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We introduce translations between display calculus proofs and labeled calculus proofs in the context of tense

logics. First, we show that every derivation in the display calculus for theminimal tense logicKt extendedwith

general path axioms can be effectively transformed into a derivation in the corresponding labeled calculus.

Concerning the converse translation, we show that for Kt extended with path axioms, every derivation in

the corresponding labeled calculus can be put into a special form that is translatable to a derivation in the

associated display calculus. A key insight in this converse translation is a canonical representation of display

sequents as labeled polytrees. Labeled polytrees, which represent equivalence classes of display sequents

modulo display postulates, also shed light on related correspondence results for tense logics.
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1 INTRODUCTION

A crucial question for any logic is if it possesses an analytic calculus. An analytic calculus consists
of rules that decompose a formula of the logic in a stepwise manner, and can be exploited to
prove certain metalogical properties as well as develop automated reasoning methods. Since its
introduction in the 1930’s, Gentzen’s sequent calculus (and equivalently, the tableaux calculus) has
been a preferred formalism for constructing analytic calculi due to its simplicity. Unfortunately,
this simplicity is also an obstacle: the formalism is not expressive enough to present many logics
of interest. In response, many proof-theoretic formalisms extending the syntactic elements of the
sequent calculus have been introduced over the last 30 years. Of particular interest in this paper are
the formalisms of the labeled calculus [15, 34, 35], nested calculus [6, 23, 28], and display calculus [1,
24]. Each formalism extends the sequent calculus in a seemingly unique way, suggesting distinct
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111:2 Ciaba�oni et al.

strengths, weaknesses, and expressive powers. There are trade-offs in employing one formalism as
opposed to another, motivating a study of the interrelationships between the current patchwork
(see, e.g. [32]) of proof systems.

In this paper, we consider proof calculi for a special class of multi-modal logics: extensions
of the minimal tense logic Kt with general path axioms Π� → Σ� (Π, Σ ∈ {^,_}∗). Tense logics
incorporatemodalities that referencewhat is true in successor (^) and predecessor states (_). Such
logics are used to model temporal notions having to do with future and past states of affairs. This
class of logics provides a good case study for our proof-theoretic investigations since it includes
many interesting/well-known logics and possesses a diverse proof theory.
Numerous analytic proof calculi have been presented for extensions of Kt such as labeled cal-

culi [3, 4], nested calculi [19], and display calculi [23, 24, 36]. Since the term nested sequent has
been used in the literature to refer to slightly different objects, this is a good time to clarify our
terminology. In this paper:

Nested sequent: Any term generated via the BNF grammar - ::= Y | � | -,- | ◦{- } | •{- }

where � is a tense formula.1 Note that this extends the typical definition of a nested sequent
in the proof theory literature for modal (rather than tense) logics that uses a single nesting
operator (e.g., the grammar for traditional nested sequents is usually given by the following
BNF grammar: - ::= Y | � | -,- | [- ]).

Shallow nested calculus (used here interchangeably2 with display calculus) A proof calcu-
lus built from nested sequents in the sense above, where display rules are used to unpack
(‘display’) a formula nested under ◦ and • to bring it to the top-level, where the inference
rules operate.

Deep nested calculus: A proof calculus built from nested sequents in the sense above where
the display rules are dispensed with, and the inference rules can apply inside arbitrary nest-
ings of ◦ and • (i.e. deep inference is implemented).

Deep nested calculi are better suited than shallow nested calculi for proving e.g. decidability [5, 19]
and interpolation [26], due to the absence of the hard-to-control display rules that expand the
proof-search space. Both shallow and deep nested calculi are typically internal in the sense that
each sequent in a proof can be interpreted as a formula of the logic, whereas labeled calculi often
appear to be external in the sense that the sequents cannot generally be interpreted as a formula
of the logic (and use a language that explicitly encodes the semantics).
An effective way to relate calculi is by defining translations, i.e. functions that algorithmically

transform any proof in a calculus into a proof of the same formula in another calculus. A crucial
feature of such functions is that the structural properties of the derivation are preserved in the
translation. Such embeddings permit the transfer of certain proof theoretic results, thus alleviating
the need for independent proofs in each system, e.g. [14, 20, 27]. Moreover, they shed light on the
role of certain syntactic features in proof calculi, and on the general problem of characterizing the
relationships between different syntactic and semantic presentations of a logic [31].
In [9] we obtained translations from shallow nested calculi to labeled calculi for Scott-Lemmon

axiomatic extensions (_ℎ
^
8�→ ^ 9

_
:� with ℎ, 8, 9 , : ∈ N) of Kt. This paper extends these results

to a larger set of tense logics, and answers an open question posed in that paper regarding the
existence of labeled to nested translations for extensions of Kt.
We first show how to translate derivations in shallow nested calculi into derivations in labeled

calculi for all general path extensions of Kt. The reverse translation—from labeled to shallow

1We use Y as the empty string, which in this context denotes the empty sequent.
2The alternative term shallow nested sequent for display calculus is due to [19] whosemotivation was to contrast the shallow

inference rules of the display calculus with a proof calculus that uses deep inference instead.
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Display to Labeled Proofs and Back Again for Tense Logics 111:3

nested—employs more sophisticated techniques and is only obtained for path axiom—Π� → 〈?〉�
(Π ∈ {^,_}∗ and 〈?〉 ∈ {^,_})—extensions of Kt. Our proof strategy, described in the follow-
ing paragraphs, ensures that each labeled sequent occurring in the derivation of a theorem of a
path extension of Kt is interpretable as a nested sequent. This permits a translation from labeled
to shallow nested sequent proofs. This translation witnesses a relation between the relational se-
mantics and algebraic semantics (see e.g. [2, 18]) for tense logics: the labeled calculi are clearly
underpinned by the relational semantics; the shallow nested calculi, on the other hand, employ
display rules that encode the algebraic residuation property between _ (and ^) in the antecedent
and � (and �, resp.) in the succedent of an implication. Indeed, the display rules have no analog
in the labeled calculi since the premise and conclusion translate to the same labeled sequent (see
Lemma 3.9).
The ability to display any formula nested under structural connectives using the display rules

is a crucial part in Belnap’s [1] proof of cut-elimination for arbitrary display calculi. However,
the display rules greatly expand the proof search space, in particular when these rules interact
with other structural rules (e.g. contraction) or structural rules that capture the modal/tense ax-
ioms of the formalized logic. In [19], the authors show how to translate display calculi to deep
nested calculi, eliminating the display rules by employing deep inference. In our translation from
display calculi to labeled calculi, display rules are not translated to inference rules; rather, they
are dealt with by changing the representation of the nested sequent. The key idea is that a nested
sequent can naturally be interpreted as a labeled sequent whose binary relation between labels
forms a polytree (i.e. a directed graph whose underlying undirected graph is a tree). The polytree
interpretation of a nested sequent has the crucial property of being invariant under display rules—
applications of display rules to a nested sequent do not change its labeled polytree translation.
Thus, display-equivalent nested sequents have a canonical representation as a labeled polytree
sequent. This representation also sheds light on the correspondence results between shallow and
deep nested calculi for tense logics [19]. In particular, we show that the admissibility of display
rules is independent from the admissibility of structural rules capturing the path axioms in tense
logics, something that was not observed in [19]. This polytree representation also significantly
simplifies the proof of Craig interpolation for the class of path extensions of Kt [26].
Given that labeled polytree sequents correspond closely to nested sequents, one strategy to

translate a labeled calculus to a shallow nested calculus is to translate a subset of the labeled calcu-
lus where all sequents are polytree sequents, and then show that the latter is complete, i.e. that it
proves the same set of theorems as the unrestricted labeled calculi. One issue with this approach is
that the property of being a polytree is not closed under some structural rules in labeled calculi, i.e.
there could be instances of a rule where one of the premises is not a polytree but the conclusion is.
To get around this issue, when translating from labeled to shallow nested, we first put our given
derivation into a special form that makes use of so-called propagation rules [7, 19, 27, 34]. Such
rules allow us to eliminate certain structural rules from our labeled calculi and their derivations;
this results in an internal or refined variant of the labeled calculus that—interestingly—inherits the
nice properties of the original external calculus. This methodology of eliminating structural rules
to obtain refined calculi is of practical value in its own right [25]. In this paper, the methodology
is used to provide a translation from labeled to shallow nested; however, this method is also useful
in that it yields calculi suitable for proof-search and proving interpolation [26, 27]. Furthermore,
this new form of the derivation permits an effective (i.e. algorithmic) translation into a derivation
of a deep nested calculus, that is to say, a step-by-step procedure defined at the level of the proof
rules in the derivation; methods from [19] are then applied to the deep nested derivation to fur-
ther translate the proof into a proof of the corresponding shallow nested calculus. We note that
this entire translation process is effective in the above sense, showing that the output derivation
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111:4 Ciaba�oni et al.

may be obtained algorithmically from local transformation on the input derivation. Our proof of
admissibility of structural rules, in favor of propagation rules, for path axioms follows a similar
methodology to that used in [19], with one notable difference: in [19], the admissibility of display
rules needs to be proved for every extension with path axioms, whereas in our case, admissibil-
ity of display rules is independent of the extensions, since the polytree representation makes the
display rules superfluous. Our result thus suggests that perhaps display rules should be viewed as
structural properties of sequents rather than as structural properties of proofs. This is analogous
to, for example, internalizing the exchange rule as a property of sequents (i.e. commutativity and
associativity of comma in the sequent).
The paper is structured as follows: Section 2 introduces the class of tense logics considered along

with their associated shallow nested, labeled, and deep nested calculi. Section 3 presents labeled
polytreeswhich are used to give the translation fromnested proof systems to labeled proof systems
as well as the reverse. In Section 4, we provide an effective translation from shallow nested proofs
to labeled proofs for all general path extensions of Kt. Section 5 gives the reverse translation from
labeled proofs to shallow nested proofs for path extensions of Kt. Section 6 discusses consequences
and potential applications.
We summarize below the calculi considered in this paper and illustrate the effective proof-

transformations (which transform the shape of a derivation and preserve the language of the
calculus; indicated by a dotted arrow) and translations (which not only transform the shape of
the derivation, but translate the language of the calculus; indicated by solid arrow) obtained in
this paper.

Base Calculi and Extensions (�% general path axioms, % path axioms):

Base Calc. Type Gen. Path Str. Rules Path Str. Rules Propagation Rules

G3Kt [3, 9] labeled LabSt(GP) LabSt(P) LabPr(P)

SKT [19] Shal. Nes. NestSt(GP) NestSt(P)

DKT [19] Deep Nes. DeepPr(P)

Effective Transformations/Translations:

G3Kt + LabSt(GP) G3Kt + LabSt(P)
!4<. 5.10 //

)ℎ<. 5.15
��

G3Kt + LabPr(P)

!4<. 5.13
��

SKT + NestSt(GP)

)ℎ<. 4.3

OO

SKT + NestSt(P)

)ℎ<. 4.3

XX

DKT + DeepPr(P)
!4<. 2.21

oo

2 NESTED AND LABELED CALCULI FOR TENSE LOGICS

For convenience, we take the language LKt as consisting of formulae in negation normal form. In
particular, formulae are built from the literals ? and ? using the ∧, ∨, ^, �, _, and � operators.
Note that all results hold also for the full language where the ¬,→, and↔ operators are taken as
primitive. The language LKt is explicitly defined via the following BNF grammar:

� ::= ? | ? | � ∧ � | � ∨ � | �� | ^� | �� | _�

For an introduction to tense logics and their accompanying Kripke semantics, we refer the reader
to the following references: [2, 16].
Intuitively, we interpret �� as claiming that the formula� holds at every point in the immediate

future, whereas �� is interpreted as claiming that � holds at every point in the immediate past.
Similarly, we interpret the formula ^� as claiming that � holds at some point in the immediate
future, while _� intuitively means that � holds at some point in the immediate past.
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Display to Labeled Proofs and Back Again for Tense Logics 111:5

Define � inductively as follows.

