the
‘ready’ state |RE⟩.

Given ESP, Alice’s self-locating uncertainty should only depend on the subsystems
containing Alice and D1: Alice is considering their self-location uncertainty due to
branching, occurring as a result of spin measurement, and D1 is the only subsystem
showing the outcome of that measurement. Everything else is irrelevant.

This means that Alice could also consider a second display, D2, likewise in the
ready state, represented by |RD2

⟩. The set-up ofD2 is irrelevant to Alice’s self-locating
uncertainty since Alice will only observe D1, and so they can entertain the possibility
of D2 being set up in different configurations without affecting their considerations
about self-locating uncertainty concerning measurements on the electron and the
outcomes of those measurements displayed on D1. (Why they would do this will
become apparent later.)

Pre-measurement, given the above, the fundamental quantum state of the universe,
given by a pure density matrix, can be represented by the ‘ready’ state ρR:

ρR = |RE⟩|RD2
⟩|RD1

⟩|RA⟩|↓x⟩⟨↓x|⟨RA|⟨RD1
|⟨RD2

|⟨RE | (30)

D1 displays the measurement outcome, with two possible outputs {↑, ↓}. That is, it
displays ↑ if the electron was measured to be in the z-spin up direction (↑z), and ↓
if the electron was measured to be in the z-spin down direction (↓z). Alice can also
suppose thatD2, too, has two possible outputs {♡,♢} correlated in some way with the
outcomes of D1. Again, given ESP, the set-up ofD2 per se should be irrelevant to their
assignment of self-locating uncertainty given their observation of the measurement
outcomes given by D1. Two possible set-ups for D2 can be considered:

• Set-up α: D2 displays ♡ if D1 displays ↑, and ♢ if the D1 displays ↓.

• Set-up β: D2 displays ♢ if D1 displays ↑, and ♡ if the D1 displays ↓.

To set up for our next case, and to make the correlations between the various displays
clear for each set-up, we can also write the set-ups as per Table 1.

We suppose that Alice has access to the quantum state, the dynamical laws, and can
consider these possible set-ups, but is not immediately aware of, nor affected by, the
measurement outcome. At this point, they can consider their self-locating uncertainty.
Post-measurement pre-observation ofD1, Alice can consider one possibility: ρR, given

13



Set-up
α β

Electron ↑z ↓z ↑z ↓z
D1 ↑ ↓ ↑ ↓
D2 ♡ ♢ ♢ ♡

Table 1: Two possible set-ups α and β, with the only
difference (for now) being two possible choices of display
output set-ups for D2.

set-up α, unitarily evolves into

ρα =
1

2

[
|↑αE⟩|♡D2⟩|↑D1⟩|RA⟩|↑z⟩⟨↑z|⟨RA|⟨↑D1 |⟨♡D2 |⟨↑αE |

+ |↓αE⟩|♢D2
⟩|↓D1

⟩|RA⟩|↓z⟩|⟨↓z|⟨RA|⟨↓D1
|⟨♢D2

|⟨↓αE |
]
+c.t.

(31)

For notational convenience, we rewrite ρα as:

ρα =
1

2

[
ρ↑z

ρRA
ρ↑D1

ρ♡D2
ρ↑αE

+ ρ↓zρRA
ρ↓D1

ρ♢D2
ρ↓αE

]
+c.t.

(32)

But they could have considered set-up β instead. If that were the case, ρR would have
instead unitarily evolved into

ρβ =
1

2

[
ρ↑z

ρRA
ρ↑D1

ρ♢D2
ρ↑βE

+ ρ↓zρRA
ρ↓D1

ρ♡D2
ρ↓βE

]
+c.t.

(33)

To emphasize, these are not the only configurationsD2 can have, but rather two possible
set-ups that are available to use for our derivation. We’re allowed to consider these
configurations since ESP asks Alice to restrict their attention only to the subsystems
containing A and D1; possible changes in everything else which do not affect A and
D1 per se can be entertained without affecting Alice’s considerations about their
self-locating uncertainty.

In particular, note that when we trace out these irrelevant degrees of freedom
(by the lights of ESP) from ρα and ρβ and restrict attention only to Alice and D1,
decoherence and branching becomes apparent (as per §2). The resultant reduced
density matrices are equivalent:

ρAD1 = ρAD1
α = ρAD1

β

≈1

2

[
ρRA

ρ↑D1
+ ρRA

ρ↓D1

] (34)
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Two branches emerge as a result of decoherence – associated with definite measure-
ment outcomes for states ↑z and ↓z . We can associate each branch of ρα and ρβ
with each column of Table 1. Now, the goal is to show, given ESP, that Alice ought
to take each branch of ρAD1 to be equiprobable: Alice ought to assign credences
P (↑ | ρα) = P (↓ | ρα) = 1/2.

