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ABSTRACT: In this paper, I present two crucial problems for Wolff’s metaphysics of
quantities: 1) The structural identification problem and 2) the Pythagorean problem. The
former is the problem of uniquely defining a general algebraic structure for all quantities;
the latter is the problem of distinguishing physical quantitative structure from mathematical
quantities. While Wolff seems to have a consistent and elegant solution to the first problem,
the second problem may put in jeopardy his metaphysical view on quantities as spaces.
After drawing a parallelism betweenWolff’s treatment of quantitative structures and Frege’s
conception of quantitative domain, I propose a solution to the Pythagorean problem based
on the idea that mathematical structures are the result of applying an abstraction principle
on physical quantitative structures. In particular, I propose the view that abstraction may be
seen as the operation of structure determination which transforms concrete physical quanti
ties (i.e. undetermined structures) into abstract mathematical quantities (fully determined
structures of thin and shallow objects).
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1 Introduction

Quantitative expressions represent an indispensable portion of scientific language. At a

preliminary level, we have the intuition that scientific discourse is mainly about special

features of observable reality which are commonly labeled as ‘quantities’ (e.g. mass,

momentum, length, area, volume, temperature, etc...). The metaphysics of quantities

is mainly concerned with the ontological status of putative denotations of quantitative

attributes and their relations. Yet to frame such a large family of philosophical issues it is

crucial to understand what is a quantity.

If quantities are to be identified with a special class of properties, it must be understood

what is the characteristic mark of quantitative properties and in which respect they are

distinct from qualitative ones. The first feature which undoubtedly seems to be ascribable

to quantitative properties is a certain plurality of specifications. The fact that a certain

object has mass seems to entail that it has a certain specific massproperty among many

others which are mutually exclusive. All of these specific mass properties seem to be

systematically comparable; for any two distinct mass propertiesm1 andm2 it is always

possible to say whether objects havingm1 are “more massive” than objects havingm2 or

vice versa. It also seems possible to make assertions about the “distance” betweenm1 and

m2, i.e. to say how muchm1 (orm2) is associated with a greater mass thanm2 (m1). This

suggests that quantities constitute metric structures and not just series of ordered properties.

Another important fact, especially if we consider how quantitative expressions are

used in scientific language, is the relation between quantities and numbers. Intuitively,

only quantitative attributes may be associated with numerical values and measured. Thus it

seems that another distinctive feature of quantities is related to the possibility of representing

their physical structures into mathematical structures. In other words, it is peculiar of

quantities that they may be represented by numbers.

Regarding the structure of quantities, some interesting results of the representational

theory of measurement (LUCE et al., 19711990) are illuminating. Different physical

quantities have different ways of being represented in a mathematical setting. The basic

idea here is that given a physical relational structure Σ and a mathematical structureM , the

possibility of representing Σ inM is defined in terms of the existence of a homomorphism
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between Σ andM . If we speak of quantitative properties instead of objects instantiating

such properties, then we must have an isomorphism.

Clearly, there are many possible isomorphisms between the structure of a physical

quantity and the structure of, e.g., real numbers. Each particular isomorphism may be seen

as a particular attribution of numerical values according to a certain scale. The variety of

physical quantities is defined considering both the particular relations which are considered

as part of the quantitative structure (e.g. order, concatenation, etc...) and the invariant under

scale transformation. According to the first criterion of classification, some quantities are

said to be additive while others are not; according to the second, some quantities are said

to be measurable on a ratio scale, for ratios between values of different magnitudes of

the same quantity are invariant under scale transformation. By the same token, we have

measurability on interval scales or logaritmic scales.

Such a variety of quantitative structures defined according to aforementioned classi

ficatory criteria puts us in the following predicament: how may we define a unique set of

structural features as necessary and sufficient conditions for saying that a certain structure

is indeed a quantity? Perhaps ‘quantity’ is not the sort of concept which may be defined

according to a unique set of common features, perhaps our understanding of ‘quantity’ is

more based on a class of family resemblances rather than on a single characteristic mark.

However, it seems at least undesirable that the concept of quantity – which indubitably has

a crucial role in the foundation of mathematical rigor of the scientific discourse – presents

such a form of vagueness. Call the problem of defining the structural features common to

all quantities the structural identification problem.

There is an interesting approach – quite common in the metaphysics of science –

to overcome this sort of problems. Whenever our taxonomical criteria fail to univocally

capture a significant concept (such as ‘quantity’) it is worth doubting that we are “carving

nature at its joints”. In other words, the difficulty to define a concept according to our

classificatory criteria may be due to the fact that we are using the wrong classification. In

our case, the difficulty of univocally defining the concept of quantity may be due to the fact

that we are looking at the wrong features of quantitative structures: perhaps the concept

of quantity should be defined neither in terms of the relations constituting the structure

(e.g. order, concatenation, etc...) nor of the scale type in which is numerically represented

(e.g. ratio scale, interval scale, logarithmic scale, etc...). As Wolff (2020) suggests – by
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appealing to some interesting theorems of representational theory of measurement – what

is common to all quantities is neither a certain kind of relations nor the particular numerical

representation, yet the structure formed by all automorphisms on the given structure (more

on this later). For this (and others) reason, in this paper we adopt Wolff’s proposal as

background theory.

The main consequence of such a “paradigmshift” in the metaphysics of quantities is

that we must review our conception of the relations between physical and mathematical

structures. Physical quantities are not to be defined according to their relations with

numbers: what makes ‘mass’ a physical quantity is not the fact that there allegedly exists an

isomorphism (homomorphsim) between mass properties (massive objects) and the system

of real numbers, yet an intrinsic feature of the system of mass properties (masses), i.e.

a particular structure defined by the class of all automorphisms on the system of mass

properties (masses). As a consequence, mathematical structures lose their foundational role

in the definition of the concept of quantity and turn out to be a special sort of quantitative

structures among others. This takes us to a second philosophical issue: if the system of

real numbers is a quantitative structure among others, what is the relation between physical

and mathematical quantities? What is the peculiarity of mathematical structures? If there

is no fundamental difference between a continuous physical quantity (if there is any) and

the system of real numbers, what prevents us from regarding all physical quantities as

mathematical structures or, vice versa, all mathematical structures as physical? Call the

problem of distinguishing between mathematical and physical quantitative structures –

in the light of Wolff’s solution to the structural identification problem – the Pythagorean

problem. In the following it will be made clearer why we should consider the definition of

this distinction as a philosophical problem.

The purpose of the present paper is to offer a solution to the Pythagorean problem

starting fromWolff’s solution to the structural identification problem based on the repre

sentational theory of measurement. And this task comes in the form of an aporetic trade

off: if we accept Wolff’s universal characterization of quantities in terms of the structure of

automorphisms, then it seems that we are forced to admit that mathematical structures are

quantities on a par with physical structures. On the other hand, if we are looking for a sharp

distinction between physical and mathematical structures qua quantities, it seems that we

have to reject Wolff’s nice and elegant solution to the structural identification problem.
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The present paper relies on twomain ideas. The first idea consists in acceptingWolff’s

solution to the structural identification problem and trace the distinction between physical

and mathematical quantitative structures in terms of the distinction between abstract and

concrete structures. Thus I will argue that there are abstract and concrete quantities, and

that while physical quantities are concrete, mathematical quantitative structures are abstract.

The second idea consists in using the notion of abstraction principle to trace the distinction

between concrete and abstract structures.

Before disputing the details of my proposal, it is worth saying few words on abstrac

tion principles. An abstraction principle is a sort of implicit definition taking the following

form: for every a, b in a certain domain of objects,

a ≈ b⇔ f(a) = f(b) (AP)

where ‘≈’ is an equivalence relation, and ‘f ’ is the so called abstraction operator.

The significance of abstraction principles is commonly attributed to Frege who in §64 of

his Grundlagen (FREGE, 1950) uses the following example to elucidate the structure of

this sort of definitions: for every straight lines a and b,

a ‖ b⇔ dir(a) = dir(b) (DIR)

which says that a and b are parallel iff the direction of a is identical to the direction

of b.

