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Abstract We investigate what happens when ‘truth’ is replaced with ‘prov-
ability’ in Yablo’s paradox. By diagonalization, appropriate sequences of
sentences can be constructed. Such sequences contain no sentence decided by
the background consistent and sufficiently strong arithmetical theory. If the
provability predicate satisfies the derivability conditions, each such sentence is
provably equivalent to the consistency statement and to the Godel sentence.
Thus each two such sentences are provably equivalent to each other. The same
holds for the arithmetization of the existential Yablo paradox. We also look at
a formulation which employs Rosser’s provability predicate.
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1 Introduction
1.1 Replacing Truth with Provability

One way to look at the incompleteness of (many) mathematical theories is to
compare the Godelian sentence(s) with those used in various formulations of
the liar paradox. The liar sentence says of itself that it is not true:

(1) Sentence (1) is not true.

A Godelian sentence (modulo syntactic encoding) says of itself that it is not
provable:

(G) Sentence (G) is not provable (in the system).

Thus, Godelian incompleteness can be seen as a result of turning a paradox
into a theorem.! Let’s sketch and compare the relevant arguments:

—Tr(}\) (excluded middle) Tr(L)
% v
=(1) (Schema T) )

\ \
Tr(A) (content of (1)) —Tr())

In the case of the liar, the claim that (1) is not true turns out to be equivalent
to the claim that it is true. Hence the paradox.

What happens when we try to run a parallel argument about provability
instead of truth, assuming the soundness of the background theory??

—Prov(G) (excluded middle) Prov(G)
[
27 (soundness)
%
y
(G)

(content of (G))
v

—Prov(G)

LA fairly common phenomenon. Godel observed the relationship between his theorem and the
liar, and seems to have in fact drawn inspiration from the paradoxes. Other semantic paradoxes
have also been used in incompleteness proofs—see e.g. [2], where Grelling’s paradox is employed
in the proof of the second incompleteness theorem. In ZFC, the proof that there is no universal
set can be seen as the result of formalizing Russell’s paradox, and both Hartog’s theorem and the
result that there is no set of all ordinals can been seen as the result of formalizing Burali-Forti.
20f course, the soundness assumption is not needed for the original Gédel’s proof to go through,
but let’s not worry about this.
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Godelizing the Yablo Sequence 681

While the right-hand case goes through, the left-hand case does not get off
the ground, because we did not assume that all truths are provable (and thus
cannot infer —¢ from —Prov(¢)). Thus, instead of obtaining a paradox, we just
conclude that (G) is not provable in the theory.

The situation is similar with Prov(—G):

—Prov(—G) (excluded middle) Prov(—=G)
|
2?7 (soundness)
" v
-G

(content of G)
—|—|Prvov(G)
(classical logic)
Prov(G)

(soundness)
v

G

While from the unprovability of =G we cannot infer its falsehood, the
assumption that it is provable leads to contradiction. Thus, neither G nor =G
are provable in the system, but no paradox ensues.

A question arises as to the extent to which this phenomenon generalizes: are
there any other paradoxes involving truth which yield theorems when truth is
replaced with provability? We’ll take a look at a paradox related to truth which
is often claimed to be importantly different from the liar: Yablo’s paradox.

1.2 Yablo’s Paradox: A Formulation

The paradox has been formulated by Yablo [10]. Consider an infinite sequence
of sentences sg, 51, $2, . .. such that:

so = Vx (P1(x) - —Tr(x))’,
51 = Vx (P2(x) - —Tr(x))’,

2 = Vx (P3(x) - —Tr(x))’,

Tr is the truth predicate, and the extension of every P,, (forn=1,2,3,...)is
{$ns Snt1, Sng2, .. .}. Thus, every s; says that all s;s with j > i are not true. Now
suppose sy is true. Then for any k > 0, s is not true (s; is among such formulas,
and thus it is not true). Also, s, is not true for any k > 1. But this is exactly
what s; says—hence s; is true after all. Contradiction. Suppose then that sy is
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false. This means that there is a k > 0 such that s is true. But we can repeat
the reasoning, this time with respect to s, and reach a contradiction again. No
matter whether we assume sy to be true or false, we reach a contradiction.
Hence the paradox.?