(1) If � = ? , then � = ? ;

(2) If � = ? , then � = ? ;

(3) If � = � ∧� , then � = � ∨�;

(4) If � = � ∨� , then � = � ∧�;

(5) If � = ��, then � = ^�;

(6) If � = ^�, then � = ��;

(7) If � = ��, then � = _�;

(8) If � = _�, then � = ��.

We define the negation ¬� of formula� as�, the conditional�→ � as�∨�, and the biconditional
�↔ � as �→ � ∧ � → �.

The tense logic Kt—a conservative extension of the normal modal logic K—is typically axioma-
tized as shown below (see, e.g. [2, 8]).

�→ (� → �) (¬� → ¬�) → (�→ �) (�→ (� → �)) → ((�→ �) → (�→ �))

�→ �_� �→ �^� ��↔ ¬^¬� ��↔ ¬_¬�
�
��

�
��

�(�→ �) → (��→ ��) �(�→ �) → (��→ ��)
� �→ �

�
As mentioned previously, the logics we consider in this paper are extensions of Kt with general

path axioms of the form 〈?〉1 ...〈?〉=� → 〈?〉=+1 ...〈?〉=+<� where each 〈?〉9 is either ^ or _. Occa-
sionally, we may use 〈� 〉, 〈�〉, . . . to represent either a ^ or a _. Also, note that when = = 0, the
antecedent of the path axiom is free of diamonds (i.e. it is of the form � → 〈?〉1 ...〈?〉<�), and
when< = 0, the consequent is free of diamonds (i.e. it is of the form 〈?〉1 ...〈?〉=� → �). We will
use the notation Π� → Σ� to represent such axioms. This class of axioms contains many well-
known axioms such as reflexivity � → ^�, confluence _^� → ^_�, and partial-functionality
_^� → �. We will use �% to denote an arbitrary set of general path axioms and write Kt +�%
to mean the minimal tense logic Kt extended with the axioms from �% ; note that this notation
extends straightforwardly to any set ( of formulae, i.e. Kt + ( will be used to represent extensions
of Kt with the formulae from ( , as well as the corresponding logic (i.e. the set of theorems). Last,
we let Kt + ( ⊢ � denote that � is a theorem of the logic Kt + ( .

Path axioms are general path axioms where the consequent of the axiom is restricted to a single-
diamond formula, i.e. any formula of the form 〈?〉1 ...〈?〉=� → 〈?〉=+1� is a path axiom. We focus
on this class of axioms because the translation methods presented in this paper only allow us to
translate derivations from labeled to nested for the logics Kt+% , where % is an arbitrary set of path
axioms. Nevertheless, this class of axioms still contains well-known axioms such as transitivity
^^� → ^�, symmetry _�→ ^�, and Euclideanity _^� → ^�.

2.1 Shallow Nested (Display) Calculi for Tense Logics

We will present Goré et al.’s [19] shallow nested calculus SKT for Kt. This calculus can be seen as
a one-sided version of Kracht’s [24] display calculus for Kt, and also as a variant of Kashima’s [23]
calculus.
The shallow nested calculus is modular in the sense that certain axiomatic extensions of Kt can

be captured by adding equivalent structural rules to SKT. Moreover, SKT allows for a uniform
proof of cut-elimination where cut is eliminable from any derivation of SKT extended with any
number of substitution-closed linear structural rules (see [19] for details). This makes the shallow
nested calculus a good candidate for capturing large classes of tense logics in a unified, cut-free
manner. The nested sequents of SKT are generated by the following grammar where � is a tense
formula in LKt.

- ::= Y | � | -,- | ◦{- } | •{- }

ACM Trans. Comput. Logic, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:6 Ciaba�oni et al.

We assume comma to commute and associate, meaning, for example, that we may freely re-write
a nested sequent of the form -,. , / as /,-,. when performing derivations in SKT. Also, Y rep-
resents the empty string or empty sequent, which acts as an identity element for comma (e.g. we
identify -, Y with - ), and so, Y will be implicit in nested sequents, but not explicitly appear.
A characteristic of nested sequents is that each can be translated into an equivalent formula in

the language LKt, that is, each connective introduced in the language of nested sequents acts as a
proxy for a logical connective (cf. [1, 19, 24]). The interpretation I of a nested sequent as a tense
formula is defined as follows:

(1) I(Y) = ⊤
(2) I(�) = � for � ∈ LKt

(3) I(-,. ) = I(- ) ∨ I(. )
(4) I(◦{- }) = �I(- )

(5) I(•{- }) = �I(- )

It will occasionally be useful to refer to the substructures of a nested sequent - . We say that
a sequent . is a substructure of - if and only if . ∈ S(- ), where the set of substructures of - ,
writtenS(- ), is inductively defined as follows:

(1) S(Y) = ∅
(2) S(�) = {�} for � ∈ LKt

(3) S(- ) = {- } ∪S(. ) ∪S(/ ), if - = .,/

(4) S(- ) = {- } ∪S(. ), if - = ◦{. } or •{. }

Definition 2.1 (The Calculus SKT [19]).

(id)
-, ?, ?

-,�, �
(∨)

-,� ∨ �

-,� -, �
(∧)

-,� ∧ �

-,. ,.
(c)

-,.
-
(w)

-,.

-, ◦{. }
(rf)

•{- }, .

-, •{. }
(rp)

◦{- }, .

-, •{�}
(�)

-,��

-, ◦{�}
(�)

-,��

-, •{.,�},_�
(_)

-, •{. },_�

-, ◦{.,�},^�
(^)

-, ◦{. },^�

SKT is referred to as a shallow nested sequent calculus because (i) the ◦{·} and •{·} provide
(two types of) nestings and (ii) all the rules are shallow in the sense that they operate at the root
or top-level of the sequent (i.e. rules are only applied to formulae or structures that do not occur
within nestings).

Definition 2.2 (Display Property). A calculus has the display property if it contains a set of rules
(called display rules) such that for any sequent - containing a substructure . , there exists a se-
quent / such that .,/ is derivable from - using only the display rules.

The display property states that any substructure in - can be brought to the top level using
the display rules. The calculus SKT has the display property when {(rp), (rf)} is chosen to be the
set of display rules, i.e., the residuation rules (rp) and (rf) serve as the display rules in SKT. A
pair of nested sequents are display equivalent when they are mutually derivable using only the
display rules. The display property is significant since it is a crucial component in the proof of
cut-elimination (see [1]).
A modularmethod of obtaining a cut-free extension of the base calculus forKt by a large class of

axioms inclusive of the general path axioms was introduced in [24] (see also [10]). Following [24],
we present the rule (GP) corresponding to a general path axiom 〈?〉1 ...〈?〉=�→ 〈?〉=+1...〈?〉=+<�:

-,★=+1{... ★=+< {. }...}
(GP)

-,★1{... ★= {. }...}

Here if 〈?〉9 = ^ then ★9 = ◦, and if 〈?〉9 = _ then ★9 = •.
Since path axioms form a proper subclass of the general path axioms, the rule (GP) can be

specialized to the rule (Path) for any given path axiom 〈?〉1 ...〈?〉=�→ 〈?〉=+1�:

ACM Trans. Comput. Logic, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Display to Labeled Proofs and Back Again for Tense Logics 111:7

-,★=+1{. }
(Path)

-,★1{... ★= {. }...}

Theorem 2.3 ([19]). The (cut) rule

-,� �,.
(cut)

-,.

is admissible in SKT + NestSt(GP).

Theorem 2.4 ([19]). Kt +�% ⊢ � iff � is derivable in SKT + NestSt(GP).

2.2 Labeled Calculi for Tense Logics

Labeled sequents [13, 29] generalize Gentzen sequents by prefixing state variables to formulae
occurring in the sequent and by making the relational semantics explicit in the syntax. Labeled
sequents are defined via the BNF grammar below:

Λ ::= Y | G : � | Λ,Λ | 'G~,Λ

where � ∈ LKt, and G and ~ are among a denumerable set G,~, I, . . . of labels. We often write a
labeled sequent Λ as R, Γ where R consists of the relational atoms of the form 'G~ occurring in Λ

and Γ consists of the labeled formulae of the form G : � occurring in Λ. Additionally, characters
such as R,Q, . . . will be used to denote sets of relational atoms and Greek letters such as Γ,Δ, . . .
will be used to denote multisets of labeled formulae. As in the case of nested sequents, we assume
that comma commutes and associates, meaning that each labeled sequent Λ can indeed be written
in the form above, and also assume that Y represents the empty string or empty sequent, which acts
as an identity element for comma and occurs only implicitly in labeled sequents.
A labeled sequent can be viewed as a directed graph (defined using R) with formulae decorating

each node [9]. Note that in a labeled sequent Λ = R, Γ commas between relational atoms are
interpreted conjunctively, the comma between R and Γ is interpreted as an implication, and the
commas between the labeled formulae in Γ are interpreted disjunctively.
Viganò [35] constructed labeled sequent calculi for non-classical logics whose semantics are de-

fined by Horn formulae. Negri [30] extended the method to generate cut-free and contraction-free
labeled sequent calculi for the large family of modal logics whose Kripke semantics are defined by
geometric (first-order) formulae, similar to what had been achieved by Simpson for intuitionistic
modal logics in his dissertation [34]. The proof of cut-elimination is general in the sense that it ap-
plies uniformly to every modal logic defined by geometric formulae; this result has been extended
to intermediate and other non-classical logics [3, 11] and to arbitrary first-order formulae [12].
We begin by extending in the natural way the usual labeled sequent calculus for K to a labeled

sequent calculus for Kt.

Definition 2.5 (The labeled sequent calculus G3Kt [3, 9]).

(id)
R, G : ?, G : ?, Γ

R, G : �, G : �, Γ
(∨)

R, G : � ∨ �, Γ

R, G : �, Γ R, G : �, Γ
(∧)

R, G : � ∧ �, Γ
R, 'G~,~ : �, Γ

(�)∗
R, G : ��, Γ

R, 'G~,~ : �, G : ^�, Γ
(^)

R, 'G~, G : ^�, Γ

R, '~G,~ : �, Γ
(�)∗

R, G : ��, Γ

R, '~G,~ : �, G : _�, Γ
(_)

R, '~G, G : _�, Γ

The (�) and (�) rules have a side condition: (∗) the variable ~ does not occur in the conclusion.
When a variable is not allowed to occur in the conclusion of an inference, we refer to it as an
eigenvariable.

ACM Trans. Comput. Logic, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:8 Ciaba�oni et al.

A general path axiom is a Sahlqvist formula, and hence it has a first-order frame correspondent
which can be computed—even in the case of tense logics (see [2]). Following themethod in [30], the
labeled structural rule (GP) corresponding to a general path axiom Π� → Σ� is obtained below.
We let '^G~ := 'G~, and '_G~ := '~G , and use ' 〈?〉G~ ∈ {'^G~, '_G~}, that is, ' 〈?〉G~ may repre-
sent either 'G~ or '~G . Furthermore, we use the following notation:RΠG~ := ' 〈?〉1G~1, ..., ' 〈?〉<~<~

for Π = 〈?〉1 ...〈?〉< and RΣG~ := ' 〈?〉1GI1, ..., ' 〈?〉=~=~ for Σ = 〈?〉1 ...〈?〉= .

R,RΠG~,RΣG~, Γ
(GP)∗

R,RΠG~, Γ

This rule also has a side condition: (∗) all variables occurring in the relational atoms RΣG~ with
the exception of G and ~ are eigenvariables.