The second idea of this paper is framed in terms of Linnebo (2018)’s conception of

abstract objects as defined through abstraction principles, which is applied to quantitative

structures (more on this later). I will show that mathematical structures may be conceived

as abstracted from other quantitative structures. Moreover, I will show that the abstraction

operation implies a structural transformation: all nontrivial automorphisms in the initial

structure are “transformed” into the trivial automorphism in the structure obtained by

abstraction. This will provide an interesting criterion to define concrete quantitative struc

tures: physical quantities are quantitative structures which have nontrivial automorphisms,

while mathematical quantities are structures admitting only trivial automorphisms and

obtained by abstraction on physical quantities .

The exposition of my proposal is organized in five main sections. In section 2 I
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will present Wolff’s solution to the structural identification problem and his metaphysical

theory of quantities based on this idea. In section 3 I will expose how Frege’s approach

to the definition of real numbers may be interpreted as an abstractionist conception of

mathematical quantities which parallels Wolff’s idea in many respects. In section 4 I will

propose my formal theory of abstraction principles applied to structures and I will formulate

my criteria for abstractness and concreteness of quantities.

2 Wolff on quantities

2.1 Wolff's solution to the structural identification prob

lem

The first step to understand the theoretical background of the present proposal is the

formulation of Wolff’s solution to the structural identification problem. We have seen that

physical quantities comes in a broad variety, some of them are additive (e.g. length) while

others may not be (e.g. relativistic mass), some of them are numerically representable using

ratio scales (e.g. mass), some others require interval scales (e.g. nonabsolute temperature).

Thus it is natural to ask in virtue of what we ascribe “quantitativeness” to all of them.

To answer this question it is necessary to recall some fundamental concepts of the

representational theory of measurement. Let A be the physical structure associated with a

certain quantity and defined as follows:

A = 〈A,R1, ..., Rn〉 (1)

where A is a domain of objects and R1, ..., Rn are some unspecified relations on A.

For the moment we will focus just on the structural aspects of physical quantities, thus it

will not be necessary to specify which sort of objects are the elements of A or which sort

of relations are R1, ..., Rn.

Consider now a numerical structureR of positive real numbers:

R = 〈R+, S1, ..., Sn〉 (2)
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where S1, ..., Sn are numerical relations on R+. Every legitimate attribution of a

numeric value to the elements of A may be defined as a function φ : A→ R+, such that

φ is an isomorphism between A andR. At this point two clarifying remarks are needed.

Firstly, if φ is an isomorphism between A andR, then it is a onetoone function from A

to R+; as a consequence, we are implying that there is an uncountable infinity of physical

entities – whatever they might be. This is a quite strong ontological commitment. For the

moment I will not discuss this problem which will be dealt with later on in this section.

Secondly, every isomorphism φ between A andR may be conceived as a particular scale

of measurement in which the quantity having structure A may be measured.

Physical quantities have two interesting structural properties: 1) there is a plurality

(possibly an infinity) of scales of measurement, i.e. of isomorphisms between the quantita

tive structure and the mathematical structure ; 2) For every two isomorphisms φ and ψ,

there is a scale transformation τ such that ψ = τ ◦ φ with τ automorphism of the mathe

matical structure. In simpler terms, if every isomorphism is a unit of measurement, every

transformation is a conversion from one unit to another. Now for every two isomorphisms

φ and ψ, and for every transformation τ , it is easy to prove that the function

µ = φ ◦ τ ◦ ψ−1 (3)

is an automorphism on A. In particular, if we chose τ such that ψ 6= φ ◦ τ , then
µ is an nontrivial automorphism on A, i.e. an automorphism which is not the identity

function. These simple remarks show that physical quantities are characterized by a large

class of nontrivial automorphisms. We may spell out this characteristic in clearer and

more intuitive terms. The fact that nothing forces us to attribute a specific number to a

certain magnitude of a given quantity may be interpreted as the fact that the quantity under

consideration presents a form of structural indeterminacy. In other words, every objects x

in the quantitative structure bears certain relation to others, yet there is no fact of the matter

regarding its exact position in the structure: we may attribute a number r to x, or any other

number, provided that we operate consistent scaling of any other numerical attribution.

Magnitudes of a given quantity may be located at any position in the real number line.

Such a possibility of translating the entire structure of a physical quantity through the real

line corresponds to the algebraic property of having infinite nontrivial automorphisms.
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I have described the property of having nontrivial automorphisms with reference

to the possibility of consistently attributing different numbers to the same magnitude of

a given physical quantity. However, such an appeal to measurement is not needed; it is

more fruitful for our purpose to understand the existence of nontrivial automorphisms by

examining the structure itself. The existence of nontrivial automorphisms in a structure

S amounts to the structural indeterminacy of elements of S, i.e. to the impossibility of

univocally determine an element of S according to its structural features in S.
If, on the one hand, the existence of automorphisms is a property that we may ascribe

to quantities, on the other hand, it is not sufficient to pick out only quantitative structures;

automorphisms are quite common across algebraic structures. Hence, the next step in the

Wolffian definition of quantity is to specify – as a necessary and sufficient condition –

which sort of structure the class of all automorphisms of a given structure S must form in

order for S to be a quantity. Here the aforementioned paradigmshift in the definition of

quantity should be evident: in seeking a definition of the concept of quantity, we are no

more looking at the structure formed by the metric relations between magnitudes of the

same quantity (the quantitative structure), yet at the structure formed by the nontrivial

automorphisms of the quantitative structure.

Before formulating Wolff’s definition an important remark on quantitative structures

is needed. We have seen that these structures present a certain amount of indeterminacy

insofar as they have nontrivial automorphisms. However, the degree of indeterminacy is

limited by the fact that these structures must still be representable in a perspicuous way by

means of numbers. An unrestricted association between objects in our domain and numbers

is not enough to ground quantitativeness, for it is quite arbitrary. The representational

theory of measurement introduces an interesting concept to characterize such a degree

of determinacy of quantitative structures, and thus the notion of associating numbers to

objects in a “perspicuous way”. Therefore, before considering Wolff’s paradigm shift from

basic structures to automorphisms, we have to clarify some aspects of how quantities are

represented as numbers. This is precisely what Wolff does before introducing his definition.

Consider just the domain A of our structure A: it has no structure whatsoever, i.e. any

possible permutation on A is an automorphism on A. Suppose that A is equinumerous to

R+; any onetoone function from A to R+ is an isomorphism, a way of representing the

elements of A as real numbers, even though an uninteresting way. As a consequence, any
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permutation on R+ is a transformation of unit of measurement (i.e. a scale) of the elements

ofA. At this point, we want to mathematically characterize the degree of arbitrariness in this

sort of numerical representation. Notice that for every k ∈ N, and for every x1, ..., xk ∈ A,

there are always two scales τ and σ (i.e. two permutations on R+) such that:

τ(x1) = σ(x1)& ...& τ(xk) = σ(xk)& τ 6= σ (4)

Consider now a case in which we know that there is no arbitrariness in attributing

numbers to objects. Let B be a structure which is representable on a ratioscale, such as

mass or length. We know that in this case all scales have the form of a multiplication by a

positive real number (i.e. the scale factor). In this case it is no more the case that for every

k ∈ N and for every k elements of B there are always two distinct scales agreeing on their

values. Consider two distinct scales τ(x) = α · x and σ(x) = β · x; for any u ∈ B,

τ(u) = σ(u) ⇔ α · u = β · u⇔ α = β ⇔ τ = σ (5)

In this case, when two scales agree on one value they must be identical. In represen

tational theory of measurement we say that the group of scales is one point unique, i.e. the

specification of one “point” is sufficient to determine a unique scale. This concept may be

generalized: for instance, interval scales are two points unique, for to pick out a unique

scale, the specification of two “points” is required. Consider now the case of the set A with

no structure: (4) says that for every k ∈ N, A is not k points unique. Thus we have a first

requirement for quantitativeness: our structure must be numerically representable in such

a way that it is finitely point unique, i.e. there is n ∈ N/{0} such that the scale group is n
points unique. This fact helps us to introduce a limitation in the degree of indeterminacy

of quantitative structures; as Wolff says:

“Abstracting away from concrete measurement procedures and par

ticular numerical representations made visible the common group

theoretical structure in virtue of which certain types of numerical

representation are possible. This suggests that what makes for

quantitativeness is not ratios, or ‘numbers in the world’, but the

determinacy of certain types of structure. The automorphisms of

a structure characterize its determinacy, because they show how

much symmetry there is in a structure. Structures that make for
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quantitativeness are sufficiently determinate to be finitely point

unique, while not being so rigid as to permit only the identity

automorphism. ” (WOLFF, 2020, p.108)

This remark is crucial to understand Wolff’s approach to quantities: quantitativeness

is not ascribed in virtue of certain relation of the basic structure, nor in virtue of numerical

representability; it is a structural property of the group of automorphisms. However,

Wolff’s quoted passage is still framed in terms of representational theory of measurement.

