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Core-periphery networks are structures that present a set of central and densely connected nodes, namely, the core, and a set of
noncentral and sparsely connected nodes, namely, the periphery. The rich-club refers to a set in which the highest degree nodes
show a high density of connections. Thus, a network that displays a rich-club can be interpreted as a core-periphery network in
which the core is made up of a number of hubs. In this paper, we test the resilience of networks showing a progressively denser
rich-club and we observe how this structure is able to affect the network measures in terms of both cohesion and efficiency in
information flow. Additionally, we consider the case in which, instead of making the core denser, we add links to the periphery.
These two procedures of core and periphery thickening delineate a decision process in the placement of new links and allow us to
conduct a scenario analysis that can be helpful in the comprehension and supervision of complex networks under the resilience
perspective. The advantages of the two procedures, as well as their implications, are discussed in relation to both network efficiency

and node heterogeneity.

1. Introduction

Defined as a system’s ability to adjust its activity to retain its
basic functionality when errors, failures, and environmental
changes occur [1, 2], resilience is a crucial property of many
networked systems. It has been rapidly tackled by the scien-
tific literature [3, 4] and, as such, is still considered a topic of
great interest [2, 5, 6].

Related to concepts such as robustness, redundancy, vul-
nerability, and sustainability [7], resilience is considered fun-
damental for a number of practical approaches that involve
risk assessment in terms of criticalities related to the eventual
failure (or removal) of nodes and links and thus by means
of overall systemic tolerance. Indeed, network performances
(especially in terms of routing ability and stability) are
directly related to their resilience and thus to the capabilities
of networks in tolerating loss of important elements such as
bridges or hubs. Mainly because of its tangible implications
[8-11], resilience has been investigated across many different
network structures (both synthetic and real) and there is now
knowledge regarding how specific kinds of networks react to
specific kinds of losses [12, 13]. In more detail, since resilience

is related to the ability to withstand deliberate attacks and
incidents, studies about this topic have tended to consider a
large variety of structural failures (both induced by attack or
naturally occurring) which involve both specific (i.e., chosen
by their properties like the centrality indexes) and random
nodes.

Moreover, as resilience is strictly related to the network
topology [3, 14], results of the stress tests are strongly affected
by certain structural measures such as density and the
clustering coeflicient [15], as well as by the presence of specific
substructures like cliques or dense subgraphs, which are, in
general, highly fault-tolerant since the loss of any element has
no disruptive effect on the interaction between the others.

Among those densely tied substructures that seem to be of
interest in terms of resilience [16, 17], the rich-club is particu-
larly well known [18]. The rich-club is a network substructure
that is observed when hubs are tightly interconnected. It con-
stitutes the basis for the recognition of the rich-club phenom-
enon which is, more generally, defined as the tendency of
nodes with a high centrality (usually degree) to form highly
interconnected communities [19]. Furthermore, it can be
even interpreted as the core of a core-periphery network [20],
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that is, as the core of a network that shows a set of central and
densely connected nodes and a set of noncentral and sparsely
connected nodes.

The rich-club phenomenon has been observed in many
different networks [18, 19] and its importance has been rec-
ognized in that it represents an unexpected feature (i.e., non-
replicated by regular models [18, 21]) of many real systems,
which is shown to have a relevant effect on certain network
measures, especially on assortativity and transitivity [22].
Another important aspect of the rich-club is that while it is
possible to evaluate its presence for each value of the node
degrees, through a specific coefficient properly normalized
over an ensemble of randomized networks [19, 23-27], it is
not possible to compute its size a priori [25].

Thus, it is commonly assumed that the rich-club is made
up of a certain low percentage of the highest degree nodes [18,
22], whose interconnections are able to strongly affect a num-
ber of structural measures. So, despite the fact that a number
of studies have investigated the rich-club phenomenon and
aspects of resilience within the context of complex networks
(like in the case of the Internet [1] and, more recently, of the
Darknet [5]), to the authors’ knowledge these two problems
have never been tackled when taking their conjectured
mutual effects into consideration. Indeed, while there have
been some statements about the role of the rich-club in terms
of its capacity to increase the network stability [5], to act as
a super traffic hub [18], and to indicate resilience to specific
kind of attacks [28], the literature still lacks a unique general
framework able to make the relationship between the rich-
club ordering and the resilience of a network explicit.