2 Yablo Sequence with Provability, a Sketchy Argument

Let’s work within some sufficiently strong arithmetical theory T and see what
happens when Tr is replaced with Prov in a Yablean sequence. First, we will
handwavily describe the kind of reasoning involved, without paying attention
to details and without making sure the reasoning can be represented within the
system.

Suppose we extend the standard language of arithmetic with a new function
symbol ‘. We intend the function it expresses to assign to each natural
number the g.n. (Gédel number) of the n-th sentence in the Yablean sequence
(with provability instead of truth):

f(n) ="Vx > n —=Prov(f(x))” (1)

(The notation 7 is used for the numeral denoting n.)
Now suppose T proves the formula with g.n. f(n):

TFVx > i =Prov(f(x)) (2)
It follows that T proves a weakening of Eq. 2:
TkFVx>n+1—-Prov(f(x)) 3)
and it proves a particular instance of Eq. 2:
TF —=Prov(f(n+1)) 4)

But Eq. 3 simply is the formula with g.n. f(n + 1). Also, for any theorem
of T, T being sufficiently strong, proves also that it proves it (see Fact 5 on
page 6). So, from Eq. 3, we obtain:

Tk Prov(f(n+1))

This, however, together with Eq. 4 shows that T is inconsistent. So, if T is
consistent, Eq. 2 is false and T doesn’t prove the formula with g.n. f(n) after
all.

Let’s see what would happen if T proved its negation. Suppose

TF =Vx > i1 —=Prov(f(x)) (5)

3Let us note that in contrast with the usual liar-type paradoxes based on an explicit use of direct
or indirect self-reference, Yablo paradox seems to involve no self-referential loops. The question
whether the paradox is really self-reference free has been much debated in recent literature. See
e.g [1,5,6,9].
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This yields
TF 3x > i Prov(f(x)) (6)
Then there is an m which witnesses this claim:*
T - Prov(f()) ™)
But then, T also proves the formula itself (see e.g. Fact 14 on page 8):
Tk Vx > m —=Prov(f(x)) (8)

Now, we can apply to Eq. 8 the same reasoning we applied to Eq. 2 toreach a
contradiction. So, both Egs. 2 and 5 are false and T doesn’t decide the formula
with g.n. f(n).

This argument as it stands is not satisfactory. Ideally, we would like to avoid
reference to a new function symbol and formulate the reasoning in the original
language of arithmetic. We would also like to be clear on what assumptions
are being made and on how the steps involved are justified. To this goal, in
Section 3 we will first survey a few facts needed for our proof (a reader familiar
with the topic can safely skip this section and refer to it later if need be). Then,
in Section 4, we will give the full proof.

3 (Slightly) Technical Preliminaries

We assume the reader is familiar with the general framework of Goédelian
proofs, but for the sake of accessibility, we list the main results which will be
referred to later on. We do it (almost) without proofs, which are rather well-
known and should not lie in the focus of our paper. For details we refer the
reader to [3] or [7].

Definition 1 An arithmetical theory T is p.r. axiomatized iff all the following
conditions hold: (i) the numerical properties of being the g.n. (Godel numbers)
of a T-well formed formula and a T-sentence are p.r. (primitive recursive),
(ii) the numerical property of being the g.n. of an axiom is p.r., (iii) the
numerical property of being the g.n. of a correct proof is p.r.. An arithmetical
theory is nice iff it is consistent, p.r. axiomatized, and extends Robinson
arithmetic Q.

We will fix our attention on an arbitrary arithmetical theory (in the language
of Peano arithmetic) T supposing it is nice.

4 A full justification of this move hinges on special properties of the formula “Prov(x)” (cf. Fact 3
and Fact 16). It is not true in general that if T - 3x¢(x), then for some m, T - ¢(m).
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Fact 2 Any nice theory T correctly decides Ag-sentences.’

The language of T can express the property of being a proof in T. In
particular, there is a X; formula Prf(x, y) which holds of numbers n and m
justin case n is a g.n. (Godel number) of a sequence of formulas which is an T-
proof of the formula whose g.n. (Godel number) is m. Moreover, Pr£ captures
(binumerates) T-provability in Q, and therefore also in T:

Fact3 For any m and n: (1) If Prf(m,n), then QF Prf(m,n), (2) If
—Prf(m, n), then Q = —Prf(m, n).