At this point Wolff makes an interesting theoretical move: it uses representational theory

of measurement as a sort of Wittgenstein’s ladder to understand quantitativeness which is

“thrown away” after doing its formal work.

Wolff’s definition relies on a special class of nontrivial automorphisms: translations.

Translations are defined as automorphisms with no fixed points; with reference to our

structure A, a translation on A is an automorphism f on A such that for all x ∈ A,

f(x) 6= x. An important theorem of representational theory of measurement (LUCE et al.,

19711990) asserts that a structure whose translations form an ordered archimedean group

is representable on real numbers with a scale group which is finitely point unique. This

fact seems to capture the idea of quantities –or at least of continuous quantities – as neither

completely indeterminate structures nor as completely determinate ones. If a structure

has a group of automorphic translations, then it is not completely determined, for, as we

have seen, nontrivial automorphism may be conceived as the marks of indeterminacy of

structures; on the other hand, if such a group of automorphic translations displays enough

structure (i.e. order and Archimedean property), then is finitely point unique, i.e. its

numerical representation are not completely arbitrary and thus it displays a certain degree

of structural determinacy. This is Wolff’s solution to the structural identification problem

of quantities: a certain structure is a quantity iff it has automorphic translations which

form an ordered Archimedean group. In the next subsection we will see how this definition

is used as a base to frame Wolff’s metaphysical views on quantities.
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2.2 Wolff'smetaphysics of quantities and thePythagorean

problem

Wolff’s definition of the concept of quantity is just a formal definition which says nothing

on what sort of entities quantities are. YetWolff develops is metaphysical view on quantities

exploiting some fundamental points of his algebraic definition.

Wolff’s metaphysical view is a form of structural realism about quantities. Quantities

exist and exist precisely as certain sort of structures. This means that quantities are to be

identified neither with certain kinds of objects (i.e. massive objects, long objects, etc...)

nor with a certain kind of properties, yet with a certain kind of structures. What matters for

quantitativeness is just the group of automorphic translations. This leads to a fundamental

question: if quantities are relational structures what sort of entities are their relata?

Wolff rejects three main views about the elements of quantitative structures:

1. The elements of quantitative structures are not Platonic universals (MUNDY, 1987).

This view requires the existence of uninstantiated properties (e.g. the property of

having amass greater than themass of the universe) which seems to be too ontological

demanding. Quantitative structures are at the same time actual entities and yet do

not require the existence of uninstantiated properties;

2. The elements of quantitative structures are not Aristotelian universals (ARMSTRONG,

1988). Wolff rejects this view on the ground that the class of instantiated universals

associated with a certain quantity is not rich enough to exhibit the structure required

for quantitativeness;

3. The elements of quantitative structures are not spacetime points (FIELD, 1980);

this view requires a complete distribution of quantitative attributes on spacetime

which seems to be an assumption which imposes a too strong requirement on the

physical world;

Wolff proposes a view sympathetic with that of Arntenius and Dorr (2012) and

Cowling (2014) according to which quantities are spaces and the elements of quantitative

structures are points of those spaces. This view may be called locationism: for an object
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to have a certain mass is to be located at a certain point in the mass space. Wolff stresses

a crucial metaphysical aspect of his position: quantities are not spaces in a metaphorical

and representational sense, according to which quantities are representable in algebraic

structures which are mathematical metric spaces; quantities are themselves special sort of

spaces, i.e. along with spacetime there are other physical spaces, one for each fundamental

physical quantity.

The identification of quantities with spaces leads Wolff to draw an interesting par

allelism between the ontology of spacetime and the ontology of quantities. Views such

as substantivalism and relationism are now applicable also to quantities. Substantivalism

about quantities is a form of realism about points in quantitative spaces, while relationism

is the view that there are no points but only relations among physical objects instantiating

a certain quantity. Wolff is a substantivalist, for given the richness of the quantitative

structure introduced to solve the structural identification problem, he cannot require the

physical world to display a complete instantiation of quantities. However, Wolff is a

sophisticated substantivalist (POOLEY, 2005). To explain this view we need to recall the

main structural features of quantities. We have seen that elements of quantitative structures

are not completely determined by the structure itself, by virtue of the existence of a group

of non trivial automorphisms. At this point Wolff seems to implicitly rely on the following

argument: if points in quantitative space have no extrastructural features, i.e. if they have

no property which is not defined by their quantitative structure, and given that quantitative

structures do not completely determine their elements, then there are no conditions of

complete identification of these points, not even nondescriptive conditions: in other words,

the points in quantitative spaces have no haeccetistic identities. The impossibility of

identifying points in quantitative spaces is not just an epistemic or linguistic impossibility,

yet a metaphysical impossibility.

In the light of these remarks, Wolff’s metaphysical conception of quantity may be

conceived as the combination of three metaphysical positions: structural realism, loca

tionism, and sophisticated substantivalism. Hence, at the heart of Wolff’s metaphysical

proposal lies the conception of quantitative structures as spaces. To my mind, the cru

cial issue of this conception is the understanding of quantitative structures as spaces in a

nonmathematical sense; for if we lack a criterion for distinguishing abstract mathematical

spaces from concrete physical spaces, then the distinction between representability in
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mathematical spaces and identification with physical space gets blurred. Suppose that A is

quantitative structure isomorphic to the mathematical structureR. Wolff is willing to say

that the elements of A are distinct from the elements of R+, for the former are “points” and

the latter are “real numbers”. However, a criterion for tracing this distinction does not seem

to be possible in the framework of Wolff’s metaphysical proposal. To which property of

points of qualitative spaces we shall appeal in order to say that they are not real numbers?

All facts about the points of A are structural facts which – given the isomorphism between

A andR – are the same facts about real numbers conceived as elements inR. To say that

the relations in A are distinct from – albeit isomorphic to – the relations in R is to beg the

question, for distinctness between relations is distinctness between their relata. And this is

precisely how the Pythagorean problema shows up in Wolff’s proposal.

One may attempt the following reply. Real numbers are defined in a more complex

structure, i.e. the field of real numbers. Now this field has no nontrivial automorphisms,

i.e. the field of real numbers is a completely determined structure, it is – so to say – zero

point unique. Thus the structure of reals is not a quantity, and real numbers are completely

defined by structural features which are distinct from the structural features of the elements

of A. This is an interesting theoretical move. However, it is not clear in what sense we

are obliged to define the conditions of identity for real numbers looking at a field and not

to another structure they form. Positive reals with addition and order form a quantitative

structure which must be distinguishable from any other physical quantitative structure.