Remark 2.6. In the rule above, some care is needed in the boundary cases when Π or Σ are empty

strings of diamonds. The table below specifies the instances of the rule depending on whether the string

is non-empty (marked with +), or empty (marked with n):

Π Σ Premise Conclusion

+ + R, 'ΠG~, 'ΣG~, Γ R, 'ΠG~, Γ

+ n R, 'ΠG~, G = ~, Γ R, 'ΠG~, Γ

n + R, 'ΣGG, Γ R, Γ

n n R, Γ R, Γ

Note that [G/~] stands for the substitution of the label ~ by the label G . Also, when Π = n or Σ = n ,

'ΠG~ and 'ΣG~ are taken to be G = ~. For the second entry of the table, we must extend our labelled

sequents to include equations of the form G = ~ as relational atoms and extend our calculus with

equality and substitution rules (see [30]). All results of the paper continue to hold with respect to the

addition of such rules; however, we omit their presentation for simplicity. For the third and fourth

entries in the table, the equality symbols that arise have been eliminated through substitutions and

suitable argumentation. This argumentation can be formalized using the equality and substitution

rules specified in [30].

Since particular attention will be paid to the class of path axioms (specifically in section 5.2), we
also explicitly give the structural rule (Path) which is an instance of (GP) and corresponds to a
path axiom Π�→ 〈?〉�:

R, 'ΠG~, ' 〈?〉G~, Γ
(Path)

R, 'ΠG~, Γ

We use the name LabSt(GP) to represent the set of labeled structural rules corresponding to a
set �% of general path axioms and the name LabSt(P) to refer to the set of labeled structural rules
corresponding to a set % of path axioms.
It is straightforward to apply the arguments and methods concerning labeled calculi for modal

and tense logics, presented in [3, 30], to conclude the following:

Lemma 2.7. Let R and Q be sets of relational atoms with R ∩ Q = ∅, and Γ and Δ be multisets of

labeled formulae. The following rules are admissible in G3Kt + LabSt(GP):

R, Γ
[s]

R[G/~], Γ [G/~]

R, Γ,Δ,Δ
(c)

R, Γ,Δ

R, Γ
(w)

R,Q, Γ,Δ
R, Γ, G : � R, Γ, G : �

(cut)
R, Γ

We assume that duplicates of relational atoms are removed from R[G/~] in the conclusion of the [s]

rule.

Theorem 2.8. Kt +�% ⊢ � iff G : � is derivable in G3Kt + LabSt(GP).
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2.3 Deep Nested Calculi for Tense Logics

In this section we present Goré et al.’s [19] deep nested calculus DKT for Kt, as well as extensions
of DKT with inference rules—referred to as propagation rules—that correspond to the class of path
axioms. Although we will show how to translate shallow nested derivations into labeled deriva-
tions for the logics Kt + �% , we consider path axioms here because the reverse translation from
labeled proofs to shallow nested proofs is only known for the smaller class of logics Kt + % . The
deep nested calculi presented here will be used to facilitate and simplify the reverse translation.
Our calculi make use of nested sequents from the same language as SKT. Every nested sequent

- := ., ◦{/1}, ..., ◦{/=}, •{,1}, ..., •{,<} (. contains no nesting) may be represented as a tree
with two types of edges [19, 23]. The tree of - , denoted CA44 (- ), is shown below:

.

◦❥❥
❥❥❥

❥❥❥
❥

❥❥❥
❥❥❥

❥❥❥ ◦♦
♦♦
♦♦
♦♦

♦♦
♦♦
♦♦
♦ ◦

��
�

��
� •

❄❄
❄❄

❄❄
❄❄ •

❖❖❖
❖❖❖

❖❖

❖❖❖
❖❖❖

❖❖
•
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯

CA44 (/1) . . . CA44 (/=) CA44 (,1) . . . CA44 (,<)

A nested sequent that contains holes in place of formulae is called a context. Like nested sequents,
contexts may be represented as trees, but where nodes are additionally labeled with holes. A con-
text with a single hole is written as - [] and a context with multiple holes is written as - [] · · · [].
We may compose a context with sequents to obtain a sequent (e.g. - [.1] · · · [.=] is a sequent
where - [] · · · [] is a multi-hole context and .1, ..., .= are sequents); graphically, this corresponds
to fusing the root of the tree of each sequent with the node in the context where the associated
hole occurs. Note that this notation is the opposite of what is often used for nested sequent calculi
for modal logics in the literature, though is consistent with the notation used in the literature for
nested sequent calculi for tense logics (cf. [19]).
When representing a context graphically, each hole will label a unique node in the correspond-

ing tree. For a single-hole context we write - []8 to indicate the node 8 where the hole occurs,
and for a multi-hole context we write - []81 · · · []8= to indicate the unique nodes in the tree that
correspond to each hole.

Definition 2.9 (The Calculus DKT [19]3).

(id)
- [?, ?]

- [�,. ] - [�,. ]
(∧)

- [� ∧ �,. ]

- [�, �,. ]
(∨)

- [� ∨ �,. ]

- [��, •{�}]
(�)

- [��]

- [•{.,�},_�]
(_1)

- [•{. },_�]

- [◦{.,_�}, �]
(_2)

- [◦{.,_�}]

- [��, ◦{�}]
(�)

- [��]

- [◦{.,�},^�]
(^1)

- [◦{. },^�]

- [•{.,^�}, �]
(^2)

- [•{.,^�}]

We now aim to define propagation rules for deep nested calculi. To do this, we follow the work
in [19] and first introduce path axiom inverses, compositions of path axioms, and the completion
of a set of path axioms in order to define the corresponding set of equivalent propagation rules.
Additions of these propagation rules to DKT will yield cut-free, sound, and complete deep nested
calculi for logics Kt + % . Note that we define 〈?〉−1 = ^ if 〈?〉 = _, and 〈?〉−1 = _, if 〈?〉 = ^.

Definition 2.10 (Path Axiom Inverse [19]). If � is a path axiom of the form 〈�1〉 · · · 〈�=〉�→ 〈� 〉�,
then we define the inverse of � to be

3As shown in [19], copying the principal formula in the (�) and (�) rules is useful when performing proof-search, despite

being unnecessary for completeness of the calculus. Still, wemake use of the same rules here sincewewill leveragemethods

presented in [19] that make use of the calculus DKT in the form above.
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� (� ) := 〈�=〉
−1 · · · 〈�1〉

−1�→ 〈� 〉−1�

Given a set of path axioms % , we define the set of inverses to be the set � (%) := {� (� ) | � ∈ %}.

Definition 2.11 (Composition of Path Axioms [19]). Given two path axioms

� := 〈�1〉 · · · 〈�=〉�→ 〈� 〉� and � := 〈�1〉 · · · 〈�<〉�→ 〈�〉�

we say � is composable with � at 8 iff 〈� 〉 = 〈�8〉. We define the composition

� ⊲
8 � := 〈�1〉 · · · 〈�8−1〉〈�1〉 · · · 〈�=〉〈�8+1〉 · · · 〈�<〉�→ 〈�〉�

when � is composable with � at 8 .
Using these individual compositions, we define the following set of compositions:

� ⊲� := {� ⊲
8 � | � is composable with � at 8}

Example 2.12. As an example, we can compose the axiom ^^� → _� with _^� → ^� to
obtain ^^^� → ^�.

Definition 2.13 (Completion [19]). The completion of a set % of path axioms, written %∗, is the
smallest set of path axioms containing % such that

(1) ^�→ ^�,_�→ _� ∈ %∗

(2) If �,� ∈ %∗ and � is composable with � , then � ⊲� ⊆ %∗.

After introducing further notions necessary to define the propagation rules, we will give ex-
amples showing the significance of defining the rules relative to the completion of a set of path
axioms, rather than defining the rules relative to just the given set of path axioms. As will be
shown, without defining the rules relative to the completion, the corresponding set of rules would
not be enough to achieve completeness of the resulting calculus.
Let us now recall the notion of a propagation graph and the notion of a path in a propagation

graph from [19]. We introduce these concepts using the diamond rules of DKT as an example. The
diamond rules (^1), (^2), (_1), (_2) can be read bottom-up as propagating formulae to nodes in
the tree of a sequent.
For example, the (^1) rule propagates an � to a node along a ◦-edge, whereas the (^2) rule

propagates an � backward along a •-edge. Similarly, the (_1) rule propagates an � forward to a
node along a •-edge, and the (_2) rule propagates an� backward along a ◦-edge. Thesemovements
are represented in the diagram below:

-

◦q
qq
qq
q

qq
qq
qq

^

��
•
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

_

��
.

_

EE

/
^

ZZ

This understanding of how formulae are propagated is crucial to define the propagation rules
for deep nested calculi. In fact, as will be explained below, each path axiom can be read as an
instruction that expresses how to propagate a formula along some path.We therefore give a precise
definition of the propagation graph of a sequent, which explicitly specifies how formulaemaymove
when being propagated throughout the tree of a sequent.

Definition 2.14 (Propagation Graph [19]). Let - be a nested sequent where # is the set of nodes
in CA44 (- ). We define the propagation graph %� (- ) = (#, �) of - to be the directed graph with
set of nodes # and set of edges � each labeled with either a ^ or _ as follows:

(1) For every node = ∈ # and ◦-child< of =, we have a labeled edge (=,<,^) ∈ � and a labeled
edge (<,=,_) ∈ �.
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(2) For every node = ∈ # and •-child< of =, we have a labeled edge (=,<,_) ∈ � and a labeled
edge (<,=,^) ∈ �.

Lemma 2.15. Suppose that - and. are display equivalent nested sequents. Then, %� (- ) = %� (. ).

Proof. We prove the result by induction on the minimum number of display inferences needed
to derive . from - .
Base case. Assume w.l.o.g. that - = /, ◦{, } and . = •{/ },, so that . is derivable from -

with a single application of a display rule. Let %� (/ ) = (#1, �1) and %� (, ) = (#2, �2) with =1
the root of CA44 (/ ) and =2 the root of CA44 (, ). Observe that %� (- ) = (#, �), where # = #1 ∪#2

and � = �1 ∪ �2 ∪ {(=1, =2,^), (=2, =1,_)}, which is identical to %� (. ) by definition.
Inductive step. Suppose that = + 1 is the minimum number of display inferences needed to

derive . from - . It follows that there exists a nested sequent / such that / is derivable from -

with one display inference, and. is derivable from/ with= applications of the display rules. By the
base case we know that %� (- ) = %� (/ ), and by the inductive hypothesis, %� (/ ) = %� (. ). �

Definition 2.16 (Path [19]). A path is a sequence of nodes and diamonds (labeling edges) of the
form:

=1, 〈?〉1, =2, 〈?〉2, ..., 〈?〉:−1, =:

in the propagation graph %� (- ) such that =8 is connected to =8+1 by an edge labeled with 〈?〉8 .
Note that we allow repetitions of nodes along a path (e.g. =,^,<,_, = is a path). For a given
path c = =1, 〈?〉1, =2, 〈?〉2, ...〈?〉:−1 , =: , we define the string of c to be the string of diamonds
Π = 〈?〉1〈?〉2 ...〈?〉:−1 .

Definition 2.17 (Deep Nested Propagation Rules [19]). Let % be a set of path axioms. The set of
propagation rules DeepPr(P) contains all rules of the form:

- [〈?〉�]8 [�] 9
(dp)

- [〈?〉�]8 [∅] 9

where there is a path c from 8 to 9 in the propagation graph of the premise and Π� → 〈?〉� ∈
(% ∪ � (%))∗ with Π the string of c .

It should be noted that two different sets % and % ′ of path axioms can generate the same set of
propagation rules, i.e. (% ∪ � (%))∗ = (% ′ ∪ � (% ′))∗. For example, both {� → ^�,_^� → ^�}
and {� → ^�,_� → ^�,^^� → ^�} yield the same set of propagation rules, which would
provide a deep nested calculus for tense S5.

Example 2.18 (Necessity of Inverses). Let us now demonstrate why inverses must be taken into
account when defining propagation rules. Suppose that we did not define the set of propagation
rules relative to the set ({^^� → ^�} ∪ {__� → _�})∗, but rather, we defined the set of
propagation rules relative to the set {^^� → ^�}∗ . All propagation rules in this restricted set
are of the form below (where there is a path of the form 8 ,^, . . . ,^, 9 of length = ≥ 1 from 8 to 9 ):

- [^�]8 [�] 9
(dp)

- [^�]8 [∅] 9

We now explain why this restricted set of propagation rules–that does not take inverses into
account—leads to an incomplete calculus. Below, we attempt to give a root-first derivation of
� (^^? → ^?) = __? → _? , which is a theorem of the logic Kt + ^^� → ^� and should
therefore be derivable:
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•{•{?}},_?
(�)

•{�?},_?
(�)

��?,_?
(∨)

��? ∨ _?
. . . . . . . . . . . . . . =
__? → _?