Under these circumstances, this paper aims to shed some
light on the role of the rich-club from a resilience perspective
by looking at how the presence and the characteristics of
this important substructure are able to affect the network
robustness from various points of view.

For these reasons, we consider networks in which we
manipulate the set of connections among the highest degree
nodes by adding and removing links. By adopting this strat-
egy we obtain a set of different networks that share the same
topology other than a small subgraph made up of the rich
nodes; that is, we keep the network periphery while altering
the network core. The resilience is tested on the resulting
networks by means of a number of measures related to both
efficiency and cohesion: the diameter, the average path length,
the global efficiency, and the global clustering coefficient. The
implications of the rich-club presence in terms of resilience
lay the basis for the investigation of a different rationale in the
positioning of new links. Therefore, we modify the previous
manipulation procedure by testing the case in which the same
amount of links (which we would add in order to reach
certain rich-club densities) is instead added randomly outside
the rich-club.

More specifically, we implement two procedures of either
core or periphery thickening in order to mimic the decision
process of a supra-agent that, with a limited amount of
resources constituted by the new links, has to engineer the
considered system in an efficient manner. The result of this
process will be relevant in understanding where to put new
connections in existing networks, such as new routes in
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airport networks or new cables in power grids or the Internet,
being consistent with a set of efficiency criteria that are here
represented by the network measures used in the evaluation
of resilience.

The investigation of different scenarios leads us to certain
conclusions that foster the addition of new links within the
network core and thus offer a different insight into the com-
plex task of network reinforcement. Our conclusions could
help decision makers in pursuing more appropriate choices
when it comes to implementation of precautionary measures
and to investment of new resources with the scope of increas-
ing the resilience of a certain network.

In more detail, the outcome of our strategy, in terms of
core thickening, also has consequences related to the costs of
new links positioning. Indeed, it has been shown that, in a
wide range of networks within the technological domain [23],
the rich-club emerges because links among hubs have a cost
that is, in general, lower than other links since hubs tend to
be physically closer. Therefore, rich-club ordering has also a
geometric explanation as to its existence. As a consequence,
if we have a certain limited amount of resources dedicated to
new links positioning, a core thickening strategy is capable
of providing both a higher efficiency and a lower cost. This
would preserve a delta of resources that could be potentially
invested into a periphery thickening strategy able to provide
more benefits in the long run through its tendency towards
nodes equity.

Lastly, our results allow room for certain additional con-
siderations at different levels, which will be useful in better
comprehending and supervising networks that display the
rich-club structure.

The paper is organized as follows: Section 2 describes
rich-club ordering and network resilience; Section 3 shows
the simulation setting; Section 4 displays the simulation
results and analysis; Section 5 presents discussions and con-
clusions.

2. Rich-Club Ordering and Network Resilience

Rich-club ordering is an important topological property
firstly observed in the case of technological networks and,
in more detail, in the case of the Internet at Autonomous
Systems (AS) level [18]. Recognition of this phenomenon is
conducted via a comparison between the number of links
among the rich nodes and the number of links they might
possibly share. In doing so, it is possible to evaluate the den-
sity of the subgraph made up of such nodes. The rich nodes
are those that have a degree higher than a certain threshold
k and a rich-club occurs when such nodes are more densely
interconnected than expected; that is, they have more inter-
connections with respect to the average of the interconnec-
tions found among the same nodes in an ensemble of rewired
networks [19].

However, as the threshold value of degree k for which
we may observe that the rich-club is unknown, the size of
the rich-club is therefore assumed, in accordance with the
empirical evidence, to be around the 1% of the network
nodes [18, 22, 25]. The empirical evidence of small rich-club
size is present in many different domains from technological
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[27] to social [29] and biological networks where, especially
in neuroscience [30-32], the investigation of the rich-club
phenomenon has provided important insights from a brain
functionality perspective.