The Pythagoren problem – i.e. the problem of tracing the distinction between physical

quantitative spaces and mathematical structures – may affect the intelligibility of Wolff’s

identification of quantities with spaces and, without a solution to this problem, Wolff’s

theory may not succeed in justifying the fundamental claim that quantities are not just

representable in spaces, they are spaces. My purpose is to feel this gap appealing to a special

relation between the structure of real numbers and the structure of physical quantities:

abstraction. In particular, abstraction principles are expected to provide a criterion of

identity for real numbers and a justification for the complete determinacy of their structure

which will serve as a criterion of distinctness between the concept of real number and the

concept of point in a quantitative space. To make this move, I have to clarify in what sense

real numbers are “abstracted from” quantitative spaces; this is precisely what Frege – even

though with different purposes and terminology – attempts to do in the last (incomplete)
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part of his Grundgesetze (FREGE, 2013). Therefore, we need a brief detour on Frege’s

theory of reals and more contemporary interpretations of abstractionism.

3 Frege on quantities and real numbers

In Part III of his magnum opus, Frege (2013, vol.II, pp.69243) extends the logicist project

to the domain of real numbers. As in the case of natural numbers, Frege’s purpose is to

frame a definition of the concept of real number in purely logical terms, which according

to his conception of logic include also set theoretical constructions. The idea of a general

definition of real numbers was not unexplored territory at the time: Dedekind had already

published his essay in which the strategy of defining “cuts” – i.e. binary partitioning – on

the domain of rational numbers proved to be successful. Moreover, Dedekind’s definition

seems to be expressible in Frege’s logical language, thus Frege might just have “translated”

Dedekind’s cuts in his conceptscript and the whole job would have been done. And yet

Frege does not follow this path. This because Frege’s logicism does not consist just in

logical constructions aimed at recovering the mathematical language inside the concept

script. There is an eminently philosophical ingredient in Frege’s approach which cannot be

reduced to the technical task of manipulating the formula language. According to Frege,

any philosophical attempt to provide solid foundations for arithmetic and analysis must

elucidate an essential aspects of mathematics: its universal applicability. In the case of

the theory of natural numbers this goal is achieved by showing that cardinality is a logical

property of (sortal) concepts. In the case of real numbers, the applicability has to take into

account measurement of magnitudes. Thus the definition of real numbers must stem from

the fact that they are used as numerical attributions to magnitudes of the same quantity,

somehow capturing – in a mathematical fashion – the structure of quantity. Therefore,

Frege’s logicist project – when concerned with real analysis – is a project of explaining

how the definition of the concept of real numbers is based on the logical structure of

quantities. For this reason the concept of quantity is central in the introductory remarks

that immediately precede the formal theory.

Frege was no pioneer in formally studying the concept of quantity (take, for instance,

(HÖLDER, 1901) which Frege knew quite well); however, his approach is completely
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different from that of his contemporaries. After having discussed how the main accounts

of ‘quantity’ are circular or vague, in §161 of (FREGE, 2013), Frege exposes the reason

for these difficulties in understanding the concept of quantity (he uses ‘quantity’ and

‘magnitude’ as synonyms):

“The reason for these failures lies in asking the wrong question.

There are many different kinds of magnitudes: lengths, angles,

periods of time, masses, temperatures, etc..., and it will scarcely be

possible to say how objects that belong to these kinds of magnitude

differ from objects that do not belong to any kind of magnitude.

[...] Instead of asking which properties an object must have in

order to be a magnitude, one needs to ask: how must a concept be

constituted in order for its extension to be a domain ofmagnitudes?”

(FREGE, 2013, p.158)

The main problem with traditional approaches is that there is no common algebraic

structure for all quantities; moreover, summing masses is a quite distinct operation from

summing lengths. In other words, there is no common criterion based only on the relations

of the basic structure of each quantity that may distinguish quantities from qualities. Another

problem – which Frege does not mention – is that the existence of a concatenation operation

corresponding to ‘sum’ on a given quantity does not seem to be a logical property, yet the

subject of an empirical investigation (BATITSKY, 2002). For all these reasons, the concept

which may be fruitfully formalized is not that of quantity, yet the more general concept

of “domain of magnitude” (Grössengebiet). Since I am using the word ‘quantity’ where

Frege uses ‘magnitude’, I will stick to Dummett (1991)’s translation of ‘Grössengebiet’

with ‘quantitative domain’.

What is a quantitative domain and why it should do a better work than the idea

of quantity in introducing real numbers? The first thing to notice is that a quantitative

domain is a set of permutations. The basic elements of the quantitative structure Frege is

trying to capture are neither individuals nor properties, but a special sort of onetoone

functions, i.e. permutations. The main problem is that Frege is absolutely silent on the

physical meaning of the permutations constituting a quantitative domain. Frege introduces

several requirements on quantitative domains: permutations must form an ordered Abelian

semigroup with respect to the operation of functional composition; the ordering relation
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between permutations (defined in terms of the composition operation) must be dense and

Dedekind complete. The structure engendered by a quantitative domain may be easily

extended to the case of a group; Frege, for some unclear reason, is interested just in absolute

continuous quantities, yet we need not follow him in this kind of details. Thus a quantitative

domain is a set of permutations forming an Abelian ordered group with a continuous order.

Considering Frege’s quoted remark, this is the subject of study for the foundations of real

analysis; in other words, real numbers must be defined from the concept of quantitative

domain. As I will show, in shifting his attention from quantities to quantitative domains

Frege was on something big, in spite of the incompleteness of his conceptual analysis.

Dummett (1991, pp.281–283) criticizes Frege for not being general, or better, for

being mysteriously specific in saying that the elements of a quantitative domain must be

permutations. Hölder (1901) – roughly in the same years – was studying quantities from a

more abstract perspective, working out general algebraic structures whose elements may

be of any sort; Frege may have done the same. I believe that Dummett’s criticism is a

bit unfair. Frege was quite uncomfortable with the introduction of algebraic operations

without sharp and noncontextual definitions: talking of addition or product – as we do in

abstract algebra – without saying how these relations are defined and on which category

of entities they apply would be unacceptable from the perspective of his logicist program.

On the other hand, functional composition is an operation that may be defined using only

logical vocabulary. Yet there is another aspect in using quantitative domains instead of

structures of individuals which is more profound. Surely Frege noticed that there is no

common algebraic structure for all quantities; this caused him to abandon the idea that

what I have called the structural identification problem may be solved looking at the basic

structure of each quantity. But now there is a surprising fact which may do justice to Frege’s

alternative approach to quantities: quantitative domains may be interpreted as the group

of automorphic translations of a given quantity; and from Wolff’s definition of quantity

based on representational theory of measurement, we already know that the structure of

this group of permutations is the mark of quantitativeness.. Attributing to Frege Wolff’s

solution to the structural identification problem would be excessive; however, at least from

a formal perspective, Frege was on the right track and there is a perfect parallelism between

his and Wolff’s approach. Hence we may discuss the relations between quantities and real

numbers – and the Pythagorean problem for Wolffian quantities – in the framework of both
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Frege’s definitional strategy and posterior interpretations of abstraction principles.

The next step is to consider the Fregean definition of real numbers by abstraction. Part

III of the Grundgesetze is incomplete and it ends with the proofs of the formal properties

of quantitative domains; thus there is no direct textual evidence on how Frege would have

proceeded from this point. However, there is an unanimous consensus in the secondary

literature ((DUMMETT, 1991), (HALE, 2000), (ROEPER, 2020), (BOCCUNI; PANZA,

2021)) on the fact that he would have used one or another formulation of Euclid’s definition

of identity of ratios as an abstraction principle on quantitative domains. The strategy is

the following: it is possible to define, in purely logical terms, a relation of proportionality

between ordered pairs of elements of a quantitative domain (i.e. Frege’s permutations or

Wolff’s automorphic translations). What interests us is that proportionality is an equivalence

relation on pairs of permutations belonging to quantitative domains. Let 〈f1, f2〉 be a pair
of permutations belonging to a quantitative domainQ and 〈g1, g2〉 be a pair of permutations

belonging to a quantitative domain S; the following abstraction principle may be introduced:

〈f1, f2〉 ≈ 〈g1, g2〉 ⇔ ratio(f1, f2) = ratio(g1, g2) (APRN)

Where ‘≈’ is the relation of proportionality, and ‘ratio’ is the abstraction operator
that given two permutations of a quantitative domain returns their ratio, i.e. a real number.