Since ρAD1
α = ρAD1

β as per (34):

P (↑ | ρα) = P (↑ | ρβ) (35)

We can also use ESP to restrict attention to subsystems containing (different possible)
D2 and Alice, if we wanted to consider Alice’s self-locating uncertainty over being in
a branch correlated with an outcome of D2. By tracing out D1, the electron state, and
the rest of the environment, we see that

ρAD2 = ρAD2
α = ρAD2

β

≈1

2

[
ρRA

ρ♡D2
+ ρRA

ρ♢D2

] (36)

Hence, given ESP, the credences that Alice ascribes to outcomes of D2, e.g. ♢, in both
set-ups α and β should also be identical:

P (♢ | ρα) = P (♢ | ρβ) (37)

Note from Table 1, or from (32), that the ↓-branch just is the ♢-branch in a universe
with the quantum state ρα, that is, a universe where set-up α was implemented. So
Alice’s self-locating uncertainty about being in the ↓-branch must be the same as
that for being in the ♢-branch. Alice knows this same-branch relationship since, ex
hypothesi, they have access to the quantum state. Hence, they can use this to conclude
that:

P (↓ | ρα) = P (♢ | ρα) (38)
Likewise, for a universe with the quantum state ρβ , Alice can observe that the ↑-branch
just is the ♢-branch. Hence:

P (↑ | ρβ) = P (♢ | ρβ) (39)

Therefore, putting (35), (37), (38), and (39) together, we see that:

1. P (↑ | ρα) = P (↑ | ρβ) from (35)

2. P (↑ | ρβ) = P (♢ | ρβ) from (39)

3. P (♢ | ρβ) = P (♢ | ρα) from (37)

4. P (♢ | ρα) = P (↓ | ρα) from (38)

∴ P (↑ | ρα) = P (↓ | ρα)

(40)

From (40), we see that considerations of the probabilities prescribed by ESP require
Alice to assign equal credences, when considering self-locating uncertainty, to both
the ↑-branch and the ↓-branch. This uniquely determines their credences for being in
either branch to be equal to that branch’s weight, 1/2.
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This thus vindicates the Born rule for DMRE for the simple case of equal-weight
superpositions represented by pure-state density matrices. Sebens and Carroll (2018)
has already shown that the strategy works also for unequal superpositions. We won’t
rehearse their argument here, but our discussion of Case 2 will be instructive, and
our strategy there – and the general strategy sketched in §3.1.2 – will also apply to
quantum states in unequal superpositions.

Case 2: Mixed states

Suppose instead a mixture of two pure density matrices. Would Sebens & Carroll’s
proof work then? To our knowledge, no one has proven that their derivation of the
Born rule generalizes to the case of mixed states and hence to DMRE. Here, we establish
exactly this claim, given our account of mixed state decoherence in §2.3. We show
this explicitly for one case, and provide an algorithm for generalizing this to arbitrary
density matrices.

Let ρ↓z
be the pure density matrix representing an electron in the ↓z state, and let

ρ↓x
be the pure density matrix representing an electron in the ↓x state. Then, suppose

Alice is in a universe in the mixed state:

ρR′ =
1

2

(
ρ↓z

ρRA
ρRD1

ρRE
+ ρ↓x

ρRA
ρRD1

ρRE

)
(41)

Depending on the environment, especially the measurement device being used, ρR′

will evolve differently given DMRE, just as with WFRE.
Suppose we made a measurement for x-spin.1 Then ρR′ will unitarily evolve into:

ρM ′ =
1

4
ρ↑x

ρRA
ρ↑D1

ρ↑E
+

3

4
ρ↓x

ρRA
ρ↓D1

ρ↓E
+c.t. (42)

Now, to determine Alice’s self-locating uncertainty over the possible branches of
ρM ′ , we consider two possible scenarios, µ and ν, in which additional displays in
the environment, D2 with associated outputs {♡,♢}, D3 with {♣,♠}, and D4 with
{×, ⋆}, may display results:

Set-up
µ ν

Electron ↑x ↓x ↓x ↓x ↑x ↓x ↓x ↓x
D1 ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓
D2 ♢ ♡ ♢ ♢ ♡ ♢ ♢ ♢
D3 ♣ ♣ ♠ ♣ ♠ ♣ ♣ ♣
D4 ⋆ ⋆ ⋆ × × ⋆ ⋆ ⋆

Table 2: Two possible set-ups µ and ν, corresponding to two possible
choices of display output set-ups for D2, D3, and D4.

1We could also have made a measurement for z-spin, in which case completely analogous results follow:
the density matrix gives rise to a different branching structure.
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There are many physically possible ways to achieve the above correlations by perform-
ing transformations on the environment (Sebens and Carroll 2018, p.46). For example,
someone could conditionally measure a second particle upon observing D1’s display,
and D2 could conditionally display the outcome of that measurement instead. For
instance, in set-up µ, D2/D3/D4 could display ♢/♣/⋆ if D1 displays ↑. If D1 displays
↓, then the other displays will display the result of some measurement on a second
particle which yields three distinct outcomes, only showing ♠/×/♡ on one of the
outcomes. On set-up ν, D2, D3 and D4 might just output ♡/♠/× if D1 displays ↑,
and ♢/♣/⋆ if D1 displays ↓.