Observe that no propagation rule from the restricted set is applicable to the top sequent of the
derivation because no propagation rule acts along a path of the form 8 , _, . . . ,_, 9 . However, if
we allow ourselves to define the propagation rules relative to the set ({^^� → ^�} ∪ {__� →
_�})∗, then we also have the following rules in our calculus (where there is a path of the form
8 ,_, . . . ,_, 9 of length = ≥ 1 from 8 to 9 ):

- [_�]8 [�] 9
(dp)

- [_�]8 [∅] 9
Using this rule we can complete the derivation by deriving the top sequent of the above deriva-

tion from the initial sequent •{•{?, ?}},_? :
(id)

•{•{?, ?}},_?
(dp)

•{•{?}},_?

Example 2.19 (Necessity of Compositions). Supposewe are given the set % = {^_^� → ^�,^^� →

_�}. One of the composition formulae derivable in the logic Kt+% is ^^^^� → ^�. Our exam-
ple below demonstrates the necessity of defining DeepPr(P) relative to the completion (% ∪ � (%))∗

(which takes into account compositions) instead of just % .
If we define our propagation rules relative to just % , then we will have the following two prop-

agation rules in our calculus:

- [^�]8 [�] 9
(dp)

- [^�]8 [∅] 9

- [_�]: [�]=
(dp)

- [_�]: [∅]=

The left rule is applicable when there is a path of the form 8 , ^, =1, _, =2, ^, 9 from node 8 to 9 ,
and the right rule is applicable when there is a path of the form : , ^, =1, ^, = from : to = in the
respective propagation graphs.
We now attempt to derive ^^^^? → ^? , and show that no sequence of rules applied back-

ward can give a proof of the formula:

◦{◦{◦{◦{? }}}},^?
(�) × 4

����?,^?
(∨)

����? ∨ ^?
. . . . . . . . . . . . . . . . . . =
^^^^? → ^?

None of the rules in DKT or in the restricted set of propagation rules are bottom-up applicable
to the top sequent. However, since ^^^^� → ^� ∈ (% ∪ � (%))∗, if we allow the addition of
propagation rules to correspond to axioms in (% ∪ � (%))∗ rather than just % , then we have the
following rule in our calculus (where there is a path of the form 2 , ^, =1, ^, =2, ^, =3, ^, ? from 2

to ?):

- [^�]2 [�]?
(dp)

- [^�]2 [∅]?

This can be used to prove the formula ^^^^? → ^? by deriving the top sequent in the above
derivation from the initial sequent ◦{◦{◦{◦{?, ?}}}},^? :

(id)
◦{◦{◦{◦{?, ?}}}},^?

(dp)
◦{◦{◦{◦{? }}}},^?
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Lemma 2.20 ([19]). The following rules are admissible in DKT + DeepPr(P):

- [. ]
(w)

- [.,/ ]

- [.,. ]
(c)

- [. ]

-, ◦{. }
(rf)

•{- }, .

-, •{. }
(rp)

◦{- }, .

Lemma 2.21 ([19]). Let % be a set of path axioms. Every derivation in SKT +NestSt(P) of a sequent

- is transformable [effectively relatable] to a derivation in DKT + DeepPr(P), and vice-versa.

We have inserted the term “effectively relatable” to emphasize that the proof in [19] is via a
local transformation (i.e. a step-by-step procedure defined at the level of the proof rules in the
derivation). Indeed, the forward direction of the above lemma is shown by induction on the height
of the given derivation ([19, Lem. 6.13]), and implies that we can effectively transform a derivation
D in DKT+DeepPr(P) into a derivationD ′ of the same end sequent in SKT+NestSt(P). The reverse
direction follows from the fact that SKT + NestSt(P) can mimic propagation rules ([19, Lem. 6.12]).
Also, observe that the above lemma implies cut-free completeness for each deep nested calculus
DKT + DeepPr(P).

Theorem 2.22 ([19]). Let % be a set of path axioms. Kt + % ⊢ � iff � is cut-free derivable in

DKT + DeepPr(P).

3 NESTED SEQUENTS AND LABELED POLYTREES

In this section we show how to translate (back and forth) a nested sequent into a labeled polytree
(called a labeled UT in [9]). These graphical structures facilitate the translations between nested
and labeled proofs.
We write + = +1 ⊔ +2 to mean that + = +1 ∪ +2 and +1 ∩ +2 = ∅. The multiset union of

multisets "1 and"2 is denoted"1 ⊎"2. A labeling function ! is a map from a set + to a multiset
of tense formulae. For labeling functions !1 and !2 on the sets +1 and +2 respectively, let !1 ∪ !2
be the labeling function on +1 ∪+2 defined as follows:

(!1 ∪ !2) (G) =





!1(G) G ∈ +1, G ∉ +2

!2(G) G ∉ +1, G ∈ +2

!1(G) ⊎ !2(G) G ∈ +1, G ∈ +2

A labeled graph (+ , �, !) is a directed graph (+ , �) equipped with a labeling function ! on + .

Definition 3.1 (Labeled Graph Isomorphism). We say that two labeled graphs �1 = (+1, �1, !1)
and�2 = (+2, �2, !2) are isomorphic (written�1 � �2) if and only if there is a function 5 : +1 → +2
such that:

(i) 5 is bijective;
(ii) for every G,~ ∈ +1, (G,~) ∈ �1 iff (5 G, 5 ~) ∈ �2;
(iii) for every G ∈ +1, !1(G) = !2(5 G).

Definition 3.2 (Labeled Polytree). A labeled polytree is a labeled graph whose underlying (i.e.
undirected) graph is a tree, i.e. there exists exactly one path of undirected edges between every
pair of distinct nodes.

Example 3.3. The following two graphs represent labeled polytrees, where each node is deco-
rated with a multiset "8 of formulae:
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~

"1

��❂
❂❂
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❂❂

❂

I

"2
//

F

"3
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G

"4

~

"2

��❂
❂❂

❂❂
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❂

��✁✁
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✁✁
✁✁

D

"4

��✁✁
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✁✁
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E

"1

G

"3

Polytrees have been discussed in the graph theory literature and have also found applications
in computer science [22, 33].

3.1 Interpreting a Nested Sequent as a Labeled Polytree

Every nested sequent has a natural interpretation as a labeled tree with two types of directed edges:
◦
→ and

•
→ [19, 23]. If we interpret every directed edge U

•
→ V as the directed edge U

◦
← V , we can

then interpret every nested sequent as a connected labeled graph with a single type of directed
edge (so we can drop the ◦ symbol altogether). Moreover, it is easy to see that its underlying graph
(i.e. the undirected graph obtained by treating all edges as undirected) is a tree, and that every
nested sequent can be interpreted naturally as a labeled polytree.

Example 3.4 (Transforming a Nested Sequent into a Labeled Sequent). First, interpret the nested
sequent �, ◦{�, •{Y}}, •{�, �, •{� }, ◦{�}} as the labeled tree with two types of directed edges,
below left. Next, convert the labeled tree to a labeled polytree (with directed edges of a single

type) by reading each U
•
→ V as U ← V (below right) and remove the ◦-typing from the remaining

edges.

G

�

◦

��☎☎
☎☎
☎☎
☎☎
☎

•

��❃
❃❃

❃❃
❃❃

❃

~

�

•
��

F

�, �

•

��✁✁
✁✁
✁✁
✁✁
✁

◦
��

I

∅

D

�

E

�

G

�

��☎☎
☎☎
☎☎
☎☎
☎

~

�

F

�, �

^^❃❃❃❃❃❃❃❃

��
I

∅

OO

D

�

@@✁✁✁✁✁✁✁✁✁ E

�

For concreteness let us formally define the map L from a nested sequent to a labeled polytree.

Definition 3.5 (The Translation L). We define the map LG (- ) recursively on the structure of the
input nested sequent - as follows:4

LG (Y) := (∅, ∅, ∅)

LG (�) := ({G}, ∅, {(G,�)})

LG (-1, -2) := (+1 ∪+2, �1 ∪ �2, !1 ∪ !2) where LG (-8) = (+8, �8, !8 )

LG (◦{- }) := (+ ∪ {G}, � ∪ {(G,~)}, !) where L~ (- ) = (+ , �, !) and ~ is fresh.

LG (•{- }) := (+ ∪ {G}, � ∪ {(~, G)}, !) where L~ (- ) = (+ , �, !) and ~ is fresh.

Example 3.6. The labeled polytree LG (- ) := (+ , �, !) corresponding to the nested sequent - :=
�, ◦{�, •{�}}, •{�} is shown below:

4Thank you to the anonymous reviewer who suggested this definition.
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~

� //
I

�

G

�oo
F

�oo

Definition 3.7 (Labeled Polytree Merge and Subgraph). Let � ⊕G � denote the labeled polytree
obtained as the graph union of labeled polytrees � and � that have a single vertex G in common,
such that the label of G in � ⊕G � (i.e. the multiset of tense formulae that G maps to under the
labeling function of � ⊕G � ) is the union of the labels of the vertex G in � and in � . We refer to
� ⊕G � as the merge of two polytrees.

We say that a � is a labeled polytree subgraph of a labeled polytree � if and only if there exists
a labeled polytree � ′ and a vertex G in � such that � = � ′ ⊕G � . We use � [� ]G both as a name
for the labeled polytree� and to denote that � is a labeled polytree subgraph of � .

Example 3.8. The labeled polytree � [� ]G = � ′ ⊕G � , where G is the common vertex between
� ′ and � , is shown below left. The top labeled polytree below right is � ′ and the other is � .

I
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F
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#

��
D
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@@✁✁✁✁✁✁✁✁ E

#2

For any labeled polytree (+ , �, !) with G ∈ + there exist partitions + = +1 ⊔ {G} ⊔ +2, � =

�1 ⊔ �2, and ! = !1 ∪ !2 such that � [� ]G = � ′ ⊕G � = (+ , �, !) with � ′ = (+1 ⊔ {G}, �1, !1)

and � = (+2 ⊔ {G}, �2, !2). Clearly, !(G) = !1 (G) ⊎ !2 (G), and � ′ and � are labeled polytrees. In
other words, we view � in � [� ]G = � ′ ⊕G � as the redex and � ′ as the context.
Since nested sequents may be interpreted as trees with two types of edges (◦-edges and •-edges),

they possess a root node, whereas labeled polytrees do not possess a root in general. Nevertheless,
the underlying tree structure of a labeled polytree permits us to view any node as the root, and the
lemma below ensures that we obtain isomorphic labeled polytrees via the display rules regardless
of the node where we begin the translation.
Note that the label G in LG simply denotes the name of the starting vertex of the translation

so LG (- ) � L~ (- ) for all labels G and ~, and all nested sequents - .

Lemma 3.9. For every label G , and any nested sequents - and . : LG (-, ◦{. }) � LG (•{- }, . ).

Proof. Observe that LG (-, ◦{. }) is isomorphic to the labeled polytree obtained from the dis-
joint union ofLG (- ) andL~ (. ) by the addition of an edge (G,~). MeanwhileLG (•{- }, . ) is isomor-
phic to the labeled polytree obtained from the disjoint union of L~ (- ) and LG (. ) by the addition
of an edge (~, G). The result follows because LG (- ) � L~ (- ) and L~ (. ) � LG (. ). �

Corollary 3.10. For all labels G and ~, and nested sequents - and . , if - and . are display

equivalent, then LG (- ) � L~ (. ).
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Proof. By repeated application of Lemma 3.9. �

Henceforth we write L instead of LG to reduce clutter when the name of the starting vertex is
not important.