An interesting way of defining proportionality is proposed in (ROEPER, 2020). Roeper

defines proportionality between pairs of elements of two quantitative domains (which need

not be distinct) as correlation through an isomorphism between structures defined by the

fundamental operators of quantitative domains. To formulate this definition, consider the

structures Q and S respectively associated with the quantitative domains Q and S and

defined as:

Q = 〈Q, ◦, (·)−1〉

S = 〈S, ◦, (·)−1〉

where ‘(·)−1’ is the inverse operator for permutations. The relation of proportionality

is defined as follows:
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〈f1, f2〉 ≈ 〈g1, g2〉 ⇔
def

∃φ ∈ SQ [Q
φ∼= S & φ(f1) = g1 & φ(f2) = g2] (6)

where the expression ‘Q
φ∼= S’ denotes the fact that φ is isomorphism between Q

and S. It is easy to see that ‘≈’ defined as in (5) is an equivalence relations on pairs of
permutations belonging to quantitative domains, thus the abstraction principle (APRN) is

– at least from a formal perspective – well defined.

Frege’s strategy for defining real numbers – as well as its proposed explication

– should now be clear. After having noticed that there is no common structure to all

physical quantities, Frege introduced the concept of quantitative domain, without discussing

the particular nature of the permutations which are elements of quantitative domains. I

have proposed to interpret quantitative domains as sets of automorphic translations on a

quantitative structure. This move has the advantage of providing a common structure to all

continuous quantities. After having demonstrated the fundamental properties of quantitative

domains, Frege’s strategy may be continued – beyond the point he stopped – by introducing

the fourplace relation of proportionality, which is an equivalence relation on pairs of

permutations of possibly distinct quantitative domains. The relation of proportionality

has the interesting feature of being “topic neutral”, i.e. it may be defined in higherorder

logic (BOCCUNI; PANZA, 2021) and does not require its relata to be autmorphisms on

the same quantitative structure. The next step is to introduce the abstraction principle for

ratios of permutations (APRN), which completes Frege’s foundationalist journey through

quantities.

(APRN) may be used as an important theoretical tool to characterize the logico

metaphysical relations between real numbers and physical quantities; to do this, we need

a metaphysical interpretation of abstraction principles, which may be extrapolated from

Frege’s remarks only to a very limited extent. For this reason we need to move from Frege’s

texts to the more recent literature on abstractionism.
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4 Theabstractionist solution to thePythagorean

problem

4.1 Abstraction principles as criteria of identity

The present proposal is based on the idea of using the abstraction principle of real numbers

to characterize the relations between real numbers and continuous physical quantities. In

particular, these relations are explicated in such a way to formulate a reply to the Pythagoren

problem, i.e. to formulate an explanation of the difference between the mathematical

continuous structure of reals and the structure of physical continuous quantities. To sketch

this strategy it is worth developing an interesting remark on the Pythagoren problem

presented at the end of section 2.2.

There seems to be a simple way to say that the structure of real numbers has a

quite different nature from the structure of a physical continuous quantity. The mark of

physical quantity is a certain structural indeterminacy: it is impossible to refer to a point in

a quantitative space using definite descriptions framed in terms of the structural properties

of these points. This because the elements of a quantitative structure are identifiable only

up to automorphism. On the other hand, if we consider real numbers with all of their

structural features (i.e. if we consider the entire field of real numbers) we are considering

a completely determined structure and we are able – at least in principles – to identify

and refer to every single real number. This because the field of reals has no nontrivial

automorphism. As a consequence, we are not able to uniquely assign to every point in a

quantitative space a real numbers, yet there will always be a plurality (infinity) of possible

numerical attributions.

However, real numbers also form a quantitative structure. Consider the structureR
formed by positive real numbers with addition and order; such a structure admits infinite

nontrivial automorphisms: every “scaling function”, i.e. every function of the form

fα(x) = α · x with α positive real number distinct from 1, is an automorphic translation on

R. Moreover, the set of all translations fα for every positive real α 6= 1, form an ordered

Archimedean group. ThusR is itself a quantity, though a nonphysical one. Yet how could

we trace a distinction between R and a alleged continuous physical quantity, e.g. mass
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or length? According to Wolff’s theory physical quantities are physical spaces of points

having no haeccetistic identities, while real numbers are not of this sort. If we consider

the identity conditions which defines the structure of real numbers, we will see that they

are completely identifiable and thatR has a quantitative structure just because we are not

considering all features of reals (e.g. we are not considering their behavior with respect to

multiplication, division, and substraction). In other words, we are willing to assert that it

is in the “nature” of real numbers (i.e. in their identity conditions) to constitute a fully

determinate structure; on the other hand, it is in the “nature” of points of quantitative

spaces to constitute partially indeterminate structures, i.e. to be identified only up to

automorphism.

This view is clearly incomplete and unclear, for it must be clarified what are the

identity conditions of real numbers and why do they entail a complete structural determinacy.

My suggestion is that the fact that real numbers are obtained by abstraction on pairs

of automorphic translations in a quantitative space may help to perform two important

theoretical tasks: 1) Clarify the identity conditions of real numbers and their ontological

dependence on quantitative spaces; 2) Explain the determinacy of mathematical and abstract

structures, i.e. the absence of nontrivial automorphisms.

An abstraction principle offers a criterion of identity for the entities it introduces via

the abstraction operator. Natural numbers are identical whenever they are associated to sets

that can be put in onetoone correspondence; directions are identical whenever they are

associated to parallel lines; real numbers are identical whenever they are associated with

proportional pairs of automorphic translations of a quantitative structure (or, in Fregean

terms, whenever they are associated to pairs of proportional permutations of quantitative

domains). Wright (1983) maintains that the existence of a criterion of identity is necessary

and sufficient to sharply define the (sortal) concept under which the objects introduced via

abstraction principles fall. According to Wright, natural numbers are the sort of entities

which are identified and distinguished in terms of facts of equinumerousity between sets

(or concepts); directions are the sort of entities identified and distinguished in terms of

facts of parallelism between straight lines; real numbers are the sort of entities which

are identified and distinguished in terms of facts of proportionality between automorphic

translations of quantitative structures. According to Wright, this fact ensures the reference

of abstract terms and a full blooded notion of existence to be ascribed to the referents of
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terms constructed with abstraction operators. Linnebo (2018), on the other hand, defends a

weaker view, according to which the left side of an abstraction principle is only sufficient

to ensure the identity of the entities introduced via abstraction and that they may exist in a

more lightweight fashion, i.e. a relatively thin objects, objects whose existence requires

from world nothing more than what is required by the entities referred to in the left side

of an abstraction principle. According to this view, the existence of natural numbers does

not require from the world more than what is required by the existence of sets; the same

applies to directions and real numbers. Such a view seems more palatable for it does not

encounter some critical difficulties of Wright’s account which are related to the attribution

of a strong conception of objecthood to mathematical objects.

What interests us is that real numbers are the sort of entities which are identified and

distinguished by means of facts of proportionality involving automorphic translations of

quantitative structures and that these facts are sufficient to ensure reference to real numbers

and their existence, even though in a thin sense. In other words, the existence of real

numbers demands from the world the existence of quantitative structures, i.e. of structures

displaying a certain amount of indeterminacy (i.e. existence of nontrivial automorphisms)

and a certain amount of determinacy (i.e. fintely point unique) without which the abstraction

principle (APRN) would not be an effective criterion of identity for reals. Therefore, by

appealing to the fact that the abstraction principle (APRN) is the criterion of identity

of real numbers we may draw the first desired conclusion: it is in the “nature” of real

numbers (i.e. it is expressed by their criterion of identity) to be thin objects relatively

to quantitative structures, i.e. to require the existence of these structures as a sufficient

condition for their existence. As a consequence, the structure of real numbers – even when

regarded as a quantitative structure – cannot be a quantitative structure on a pair with

physical quantitative spaces, for the existence of the latter has explanatory and ontological

priority over the existence of the former. It is quite significant for the understanding of

this conclusion to clarify the import of Linnebo’s interpretation of abstraction. Without

appealing to Linnebo’s version of abstractionism, we were not in position to argue that real

numbers are a different sort of entities from points in quantitative spaces; this because we

would not have at our disposal a criterion of identity for real numbers. To say that real

numbers are Dedekind’s cuts would not be enough: for we would need an explanation of the

fact that Dedekind’s cuts are not just ways of set theoretically represent real numbers, yet
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they coincide with real numbers. Abstraction principles seem to overcome this difficulty:

there is nothing about the “nature” or identity of the entities appearing in the right side of

an abstraction principle over and above the facts expressed by the left side.