As with Case 1, we can associate each column of a set-up in Table 2 with a
decohered branch. Note that ↑, ♡, ♠, and × each uniquely picks out a branch in set-up
µ, and that these four symbols also all pick out the same branch in ν. As with Case 1,
we’ll use these facts to derive the Born rule probabilities from the universal density
matrix.

Corresponding to each possible set-up, ρM ′ could have unitarily evolved into two
possible states:

ρµ =
1

4
ρ↑x

ρRA
ρ↑D1

ρ♢D2
ρ♣D3

ρ⋆D4
ρµ1E

+
1

4
ρ↓x

ρRA
ρ↓D1

ρ♡D2
ρ♣D3

ρ⋆D4
ρµ2E

+
1

4
ρ↓x

ρRA
ρ↓D1

ρ♢D2
ρ♠D3

ρ⋆D4
ρµ3E

+
1

4
ρ↓x

ρRA
ρ↓D1

ρ♢D2
ρ♣D3

ρ×D4
ρµ4E

+c.t.

(43)

Or:
ρν =

1

4
ρ↑xρRA

ρ↑D1
ρ♡D2

ρ♠D3
ρ×D4

ρµ1E

+
1

4
ρ↓xρRA

ρ↓D1
ρ♢D2

ρ♣D3
ρ⋆D4

ρµ2E

+
1

4
ρ↓x

ρRA
ρ↓D1

ρ♢D2
ρ♣D3

ρ⋆D4
ρµ3E

+
1

4
ρ↓x

ρRA
ρ↓D1

ρ♢D2
ρ♣D3

ρ⋆D4
ρµ4E

+c.t.

(44)

We’re now able to derive our main result. Using ESP again, we can see that:

P (↑ | µ) = P (↑ | ν) (45)

P (♡ | µ) = P (♡ | ν) (46)

Furthermore, by scrutinizing ρµ and ρν , or by consulting Table 2, we see that the
↑-branch just is the ♡-branch in ρν and hence:

P (♡ | ν) = P (↑ | ν) (47)
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So now we’ve established the equivalence of probabilities for the ↑-branch and ♡-
branch in ρµ. We do the same for the two remaining branches using the same strategy
of using ESP and consulting Table 2 to observe same-branch relationships between
the symbols. We end up with:

P (♠ | µ) = P (♠ | ν) = P (↑ | ν) (48)

P (× | µ) = P (× | ν) = P (↑ | ν) (49)
Hence, from (45) to (49):

P (↑ | µ) = P (♡ | µ) = P (♠ | µ) = P (× | µ) (50)

Since the ↑-branch, ♡-branch, ♠-branch, and ×-branch exhaust the branches of ρµ
and are mutually exclusive after decoherence, and since they’re equiprobable from
(50), Alice should assign equal credences to being in any of the branches. That is:

P (↑ | µ) = P (♡ | µ) = P (♠ | µ) = P (× | µ) = 1

4
(51)

Consulting Table 2 again reveals that the ♡-branch, ♠-branch, and ×-branch are all
↓-branches. Since they’re approximately mutually exclusive (per decoherence) and
exhaust all possible branches in which ↓ shows up in ρµ, we have:

P (↓ | µ) = (P (♡ | µ) + P (♠ | µ) + P (× | µ) (52)

Hence, if Alice ought to assign equal credences of 1/4 each to P (♡ | µ), P (♠ | µ),
and P (× | µ), then:

P (↓ | µ) = 3

4
(53)

But since Alice rationally ought to assign 1/4 to P (↑ | µ) and 3/4 to P (↓ | µ), Alice
rationally ought to follow the Born rule! So we’ve provided a rational justification for
the Born rule in DMRE for mixed states, as promised. □

3.1.2 General Strategy

Sebens and Carroll’s strategy exploits the fact that there are many physically possible
and convenient set-ups, i.e. possible environments, such that one can write down the
quantum state as a sum of equal-amplitude, and hence equally weighted, branches.
They discuss this general proof obliquely in the appendix section, but we think their
strategy can be explicated much clearly, especially through the sort of schematic tables
we’ve used thus far.

For a quantum state that one wishes to split into N equal-amplitude branches, one
considers, beyond D0 which displays the original measurement outcome, N further
displays in the environment, each of which displays two outputs {⋆N , ⋆′N}. The agent
then considers cases in which the ⋆′N symbols only show up once for the N th display.
Per ESP, one may unitarily transform these displays (and systems whose measurement
outcomes they represent) in many physically possible ways without affecting one’s
self-location uncertainty regarding the subsystem containing the agent and D0. Then,
the Sebens-Carroll strategy for setting up the two set-ups can be made more explicit
in terms of two simple strategies:
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• Diagonalization: the first set-up diagonalizes, for the N th display, the ⋆′N
symbol (as seen in Table 3 as set-up α).

• Same-Branch: the second set-up considers a possibility in which the ⋆′N sym-
bols all show up in the same branch (seen in Table 3 as set-up β).