Thus, while this property has been recognized as relevant,
its effect on the network metrics has been mainly tested for
cohesion measures such as the clustering coefficient and the
degree assortativity and only marginally for path-based mea-
sures that should be, in case of rich-club ordering, more of
interest since such measures are associated with information
flow. Indeed, the efficiency of a network is mainly based on
path metrics and it has been shown that the rich-club is an
emergent property of certain networks [23] in which hubs
need to be interconnected in order to avoid losses, as in the
case of electric current in power grid networks [23, 33]. In this
respect, the knowledge and the investigation of the rich-club
effect on other measures, closer to the concept of distances
among nodes, may be of interest in terms of both static
analysis, that is, in terms of the effect of a progressively denser
rich-club on certain measures, and dynamic analysis, that is,
in terms of resilience. Indeed, the investigation of network
resilience can be seen as a what-if analysis that considers
a large set of network topologies and metrics that derive,
through a procedure of nodes and links deletion, from the
original one.

Resilience has been traditionally studied in two different
cases (or scenarios): error and attack. By error we mean the
random removal of elements; by attack we mean a removal
process that targets specific or crucial elements. Thus, the
error case considers randomness while the attack case is con-
ducted by removing elements with high values of certain cen-
trality measures in two different ways: sequential and simulta-
neous [13]. If we consider node removal, in the sequential
targeted attack the centrality measures are computed at the
beginning of each iteration and the node with the greater cen-
trality score is eliminated; in the simultaneous targeted attack
the centrality measures are computed at the beginning and
the order of the nodes to be removed is known before the
procedure starts. In the previous cases and even in the case
of error, the basic properties and effect of the removal proce-
dures are well known in the literature for both real and syn-
thetic networks [12, 13]. For instance, it is known that scale-
free networks are particularly resilient in case of error and
particularly vulnerable in case of attack due to the variance
of their degree distribution, that is, because of a topology
that includes hubs [3]. Obviously, many other cases could be
mentioned, but none of them would include, to our know-
ledge, a clear perspective on the role of the rich-club in such
networks. Thus, under these circumstances and given the
relevance of both network resilience and rich-club ordering
from a number of perspectives, it is important to extend the
current knowledge as deriving from the literature to the case
of networks displaying a rich-club structure.

3. Simulation Setting

We analyze resilience by considering undirected and un-
weighted scale-free networks G, with N = 5000 nodes and
mean degree value (k) = 6. We manipulate the connections

among the top 1% nodes of highest degree by adding/remov-
ing links in order to create subgraphs (cores) with various
density values. In adopting this strategy we are able to obtain
different networks sharing the same topology other than the
subgraph made up of the rich nodes.

As shown in Figurel, the obtained densities of the
induced subgraphs are d = {0,0.09,0.25,0.5,0.75, 1}, where
d = 0.09 is the density, averaged over ten instances, of the
subgraph made up of rich nodes in the original (i.e., nonma-
nipulated) network. This last case represents the default case
among the different generated networks. In the six different
scenarios we test the robustness of the network to node
removal in case of error and in case of simultaneous degree-
targeted attack. The choice of this kind of attack (instead of
the sequential degree-targeted attack in which the centrality
scores are computed at each iteration) is motivated by the fact
that our aim is to observe the effect of the rich-club, as realized
by our manipulation, on certain measures that characterize
the considered network. Indeed, with the simultaneous
degree-targeted attack we know a priori the nodes that are
going to be removed, while in case of sequential degree-
targeted attack the ensemble of rich nodes may be subjected
to variations due to the recomputation of the centrality scores
at every iteration.

After the removal of each node, we compute a number of
different metrics that refer to aspects of both information flow
and network cohesion. The considered measures are global in
the sense that they are computed on the whole network and
not on the single node, and they are the diameter, the average
path length, the global clustering coeflicient, and the global
network efficiency (see Table 1).

The diameter provides information about the ease in
which communication occurs between the farthest elements
of the network. It measures the longest geodesic path consid-
ering the two most distant nodes and it can be considered as
a extremal measure that, despite having a low value in most
real world networks, is subject to relatively large changes in
response to local modifications. Thus, it has to be coupled
with other measures that take into account the mean distance
among nodes and that are more stable when local changes
occur. For this reason, we also consider the average path
length which is computed as the mean of all the shortest
(geodesic) paths among nodes. These two measures, which
take into account paths, are however related and affected
by another feature of many real world networks: the cohe-
siveness of nodes. Indeed, it is often observed that two
neighbors of a certain node are themselves neighbors and the
probability of such an event (which determines the network
cohesiveness) is known as clustering coeflicient. The clus-
tering coefficient is also an overall network measure that
takes into account the number of triangles in the network
and compares such a number with the amount of connected
triples (ordered paths of the length 2). The two global
measures called average path length and global clustering
coeflicient are generalized into a unique measure that embeds
their informative content. This measure, which quantifies the
overall efficiency in communication among nodes, is called
network efficiency. For our purposes, the average efficiency
formulation (reported in Tablel1) is then normalized by
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FIGURE 1: Process of link addition/removal of the subgraph made up of the highest degree nodes in order to reach different density values.