The first step of the exposition of my proposal is now complete. We know that real

numbers and elements of physical quantitative spaces are distinct sort of entities. However,

to provide a complete understanding of this position I must clarify under which respect real

numbers may be distinguished from elements of physical quantitative structures. According

to Wolff, this distinction should be traced looking at the structures these entities form: real

numbers form a completely determined structure whereas points of quantitative spaces

form incomplete structures with an infinity of nontrivial automorphisms. Nevertheless,

this fact should stem from the criterion of identity of real numbers. Take the case of natural

numbers: one may argue that no natural number is identical to Julius Caesar, for persons are

not numbers. Yet this reply is not acceptable unless – as Wright attempts to do – we prove

that it is a consequence of the chosen criterion of identity for natural numbers that numbers

are not persons. Thus the next step will consist in showing that the structural determinacy

of real numbers stems from the fact that their criterion of identity is the abstraction principle

(APRN).

4.2 Abstractionism and structural determinacy

In this section I will argue in favor of the second main claim of my proposal: under certain

conditions – which will be stated – abstraction principles may “transform” a partially

indeterminate initial structure into a fully determinate structure of thin objects. The basic

idea of this claim is simple: partially indeterminate structures are structures which admit

nontrivial automorphisms; nontrivial automorphism may be interpreted as symmetries

within the initial structure; thus, if we are able to define an equivalence relation whose

equivalence classes are classes of structural symmetry, then the abstracts we may introduce

by means of such an equivalence relation form a structure with no symmetries. The claim

may be presented in an intuitive way by a relatively simple example involving a classical

case of abstraction: Hume’s Principle. Consider a countably infinite domain D of ur

elements. Suppose that we are to arrange of all subsets ofD (i.e. all sets of our urelements)

into a series of increasing cardinality. This series will start with the empty set and will be
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defined by the relation of “being more numerous than” (and also by the existence of “zero”

and succession). Thus we will construe a series starting with the empty set, followed by

all singletons, all dupletons, and so on. Clearly, our relation of “being more numerous

than” is a partial order, for equinumerous sets will occupy the same position in the series.

Moreover, it is easy to see that our structure of cardinalities presents several symmetries, i.e.

nontrivial automorphisms: every substitution of a set A with a set B equinumerous to A

will preserve all structural facts aboutA. In other words, equinumerous sets are structurally

indistinguishable (though they may be distinguishable in virtue of extrastructural facts).

Our structure presents a certain degree of indeterminacy, for every position in our series

does not uniquely pick out a set: every choice of a representative set among all sets of the

same cardinality is a way of defining a particular position in our structure. We may use an

abstraction principle to introduce a new structure –connected to our initial structure of the

subsets of D by a homomorphism – which does not display the structural indeterminacy

induced by the symmetries of the initial structure. We may say that two sets have the

same cardinal number iff there is a onetoone correspondence between them (i.e. Hume’s

Principle). Consider now the structure N of all finite cardinals (and one infinite cardinal).

All symmetric elements of the initial structure have been “collapsed” into a unique element

of N ; as a consequence, every automorphism of the initial structure has been converted

by the cardinality operator into a trivial automorphism. Clearly, this is not a proof of the

fact that abstraction principles define structures with no nontrivial automorphisms; yet the

example seems to be sufficient to offer a preliminary grasp of the fundamental idea, i.e.

If we are able to define an equivalence relation that captures all symmetries of the initial

structure, then the structure of abstracts defined using such an equivalence relation will

not display these symmetries.

It is now time to express this idea in rigorous terms, by showing some interesting

model theoretic properties of abstraction principles. Firstly, we need a definition which

captures the notion of ‘structure of abstracts’ defined by an abstraction principle on the

initial structure. Consider the generic form of a structure:

A = 〈A;R0, ..., Rn〉

where Ri ⊆ Aki , for every i = 0, ..., n. Consider now an equivalence relation
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∼⊆ A2, such that ∼ is a congruence for all relations of A, and a structure:

B = 〈B;S0, ..., Sn〉

distinct from A.

Definition 4.1 (Abstracted structure). The structure B is the structure abstracted from

A iff there is a function h : A→ B such that:

(i) Im(h) = B;

(ii) For all x, y ∈ A, x ∼ y ⇔ h(x) = h(y);

(iii) For all i = 0, ..., n, for all x1, ..., xki ∈ A,

Ri(x1, ..., xki) ⇔ Si(h(x1), ..., h(xki))

∗ ∗ ∗

Condition (i) says that the abstracted structure must not include objects which are not

introduced by means of the abstraction operator; condition (ii) is the abstraction principle

at issue; condition (iii) represents the homomorphism between the initial structure A and

the abstracted structure B.
The next step is to introduce the notion of structural equivalence, i.e. the equivalence

relation which captures the idea of structural symmetry. To do this we need the preliminary

notion of structural congruence:

Definition 4.2 (Structural congruence). Let A = 〈A;R0, ..., Rn〉 be a structure. The

binary relation ∆ ⊆ A2 is a structural congruence for A iff for all i = 0, ..., n, for all

x1, y1, ..., xki , yki ∈ A,

∆(x1, y1)& ...&∆(xki , yki) ⇒ (Ri(x1, ..., xki) ⇔ Ri(y1, ..., yki))

∗ ∗ ∗
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To say that two elements of the structure A stand in a relation which is a structural 
congruence is to say that they are connected through an automorphism. The notion of 
structural congruence allows us to define a more important notion:

Definition 4.3 (Structural Equivalence). Let A = 〈A; R0, ..., Rn〉 be a structure. The 
binary relation ∼ ⊆ A2 is the structural equivalence for A iff for every x, y ∈ A, x ∼ y 
iff there is a structural congruence ∆ such that ∆(x, y) or ∆(y, x)

∗ ∗ ∗

We may use Definition 4.2 to highlight two extreme cases in which structural equiv
alence is uninteresting, or, in a certain sense, trivial. The first case is when a structure has 
no symmetries, i.e. only trivial automorphisms; in this case, structural equivalence is the 
identity relation. The opposite case, is when a structure is homogeneous, i.e. when every 
two elements of the structure (distinct or identical) are connected by some automorphism: 
in this case, every two elements are structurally equivalent; symmetries are – so to say – 
“ubiquitous”.

The next step should already be clear: I will consider abstraction principles defined 
using a structural equivalence as equivalence relation and show that the abstracted structure 
has only trivial automorphisms. This strategy is interesting for two main reasons: 1) If 
the main criterion of identity for real numbers is based on an abstraction principle using 
the relation of proportionality and if proportionality is the structural equivalence for the 
structure of pairs of automorphic translations, then the proposed criterion of identity will 
explain the main distinguishing feature between mathematical and physical quantities: 
structural determinacy; 2) Abstraction principles applied to the field of real numbers will 
not define a new mathematical structure, i.e. structural equivalence for real numbers is the 
identity relation; on the other hand, no abstraction principle may be interestingly defined 
on the basic structure of many physical quantities – which are hommogeneous – and thus 
structural equivalence relates any two elements of the structure. Therefore, our definitions 
help us to further explicate the strategy of defining real numbers by abstraction of quantities: 
we need a structure which has certain symmetries – it cannot be a fully determined structure 
– and yet such a structure must not be homogeneous, i.e. symmetries cannot be ubiquitous. 
It is for this reason that the abstraction principle for reals cannot be directly applied to
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the universally symmetric structure of automorphic translations – which it may be proven

to be homogeneous; and it is precisely for the same reason that we need to introduce a

structure having as elements pairs of automorphic translations. In other words, the relation

of proportionality between pairs of translations captures a symmetry which is neither trivial

– is not an identity – nor ubiquitous – i.e. not all pairs are proportional.