3.2 Interpreting a Labeled Polytree as a Nested Sequent

Given a labeled polytree � = (+ , �, !) we first pick a vertex G ∈ + to compute the nested sequent
NG (�). If � = ∅, then NG (�) = !(G) is the desired nested sequent. Otherwise, for all = forward
looking edges (G,~8 ) ∈ � (with 1 ≤ 8 ≤ =) where � [�8 ]~8 , and for all : backward looking edges
(I 9 , G) ∈ � (with 1 ≤ 9 ≤ :) where � [� ′9 ]I 9 , we define the image of NG (�) as the nested sequent

!(G), ◦{N~1 (�1)}, . . . , ◦{N~= (�=)}, •{NI1 (�
′
1)}, . . . , •{NI: (�

′
: )}

Since the labeled polytrees�1, . . . , �=, �
′
1, . . . , �

′
:
are smaller than� , the recursive definition of N

is well-founded.

Lemma 3.11. For any labeled polytree � = (+ , �, !), and for any vertices G,~ ∈ + , the nested

sequent NG (�) is derivable from N~ (�) via the display rules (rf) and (rp).

Proof. We prove the result by induction on the length of the (unique) path 38BC (G,~) between
G and ~. When 38BC (G,~) = 0 we have G = ~ and the claim holds.

Base case. Suppose that 38BC (G,~) = 1. There are two cases to consider: either there is a forward
edge from G to ~, or there is a backward edge from G to ~. Without loss of generality, we consider
only the first case. It follows that if there is a forward edge connecting G to ~, then since NG (�)

is of the form -, ◦{. }, then N~ (�) = •{- }, . . It is easy to see that both sequents are display
equivalent.
Inductive step. Suppose that 38BC (G,~) = = + 1. Let I represent the node one edge away from G

along the = + 1 path to ~. By the base case,NG (�) andNI (�) are display equivalent, and since the
distance from I to ~ is =, we have thatNI (�) is also display equivalent to N~ (�) by the induction
hypothesis. Hence, NG (�) is display equivalent to N~ (�). �

When translating a labeled polytree we must choose a vertex as the starting point of our trans-
lation. The above lemma states that all nested sequents obtained from choosing a different vertex
to translate from are mutually derivable from one another, i.e. they are derivable from each other
by use of the display rules (rp) and (rf) only (hence, they are display equivalent). Due to this fact,
we will omit the subscript when contextually permissible and simply write N as the translation
function.
To clarify the translation procedure, we provide an example below of the various nested sequents

obtained from translating at a different initial vertex.

Example 3.12. Suppose we are given the labeled polytree � = (+ , �, !) where + = {G,~, I},
� = {(G,~), (I, G)}, !(G) = {�}, !(~) = {�,�}, and !(I) = {�}. A pictorial representation of the
labeled polytree � is given on the left with the corresponding nested sequent translations on the
right:

~

�,�

G

�oo
I

�oo
NG (�) = �, ◦{�,�}, •{�}

N~ (�) = �,�, •{�, •{�}}

NI (�) = �, ◦{�, ◦{�,�}}

The following lemma ensures that the pieces - and . of the nested sequent NG (� [� ]G ) =

NG (�
′ ⊕G � ) = -,. and the pieces� and� ′ of the labeled polytreeLG (-,. ) = � [� ]G = � ′ ⊕G �

correctly map to each other under our translation functions.
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Lemma 3.13. (i) For every - and . , LG (-,. ) is the labeled polytree � [� ]G = � ′ ⊕G � where � ′

is the labeled polytree LG (- ) and � is the labeled polytree LG (. ).

(ii) For every labeled polytree� [� ]G = � ′ ⊕G � , NG (� [� ]G ) is a nested sequent of the form -,.

where - = NG (�
′) and . = NG (� ).

Proof. By construction of L and N. �

Last, we note that due to the correspondence between nested sequents and labeled polytrees,
the latter are easily translated to formulas in LKt via the function N and the function I from
Section 2.1.

4 FROM SHALLOW NESTED TO LABELED CALCULI

We answer the following question: given a derivationD of� in SKT+NestSt(GP), is there a deriva-
tion D ′ of G : � in G3Kt + LabSt(GP) that is effectively relatable to D? As a consequence, the
structure of the output derivation is related to the structure of the input. The constraint that the
new derivation be effectively relatable is crucial, for otherwise one could trivially relate D ′ with
the derivation D as obtained from the following equivalences:

∃D(⊢DSKT+NestSt(GP) �) iff Kt +�% ⊢ � iff ∃D ′(⊢D
′

G3Kt+LabSt(GP) G : �)

where the notation ∃D(⊢D
SKT+NestSt(GP)

�) and ∃D ′(⊢D
′

G3Kt+LabSt(GP)
G : �) is taken to mean that there

exists a derivation D and a derivation D ′ such that � and G : � are derivable in SKT + NestSt(GP)

and G3Kt + LabSt(GP), respectively.
The point is that the derivations in SKT + NestSt(GP) and G3Kt + LabSt(GP) obtained solely

from the above equivalences would not be defined via local transformations. Indeed, due to the
existential operators, the structure of the two derivations would not be related in any meaningful
way.

4.1 Transforming a Labeled Graph� = (+ , �, !) into a Labeled Sequent R, Γ

Define R = {'G~ | (G,~) ∈ �} and

Γ =

⊎

G ∈+

G : !(G)

where G : !(G) represents the multiset !(G) with each formula prepended with a label G .

Example 4.1. The labeled graph � = (+ , �, !) where + = {G,~, I}, � = {(G,~), (I, G)}, !(G) =
{�}, !(~) = {�}, and !(I) = {�} corresponds to the labeled sequent 'G~, 'IG, G : �,~ : �, I : � .

4.2 Transforming a Labeled Sequent R, Γ into a Labeled Graph (+ , �, !)

Let + be the set of all labels occurring in R, Γ. Define

� = {(G,~) | 'G~ ∈ R} !(G) = {� | G : � ∈ Γ}

Example 4.2. The labeled sequent 'G~, '~I, 'DG, G : �, I : �, I : �,D : � becomes the labeled
graph � = (+ , �, !) where + = {G,~, I,D}, � = {(G,~), (~, I), (D, G)}, !(G) = {�}, !(~) = ∅,
!(I) = {�,�} and !(D) = {�}.

The reader will observe that the translations are obtained rather directly. This is because the
main difference between a labeled graph and a labeled sequent is notation. Therefore, for a given
nested sequent - , we let L(- ) also represent the labeled sequent obtained from the labeled poly-
tree of- . We follow this convention for the remainder of the paper and letL(- ) represent a labeled
sequent.
Combining the previous results we obtain:
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Theorem 4.3. Let�% be a set of general path axioms. IfD is a derivation of- in SKT+NestSt(GP),

then there is an effective translation of D to a derivation D ′ of L(- ) in G3Kt + LabSt(GP).

Proof. We prove the result by induction on the height of the given derivation.
Base case. The translation of an initial sequent ., ?, ? in SKT + NestSt(GP) gives the initial

sequent LG (. ), G : ?, G : ? in G3Kt + LabSt(GP), which proves the base case.
Inductive step.We show the inductive step for the rules (∨), (�), (^), (rp), and (GP). We note

that weakening and contraction are admissible in D ′ due to Lemma 2.7.

.,�, �
(∨)

.,� ∨ �

LG (. ), G : �, G : �
(∨)

LG (. ), G : � ∨ �

., •{�}
(�)

.,��

LG (. ), '~G,~ : �
(�)

LG (. ), G : ��

., ◦{/,�},^�
(^)

., ◦{/ },^�

LG (. ),L~ (/ ), 'G~, G : ^�,~ : �
(^)

LG (. ),L~ (/ ), 'G~, G : ^�

., •{/ }
(rp)

◦{. }, /

L~ (., •{/ }). . . . . . . . . . . . . . Lem. 3.9
LI (◦{. }, / )

.,★=+1{... ★=+< {/ }...}
(GP)

.,★1{... ★= {/ }...}

LG (. ),RΣG~,L~ (/ )
Lem. 2.7

LG (. ),RΠG~,RΣG~,L~ (/ )
(GP)

LG (. ),RΠG~,L~ (/ )

Because L~ (., •{/ }) and LI (◦{. }, / ) are isomorphic, the premise and conclusion of (rp) can
be mapped to the same labeled sequent (thus, the two will be identical), and hence no rule is used
for translating (rp). In the above, this is denoted by the dotted line. �

Example 4.4. We translate a derivation of _^? → ^_? in SKT + #4BC(C ({_^? → ^_?}) to
a derivation in G3Kt + !01(C ({_^? → ^_?}).

_?, •{?, ?̄}, •{^_?}
(_)

_?, •{?̄}, •{^_?}
(rp)

◦{_?, •{?̄}},^_?
(^)

◦{•{?̄}},^_?
(GP)

•{◦{?̄}},^_?
(rp)

◦{?̄}, ◦{^_?}
(�)

�?̄, ◦{^_?}
(rf)

•{�?̄},^_?
(�)

��?̄,^_?
(∨)

��?̄ ∨ ^_?
. . . . . . . . . . . . . . . . =
_^? → ^_?

'GD, 'ID, '~G, '~I, I : ?, G : ^_?,D : _?, I : ?
(_)

'GD, 'ID, '~G, '~I, I : ?, G : ^_?, D : _?
(^)

'GD, 'ID, '~G, '~I, I : ?, G : ^_?
(GP)

'~G, '~I, I : ?, G : ^_?
(�)

'~G,~ : �?, G : ^_?
(�)

G : ��?, G : ^_?
(∨)

G : ��? ∨ ^_?
. . . . . . . . . . . . . . . . . =
_^? → ^_?

Corollary 4.5. Let " ⊆ {Π� → Σ� | Π, Σ ∈ {^}∗} be a set of modal general path axioms.

Every derivation in the shallow nested calculus SKT − {(�), (_)} + #4BC(C (") is translatable to a

derivation in the labeled calculus G3Kt − {(�), (_)} + !01(C (").

The above corollary shows that our translations also hold for the modal (non-tense) fragments
of the logics we consider. As detailed in the conclusion, this is useful since one can prove con-
servativity of the display calculi SKT − {(�), (_)} + #4BC(C (") over their modal fragments by
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translating derivations into G3Kt − {(�), (_)} + !01(C (") and invoking the soundness of the
labeled calculus.

5 FROM LABELED TO SHALLOW NESTED CALCULI

In this section, we address the converse question: translating labeled proofs into shallow nested
proofs, which will be achieved by translating through the deep nested calculi DKT + DeepPr(P).
In the base case for Kt when �% = ∅, i.e. for the calculus G3Kt, it is fairly straightforward to
effectively translate labeled derivations into nested derivations. As will be argued in Lemma 5.2,
every derivation in G3Kt which proves a labeled theorem of the form G : �, consists solely of
labeled sequents which are translatable into nested notation. After providing the translation from
G3Kt to SKT, we explain a problem that arises when attempting to translate derivations from
extensions of G3Kt to extensions of SKT, and how we solve this problem for path extensions of
Kt.
The central issue complicating the reverse translation from labeled to nested for general path

extensions of Kt is that structural rule extensions of G3Kt allow for labeled sequents to occur in
derivations that are not labeled polytree sequents. In other words, general path structural rules
allow one to derive theorems with labeled sequents not in the domain of the translation function
given in Section 3.2.5 This complication arises since our translation is only defined for labeled poly-
tree sequents, and not for labeled sequents in general. Nevertheless, we can overcome this obstacle
by considering labeled calculi for Kt extended with propagation rules for path axioms since every
derivation can be transformed into one containing only (translatable) labeled sequents, i.e. labeled
polytree sequents. In Section 5.2, we explain this proof transformation procedure, followed by the
translation from G3Kt + LabSt(P) to SKT + NestSt(P) that leverages DKT + DeepPr(P) to facilitate
the translation. Note that although the translation presented here takes a detour through a deep
nested calculus, a direct translation from labeled to shallow nested could be provided; still, we opt
for the latter approach since it allows us to exploit results from [19] that simplify our work.