Suppose Alice is considering a measurement on some system with k unequally weighted
outcomes, Ok, such that D1 displays {“1”, “2”, ...“k”}. Given this set-up, one can
consider a schematic table as per Table 3.

Set-up
α β

System O1 O1 O2 . . . Ok O1 O1 O2 . . . Ok

D0 “1” “1” “2” . . . “k” “1” “1” “2” . . . “k”
D1 ⋆′1 ⋆1 ⋆1 ⋆1 ⋆1 ⋆′1 ⋆1 ⋆1 ⋆1 ⋆1
. . . ⋆2 ⋆′2 ⋆2 ⋆2 ⋆2 ⋆′2 ⋆2 ⋆2 ⋆2 ⋆2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DN ⋆N ⋆N ⋆N ⋆N ⋆′N ⋆′N ⋆N ⋆N ⋆N ⋆N

Table 3: Two possible set-ups α and β, with two possible choices of display
output set-ups for each D1, D2, ..., DN , with two possible outputs ⋆N and ⋆′N
each. Generally there can be many equal-amplitude branches with the same
outcomes (e.g. O1).

Again, one can generically treat each column of each set-up as an equal-amplitude
weighted branch of some possible universal quantum state with set-up α or β respec-
tively. Then, one simply uses ESP to judge that, for each N :

P (⋆′N | α) = P (⋆′N | β) (54)

and consider the same-branch relationships between the symbols in ρβ :

P (⋆′1 | β) = P (⋆′2 | β) = ... = P (⋆′N | β) (55)

This straightforwardly entails

P (⋆′1 | α) = P (⋆′2 | α) = ... = P (⋆′N | α) (56)

which entails that an agent ought to assign equal credences that they might be located
on each of the N th equally weighted branches. But this just is the Born rule! (One
simple last step involves counting how many branches correspond to the outcomes Ok

of interest, and summing up each of the 1/N credences for each branch, in order to get
an agent’s rational self-locating uncertainty about whether they’re in the Ok branch.)

We note that this just is the strategy provided by Sebens and Carroll (2018). How-
ever, we hope to have made the reasoning behind the set-ups conceptually clearer by
explicitly stating Diagonalization and Same-Branch as the principles for choosing
the appropriate set-ups α and β. We also hope to have shown that the Sebens-Carroll
program readily generalizes to DMRE without issue. DMRE can thus employ the same
arguments as WFRE for justifying the Born rule in EQM.
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3.2 The McQueen-Vaidman Program
Similar to the Sebens-Carroll program, McQueen and Vaidman (2018) also proposes
an interpretation of the Born rule in terms of self-locating uncertainty. This follows
earlier attempts initiated by e.g. Vaidman (1998) and Tappenden (2011). McQueen
and Vaidman’s setup depends on the fiction of a sleeping pill, which induces the same
post-measurement pre-observation uncertainty as the Sebens-Carroll program:

The experimenter performs the experiment without looking at the result;
she instead arranges to be put to sleep with a sleeping pill and taken to
room A if the result was a, and room B if the result was b. The rooms are
identical from the inside. So when each of the experimenter’s descendants
[post-branching copies] wakes up, they will be uncertain as to which room
they’re in, and therefore uncertain as to which result, a or b, obtains in
their own world. The question: What is the probability for result a? makes
sense for them. It’s not a question about what happened, it’s a question
about their self-location. The descendants might know everything relevant
regarding the wavefunction of the universe, but still be ignorant about
who they are. The descendants are in states of self-location uncertainty.
(2018, 2)

However, instead of relying on ESP, they rely on three physical principles:

• Symmetry: Symmetric situations should be assigned equal probabilities.

• No-FTL: Faster-than-light signaling is impossible; the probability of finding
a particle in some location with some state cannot be influenced by actions
occurring remotely.

• Locality: The probability of finding a particle somewhere in some state depends
only on that particle’s quantum state.

The idea is simple. Start off with the base case of perfect symmetry. Consider a
particle described by a subsystem wave function with an equal superposition of N
very well-localized and remote wave-packets |LN ⟩ each corresponding to the particle
being found at the N th location. N identical measurement apparatus are set up at
each of N identically built space-stations, each containing an agent AN which, for all
practical purposes, are identical to one another. Each space-station is located on the
circumference of a perfect circle such that the particle has N -fold spherical symmetry.
For instance, if N = 3, then the particle’s subsystem wave function is described by:

ΨS =
1√
3

[
|L1⟩+ |L2⟩+ |L3⟩

]
(57)

Given this situation, each agent – well aware of the symmetry of the situation – is put
in a sleeping pill situation: they’re put to sleep before measurement in a ‘ready’ room,
and then moved to a ‘found’ room – stipulated to be internally identical as the ‘ready’
room – if the particle is found by the measurement apparatus in their space-station.
The measurement then takes place.
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Now, given WFRE, the agent branches into two copies, one remaining in the ‘ready’
room, and one moving to the ‘found’ room. What is the self-locating uncertainty they
should ascribe to being in the ‘found’ room? Agent A1 knows that if they’re in the
‘found’ room, then the other agents (A2, A3…) are in the ‘ready’ room. But they also
know this is true for each other agent: if A2 is in the ‘found’ room, then the others are
in the ‘ready’ room, and likewise for A3, A4… AN . This exhausts all the possibilities
given the form of the particle’s wave function. Since each outcome is symmetric given
the set-up, under Symmetry, each agent should rationally assign each outcome the
same credence. The unique way to assign each outcome a probability is to assign each
outcome 1

N . This corresponds to the squared-amplitude weights of each outcome, and
so vindicates the Born rule for this specific symmetric case.