Further on, within the language of T we can define:

Prov(x) =gef 3y Pri(y, x)

Thus, Prov expresses the property of T-provability. Clearly, Prov(x) is also
¥;. (Henceforth, we will be using Prov sometimes within the language of T
and sometimes outside of it; sometimes we will also relativize the provability
predicate to a given theory. But we trust the context will make it clear what is
meant.) Observe the following:

Fact4 Prov expresses provability: m is the g.n. of a T-theorem just in case
Prov(m) is true. Yet, the predicate does not capture provability in T: it is not
the case that for any m, if ~Prov(m) then T - —=Prov(m).

Prov, standardly constructed, has certain properties which will come in
handy later on:

Fact 5 (Derivability condition 1)

(D1) IfTH ¢, thenTF Prov(T¢™).

Fact 6 (Derivability conditions 2 and 3) For any nice arithmetical theory T
extending 1X, there are predicates Prf and Prov such that Prf represents the
relation of being a proof in T, Prov(x) is defined by ‘y Prf(y, x)’, and Prov
satisfies (provably in T) the following derivability conditions:

(D2) Tk Prov("¢ — ¢ ™) — (Prov(T¢p™) — Prov("y ™))
(D3) TF Prov("¢") — Prov("Prov("¢™)™) -

Observe that Fact 6 states only the existence of formulas Prf and Prov
with the indicated properties. It does not state that T will prove (D2) and

SFor a proof, see e.g. Section 9.7 of [7].
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(D3) independently of the choice of the formula Prf representing the proof
relation. Indeed, such a claim would be false. There are known examples of
formulas representing the proof relation which yield provability predicates
which do not satisfy (D2) and (D3) (Rosser’s provability predicate belongs
to this category). However, both (D2) and (D3) hold under the standard
construction of the provability predicate.

We use Feferman’s dot notation. Within a quotation term, z is a term which
denotes the numeral for z and depends on the particular choice of z. Also,
for any ¢, we abbreviate Prov(sub ("¢ (x)™, 2)) as Prov(¢(z)) or Prov(¢(2))
if we want to emphasize that z is kept free. In fact (a result due to Feferman),
for the standard provability predicate, derivability conditions can be slightly
generalized:

Fact7 Suppose T is nice and extends 1Zy. If T+ ¢ (x), then T + Prov("¢(x)7).
Also, (D2) extends to formulas with free variables, and the third condition
generalizes to T = Prov("¢p(x)") — Prov("Prov("¢p(x)™) ).

In cases where Fact 7 applies, it validates the move (within a theory) from
¢— Y to Prov("¢ ) — Prov("¢ ") and to Prov("¢ ") = Prov("Prov("y "))
(of course, some attention has to be paid to free variables). We call these moves
K1 and K2 respectively, and employ them in our proof of Theorem 22.

The consistency statement Con(T), expressing consistency of T, is defined
by =Prov("0 # 07), with Prov being an appropriate T-provability predicate.
In what follows we will write often Con, suppressing the information about T,
when the intended theory is clear from the context. We will need a fact which
tells us, more or less, that when looking at the consistency statement, it doesn’t
really make a difference which contradiction we pick.

Fact8 If T is nice and extends 1%q, then for any ¢, TFE [Prov(¢) A
Prov(—¢)] = —=Con(T).

One more fact about Con will be useful.

Fact9 If T is nice and derivability conditions hold, then:

o T Con = G, where G is the Godel sentence.
e TF —Prov("¢") — Con forany ¢.

Definition 10 An arithmetical theory T is w-consistent iff for no open for-
mula ¢(x), TH ¢(m) for each standard numeral m, and yet T F =Vx ¢(x)
(alternatively: iff there is no ¢(x) such that T  3x ¢(x) and yet for each m,
T F —¢ ().

Definition 11 An arithmetical theory T is /-consistent just in case for no Ay
formula ¢ (x), T F 3x ¢(x) and yet for each m, T - —¢ (m).
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The following is a straightforward observation based on Definitions 10
and 11:

Fact 12 w-consistency is properly stronger than I-consistency.

Definition 13 An arithmetical theory T is ¥;-sound just in case for any X,
sentence, if T - ¢, then ¢ is true in the standard model of arithmetic.