TABLE 1: Short glossary of metrics computed during simulations (note that d;; is the shortest path between nodes i and j in G).

Measure Definition Formula
Diameter (D) ’gqset::ﬁileg(tlhnzge}: shortest path between the most D= ?}gé d,
Average path length (APL) Egjpﬁia;igﬁghe shortest paths between all APL = —N(Nl - LJZEGd,»j
Global clustering coefficient (C) z?:ﬁl Yg(rﬁgle d?lfa;}:olggzl clustering coefficients C; C= %;;Ci
Global network efficiency (E) giif;eiﬁi‘::n‘;fgsenﬂy the network E= mkécdlﬁ

considering the average efficiency value of a complete graph
of size N. Having the possibility of observing these four mea-
sures during the process of node removal allows us to eval-
uate the local and global aspects related to network perfor-
mance, both specifically and in a more general sense.

The obtained results are averaged over 10 replicas of the
resilience tests and on 10 different networks realized using the
same degree sequence (i.e., the same list of node degrees).

For all the considered cases we focus on the initial effect
of a denser/sparser rich-club on the measures from the above
and on its effect throughout the process of node removal.
Additionally, we test the case in which the same amounts

of links that we would add in order to reach certain rich-
club densities are instead added randomly outside the rich-
club. In other words, by recalling the core/periphery nature of
networks that display rich-club ordering, we test two proce-
dures of either core or periphery thickening. The comparison
between the two procedures allows us to perform a scenario
analysis and to simulate a decision process of a supra-agent
that, with a limited amount of resources (the links), has to
engineer the considered system (the network) in an efficient
(from the point of view of the described measures) manner.
It is worth adding at this point that the two indicated
procedures (i) to add links within the rich-club and (ii) to add
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FIGURE 2: Variance of the degree (k)” after the procedure of core and periphery thickening. All results are averaged on 10 instances.

links outside the rich-club alter the degree distribution (and
the degree sequence) of the considered networks. These alter-
ations depend on many factors, including the number of links
to be added and their location, as well as the consequent size
and density of the rich-club. Placement of the new links has an
effect on the different portions of the degree sequence, mean-
ing the two procedures end up turning the network into either
more irregular or regular structure. We illustrate this process
of degree sequence modification by plotting the variance
(k)? of the node degrees (see Figure 2), that is, the degree-
related network heterogeneity [34, 35], in the described cases.

We summarize the described simulation procedures as
shown in Table 2 where column 2 is the required local density
for the rich-club subgraph, column 3 is the average values
of links to be added in order to obtain such a density, and
column 4 reports the number of links removed or added ran-
domly in the network core, while column 5 highlights the
number of links that are randomly removed or added in the
network periphery. Note that links are reported as averages
over ten instances, while in the network manipulation each
of the ten instances was modified with the proper number
of links. Note also that in the second setting the default rich-
club is preserved together with its density, since we are adding
links in the network periphery.

Data processing, the network analysis, and all simula-
tions (all the implemented functions are available at https://
github.com/cinHELLi) were conducted using the software R
[36] with the igraph package [37].

4. Simulation Results

4.1. Core Thickening. Analyzing Figures 3 and 4 we notice
that the rich-club is not highly relevant with respect to
simultaneous degree-targeted attack in networks that display
a power-law degree distribution. Rather, it positively alters
the initial statistics of the network; this is why, without the
zoom of Figure 4, we would only be able to observe the
stacked curves of Figure 3.