For asymmetric cases, we keep the same symmetric set-up as before. However,
No-FTL and Locality ensures that changes to the wave-packets at L2, L3, … of a
wave function with N remote wave-packets do not influence the wave-packet at L1

in terms of the credences A1 ought to assign to their local measurement outcomes.
Then, even if the wave function in question evolves from e.g. (57) to:

1√
3
|L1⟩+

2√
3
|?⟩ (58)

by e.g. unitarily transforming the |L2⟩ and |L3⟩ wave packets into some arbitrary
state |?⟩, the agent A1 at L1 should assign probabilities as though they were in the
symmetric case since they have no access to the information that the transformation
took place. That is, they should assign 1/3 to the outcome that they find the particle
in L1 (and hence end up in the ‘found’ room after awakening from the sleeping pill).
Note that this is very similar in spirit to ESP: the agent restricts attention to local
matters of facts and assigns credences based on that.

The McQueen-Vaidman general strategy for justifying the Born rule for asymmetric
cases, then, is to entertain the possibility that any asymmetric state can be obtained
from a symmetric state of something like (57) and then impose No-FTL and Locality
so that an agent AN at LN can treat their situation in both asymmetric and symmetric
cases the same way, by using Symmetry. (For a more thorough statement, see
McQueen and Vaidman (2018)).

3.2.1 Generalizing the McQueen-Vaidman Program to DMRE

Like the Sebens-Carroll program, we believe that the McQueen-Vaidman program
does not require WFRE.

To begin, the principles of Symmetry, No-FTL, and Locality do not turn on the
quantum state’s purity. Furthermore, it seems to us that an agent living in a mixed-
state multiverse will equally be able to entertain questions about their self-locating
uncertainty with the same strategy proposed by McQueen & Vaidman.

Here’s how the story will go for DMRE for the simplest base case of perfect sym-
metry. We work out the N = 3 case as McQueen and Vaidman (2018) does. Consider,
again, 3 identical measurement apparatus, M1, M2, M3, set up at each of 3 identically
built space-stations, each containing an agent A1, A2, A3 respectively, which, for
all practical purposes, are identical to one another. Each space-station is located at
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locations 1, 2, or 3, on the circumference of a perfect circle such that the particle has
3-fold spherical symmetry. The agents, measurement devices, and environment E are
all in the ready state R. There is a particle described by a (reduced) density matrix con-
structed from an equal superposition of 3 very well-localized and remote wave-packets
|L1⟩, |L2⟩, and |L3⟩, corresponding to the particle being found at locations 1, 2, and 3
respectively. So, the universal density matrix, in the ready state, ρR is described by:

ρR = |ψ⟩⟨ψ| (59)

|ψ⟩ = 1√
3

[
|L1⟩+ |L2⟩+ |L3⟩

]
|RA1⟩|RA2⟩|RA3⟩|RM1⟩|RM2⟩|RM3⟩|RE⟩ (60)

Once again, each agent – well aware of the symmetry of the situation – is put in a
sleeping pill situation: they’re put to sleep before measurement in a ‘ready’ room, and
then moved to a ‘found’ room – stipulated to be internally identical as the ‘ready’ room
– if the particle is found by the measurement apparatus in their space-station.

Now, given DMRE, measurement-induced decoherence occurs just like in WFRE.
The post-measurement universal density matrix evolves into:

ρP =
1

3

[
ρL1

ρRA1
ρRA2

ρRA3
ρ✓M1

ρRM2
ρRM3

ρE1

+ ρL2ρRA1
ρRA2

ρRA3
ρRM1

ρ✓M2
ρRM3

ρE2

+ ρL3
ρRA1

ρRA2
ρRA3

ρRM1
ρRM2

ρR✓3
ρE3

]
+c.t.

(61)

and the reduced density matrix corresponding to the subsystems of interest S is:

ρS ≈1

3

[
ρL1

ρRA1
ρRA2

ρRA3
ρ✓M1

ρRM2
ρRM3

+ ρL2
ρRA1

ρRA2
ρRA3

ρRM1
ρ✓M2

ρRM3

+ ρL3ρRA1
ρRA2

ρRA3
ρRM1

ρRM2
ρR✓3

] (62)

Post-measurement pre-observation, each agent, remaining in the R state because they
have yet to find out whether they’re in the ‘found’ or ‘ready’ room, may ask: What is
the self-locating uncertainty they should ascribe to being in the ‘found’ room? Agent
A1 knows that if they’re in the ‘found’ room, then the other agents (A2, A3…) are
in the ‘ready’ room. But they also know this is true for each other agent: if A2 is in
the ‘found’ room, then the others are in the ‘ready’ room, and likewise for A3, A4…
AN . This exhausts all the possibilities given the form of the particle’s wave function.
Since each outcome is symmetric given the set-up, under Symmetry, each agent
should rationally assign each outcome the same credence. The unique way to assign
each outcome a probability is to assign each outcome 1/3. This corresponds to the
squared-amplitude weights of each outcome, and so vindicates the Born rule for the
symmetric case.