Fact 14 If T is w-consistent, then if T - Prov("¢7), then T F ¢.°

Fact 15 If an arithmetical theory T is nice, then it is 1-consistent iff it is
Y1-sound.

Fact 16 If ¢ (x) is a 3y-formula and T is a 1-consistent nice theory, then if T -
Ax ¢ (x), then for some m, T\ ¢(m). (The claim generalizes to formulas with
more free variables.)

Since this fact is not obvious and important in further proofs, here’s an
argument:

Proof By the niceness of T and its 1-consistenty, Fact 15 allows us to infer
that T is X;-sound. Suppose T+ Ix ¢ (x). If ¢p(x) is Xy, so is Ix ¢(x). So
¥-soundness yields that 3x ¢ (x) is true in the standard model. But then, there
is a (standard) number m such that ¢ (7). We can assume ¢ (m) has the form:

Axr, ..., x5 ' (m, x1, ..., Xp)

where ¢’ is Ag. Since it is true in the standard model, there are stan-
dard witnesses for the existential quantifiers: some ny,...,n; such that
¢'(m,ny, ..., n;) holds in the standard model. That being the case, Fact 2
allows us to infer:

Tk ¢ (m,n, ..., 1) 9)
By existential generalization we get:
TF ¢(m) (10)

which completes the proof. (The claim generalizes to ¢ with more free
variables.) O

Fact 16 helps us to strengthen Fact 14 to the following:

Fact 17 If a nice theory T is 1-consistent, then if T - Prov("¢™), then T = ¢.

6This we have to distinguish from proving instances of reflection schema, Prov("¢) — ¢. No
nice theory can prove all such instances.
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One last thing we need will be a generalized version of the diagonal lemma:

Fact 18 (Diagonal lemma) If T is nice, then for any formula ¢ (x, y) there is a
formula ¥ (x) such that T+ [y (x) = ¢ (x, " (x) )]

Now we are ready to cope with the arithmetized proof.

4 Yablo’s Sequence with Provability, Arithmetized

Define ¢ as follows:
¢ (x, y) =aet V2 [2 > x — —Prov(sub (y, 2))] (11)

with sub standing for a substitution function. In effect ¢ (x, y) says that for any
number z greater than x, the formula whose g.n. is y is not provable of z.

Take anice theory T and use Fact 18 and diagonalize on ¢. This means there
is a formula Y (x) (the provability Yablo formula) such that:’

TFY((x) =Vz[z>x— —=Prov(sub("Y(x)", 2))] (12)
Theorem 19 If an arithmetical theory T is nice, then for any n, Tt/ Y(n).

Moreover, if T is also 1-consistent, then for any n, T t/ =Y (n) (where Y (n) is
constructed following Eqs. 11 and 12 using T’s provability predicate).

Proof For the first part of the theorem, suppose T + Y (77) for some n. We’ll
show this leads to contradiction. By Eq. 12:8

THVz [z>7— —Prov(Y(2))] (13)

Eq. 13 entails two things:
T+ —=Prov(Y(n + 1)) (14)
THVz[z>n+1— —=Prov(Y(z))] (15)

But Eq. 15 with Eq. 12 entail:
THYn+1) (16)
Eq. 16 by the first derivability condition (D1) entails:
TFProv("Y(n+1)7) (17)

This, given Eq. 14 implies that T is inconsistent. So if T is consistent, T I/ Y (77),
for any n. This ends the first half of the proof.

7This method of constructing a Yablo sequence (but for formulas containing the truth predicate)
has been employed by Priest [6] and by Ketland [4]. Also, Priest in footnote 4 of his paper mentions
that using provability predicate should lead to a proof of the first incompleteness theorem.
8From now on, instead of ‘Prov(sub (TY(x)7, 2))’ we will simply write ‘Prov(Y(z)).
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For the second half, suppose T is 1-consistent and T + =Y (r). We employ
Eq. 12 and start as follows:
Tkr—=Vz[z>hn— —Prov(Y(2))]
Tk 3z [z > 71 A Prov(Y(2))] (18)

Since Prov is Xy, and > is Ay, the formula 3z [z > n A Prov(Y(2))] is Z;.
Thus, Fact 16 applies and there is a number k such that:

TF k > i A Prov(Y(k))
T+ prov(Y(k)) (19)
From this, 1-consistency and Fact 17 allow us to infer:
Tr Y(k) (20)

to which we can apply the reasoning used in the first half of the proof, obtaining
a contradiction. Thus T I/ =Y (n).