5.1 Translating the Base Calculus

We first consider the converse translation for the base calculus G3Kt.

Definition 5.1 (Labeled Polytree Sequent). A labeled polytree sequent is a labeled sequent whose
graph is a labeled polytree.

Lemma 5.2. Every labeled derivation in G3Kt of a labeled polytree sequent R, Γ consists solely of

labeled polytree sequents.

Proof. We argue by contradiction. Let D be a derivation of R, Γ in G3Kt and suppose there is
a labeled sequent R ′, Γ′ in D that is not a labeled polytree sequent. By definition, the underlying
undirected graph of the graph of R ′, Γ′ is not a tree. It follows that the graph of R ′, Γ′ is not
connected or contains an undirected cycle.
If the graph ofR ′, Γ′ is not connected, then by inspection of the rules ofG3Kt, the graph of every

sequent belowR ′, Γ′ inD is disconnected, including the graph ofR, Γ, which is a contradiction. On
the other hand, if it is connected, then the graph of R ′, Γ′ must contain an undirected cycle. Since
the derivation ends with a labeled polytree sequent R, Γ, it must be the case that every undirected
cycle is deleted ultimately. The only rules that delete relational atoms in G3Kt are (�) and (�).
However, the eigenvariable conditions in these rules are not satisfied for labels occurring in an
undirected cycle, so the undirected cycle cannot be eliminated, giving a contradiction.

5Note that the translation function N is only defined for labeled polytree sequents.
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Hence, every sequent occurring in a G3Kt derivation of a labeled polytree sequent is a labeled
polytree sequent. �

The observation that G3Kt is complete relative to derivations consisting solely of labeled poly-
tree sequents is useful for our translation work. Recognizing that this fact generalizes to G3Kt

extended with propagation rules allows us to easily translate our labeled derivations into deep
nested derivations, and then leverage Lemma 2.21 to complete the effective translation from la-
beled to shallow nested.

Lemma 5.3. Every derivation inG3Kt consisting solely of labeled polytree sequents can be effectively

translated to a derivation in DKT.

Proof. We prove this by induction on the height of the given derivation.
Base case. The translation of an initial sequent R, G : ?, G : ?, Γ in G3Kt gives an initial sequent

N(R, G : ?, G : ?, Γ) = - [?, ?] in DKT which proves the base case.
Inductive step.We show the inductive step for the rules (∨), (�), and (^); all remaining cases

are similar.

R, Γ, G : �, G : �
(∨)

R, Γ, G : � ∨ �

N(R, Γ, G : �, G : �)
. . . . . . . . . . . . . . . . . . . . . =

- [�, �]
(∨)

- [� ∨ �]
. . . . . . . . . . . . . . . . . . . . =
N(R, Γ, G : � ∨ �)

R, '~G,~ : �, Γ
(�)

R, G : ��, Γ

N(R, '~G,~ : �, Γ)
. . . . . . . . . . . . . . . . . . . . =

- [•{�}]
Lem. 2.20

- [��, •{�}]
(�)

- [��]
. . . . . . . . . . . . . . . . . =
N(R, G : ��, Γ)

We note that for the (�) case above, we choose to translate from a label I ≠ ~ to ensure that the
(�) rule may be immediately applied. We are permitted to translate fromwhatever label we please
due to Lemma 2.20, which states the admissibility of the (rf) and (rp) rules. For example, if we
consider the translation N~ (R, '~G,~ : �, Γ) starting at ~, then the output nested sequent would
be of the form ◦{- }, �. Applying the admissibility of (rf) yields a proof of the nested sequent
-, •{�}, which the (�) rule may be applied to. By restricting our translation to start translating
from a label I ≠ ~ however, we ensure that the (�) may be immediately applied. Translating (�)
inferences is performed in a similar fashion.
For the (^) case, there are two possible inferences in DKT depending on whether the unique

undirected path from the node I (that we translate from in the premise of the last inference in
the G3Kt derivation) to G encounters ~ (below rightmost) or not (below center). Note that below
center . stands for all formulae in Γ labeled with ~, and below rightmost - stands for all formulae
from Γ labeled with G .

R, 'G~, G : ^�,~ : �, Γ
(^)

R, 'G~, G : ^�, Γ

NI (R, 'G~, G : ^�,~ : �, Γ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

/ [◦{.,�},^�]
(^1)

/ [◦{. },^�]
. . . . . . . . . . . . . . . . . . . . . . . =
NI (R, 'G~, G : ^�, Γ)

NI (R, 'G~, G : ^�,~ : �, Γ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

/ [•{-,^�}, �]
(^2)

/ [•{-,^�}]
. . . . . . . . . . . . . . . . . . . . . . . =
NI (R, 'G~, G : ^�, Γ)
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Consider the directed labeled graph associated with the premise of (^). It contains a directed
edge from G to ~. Since the undirected graph is a polytree by assumption, there is a unique undi-
rected path from I to G . If (i) ~ is not on this path, then the translation starting at I encounters G
first. Since G to ~ is a forward edge (i.e. it is in the same direction as the directed edge) it will be
translated as ◦; in this case apply the (^1) rule. Otherwise it must be that (ii) ~ is on the path. This
means that the translation starting at I encounters ~ first. Since ~ to G is a backward edge (i.e. its
direction is the reverse of the directed edge) it will be translated as •; in this case apply the (^2)

rule. �

Theorem 5.4. Every derivation in G3Kt of a labeled polytree sequent R, Γ is effectively relatable

to a derivation of N(R, Γ) in SKT.

Proof. Let D be a derivation in G3Kt of a labeled polytree sequent R, Γ. By Lemma 5.2, D
consists solely of labeled polytree sequents. Hence, by Lemma 5.3 we can effectively transform
D into a derivation D ′ in DKT, and so, by Lemma 2.21 we can effectively transform D ′ into a
derivation of N(R, Γ) in SKT. The composition of these two effective transformations gives the
desired effective transformation. �

The above argument does not always work for extensions of G3Kt because additional structural
rules may be capable of removing cycles in the following sense: the underlying undirected graph
of the premise might have a cycle, yet the underlying undirected graph of the conclusion might not
(this was not the case for any rule inG3Kt). For example, let us consider the rule (Conf) for the con-
fluence axiom_^� → ^_�: ~

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

��❃
❃❃

❃❃
❃❃

❃

G

��❅
❅❅

❅❅
❅❅

I

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

D

R, 'GD, 'ID, '~G, '~I, Γ
(Conf)

R, '~G, '~I, Γ

In a rule instance of (Conf), the underlying undirected graph of the premise necessarily con-
tains a cycle of the form shown above left. However, it need not be the case that the underlying
undirected graph of the conclusion contains a cycle, since the edges from G to D and I to D (corre-
sponding to the relational atoms 'GD and 'ID) are deleted. As a consequence, a labeled derivation
of a labeled formula G : � in G3Kt + (Conf) may contain labeled sequents that are not labeled
polytree sequents. Therefore, such a derivation is not immediately translatable to a derivation in
SKT + (Conf) via our methods because the derivation may contain sequents that are not in the
domain of our translation.
For all general path extensions of Kt, every shallow nested derivation can be translated into a

labeled derivation; this fact implies that the space of shallow nested derivations corresponds to a
subspace of the space of labeled derivations. Derivations of theorems in our labeled calculi may
contain labeled sequents that are not labeled polytree sequents, showing that labeled derivations
contain structures that go beyond those of the nested formalism. Nevertheless, we may invoke
techniques present in [19, 27] to pre-process each labeled derivation (in a labeled calculus for Kt
extended with path axioms %) in such a way that each is translatable to a shallow nested derivation,
thus answering an open question in [9].

5.2 Translating the Path Axiom Extension

We now show that the labeled calculus can be internalized (also referred to as refinement in [27])
for Kt+% (where % represents a set of path axioms), meaning that we can effectively transform any
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G3Kt+LabSt(P) derivation of a labeled formula into one where every sequent is a labeled polytree
sequent. This internalization of proofs is interesting in its own right, and is also helpful in that the
resulting labeled derivation is easily translatable into a derivation in DKT+DeepPr(P). From there,
we can invoke Lemma2.21 to conclude the existence of an effective translation fromG3Kt+LabSt(P)

derivations to SKT + NestSt(P) derivations (since composing two effective procedures gives an
effective procedure).
The method of transforming every derivation in G3Kt + LabSt(P) into a derivation consisting

solely of labeled polytree sequents relies on the addition of propagation rules LabPr(P) to the calcu-
lus (cf. [19, 27, 34]). Such propagation rules simulate the (Path) rules, preserve disconnected and
cyclic structures downward in a derivation, and, equivalently, preserve labeled polytree structure
bottom-up in a derivation. The latter properties are significant because they allow us to make an
argument similar to the one made in Lemma 5.2, where we argue by contradiction that every la-
beled sequent occurring in a given derivation of a labeled formula G : �must be a labeled polytree
sequent.
The main technical lemma in this section is Lemma 5.8, where we show that in the presence of

propagation rules LabPr(P), the structural rules LabSt(P) in G3Kt+LabSt(P) can be eliminated from
any proof. This allows for the effective transformation of any proof in an (unrestricted) labeled
calculus G3Kt + LabSt(P) into a proof in the associated internal labeled calculus G3Kt + LabPr(P)
(Lemma 5.10). Proofs in the internal calculiG3Kt+ LabPr(P) can then be effectively translated into
derivations in DKT + DeepPr(P). Once we prove these claims, we obtain an effective translation
from the labeled calculus G3Kt + LabSt(P) to the nested calculus SKT + NestSt(P) via Lemma 2.21.
The proof of admissibility of structural rules LabSt(P) in the presence of propagation rules

LabPr(P) (Lemma 5.8) bears some resemblance to the proof of admissibility of structural rules
NestSt(P) for DeepPr(P) in the deep nested calculi of [19]. There is, however, a crucial difference in
our result compared to that of [19]. In [19], an additional admissibility result needs to be proved for
every path axiom extension: the admissibility of all display rules. By contrast, this additional admis-
sibility result does not need to be proved in the labeled setting—display rules are all absent in the
labeled calculi. This mismatch results is an interesting observation regarding Goré et al.’s transla-
tion from SKT + NestSt(P) to DKT + DeepPr(P). Consider the following transformations of a proof
of a nested sequent in SKT+NestSt(P) to a proof of the same sequent in DKT+DeepPr(P): one done
directly in a nested calculus, the other through a detour in the associated labeled calculus. Note
that step (3) is given by [19, Lem. 6.14] and step (5) is trivial as any derivation in G3Kt + LabSt(P)

is a derivation in G3Kt + LabSt(P) + LabPr(P).