We are now in position to prove the following fundamental result:

Theorem 4.1 (Structural determination by abstraction). LetA = 〈A;R0, ..., Rn〉 be a struc

ture whose structural equivalence is ∼; if B = 〈B;S0, ..., Sn〉 is the structure abstracted
from A with an abstraction operator ‘h’ and ∼ as equivalence relation, then B has no

nontrivial automorphism.

Proof. We will prove that every automorphism on B is trivial. Suppose that f : B
1−1→ B is an

automorphism on B. Therefore, for every i = 0, ..., n, for every z1, ..., zki ∈ B:

Si(z1, ..., zki) ⇔ Si(f(z1), ..., f(zki))

By clause (i) of Definition 4.1, every element of B is the image of some elements of A

through the abstraction operator ‘h’. Hence, for every i = 0, ..., n, for every x1, ..., xki ∈ A:

Si(h(x1), ..., h(xki)) ⇔ Si(f ◦ h(x1), ..., f ◦ h(xki))

Define now the following binary relation on A: for all x, y ∈ A

Γf (x, y) ⇔
def

h(y) = f ◦ h(x)

By operating the respective substitutions, for every i = 0, ..., k and for allx1, y1, ..., xki , yki ∈
A,

Γf (x1, y1)& ...& Γf (xki , yki) ⇒ Si(h(x1), ..., h(xki)) ⇔ Si(h(y1), ..., h(yki))

By clause (iii) of Definition 4.1 and substitution of equivalents, it follows that

for every i = 0, ..., k and for all x1, y1, ..., xki , yki ∈ A,

Γf (x1, y1)& ...& Γf (xki , yki) ⇒ Ri(x1, ..., xki) ⇔ Ri(y1, ..., yki)
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i.e. Γf is a structural congruence for A. By Definition 4.2 and clause (ii) of Definition 4.1,

for all x, y ∈ A,

Γf (x, y) ⇒ x ∼ y ⇔ h(x) = h(y)

By definition of Γf : for all x, y ∈ A

h(y) = f ◦ h(x) ⇒ h(x) = h(y)

Considering that all elements of B are image of some elements of A, for all z1, z2 ∈ B:

z2 = f(z1) ⇒ z1 = z2

i.e. f is the trivial automorphism.

The technical details regarding how a structure of pairs of translations may be defined

in such a way that proportionality is a structural equivalence are provided in the Appendix.

What interests us here is the solution of Pythagorean problem. According to Theorem

4.1, abstraction principles defined in terms of the relation of structural equivalence may

be conceived as an operation of structural determination: to every equivalence class of

structural symmetry – to every class of proportional pairs of translation – a unique abstract

object is associated (in our case, a real number). Thus, quantitative structures are not

mathematical structures insofar as they present certain symmetries that could not be

preserved through abstraction; on the other hand – by using abstraction principles as

criteria of identity – we are in position to say that it is in the nature of real numbers both

to be thin and shallow objects depending on more fundamental facts of proportionality

between quantitative translations and that they form a completely determined structure, i.e.

a structure with only trivial automorphisms.

There is a last remark which is worth mentioning. The proposal invert the traditional

relation between physical quantities and numbers. The traditional approach in representa

tional theory of measurement is inclined to define physical quantities as physical structures

which are representable by means of mathematical structures. Thus real numbers are

presupposed to understand what a physical quantity is. According to the present proposal,

the perspective is inverted: real numbers are defined in terms of proportionality of pairs
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of translations on quantitative structures, therefore, physical quantities are logically and

metaphysically more fundamental than the mathematical structures we use to represent

them.
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Appendix

In this section I will sketch how a structure of pairs of automorphic translations having

nontrivial automorphisms and for which proportionality is a structural equivalence may

be construed.

Definition 4.4 (Automorphic product). Let Q be a quantitative structure, and T (Q) be

the group of automorphic translations on Q. For all f1, f2, g1, g2, h1, h2 ∈ T (Q) (with

f1, f2, g1, g2 distinct from the identity function), the automorphic product 〈f1, f2〉·〈g1, g2〉
is defined as follows:
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〈f1, f2〉 · 〈g1, g2〉 ≈ 〈h1, h2〉

iff exist two automorphisms φ, ψ on T (Q) such that for all u ∈ T (Q):

φ(u) = f1 and ψ(u) = f2 ⇒ 〈φ(g1), ψ(g2)〉 ≈ 〈h1, h2〉

and if f1 or g1 is the identical function e, then h1 = e

∗ ∗ ∗

Theorem 4.2 (Properties of the automorphic product). If T (Q) is homogeneous and one

point unique, then for all f1, f2, g1, g2, h1, h2 ∈ T (Q) distinct from the identity function:

(i) 〈f1, f2〉 · (〈g1, g2〉 · 〈h1, h2〉) ≈ (〈f1, f2〉 · 〈g1, g2〉) · 〈h1, h2〉 (Associativity);

(ii) 〈g1, g1〉 · 〈f1, f2〉 ≈ 〈f1, f2〉 (Neutral elements);

(iii) If T (Q) is a commutative group, then 〈f1, f2〉 · 〈f2, f1〉 ≈ 〈g1, g1〉 (Inverse ele

ments);

(iv) If T (Q) is a commutative group, then 〈f1, f2〉 · 〈g1, g2〉 ≈ 〈g1, g2〉 · 〈f1, f2〉 (Com

mutativity);

Proof. Proof of item (i). Suppose that

〈f1, f2〉 · (〈g1, g2〉 · 〈h1, h2〉) ≈ 〈l1, l2〉

by applying the definition of automorphic product, exists u ∈ T (Q) and φ, ψ automorphisms

of T (Q) such that:

〈g1, g2〉 · 〈h1, h2〉 = 〈φ(u), ψ(u)〉 · 〈h1, h2〉 ≈ 〈φ(h1), ψ(h2)〉

Hence, by the fact that the automorphic product is invariant by substitutions of proportional

pairs:

〈f1, f2〉 · 〈φ(h1), ψ(h2)〉 ≈ 〈l1, l2〉
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Exists v ∈ T (Q) and two automorphisms η, θ such that:

〈f1, f2〉 = 〈η(v), θ(v)〉 and 〈l1, l2〉 ≈ 〈η ◦ φ(h1), θ ◦ ψ(h2)〉

Consider now the expression:

(〈f1, f2〉 · 〈g1, g2〉) · 〈h1, h2〉

By substitutions of identicals and proportionals, we obtain the proportional expression:

(〈η(v), θ(v)〉 · 〈φ(u), ψ(u)〉) · 〈h1, h2〉

which is in turn proportional to:

(〈η ◦ φ(u), θ ◦ ψ(u)〉 · 〈h1, h2〉 ≈ 〈η ◦ φ(h1), θ ◦ ψ(h2)〉 ≈ 〈l1, l2〉

q.e.d..