(Observe (D2) and (D3) are not used, so the result holds even for some
theories without induction and is not sensitive to the construction of the proof
predicate.) i

So, when we arithmetize Yablo’s paradox using provability instead of
truth we get another incompleteness proof, which prima facie doesn’t use a
formula which “says” of itself that it is not provable. (Although, if derivability
conditions (D1-D3) hold, they are all provably equivalent to such a sentence).

5 Equivalence of Yablo Sentences

First, keep Y relativized to T-provability, defined as in Eq. 12,° and consider
the following claim:

Fact 20 If T is nice, then for any m, n, if m > n, then T + Yr(n) & Yr(m).

The claim is easily provable from the construction of Yr(x). However, given
that in the original paradox, prima facie no sentence in the sequence seems to
entail a sentence earlier on the list, an obvious question comes to mind:

If T is 1-consistent and nice, is it the case that for any m, n, if m > n, then
T+ Yr(m) ¥ Yr(n)?

9To remind the reader about this, we will sometimes use ‘7" in the subscript, but only in contexts
where ambiguity may arise.
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This would mean that T, if 1-consistent and nice, has an infinite sequence of
extensions: T+ Y7(0), T+ Y7(1), T+ Y7 (2), each weaker than the previous
ones. As it turns out, the answer to the question is negative.

Theorem 21 If T is nice and (D1) and (D2) hold, then

T+ Vx [Y(x) — Con(T)]. —

Proof
w.ts.: TF Y(x) — Con(T) (for arbitrary x)
Step 1 (by classical logic)

THL—>Yx+1)
Step 2 (from Step 1 by (D1))
THProv(lL—Yx+1"
Step 3 (directly from (D2))
THProv(CL—->Yx+1)") — [Prov("L") — Prov("Y(x+1)")]

Step 4 (from Steps 2, 3, by modus ponens)
TFProv("L™) - Prov("Y(x+ 1))

Step 5 (from Step 4 by contraposition)
TF—=Prov(Y(x+1)") — —=Prov(" L")

Step 6 (from Step 5 by definition of Con(T))

TkF—=Prov("Y(x+1)") — Con(T)
Step 7 (by Eq. 12)

TFHYx) — —Prov("Y(x+1)")
Step 8 (from Steps 6 and 7)

TF Y(x) — Con(T)

Theorem 22 For any n, if T is nice and predicate Prov used in the characteri-
zation of the Yablo sequence satisfies the derivability conditions (D1-D3), then
T+ Vx [Con(T) — Y(x)]. H

Proof We give a short sketch which uses Godel’s second theorem, and a longer
proof which doesn’t. For the sketch, working in T, assume Con(T). For an
indirect proof, assume also =Y (x). This yields Ju > x Prov(Y (u)). Let’s fix
such an u. Therefore by (D2), Prov("Vy > u —=Prov(Y(y))™), so (D2 again)
the theory proves that it doesn’t prove something. By Fact 9, Prov("Con(T)").
In effect, by Godel’s second incompleteness theorem formalized in T, —=Con(T)
(the last move requires all three derivability conditions).

Before we give the longer version, the reader should check Fact 7 and our
comments about abbreviations and inferential moves which directly precede
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and follow our statement of this fact. Also, recall that K1 depends on the first
and second derivability conditions while K2 depends on all three of them.