SKT + NestSt(P)
(4) )ℎ<. 4.3 (+ !4<. 2.7) //

(1)

��

G3Kt + LabSt(P)

(5)

��
DKT + NestSt(P) + DeepPr(P) + {(rf), (rp), (c), (w)}

(2) !4<. 2.20
��

G3Kt + LabSt(P) + LabPr(P)

(6) !4<. 5.10

��

DKT + NestSt(P) + DeepPr(P)

(3)

��
DKT + DeepPr(P) G3Kt + LabPr(P)

(7) !4<. 5.14
oo

The direct translation from SKT+NestSt(P) to DKT+DeepPr(P) in [19] is described on the left path
in the above diagram; it starts with the trivial observation (1) that DKT + NestSt(P) + DeepPr(P) +

ACM Trans. Comput. Logic, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Display to Labeled Proofs and Back Again for Tense Logics 111:23

{(rf), (rp), (c), (w)} subsumes SKT + NestSt(P); followed by (2) the admissibility of display rules,
contraction (c), and weakening (w); and finally, (3) the admissibility of structural rules for path
axioms. The detour through labeled calculus takes care of the display rules and the (c) and (w)
structural rules at step (4), where the admissibility of display rules is built into the canonical rep-
resentation of nested sequents as polytrees (Corollary 3.10) and is completely independent of any
extension with path axioms. This independence is not obviously observed in the transformation
through the nested calculi. In fact, the designs of the propagation rules in the deep nested calculi
in [19] take into account all possible interactions between display postulates and the path axioms
and that leads to a proliferation of inference rules, e.g., for every propagation rule going down-
ward in the syntax tree, there needs to be a symmetric version that propagates upward the tree.
The proofs of admissibility of display rules in [19] in DKT and its extensions then need to consider
all these cases, each of which is essentially the same. Moving to the labeled polytree sequent rep-
resentation cuts the propagation rules by a half, and brings out the essence of a proof more clearly.
These observations suggest that the syntax of the nested calculi is unnecessarily bureaucratic in
the sense that the syntactic structures of nested sequents obscure certain identities on proofs.6

For another demonstration of bureaucracy of nested sequent proofs (in comparison to labeled
polytree sequent proofs): take a proofD of the nested sequent ◦{Γ},Δ. In proving admissibility of
display postulates forDKT, Gore et al. applied a transformation (see the proof of Lemma 4.3 in [19])
toD to obtain another proofD ′ of Γ, •{Δ}. ClearlyD andD ′ are distinct proofs in any extension
of DKT, as they have distinct end sequents. But it can be shown that they both map to the same
proof in the polytree representation (i.e., by simply replacing ^1 and ^2 rules in DKT with ^ rule
in labeled sequent calculus, and _1 and _2 with _). The distinction in the nested sequent proofs
D and D ′ arises from the choice of which node in the nested sequent tree is to be designated as
the root node; in the polytree representation this distinction does not arise, as there is no special
node to be designated as the root node.
Let us now define the labeled propagation rules.

Definition 5.5 (Propagation Graph of a Labeled Sequent). Let R, Γ be a labeled sequent where #
is the set of labels occurring in the sequent. We define the propagation graph %� (R, Γ) = (#, �) to
be the directed graph with the set of nodes # and where � is a set of labeled edges that are labeled
with either a ^ or _ as follows: For every 'G~ ∈ R, we have a labeled edge (G,~,^) ∈ � and a
labeled edge (~, G,_) ∈ �. Given that %� (R, Γ) = (#, �), we will oftenwrite G ∈ %� (R, Γ) to mean
G ∈ # , and (G,~,^) ∈ %� (R, Γ) or (~, G,_) ∈ %� (R, Γ) to mean (G,~,^) ∈ � or (~, G,_) ∈ �,
respectively.

Definition 5.6 (Labeled Propagation Rules). Let % be a set of path axioms. The set of propagation
rules LabPr(P) contains all rules of the form:

R, G : 〈?〉�,~ : �, Γ
(Prop)

R, G : 〈?〉�, Γ

where there is a path c from G to ~ in the propagation graph of the premise and Π� → 〈?〉� ∈

(% ∪ � (%))∗ with Π the string of c .7

We now aim to prove that we can effectively transform any derivation in G3Kt + LabSt(P) +

LabPr(P) into a derivation in G3Kt + LabPr(P). This inevitably yields an effective transformation
from proofs in G3Kt + LabSt(P) to proofs in G3Kt + LabPr(P) (and eventually to SKT + NestSt(P))
in the following way: Given a derivation in G3Kt + LabSt(P), we show that we can permute the
topmost inference of a labeled structural rule (Path) upwards into the initial sequents to eliminate

6See e.g., [17] on the broader context of the use of the phrase “bureaucracy” in proof theory.
7Note that path and string are defined the same here as for nested sequents.
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the use of the rule. This provides a proof in G3Kt+LabSt(P)+LabPr(P) since the LabPr(P) rules may
be used in the permutation process to simulate the eliminated LabSt(P) rule. By permuting away
all labeled structural rules (Path) ∈ LabSt(P) from the derivation, we effectively obtain a proof in
G3Kt+LabPr(P), which (as we will show) contains exclusively labeled polytree sequents when the
end sequent is a labeled polytree sequent. The last thing that we will show in this section is how
to effectively translate G3Kt + LabPr(P) derivations into DKT + DeepPr(P) derivations; this result,
in conjunction with Lemma 2.21, gives the desired effective translation and result.

Lemma 5.7. For any structural rule (Path) defined relative to a path axiom Π�→ 〈?〉�:

R,RΠG~, ' 〈?〉G~, Γ
(Path)

R,RΠG~, Γ

there exists a path c in %� (R,RΠG~, ' 〈?〉G~, Γ) from G to ~ whose string is Π as well as a path from

G to ~ whose string is 〈?〉.

Proof. Follows from the definition of (Path) and the definition of a propagation graph of a
labeled sequent. �

Wenow show that every structural rule (Path) can be permuted above a propagation rule (Prop).
This lemma is vital for transforming any G3Kt+ LabSt(P) derivation into a G3Kt+ LabPr(P) deriva-
tion, as it shows that all structural rules can be eliminated from a given derivation, so long as
propagation rules are properly introduced. Before moving on to prove this fact however, we recall
notation that was given in the introduction to Section 2. To differentiate between different path
axioms in the following lemma, and make associations of paths explicit with path axioms, we use
the notation 〈�〉 and 〈� 〉 (potentially annotated) to represent either a white diamond ^ or black
diamond _, and forgo the use of 〈?〉 for the scope of the following lemma.

Lemma 5.8. Let % be a set of path axioms, (Path) ∈ LabSt(P), (Prop) ∈ LabPr(P), and RΠDE :=

' 〈�1 〉DI1, . . . , ' 〈�= 〉I=E . Suppose we are given a derivation that ends with:

R,RΠDE, ' 〈� 〉DE, G : 〈� 〉�,~ : �, Γ
(Prop)

R,RΠDE, ' 〈� 〉DE, G : 〈� 〉�, Γ
(Path)

R,RΠDE, G : 〈� 〉�, Γ

where RΠDE is active in the (Path) inference. Then, there exists a propagation rule (Prop)
′ ∈ LabPr(P)

such that the (Path) rule may be permuted upwards followed by an instance of (Prop) ′ to derive the

same end sequent:

R,RΠDE, ' 〈� 〉DE, G : 〈� 〉�,~ : �, Γ
(Path)

R,RΠDE, G : 〈� 〉�,~ : �, Γ
(Prop) ′

R,RΠDE, G : 〈� 〉�, Γ

Note that (Prop) and (Path) may correspond to different path axioms.

Proof. Suppose we are given a derivation ending with a (Prop) inference followed by a (Path)
inference and let R ′ = R, ' 〈�1 〉DI1, . . . , ' 〈�= 〉I=E . Moreover, due to the application of (Prop), there
exists a path c ′ of the form G, 〈�1〉, . . . , 〈�=〉, ~ from G to ~ in %� (R ′, ' 〈� 〉DE, G : 〈� 〉�,~ : �, Γ). In
the case where the relational atom ' 〈� 〉DE principal in (Path) does not lay along the path c ′ used
in applying (Prop), the two rules may be freely permuted since there is no interaction between
the two.
We therefore assume that the relational atom ' 〈� 〉DE lies along the path c ′ from G to ~. By this

assumption, we know that there exists an axiom � = 〈�1〉 · · · 〈�<〉� → 〈� 〉� = Π
′� → 〈� 〉� ∈

(% ∪ � (%))∗, where Π′ = 〈�1〉 · · · 〈�<〉 is the string of the path c ′, corresponding to the application
of (Prop). Moreover, by our assumption that (Path) deletes the relational atom ' 〈� 〉DE that occurs
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along the path c ′, the structural rule (Path) corresponds to a path axiom � = 〈�1〉 · · · 〈�=〉� →

〈�〉� where 〈�〉 = 〈�8〉 for some 8 ∈ {1, . . . ,<}. To prove the claim we must show that there exists
a path f from G to ~ in %� (R ′, G : 〈� 〉�,~ : �, Γ) such that Σ? → 〈� 〉? ∈ (% ∪ � (%))∗ with Σ

the string of the path f . We construct the path f as follows: (i) replace each D, 〈�〉, E in c ′ with
D, 〈�1〉, I1, . . . , I=, 〈�=〉, E , and (ii) replace each E, 〈�〉−1,D in c ′ with E, 〈�=〉

−1, I=, . . . , I1, 〈�1〉
−1,D.

Taking Σ to be the string of f , we know that Σ� → 〈� 〉� ∈ (% ∪ � (%))∗ since the operations
performed in steps (i) and (ii) above correspond to compositions of the axioms� and � (�) with � .
Let (Prop) ′ be the propagation rule corresponding to the path axiom Σ�→ 〈� 〉�. Since the path
f only relies on relational atoms in R ′, the rule (Prop) ′ may be applied after (Path). �

Example 5.9. We give an example of permuting a structural rule (Path) above a propagation rule
(Prop). Let % := {�,�} with � := ^_� → ^� and � := _^^� → _�, where our propagation
rules are defined relative to (%∪� (%))∗. Let the application of (Prop) correspond to the axiom � and
the application of (Path) correspond to� . Our derivation is given below left with the propagation
graph of the initial sequent below right:

(id)
'GE, 'GI, 'I~, '~E, G : ^?,~ : ?,~ : ?

(Prop)
'GE, 'GI, 'I~, '~E, G : ^?,~ : ?

(Path)
'GE, 'GI, 'I~, G : ^?,~ : ?

^?

G

��

//

^

��

^

)) ∅
E

_





_

ii

∅
I //

_

XX

^

55
?, ?

~

^

FF

_

uu

OO

The (Prop) rule is applicable to the top sequent above because of the path G ,^,E ,_,~ whose string
is ^_, which occurs in the antecedent of � . However, we can see that the structural rule (Path)
deletes the relational atom '~E that gives rise to this path. If we were to apply the (Path) rule first
(as shown below left), the conclusion would have the propagation graph shown below right:

(id)
'GE, 'GI, 'I~, '~E, G : ^?,~ : ?,~ : ?

(Path)
'GE, 'GI, 'I~, G : ^?,~ : ?,~ : ?

^?
G

��

//

^

��

^

)) ∅
E

_

jj

∅
I //

_

WW

^

44

?, ?
~

_

uu

We construct a new path from G to ~ following the procedure explained in Lemma 5.8 by replac-
ing E,_, ~ with E,_, G,^, I,^, ~ to obtain the path G,^, E,_, G,^, I,^, ~. Observe that the axiom
� ⊲

2 � = ^_^^� → ^� is an element of the completion (% ∪ � (%))∗. Thus, there exists a prop-
agation rule (Prop) ′ corresponding to ^_^^� → ^� which may be applied to the end sequent
above to obtain the desired conclusion.
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Lemma 5.10. Every derivation in G3Kt+ LabSt(P) + LabPr(P) is effectively relatable to a derivation

in G3Kt + LabPr(P).