In more detail, when we take into account scale-free
networks, we observe that the overall trend of the considered
measures is very close, in the long run, to that of the
nonmanipulated scale-free networks; in our case the curve
is with density d = 0.09 and related to Scenario 2. Indeed,
the presence of the rich-club has an effect on the values of
the considered measures until the 1% of the nodes have been
removed, as shown in Figure 4. In decreasing order of impact,
such an effect has an impact on the global clustering coeffi-
cient, the global efficiency, the average path length, and the
diameter. The effect on all these metrics is further amplified
by the density of the rich-club; thus, the higher its density, the
higher the overall centrality value. This is true in particular for
the global clustering coefficient case in which, called n,, the
number of nodes of the rich-club is progressively generated
up to ("5 ) triangles, that is, the number of triangles displayed
by a complete subgraph of size n,. The core thickening
procedure also has a relatively strong impact on the global
efficiency and on the average path length. Indeed, when
we consider these two measures, the addition of new links
provides a reasonable number of new shortcuts that, despite
being suboptimal with respect to other strategies, are still
suitable in order to reduce the average path length, for
example, when new links are added among nodes with the
highest betweenness centrality [38].

As previously mentioned, the effect of the rich-club is
relatively strong for all the initial values of the computed mea-
sures. This does not, however, include the diameter, whereby
a denser rich-club provides relatively useful shortcuts when
considering the distance between two specific nodes. This is
because the clustering coeflicient, the efficiency, and the aver-
age path length are measures averaged over all the network
nodes (while the diameter is a more extremal measure) and
are thus affected by the centrality values retained by the rich-
club. This bias is especially evident in scale-free networks
whose heterogeneity in the degree distribution contributes to
phenomena like the friendship paradox, which holds if the
average degree of nodes in the network is smaller than the
average degree of their neighbors [39].
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TABLE 2: Simulation scenarios for core and periphery thickening.
Rich-club density Links Core thickening Periphery thickening
Scenario 1 d.=0 m, =111 Remove m, links Remove m, links
Scenario 2 d,. =0.09 m, =0 Default case Default case
Scenario 3 d. =025 my = 194 Add m; links Add m; links
Scenario 4 d. =0.50 m, = 500 Add m, links Add m, links
Scenario 5 d,. =075 ms = 807 Add m; links Add mg links
Scenario 6 d.=1 mg = 1113 Add my links Add my links
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FIGURE 3: Resilience for simultaneous attack simulations with progressive manipulation of the number of links in the network core. The
dashed line is placed in correspondence with the rich-club size. All results are averaged over 10 instances.

The origin of the paradox is attributed to the existence
of hub nodes and to the variance of the degree that con-
tributes to altering the mean values of the degree over
the neighborhoods of the nodes. Therefore, the observed
deviations of the computed measures may be motivated by
similar reasoning if we further consider the increase in the
degree sequence variance induced by our manipulations. In
summary, exacerbating the interconnections among hubs
(i.e., to create progressively denser cores) has a relevant effect
on the centrality measures averaged over the network nodes

but has no relevant effect in terms of resilience to a degree-
targeted attack.

In the case of error the rich-club in Figure 5, according
to its density, provides a very high fault tolerance to the
considered system. Indeed, the nodes that constitute the core
make up a low portion (1%) of the whole number of nodes
and are thus less likely to be randomly removed. The low
probability of hubs removal has an effect on the resilience of
the system, which is guaranteed for all the observed measures.
For instance, the diameter doubles only when about 75%
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FIGURE 4: Resilience for simultaneous attack simulations with progressive manipulation of number of links in the network core; magnification
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over 10 instances.

of the elements are removed, and the global clustering
coeficient is kept during the simulations since the majority
of triangles are located within the rich-club.

Figure 6 focuses on the area of the rich-club where the
behavior of the considered measures follows a straight line,
indicating a certain network stability for similar reasons as
those discussed before.