w.t.s.: TF Con(T) - Y(x) (for arbitrary x)
Step 1 (by Eq. 12)
THYx) — Vz[z>x— —Prov(Y(2))]
Step 2 (from Step 1 by K2)
TF Prov("Y(x)") — Prov("Vz [z > X - —=Prov(Y(2))]")
Step 3 (Arithmetic)
THVz[z>x— —Prov(Y(2))] > Vz [z >x+1— —Prov(Y(2))]
Step 4 (from Step 3 by Eq. 12)
THVYz [z >x— —Prov(Y(2)] > Y(x+ 1)
Step 5 (from Step 4 by K2)
Tk Prov("Vz [z > X —> —=Prov(Y(2)]") —
Prov("Prov(Y(x + 1))
Step 6 (Arithmetic)
TFVYz [z >x —> —Prov(Y(z))] - —Prov(Y(x + 1))
Step 7 (from Step 6 by K1)
Tk Prov("Vz [z > X —> —=Prov(Y(2)]") —
Prov("—=Prov(Y(x + 1))
Step 8 (Logic, Steps 5 and 7)
Tk Prov("Vz [z > X —> —=Prov(Y(2)]") —
Prov("Prov(Y(x + 1)) ") A Prov("—=Prov(Y(x + 1))
Step 9 (from Step 8 by Fact 8)
TkF Prov("Vz [z > X - —=Prov(Y(2))]") — —Con(T)
step10  (Logic, Steps 2 and 9)
T+ Con(T) — —=Prov("Y (X))
step11  (Logic, Step 10)
T F Con(T) — (Vz)—Prov("Y(2)™")
step12  (Logic, Steps 11 and Eq. 12)
T+ con(T) — Y(x)

From Theorems 21 and 22 the following corollaries follow:

Corollary 23 If T is nice and the derivability conditions are satisfied, then
TEVx, y[Y(x) =Y

Corollary 24 The answer to our question is pretty much negative. As long as T
is nice and the derivability conditions are satisfied, T + Y (m) = Y (i), and it
doesn’t matter whether m > n.
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Also, recall that according to Fact 9, the Go6del sentence is provably equiv-
alent to the consistency statement. Thus:

Corollary 25 If T is nice and the derivability conditions hold, T - G = Y (n) for
any n.

6 Existential Yablo Paradox

It seems we can run a similar paradox, but with existential quantification
(see [8]). Consider the infinite sequence:

so = ‘Fx (Pi(x) A =Tr(x))’,
s1 = 3x (P2(x) A ~Tr(x))’,

s2 = Ax (P3(x) A =Tr(x))’,

(where the reference of P;s is as in the original formulation). Suppose sq is
true. Then, a sentence above it in the list, say s, has to be false. But then, it is
not the case that 3x > k —=Tr(s,). Thatis, Vx > kTr(sy). In particular, Tr(s¢1)
which says that there is a false sentence above si,;. But it’s also above si, and
all sentences above s; are to be true. Contradiction. So sy is not true. Suppose
it is false. Then, we just run for sy the second half of the above reasoning.

What happens when we arithmetize this paradox replacing Tr with Prov?
Say we introduce

VY (X, y) =det 37 > x —~Prov(sub (y, 7)) (21)
Once we diagonalize on v we know that there is a formula E(x) such that:

Tr E(x) =3z > x =Prov(sub("E(x)™, 2)) (22)
Theorem 26 If T is nice and I-consistent, then T t/ — E(n), for any standard n.

Proof Suppose T + —E(ii). Then:!°
T+FVz >n Prov(E(z)) (23)
TFProv(" E(n+1)")
By Fact 17 and 1-consistency of T:
TFHEn+1)

0¢prov(E(z)) abbreviates ‘Prov(sub (TE(x)7, 2)’.
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692 C. Ciegslifiski, R. Urbaniak

This means:
TkH3z >n+1 -Prov(E(z))
But Eq. 23 also entails:
THVz>n+1Prov(E(2))

which shows T to be contradictory. O

Further, say we assume for reductio that T -+ E(71). We obtain:
Tr3z>n—-Prov("E(z)") (24)

This doesn’t allow us to infer that there is a standard witness for which this
claim is provable. We can try to continue reasoning within T with an arbitrary
constant (just making sure we don’t apply any principles meant to apply only
to standard numerals):

a>nA—-Prov(" E(a)")

But here the argument is blocked. Contrary to what happened with the original
proof, Eq. 24 does not entail the content of E(a). Yet, there is another, rather
simple argument and the claim holds.

Theorem 27 If T is nice, T t/ E(n), for any n.

Proof If TH E(n), it proves that it doesn’t prove something, and thus proves
its own consistency (by Fact 9). But if it is nice, it doesn’t do the latter. |

Now we can ask whether all E-sentences are provably equivalent the way
all Y-sentences are. The answer is positive:

Theorem 28 If T is nice and the derivability conditions are satisfied, all E-
sentences are provably equivalent in 'T. That is, for any n and m:

T+ E@) = E(n).