Furthermore, each agent may, even in DMRE, employ No-FTL and Locality,
to entertain the possibility that any asymmetric case can be transformed unitarily
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(remotely) into the symmetric case without the agent’s knowledge – the same strategy
for WFRE generalizes to DMRE as well.

In short, we think that the McQueen-Vaidman program does not depend essentially
on WFRE, and can be readily generalized to DMRE without issue.

3.3 The Deutsch-Wallace Program
Finally, we turn to the Deutsch-Wallace program. In contrast to the previous two,
this program provides a justification of the Born rule in WFRE by appealing not to
self-locating uncertainty, but to rational choice theory. A rational agent betting on
outcomes of measurements for some wave function ought to bet in such a way that
the credences they have over these outcomes are governed by the squared-amplitudes
of the wave function. Deutsch (1999) provided one of the earliest proofs for this result.
However, the most refined result is due to Wallace (2012), who proves a representation
theorem to this effect given certain axioms of rational choice and assumptions about
the structure of quantum bets.

The decision problem can be summarized schematically as such: a system’s state
space – its Hilbert space – can be decomposed into various macrostates π, with their
fineness (i.e. size) determined by decoherence and the environment. Any system in a
macrostate π is compatible with a set of unitary transformations, which are understood
as acts on the system by an agent (for instance, measurement). These acts lead to
outcomes in the form of the system ending up in different macrostates on different
branches as a result of the unitary transformations. Agents are then asked how they
would place monetary bets on these outcomes, on which they will collect rewards
after the act is performed; that is, agents are asked to state their preferences for bets
on these outcomes. Now, the question is this: what credences should agents rationally
assign to these outcomes?

Wallace assumes a set of four ‘richness’ axioms on the structure of the set of
possible bets,2 as well as a set of six ‘rationality’ axioms on the structure of the agent’s
rational preferences on pairs of bets.3 The first two are general axioms of rationality,
while the latter four are ‘Everettian’ rationality axioms proposed by Wallace. We won’t
go into detail stating the axioms, except for one (which we’ll discuss in the following
section). The interested reader is invited to read Wallace (2012, §5).

Wallace (2012, 172) proves the following theorem with the above set-up:

Born Rule Theorem: There is a utility function on the set of rewards,
unique up to positive affine transformations, such that one act is preferred
to another if and only if its expected utility, calculated with respect to this
utility function and to the quantum-mechanical weights of each reward,
is higher.

That is, the rational agent ought to place bets on the outcomes of quantum bets using
credences as assigned by the Born rule through the squared-amplitudes associated

2They are called Reward Availability, Branching Availability, Erasure, and Problem Continuity respec-
tively.

3They are called Ordering, Diachronic Consistency, Macrostate Indifference, Branching Indifference,
State Supervenience, Solution-Continuity, respectively.
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with each outcome (i.e. branch) of the act. This then vindicates the Born rule in WFRE
as a matter of rational decision-making (provided one accepts all the axioms employed
in Wallace’s proof as a matter of rationality).

3.3.1 Generalizing the Deutsch-Wallace Program to DMRE

With the exception of a richness axiom, nothing in the Deutsch-Wallace program turns
on the purity of the universal quantum state or that of agent’s branch. In fact, one
can rewrite Wallace’s axioms and replace any mention of the wave function ψ with
a density matrix ρ, and use the expectation values of various observables given by
the state ρ instead of ψ. The exception is the richness axiom called Erasure. It can be
stated as follows:

Erasure Given a pair of states ψ ∈ E and ϕ ∈ F in the same reward, there’s an act
U available at E and an act V available at F such that Uψ = V ϕ.

It’s a crucial axiom for proving the Equivalence Lemma on the way to the Born Rule
Theorem. We use a simple example from Wallace (2012, pp.172-73) to illustrate this
axiom. Suppose we have two acts that lead to two states:

A: α|+⟩|reward⟩+ β|−⟩|no reward⟩ (63)

B: α|+⟩|no reward⟩+ β|−⟩|reward⟩ (64)

In order to prove that agents should be indifferent between acts A and B since they
assign the same weight to |reward⟩ and |no reward⟩ (an instance of the Equivalence
Lemma), Wallace appeals to Erasure. By Erasure, the state space for acts is rich enough
such that there always exist acts available in the reward branch of A and the reward
branch of B to unitarily transform their quantum states into the same one, and the
same is true for the no-reward branches of A and B. These acts produce:

A-plus-erasure: α|0⟩|reward⟩+ β|0′⟩|no reward⟩ (65)

B-plus-erasure: β|0⟩|reward⟩+ α|0′⟩|no reward⟩ (66)

By Wallace’s rationality axioms (Branching Indifference and Diachronic Consistency),
the agent’s future selves should be indifferent between A-plus-erasure and A, and
between B-plus-erasure and B. In the simplest case where α = β, the quantum states
produced by A-plus-erasure and B-plus-erasure are the same, and the agent should be
indifferent between them (by State Supervenience). Hence, she should be indifferent
between A and B (by Transitivity).