4.2. Periphery Thickening. As shown in Figure 7, networks
with a denser periphery are more resilient to targeted attacks
than networks with a denser core. Intuitively, this happens
because, in this setting, the core nodes maintain their initial
characteristics in terms of interconnectedness, while the
periphery nodes become progressively more interconnected.
This process of node homogenization is also the reason that
the different curves of Figure 7 are not stacked and present
clear differences throughout the removal process. When we
look at the diameter and at the average path length, the peaks
related to the two metrics occur in correspondence with a
higher percentage of removed nodes (between 30% and 40%
approximately) and, differently from the case of core thicken-
ing, the number of added links has a role in determining the

robustness to targeted removal. This observation is consistent
with the fact that, by adding links to the network periphery,
we decrease the degree sequence variance; thus we somehow
regularize the considered networks. The obtained results
recall the resilience to simultaneous degree-targeted attack
in case of degree homogeneous networks [4]. Additionally,
the initial global clustering coeflicient is much lower as links
are not placed in order to thicken a small subgraph (the
rich-club); consequently the likelihood to close a connected
triple (to create a new triangle) is lower. Even in the case of
global efficiency we observe a proportionately more resilient
behavior across the number of added links as confirmed by
the distance among the six different curves.

In the case of error (see Figure 8), the periphery thick-
ening procedure leads to results that are similar to those of
core thickening except for two considerations. The clustering
coefficient is much lower, for the reasons discussed before,
and the curves relating to different scenarios have similar and
almost stacked trends; in other words, they refer to results
that are comparable, although the number of added links
in the various scenarios is much different. This is because,
as we lower the variance of the degree, the contribution of
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FIGURE 5: Resilience for simultaneous error simulations with progressive manipulation of the number of links in the network core. The dashed
line is placed in correspondence with the rich-club size. All results are averaged over 10 instances.

each node to the considered network metrics tends to be
progressively the same. In more detail, the curves related to
diameter and to the average path length follow a similar trend
to that of the core thickening case, even if the various curves
tend to behave more similarly among each other because of
the homogenization procedure. This is also the case when
it comes to the global efficiency and the global clustering
coeflicient, as the latter shows a much lower overall value
based on the fact that it is, somehow, not biased by a high
concentration of triangles in the network core.

5. Discussion and Conclusions

Herein we discuss the results of the simulations by looking
at both their theoretical and practical meaning and impli-
cations. Consideration of both the theoretical and practical
aspects regarding the results is helpful in better understand-
ing the role of the rich-club in terms of network resilience
and in providing insights into the demanding task of network
supervision and engineering.

If we consider attack tolerance, the rich-club thickening
initially guarantees a greater global cohesion predominantly
in the core, as well as an overall better performance when
removing a number of nodes below the 1% threshold. Thus,

the network provides better performance when only a few
high-degree nodes are removed. The main drawback is that
this high proportion of cohesion measure is retained by the
nodes that are actually the most likely to be removed in the
case of an attack.

Considering attack tolerance once again, the periphery
thickening has the main advantage in that it alters the
network into a more resilient structure, which is able to keep
its properties in the long run. This means that the network
tends to maintain stable values of the performance measures
when a high portion of the nodes is removed, since in this
case the paths tend to be preserved. These aspects of network
resilience are mainly regulated by the manipulation of the
network degree-related heterogeneity (i.e., by the manipula-
tion of the variance of node degrees) that we perform through
the procedures of core and periphery thickening.

In the case of error, the networks that display a dense core
provide overall better performances that improve accordingly
with the core density. Indeed, the trend of the different curves
in the cases of core and periphery thickening are similar, but
the former case provides also a better initial global efficiency
and a higher value of clustering that lasts throughout the
simulations.
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FIGURE 6: Resilience for simultaneous error simulations with progressive manipulation of the number of links in the network core;
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results are averaged over 10 instances.

Thus, if by looking at the simulations, a decision maker
would evaluate where to put a set amount of links with respect
to random node failure, the logical conclusion would be
that it is better to increase the density of the network core
and to increase that density as much as possible, compatibly
with the amount of available links and addressed resources.
The observations in the case of attack should be of different
nature and should be weighted on an eventual foresight about
the magnitude of possible attacks to the network. Indeed,
if massive attacks on the network are possible, the periphery
thickening (i.e., a network homogenization) should be pre-
ferred while if there is a higher likelihood of few hubs being
removed, the core thickening (i.e., a network heterogeniza-
tion) should be preferred.

In other words, considering, for instance, the diameter,
that is, an extremal measure of communication, in the case of
periphery thickening the curves have both shifted peaks and
a lower slope according to the network density. It means that
the network performance degenerates after a greater number
of removed nodes and the considered performance measures
are directly proportional to the network density. Indeed, for

a fixed percentage of removed nodes the diameter is smaller
as the density grows.