Proof The proof is by provable equivalence of each such sentence with
Con(T). From left to right, E(71) — Con(T), this is clear because E(7) states
the unprovability of a sentence, and this implies the consistency statement
(Fact 9).

From right to left, work within T. Assume Con(T) and —E(#). This gives
Yz > n Prov(" E(2)"). Thus Prov(" E(n+ 1)"). So we get Prov("Con(T)™),
because we already have the implication E(k) — Con(T) within the scope of
Prov for any k. But Godel’s second theorem (formalized) gives Con(T) —
—Prov("Con(T)™). So —Prov("Con(7T)™), which gives a contradiction and
ends the proof. O
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The way the proof proceeds makes the following clear:

Corollary 29 All E-sentences are provably equivalent to the consistency state-
ment and to the Gddel sentence, if the background theory is nice and the
derivability conditions are satisfied.

7 Yablo Formulas with Rosser’s Provability Predicate

A case deserving special attention is that of Rosser’s provability predicate. We

introduce two definitions:!!

PrEf(x, y) =dqef Prf(x, y) AVz < x—Prf(z, —y), (25)
Provi(y) =gef IXPTER(X, ). (26)

Then it is possible to construct a Yablo formula Y ® (x) satisfying:
T+ Y®(x) =Vz > x—Provi(YR(z))]. (27)

Since Prov®(y) satisfies (D1), Theorem 19 applies: our theory T doesn’t
decide YR(n) for any natural number n. However, Prov®(y) doesn’t satisfy
(D2) and (D3)'? and so Corollaries 23 and 24 do not apply. The issue whether
all Y ®(n)-s are provably equivalent remains undecided.

Is it possible to construct a model M for T with M = YR(n + 1) and M ¥
Y& (n)? We don’t know the answer, but the following is worth observing:

Fact 30 Any model M of T with M = YR(x 4+ 1) and M ¥ YR (x) would have
to satisfy —Con(PA).

Proof Fix x € M and suppose:

ME=YR(x+1)
M E -YR(x)
These (respectively) yield (in the model):
vz > x + 1 =ProvR(YR(z)) (28)
3z > x ProvR(YR(2)) (29)

Together, Egs. 28 and 29 entail:
ProvR(YR(x + 1))

HOf course, ‘—y’ stands for the g.n. of the negation of the formula whose g.n. is y.

12This is the case because (D1)-(D3) are enough for the proof of the second incompleteness
theorem. Otherwise we would have: T ¥ Con®(T), with Con®(T) defined by —Prov®(0 # 0).
However, as it is well-known, T - con®(T).
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By definition of Prov¥, it follows:
Prov(YR(x + 1))

Now, work inside the scope of the provability predicate. YR(x + 1) by
definition is equivalent to:

Vz > x + 1 =Provi(YR(z)) (30)

Eq. 30 entails Vz > x +2 —=Prov®(Y®(z)) and by the same token YR (x + 2).
Thus, jumping out of the scope of the provability predicate:

pProv(YR(x +2)). (31)
On the other hand, we already have Eq. 28, which entails:
—ProvR(YR(x +2))
By the construction of Rosser predicate, this means:
Vz [Prf(z, "YR(x+2)") vIs < z Pri(s, =Y R(x +2)7)] (32)

We know by Eq. 31 that there is a number d such that Prf(d, YR (x + 2)).
Applying Eq. 32 to d, we see that d must satisfy the second disjunct, i.e. Is <
d Prf(s, =Y R(x +2)). In effect Prov(=YR(x + 2)), which in view of Eq. 31
gives us —Con(T). O

8 Summary

Replacing truth with provability in Yablo’s paradox yields an infinite sequence
of undecided formulas, as long as the background arithmetical theory satisfies
standard requirements for incompleteness. All such formulas are provably
equivalent to the consistency claim and to the Godel sentence. These prop-
erties are preserved when the original paradox is replaced by the existential
Yablo paradox.

When Rosser’s provability predicate is used in the construction, indepen-
dence claims hold but it remains undecided whether in such a case all sentences
in a Yablean sequence (i.e. all sentences obtained from ‘Y % (x)’ by substituting
numerals for ‘x”) are provably equivalent in T. We conjecture that such
sentences are not provably equivalent, even though they are all true in the
standard model of arithmetic.
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