The argument above does not go through on DMRE. Erasure, as stated, is false for
arbitrary density matrices. Acts, defined by Wallace, must be unitary transformations.
Acting on states, such transformations preserve their degree of “mixedness.” While this
is fine if we only consider pure states (all of which have the same degree of mixedness,
namely zero), different density matrices can have different degrees of mixedness. If
we are given a pair consisting in a pure state (like A) and a mixed state, no unitary
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transformations can map them to the same state. The space of available acts, restricted
to unitary transformations, will not be rich enough to satisfy Erasure on DMRE. We
need to modify the argument or the assumptions.

The problem can be solved in two ways, by suitable revisions of Erasure. First, we
may include non-unitary transformations in the space of available acts. Since there will
be non-unitary transformations that relate two density matrices of different mixedness,
the larger space will provide the needed erasure acts to take two arbitrary quantum
states to the same one. The proof for the Equivalence Lemma would go through as
before. However, one might worry that making use of non-unitrary transformations
violates the spirit of EQM, as the theory assumes that the time-evolution of the quantum
state of the multiverse is unitary. Fortunately, the conflict is only apparent, because
decision-theoretic acts need not correspond to actual time-evolutions. In the decision-
theoretic framework, we’re merely considering possible multiverses (one of them may
be the actual multiverse). Given the determinism of the fundamental dynamical laws,
different multiverses (represented by different quantum states and at some time t) must
have evolved from different initial conditions, only one of which is actual. EQM only
requires that each initial condition ρ0 unitarily evolves into some quantum state ρt,
but it does not require that any two possible quantum states ρt and ρ′t can be unitarily
transformed into the same quantum state ρ′′. The latter is not a consequence of the
unitary dynamics but an optional property that may fail to hold.

Second, if (for whatever reason) we prefer representing acts only as unitary trans-
formations, we have the option to consider the following revised version of Erasure:

Erasureρ Given a pair of states ρ1 ∈ E and ρ2 ∈ F in the same reward and of the
same mixedness, there’s an act U available at E and an act V available at F
such that Uρ1 = V ρ2.

This revision of Erasure resolves the conflict discussed earlier, since density matrices
of the same mixedness can be unitarily transformed into the same density matrix.
The crucial question now becomes: what is the appropriate measure of mixedness?
The standard measure is von Neumann entropy SvN(ρ) = −tr(ρ log ρ). However,
there’s a more fine-grained measure—the spectrum of the density matrix, i.e. its set
of eigenvalues. Let σ(ρ) = {λi} be the set of eigenvalues associated with density
matrix ρ, then SvN(ρ) is a function of σ(ρ), since SvN(ρ) = −

∑
i λi log λi (Nielsen

and Chuang 2010, p.510). The spectrum is the right measure of mixedness for Erasureρ,
because unitary transformations preserve eigenvalues. Any two density matrices with
the same spectrum can be unitarily transformed into the same density matrix (with
that spectrum). The revised version of Erasure, with the requirement of equivalent
spectrum, can be satisfied for density matrices.4

With Erasureρ, we can formulate many Born rule theorems, one for each choice
of the spectrum. For example, density matrices with the spectrum consisting of the
singleton set of {1} are the pure states, and the associated Born rule theorem is the
same as proved by Wallace (2012, §5.7). Moreover, with suitable replacements of ψ
with ρ, a Born rule theorem holds for every other choice of the spectrum. Hence, in
DMRE, we can prove the Born rule theorem “sector by sector” and eventually cover all

4Many thanks to David Wallace for discussions about this point.
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the density matrices associated with a Hilbert space. This establishes a general version
of the Born rule theorem covering both mixed states and pure states, for which the
original version proved (for pure states) becomes a special case.

In summary, the Deutsch-Wallace program can be generalized to DMRE. The
conflict between DMRE and Erasure can be addressed in at least two ways. The second
option respects the desire to represent acts with only unitary transformations. For that
reason, it may be the more conservative extension of the decision-theoretic strategy.

4 Discussion
In the previous sections, we’ve generalized the standard defenses for the Born rule to
DMRE. In addition to answering a technical question that has been neglected in the
literature, we take our results to have several conceptual implications.