The concepts of attack magnitude and attack likelihood
constitute two important aspects, related to the risk profile
of the network under observation that should be considered
when different strategies of link addition are taken into
account.

However, these conclusions could be further discussed
especially in case of resilience to massive attacks provided by
networks treated with the periphery thickening procedure.
Indeed, in case where about 25% of the network nodes (or
more) are lost, issues regarding the performance could be
discarded in favor of other issues regarding network recovery
and catastrophes management. Thus, a decision maker may
be not that interested in the performance measures from
the above once the system has been dramatically disrupted.
Using this consideration as a baseline, we may argue that once
the percentage of removed nodes has passed such a right-
shifted threshold, an advantage in terms of resilience is not
particularly realistic due to the fact that any benefit can be
only obtained once a loss of significantly large dimensions
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FIGURE 7: Resilience for simultaneous attack simulations with progressive manipulation of the number of links in the network periphery. The
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occurs. This may lead us to conclude that the core thickening
procedure, that is, the increase of the rich-club density, has
to be considered as a practically better procedure to follow in
order to enhance the network resilience.

In summary, the simulations highlight the relationship
between the rich-club size and the attack magnitude, indicat-
ing that if the former is greater than the latter then a reason-
able policy would be to perform a core thickening strategy.

Two aspects have to be considered further: on the one
hand, the core thickening strategy provides a better resilience
to errors and to small attacks (to hubs) but on the other hand
this procedure, in accordance with the size and the density of
the rich-club, exacerbates the degree-related asymmetry and
thus entails a problem of equity of nodes that is invariably of
interest in a number of real networks. When the attack mag-
nitude exceeds the rich-club size then simulations suggest a
strategy of periphery thickening.

Therefore, a decision maker has to face controversial deci-
sions regarding the adoption of a strategy that is affected by
two parameters, the rich-club size, and the attack magnitude,
which are two measures generally difficult to obtain and
foresee. This reinforces the notion that a better understanding

of the network structure and of the rich-club is relevant, espe-
cially when coupled with other concepts related to the risk
profile and to the type of system that is taken into account.

These observations reveal a number of discussion points
concerning the management of man-made systems such as
the Internet and certain airport networks. Indeed, these
networks already display rich-club ordering because hubs
have been progressively interconnected for reasons relating
to both efficiency of traffic and the cost of new links. Moving
forward, it will also be important to consider cascade failures,
since in this case eventual failures or attacks seemingly
propagate faster within a network with a dense core than in a
network in which hubs are less interconnected. Therefore, the
implementation of the core thickening procedure, as well as
the management of a network that already displays rich-club
ordering, suggests that stronger monitoring activities of the
network nodes are needed in order to avoid attack and isolate
those that are the source of failure.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.



Complexity

20 A
g
5]
g
]
A 10 A
0 -
0.00 0.25 0.50 0.75 1.00
Percentage of nodes
Density
Sc.1 — Sc.2
Sc.3 —— Sc.4
—— Sc.5 — Sc.6
10.0 4
k=]
2 75
~
= I
&
= 501
=1y]
5
>
< 25
0.00 0.25 0.50 0.75 1.00
Percentage of nodes
Density
Sc.1 — Sc2
Sc.3 —— Sc.4
—— Sc5 — Sc.6

Clustering coefficient

Efficiency

1
0.20
0.15 4
0.10 A
0.05 A
0.00 A
0.00 0.25 0.50 0.75 1.00
Percentage of nodes
Density
Sc.1 — Sc.2
Sc.3 —— Sc4
—— Sc.5 — Sc.6
0.3 4
0.2 4
0.1 4
0.0 4
0.00 0.25 0.50 0.75 1.00
Percentage of nodes
Density
Sc.1 — Sc2
Sc.3 — Sc4
—— Sc.5 — Sc.6

FIGURE 8: Resilience for simultaneous error simulations with progressive manipulation of the number of links in the network periphery. The
dashed line is placed in correspondence with the rich-club size. All results are averaged over 10 instances.

References

[1] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Resilience

of the Internet to random breakdowns,” Physical Review Letters,
vol. 85, no. 21, pp. 4626-4628, 2000.

[2] J. Gao, B. Barzel, and A.-L. Barabasi, “Universal resilience pat-

(7]

terns in complex networks,” Nature, vol. 530, no. 7590, pp. 307-
312, 2016.