Proof of item (ii). Consider the expression:

〈g1, g1〉 · 〈f1, f2〉

By definition of automorphic product:

〈g1, g1〉 = 〈ξ(u), η(u)〉 and 〈g1, g1〉 · 〈f1, f2〉 ≈ 〈ξ(f1), η(f1)〉

For some u ∈ T (Q) and automorphisms ξ, η. By the fact that ξ(u) = η(u) and that T (Q) is

one point unique, it follows that ξ = η. Therefore:

〈g1, g1〉 · 〈f1, f2〉 ≈ 〈ξ(f1), ξ(f2)〉 ≈ 〈f1, f2〉

q.e.d. Proof of item (iii). Consider the expression:

〈f1, f2〉 · 〈f1, f2〉

By definition of automorphic product:

〈f1, f2〉 = 〈ξ(u), η(u)〉 and 〈f1, f2〉 · 〈f2, f1〉 ≈ 〈ξ(f2), η(f1)〉
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It follows that:

〈ξ(f2), η(f1)〉 = 〈ξ ◦ η(u), η ◦ ξ(u)〉

By commutativity of ‘◦’ in T (Q):

〈ξ ◦ η(u), η ◦ ξ(u)〉 = 〈η ◦ ξ(u), η ◦ ξ(u)〉 = 〈η(f1), η(f1)〉 ≈ 〈f1, f1〉

Proof of item (iv). Assume that for some u, v ∈ T (Q) and automorphisms xi, η, λ, µ:

f1 = ξ(u) , f2 = η(u) , g1 = λ(v) , g2 = µ(v)

Hence:

〈f1, f2〉 · 〈g1, g2〉 = 〈ξ(u), η(u)〉 · 〈λ(v), µ(v)〉 ≈ 〈ξ ◦ λ(u), η ◦ µ(v)〉 = 〈λ ◦ ξ(v), µ ◦ η(v)〉

〈g1, g2〉 · 〈f1, f2〉 = 〈λ(v), µ(v)〉 · 〈ξ(u), η(u)〉 ≈ 〈λ ◦ ξ(u), µ ◦ η(u)〉

By homogeneity of T (Q), exists an automorphism φ such that u = φ(v); as a consequence:

〈λ◦ξ(u), µ◦η(u)〉 = 〈λ◦η◦φ(v), µ◦η◦φ(v)〉 = 〈φ◦λ◦ξ(v), φ◦µ◦η(v)〉 ≈ 〈λ◦ξ(v), µ◦η(v)〉

Therefore,

〈f1, f2〉 · 〈g1, g2〉 ≈ 〈g1, g2〉 · 〈f1, f2〉

Definition 4.5 (Binary sum). Let Q be a quantitative structure, and T (Q) be the group of

automorphic translations onQ. For all f, u, g, h ∈ T (Q) distinct from the identity function,

the binary sum 〈f, u〉 ⊕ 〈g, u〉 is defined as follows:

〈f, u〉 ⊕ 〈g, u〉 ≈ 〈f ◦ g, u〉

∗ ∗ ∗
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For the properties of binary sum (i.e. associativity, inverse elements, and neutral

elements) see (ROEPER, 2020).

It is now possible to define the structure of pairs of automorphic translations; for the

sake of simplicity we will consider only pairs of translations over the same quantitative

structure (the extension to the case of different quantitative structures presents no conceptual

difficulty):

Definition 4.6 (Fraction of magnitudes). The structure:

F(Q) = 〈[T (Q)]2,≈, ·,⊕〉

is the structure of fractions of magnitudes of Q.

∗ ∗ ∗

Theorem 4.3 (Representation theorem). LetF(Q) be a structure of fractions of magnitudes.

For every automorphism Φ of F(Q), there is an automorphism ξ of T (Q), such that for

every x, y ∈ T (Q),

Φ(x, y) = 〈ξ(x), ξ(y)〉

Proof. The following notations will be useful:

Φ(x, y) = 〈Φ1(x, y),Φ2(x, y)〉

→
α(x) = 〈α(x), α(x)〉

It is easy to verify – from the definition of binary sum – that the following holds for all

x, y, z ∈ T (Q) and some automorphisms α, β of T (Q):

Φ(x ◦ y, z) ≈ →
α(Φ(x, z))⊕

→
β (Φ(y, z)) (∗)

Let e the identity function; for all a, u ∈ T (Q):

〈a, u〉 ⊕ 〈a−1, u〉 ≈ 〈a ◦ a−1, u〉 ≈ 〈e, u〉
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By definition of automorphism:

Φ(a, u)⊕ Φ(a−1, u〉 ≈ Φ(a ◦ a−1, u) ≈ 〈e, u〉

where the property of the neutral element of being a fixed point has been used. By (∗):

Φ(a ◦ a−1, u) ≈ →
α(Φ(a, u))⊕

→
β (Φ(a−1, u)) ≈ 〈e, u〉 (∗∗)

Using the definition of binary sum and the notational convention (and omitting some paren

theses):

〈αΦ1(a, u), αΦ2(a, u)〉 ⊕ 〈βΦ1(a
−1, u), βΦ2(a

−1, u)〉 ≈ 〈αΦ1(a, u) ◦ βΦ1(a
−1, u), αΦ2(a, u)〉

where α and β are such that αΦ2(au) = βΦ2(a
−1, u). By (∗∗) and the fact that e is a fixed

point of all automorphisms:

αΦ1(a, u) ◦ βΦ1(a
−1, u) = e

From which it follows that:

[Φ1(a, u)]
−1 = α−1 ◦ βΦ1(a

−1, u)

In other words, for all x, y ∈ T (Q), and for all autmorphism Φ of F(Q), there is an

automorphism ξ of T (Q), such that:

[Φ1(x, y)]
−1 = ξΦ1(x

−1, y) and Φ2(x, y) = ξΦ2(x
−1, y) (1)

By similar considerations, it is possible to show that:

[Φ1(e, x)] = e and Φ2(e, x) = ξΦ2(y, x) (2)

From (1) and (2) two important facts follow: that the values ofΦ1 andΦ2 depends respectively

only upon the first and the second argument of Φ; and that Φ1 is an automorphism of T (Q).

Therefore, every automorphism Φ of F(Q) may be written as:

Φ(x, y) = 〈φ(x),Φ2(y)〉
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for some φ automorphism of T (Q).

Consider now the following expression:

〈a, b〉 · 〈u, u〉 ≈ 〈a, b〉

valid for all a, b, u ∈ T (Q). Being Φ and automorphism of F(Q):

Φ(a, b) · Φ(u, u) ≈ Φ(a, b)

By developing the previous expression:

〈φ(a),Φ2(b)〉 · 〈φ(u),Φ2(u)〉 ≈ 〈φ(a),Φ2(b)〉

By definition of automorphic product, exist ξ, η automorphisms of T (Q) and w ∈ T (Q)

such that:

ξ(w) = φ(a) ; η(w) = Φ2(b) ; 〈ξ ◦ φ(u), η ◦ Φ2(u)〉 ≈ 〈φ(a),Φ2(b)〉

By definition of proportionality, there is an automorphism ψ of T (Q) such that:

ξ ◦ φ(u) = ψ ◦ φ(a) = ψ ◦ ξ(w) ; η ◦ Φ2(u) = ψ ◦ Φ2(b) = ψ ◦ η(w)

Explicitating w and by commutativity of ◦:

−1 ◦ φ(u) = ψ−1 ◦ Φ2(u)

Given that the previous expression is valid for all u ∈ T (Q), if follows that φ = Φ2. As a

consequence, for every automorphism Φ of F(Q), there is an automorphism φ of T (Q) such that

for all x, y ∈ T (Q):

Φ(x, y) = 〈φ(x), φ(y)〉

Theorem 4.4 (Proportionality as structural equivalence.). The relation of proportionality

is a structural equivalence for the structure of fraction of magnitudes F(Q).

Proof. The relation ‘≡’ of structural equivalence for F(Q) may be defined as follows:
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〈x, y〉 ≡ 〈x′y′〉 iff exists an automorphism Φ of F(Q) such that Φ(x, y) = 〈x′y′〉 or Φ(x′y′) = 〈x, y〉

By the previous theorem, the definition is equivalent to:

〈x, y〉 ≡ 〈x′y′〉

iff exists an automorphism φ of T (Q) such that

φ(x) = x′ and φ(y) = y′ or φ(x′) = x and φ(y′) = y

which is the definition of the relation of proportionality.
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