First, in order to set up the stage for the generalized arguments, we were required
to contemplate, without presupposing a universal pure state, the ontological structure
of the Everettian multiverse. For EQM to allow both WFR and DMR, the story about
decoherence and branching should apply to both without prejudice. As we’ve seen,
that is indeed the case. This leads us to see that the essence of the Everettian story
about the emergence of a branching multiverse is not a universal wave function that
gives rise to many branches represented by wave functions, but a universal density
matrix (which can be pure or mixed) that gives rise to many branches represented by
density matrices. According to the perspective of DMRE, a pure-state multiverse is a
very special case.

Second, with DMRE, Everettians can explore new theoretical possibilities of DMR.
For example, we can consider a unified treatment of ‘classical’ and ‘quantum’ probabil-
ities in EQM. In WFRE, there are two sources of probabilities: the quantum probability
of finding ourselves in a particular branch (or betting preferences in the decision-
theoretic framework), associated with the weight of the branch in the multiverse, and
the classical probability of the particular multiverse, associated with a density matrix
representing our ignorance of the underlying universal pure state. Their justifications
are very different. The latter is not understood in terms of self-locating uncertainties or
betting preferences. Instead, it may have a statistical mechanical origin, corresponding
to a probability distribution over initial universal quantum states, the so-called Statisti-
cal Postulate (Albert 2000). In DMRE, however, the two can be reduced to a single notion
of probability, that of finding ourselves in a particular branch (or betting preferences
given the actual quantum state), albeit in a more expansive multiverse. Whichever ρ
is used by defenders of WFRE to represent their ignorance of the fundamental pure
state of the multiverse, defenders of DMRE can regard that ρ as the fundamental mixed
state. Insofar as classical and quantum probabilities in EQM can be reduced to a single
source, they also can be justified in the same way.

A theory on which we can apply this strategy is the Everettian Wentaculus (Chen
2021, Chen 2022c). This version of DMRE proposes a simple and unique choice of
the initial density matrix of the multiverse (as a version of the Past Hypothesis) and
regards it as the only nomological possibility. As a matter of physical laws, the history
of the Everettian multiverse could not have been different. There is no longer a choice
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of the fundamental density matrix, beyond the choice of the physical law, because
the actual one is nomologically necessary. It is an instance of “strong determinism.”
Both classical (statistical mechanical) and quantum probabilities can be understood as
branch weights of the Everettian Wentaculus multiverse, represented by a mixed-state
density matrix. With the possibility of a unified treatment of probabilities (among
other things), the generalization from WFRE to DMRE is theoretically attractive.5

Finally, we’ve derived the Born rule in DMRE in essentially the same ways as in
WFRE, by appealing to the same epistemic principles (separability, symmetry, decision
theoretic axioms) and metaphysical foundations (decoherence and branching). The
two theories are empirically equivalent, not just in a mathematical sense, but also
conceptually. They give us the same empirical predictions, not just in terms of equal
probabilities of measurement outcomes, but also the same kind of probabilities (self-
locating uncertainties or betting preferences). We suggest that Everettians, by their
own lights, should regard DMRE as a genuine rival to WFRE. Everettians, then, face
the question which version of EQM they should accept. What can be the grounds for
deciding? It cannot be settled by experiments because of the empirical equivalence.
It cannot be based on the insistence that the universal quantum state must be pure,
because that would beg the question. It cannot be based on the incompleteness of
justifications for DMRE, for the solutions to the ontology problem and the probability
problem in WFRE readily extend to DMRE.6

5 Conclusion
We suggest that the Everettian understanding of decoherence and branching, as well
as the justifications for the Born rule, apply to both WFRE and DMRE. Hence, the
theoretical benefits of DMR are available on EQM. Another consequence is that Ev-
erettians face a choice between two types of theories, one allowing only pure states
for the multiverse and the other allowing mixed states also. The choice will not be
based on different understandings of the branching structure or the Born rule, as the
Everettian justifications equally apply in both theories, but must involve some other
theoretical considerations. In any case, the availability of different versions of EQM is
an interesting example of empirical underdetermination. Its implications and possible
resolutions are questions we leave for future work.

5Two remarks here: (1) Saunders (2021) has proposed that we can understand quantum probabilities in
terms of “branch-counting.” His considerations are analogous to the counting arguments of Boltzmann in
the foundations of statistical mechanics. When applied to the Everettian Wentaculus, Saunders’s proposal, if
correct, would allow us to justify both classical and quantum probabilities by counting branches in a natural
way. (2) For more discussions about the elimination of classical probability in the Wentaculus theories and
other theoretical advantages, see Chen (2021, 2020). For two other proposals of eliminating the Statistical
Postulate, see Albert (2000, §7) and Wallace (2012, §9).

6This adds an interesting wrinkle to the debate about scientific realism and the issues raised by Wallace
(2022). Even if Wallace is right that EQM is the only way to make sense of why sky is blue, there is a further
question about which version of EQM is correct. Quantum mechanics still leads to in-principle empirical
underdetermination.

27



Acknowledgements
For helpful feedback, we thank Jefferey Barrett, Charles Sebens, Kelvin McQueen,
Katie Robertson, Simon Saunders, Tony Short, Karim Thébault, David Wallace, and the
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