Proof. Weprove the result by induction on the height of the given derivation inG3Kt+LabSt(P)+
LabPr(P); we consider the topmost application of (Path) ∈ LabSt(P) (the general result where there
are = rules of LabSt(P) in our derivation is immediately obtained by applying the given procedure
and successively deleting the topmost occurrences). That the output derivation is effectively relat-
able to the input is an immediate consequence of the rule-by-rule transformations that we use.
Base case. Suppose the rule (Path) is used on an axiom in G3Kt + LabSt(P) + LabPr(P):

(id)
R,RΠG~, 'G~, I : ?, I : ?, Γ

(Path)
R,RΠG~, I : ?, I : ?, Γ

Then, it is easy to see that the conclusion is an axiom as well regardless of whether I = G , I = ~,
or G ≠ I ≠ ~.
Inductive step. We show that (Path) ∈ LabSt(P) can be permuted upward with each rule in

G3Kt + LabPr(P):

(i) Permuting (∨) with (Path):

R,RΠG~, 'G~, , I : �, I : �, Γ
(∨)

R,RΠG~, 'G~, I : � ∨ �, Γ
(Path)

R,RΠG~, I : � ∨ �, Γ

R,RΠG~, 'G~, I : �,I : �, Γ
(Path)

R,RΠG~, I : �,I : �, Γ
(∨)

R,RΠG~, I : � ∨ �, Γ

(ii) Permuting (∧) with (Path):

R,RΠG~, 'G~, G : �, Γ R,RΠG~, 'G~, G : �, Γ
(∧)

R,RΠG~, 'G~, G : � ∧ �, Γ
(Path)

R,RΠG~, G : � ∧ �, Γ

R,RΠG~, 'G~, I : �, Γ
(Path)

R,RΠG~, I : �, Γ

R,RΠG~, 'G~, I : �, Γ
(Path)

R,RΠG~, I : �, Γ
(∧)

R,RΠG~, I : � ∧ �, Γ

(iii) Permuting (�) with (Path):

R,RΠG~, 'G~, 'ED, E : �, Γ
(�)

R,RΠG~, 'G~,D : ��, Γ
(Path)

R,RΠG~,D : ��, Γ

R,RΠG~, 'G~, 'ED, E : �, Γ
(Path)

R,RΠG~, 'ED, E : �, Γ
(�)

R,RΠG~,D : ��, Γ

(iv) Permuting (�) with (Path):

R,RΠG~, 'G~, 'DE, E : �, Γ
(�)

R,RΠG~, 'G~,D : ��, Γ
(Path)

R,RΠG~,D : ��, Γ

R,RΠG~, 'G~, 'DE, E : �, Γ
(Path)

R,RΠG~, 'DE, E : �, Γ
(�)

R,RΠG~,D : ��, Γ

(v) Permuting (_) with (Path): We consider the case where 'G~ is used in both rules; the other
cases are easily shown.
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R,RΠG~, 'G~, G : �,~ : _�, Γ
(_)

R,RΠG~, 'G~,~ : _�, Γ
(Path)

R,RΠG~,~ : _�, Γ

R,RΠG~, 'G~, G : �,~ : _�, Γ
(Path)

R,RΠG~, G : �,~ : _�, Γ
(Prop)

R,RΠG~,~ : _�, Γ

(vi) Permuting (^) with (Path): Similar to the last case we only consider when 'G~ is used in
both rules.

R,RΠG~, 'G~,~ : �, G : ^�, Γ
(^)

R,RΠG~, 'G~, G : ^�, Γ
(Path)

R,RΠG~, G : ^�, Γ

R,RΠG~, 'G~,~ : �, G : ^�, Γ
(Path)

R,RΠG~,~ : �, G : ^�, Γ
(Prop)

R,RΠG~, G : ^�, Γ

(vii) Permuting (Prop) with (Path): Follows from Lemma 5.8. �

The previous lemma demonstrates that propagation rules are sufficient to eliminate each struc-
tural rule (Path) from a given derivation of G3Kt + LabSt(P). The consequence of this elimination
procedure is that each derivation of G3Kt + LabSt(P) may be effectively transformed into a deriva-
tion in G3Kt + LabPr(P). Our goal now is to prove that every derivation in G3Kt + LabPr(P) (of a
labeled polytree sequent) contains nothing but labeled polytree sequents, which implies that each
labeled sequent in such a derivation is in the domain of our translation functionN. This fact proves
that the effective transformation of the previous lemma has gotten us closer to completing the full
translation of proofs from G3Kt+LabSt(P) to SKT+NestSt(P) since our derivations contain labeled
sequents that are readily convertible to nested sequents via the function N.

Lemma 5.11. Let % be a set of path axioms. Every G3Kt + LabPr(P) proof of a labeled polytree

sequent consists solely of labeled polytree sequents.

Proof. Similar to the proof of Lemma 5.2. Observe that all rules of G3Kt + LabPr(P) preserve
disconnectivity and cycles downward in an inference. �

Before showing that every derivation in G3Kt+LabPr(P) is translatable to a derivation in DKT+

DeepPr(P), we must ensure that applications of propagation rules can be properly translated from
the labeled to the deep nested setting. The following lemma proves that every path in a labeled
polytree sequent is present in its translatee under N, that is, translating a labeled polytree sequent
into a nested sequent preserves paths. We use this fact (Lemma 5.12) in the sequel to effectively
translate instances of propagation rules.

Lemma 5.12. For any labeled polytree sequent R, Γ with a path c from a label G to a label ~ in its

propagation graph, the path c exists in %� (NI (R, Γ)) from G to ~ (where I is an arbitrary node in

R, Γ).

Proof. Let R, Γ be a labeled polytree sequent with a path c from G to~ in its propagation graph.
We translate R, Γ to a nested sequent relative to the node G (as opposed to an arbitrary node I) and
let the nodes in %� (NG (R, Γ)) be the same as those in the given labeled polytree sequent. Note
that by Lemma 3.11, translating R, Γ relative to any label yields a display equivalent sequent, and
by Lemma 2.15 the propagation graphs of all such sequents are identical. Therefore, the claim will
hold regardless of the node chosen to translate from, meaning we are permitted to translate from
G . We now prove the claim by induction on the length of the path connecting G and ~.

Base case. The case when the path from G to ~ is of length 0 is trivial, so we show the case
when the path from G to ~ is of length 1. Suppose that there is a forward edge from G to ~, that is,
c = G,^, ~ (the case when there is a backward edge from G to ~ is similar). Then,NG (R, Γ) will be
a nested sequent with a ◦-edge from G to ~, and so the labeled edge (G,~,^) is in the propagation
graph.
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Inductive step. Suppose there is a path G, ..., I, 〈?〉, ~ from G to~ of length =+1. Therefore, there
is a path of length = from G to I, and a path of length 1 from I to ~ in %� (R, Γ). By the inductive
hypothesis, the path from G to I occurs in NG (R, Γ). By the base case, the path I, 〈?〉, ~ also occurs
in NG (R, Γ). Therefore, the path G, ..., I, 〈?〉, ~ is in NG (R, Γ). �

Lemma 5.13. Every derivation of a sequent R, Γ in G3Kt + LabPr(P) consisting solely of labeled

polytree sequents is effectively relatable to a derivation of N(R, Γ) in DKT + DeepPr(P).

Proof. We extend the proof of Lemma 5.3 and include the inductive case for translating propa-
gation inferences.
If we assume that a labeled propagation rule is used last in the given derivation, then there must

be a corresponding axiom Π? → 〈?〉? ∈ (% ∪ � (%))∗ whose antecedent allows for an application
of the rule. This axiom will also define a deep nested propagation rule:

R, G : 〈?〉�,~ : �, Γ
(Prop)

R, G : 〈?〉�, Γ

- [〈?〉�]G [�]~
(Prop)

- [〈?〉�]G [∅]~

By Lemma 5.12, the propagation rule may be applied in the deep nested proof because the path
c from G to ~ (whose string is Π) exists in the propagation graph of the premise N(R, G : 〈?〉�,~ :

�, Γ) = - [〈?〉�]G [�]~ . �

Lemma 5.14. Every derivation of a labeled polytree sequent R, Γ in G3Kt + LabPr(P) is effectively

relatable to a derivation of N(R, Γ) in DKT + DeepPr(P).

Proof. Let D be our derivation of R, Γ in G3Kt + LabPr(P). By Lemma 5.11, we know that
every sequent occurring in D will be a labeled polytree sequent. By the previous lemma, we may
effectively translate this derivation into a derivation in DKT + DeepPr(P). �

Theorem 5.15. Every derivation of a labeled polytree sequent R, Γ in G3Kt+LabSt(P) is effectively

relatable to a derivation of N(R, Γ) in SKT + NestSt(P).

Proof. By Lemma 5.10 we know that every derivation D of a labeled polytree sequent R, Γ
in G3Kt + LabSt(P) is effectively transformable to a derivation D ′ of R, Γ in G3Kt + LabPr(P). By
Lemma 5.14, there is an effective translation of D ′ to a proof D ′′ of N(R, Γ) in DKT + DeepPr(P).
Lemma 2.21 implies that we can effectively transformD ′′ inDKT+DeepPr(P) into a derivationD ′′′

ofN(R, Γ) in SKT+NestSt(P). The composition of effective procedures gives an effective procedure,
which gives the result. �

Note that the application of Lemma 2.21 in the above theorem is a rather heavy proof-theoretic
transformation since it invokes cut-elimination. Nevertheless, the output derivation is still effec-
tively relatable since cut-elimination is defined locally, at the level of the proof rules.

6 CONCLUDING REMARKS

One consequence of our work is a methodology for proving the conservativity of shallow nested
(i.e. display) calculi under the deletion of certain logical rules. For example, if SKT + #4BC(C (� →

^�) is a (sound and complete) shallow nested calculus for the logic Kt + � → ^�, is SKT −

{(�), (_)} + #4BC(C (� → ^�) a (sound and complete) shallow nested calculus for K +�→ ^�?
Notice that a derivation in the latter calculus may contain a sequent with the structural connec-
tive •{·} (which could be introduced via the residuation rule (rf)) or even though the corresponding
logical connective � is not an operator in the (�,_-free) language of K+�→ ^� (meaning that a
sequent such as ◦{•{?}, •{@}} cannot be interpreted as a formula). Therefore, care must be taken
when attempting to identify the logic obtained under the deletion of logical rules for connectives
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♥1, . . . ,♥= , since structural connectives that act as proxies for ♥1, . . . ,♥= will still be present in
sequents and therefore may give the calculus increased expressive power.
A general solution which establishes the conservativity of display calculi for tense logics over

their modal fragments, by making use of algebraic semantics, has been presented in [21]. Our work
obtains this result syntactically in the context of tense logics with modal general path axioms by
exploiting the translations developed in the previous sections (Corollary 4.5). This subsumes the
conservativity results in [19], for the more restricted set of modal path axioms.
Another interesting consequence of our work is the suggestion of a potential methodology for

constructing labeled calculi suitable for proof-search and for proving decidability of the associated
logics. The labeled calculus formalism offers a uniformmethod for obtaining cut-, contraction-, and
weakening-admissible calculi for a large class of logics [30, 34, 35]. The drawback of such calculi
is that they contain structural rules which are not immediately well-suited for proof-search; if the
rules are applied naïvely bottom-up, then proof-search may not terminate. Therefore, auxiliary
results concerning a bound on the number of times a rule needs to be applied is required to en-
sure termination, see, e.g. [30]. Nevertheless, the method presented here of internalizing labeled
calculi for path extensions of Kt shows that such structural rules can be eliminated from a labeled
derivation in the presence of appropriate, auxiliary inference rules. This opens up an avenue for
future research and gives rise to new questions: for what other logics can labeled structural rules
be eliminated in favor of rules better adapted for proof-search? Is there an effective procedure for
determining such rules? Note that this procedure has been investigated in [25, 27] and has shown
that the method of refining labeled calculi is applicable to a variety of logics.
Moreover, the obtained internalized labeled calculi lend themselves nicely to uniformly prov-

ing interpolation for the class of path extensions of Kt [26]. As explained in Section 5.2, labeled
polytrees provide a canonical representation of nested sequents that encode the polytree struc-
ture in the set R of relational atoms, and the decorations of the nodes as the labeled formulae in Γ.
Such a representation makes it easier to define a generalized notion of interpolant, and to observe
useful relationships between such interpolants (e.g. a generalized notion of duality via the (cut)
rule) [26].
The relationship between Kripke frames and the algebraic semantics for modal logics is well-

studied (see e.g. [2]). Because labeled calculi are based on the former, and shallow nested (display)
calculi on the latter, the bi-directional translations established in this work can be interpreted as
demonstrating this relationship concretely, at the level of an inference rule.
Lastly, let us briefly discuss the issues with translating labeled proofs for all general path exten-

sions of Kt into shallow nested proofs. As explained in Section 5, when translating from labeled
to shallow nested, we first pre-process our labeled derivation by eliminating all path structural
rules from the given derivation, trading such inferences for propagation rules. This methodology
does not immediately appear applicable to the class of general path structural rules, since it is not
clear what propagation rules (if any) should be added to a labeled calculus to allow for complete
structural rule elimination. Therefore, it appears that an alternative methodology is required to
carry out the translation of labeled proofs for all general path extensions of Kt, which we defer to
future work.
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