R. Albert, H. Jeong, and A.-L. Barabdsi, “Error and attack toler-
ance of complex networks,” Nature, vol. 406, no. 6794, pp. 378-
382, 2000.

P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda, “Error
and attack tolerance of complex networks,” Physica A: Statistical
Mechanics and its Applications, vol. 340, no. 1-3, pp. 388-394,
2004.

M. De Domenico and A. Arenas, “Modeling structure and resil-
ience of the dark network,” Physical Review E: Statistical, Non-
linear, and Soft Matter Physics, vol. 95, no. 2, article 022313, 2017.

L. Fraccascia, I. Giannoccaro, and V. Albino, “Rethinking Resil-
ience in Industrial Symbiosis: Conceptualization and Measure-
ments,” Ecological Economics, vol. 137, pp. 148-162, 2017.

M. E. O’Kelly, “Network hub structure and resilience,” Networks
and Spatial Economics, vol. 15, no. 2, pp. 235-251, 2015.

[8] M.Modicaand A. Reggiani, “Spatial Economic Resilience: Over-

(9]

(10]

(11]

(12]

[14

view and Perspectives,” Networks and Spatial Economics, vol. 15,
no. 2, pp. 211-233, 2015.

M. Rubinov and O. Sporns, “Complex network measures of

brain connectivity: Uses and interpretations,” Neurolmage, vol.
52, no. 3, pp. 1059-1069, 2010.

M. M. Williamson, “Resilient infrastructure for network secu-
rity; Complexity, vol. 9, no. 2, pp. 34-40, 2003.

K. Zhao, A. Kumar, T. P. Harrison, and J. Yen, “Analyzing the
resilience of complex supply network topologies against ran-
dom and targeted Disruptions,” IEEE Systems Journal, vol. 5, no.
1, pp. 28-39, 2011.

P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vul-
nerability of complex networks,” Physical Review E: Statistical,
Nonlinear, and Soft Matter Physics, vol. 65, no. 5, article 056109,
2002.

S. Iyer, T. Killingback, B. Sundaram, and Z. Wang, “Attack ro-
bustness and centrality of complex networks,” PLoS ONE, vol.
8, no. 4, pp. 1-17, 2013.

] P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda, “Effi-
ciency of scale-free networks: Error and attack tolerance;
Physica A: Statistical Mechanics and its Applications, vol. 320, pp.
622-642, 2003.



12

[15] G. Ferraro and A. Iovanella, “Clairvoyant targeted attack on
complex networks,” International Journal of Computational
Economics and Econometrics, vol. 8, no. 1, pp. 41-62, 2017.

[16] A. Gutfraind, “Optimizing topological cascade resilience based
on the structure of terrorist networks,” PLoS ONE, vol. 5, no. 11,
pp- 1-7, 2010.

[17] Y. Yang, Z. Li, Y. Chen, X. Zhang, and S. Wang, “Improving the
robustness of complex networks with preserving community
structure;,” PLoS ONE, vol. 10, no. 2, pp. 1-14, 2015.

[18] S. Zhou and R. J. Mondragén, “The rich-club phenomenon in

the internet topology,” IEEE Communications Letters, vol. 8, no.

3, pp. 180-182, 2004.

V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani,

“Detecting rich-club ordering in complex networks,” Nature

Physics, vol. 2, no. 2, pp. 110-115, 2006.

[20] A. Ma and R. J. Mondragon, “Rich-cores in networks,” PLoS
ONE, vol. 10, no. 3, pp. 1-13, 2015.

[21] P. Csermely, A. London, L. Wu, and B. Uzzi, “Structure and
dynamics of core/periphery networks,” Journal of Complex
Networks, vol. 1, no. 2, pp. 93-123, 2013.

[22] X.-K. Xu, J. Zhang, and M. Small, “Rich-club connectivity
dominates assortativity and transitivity of complex networks,”
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,
vol. 82, no. 4, Article ID 046117, 2010.

[23] M. Csigi, A. K6r6si, J. Bird, Z. Heszberger, Y. Malkov, and A.
Gulyds, “Geometric explanation of the rich-club phenomenon
in complex networks,” Scientific Reports, vol. 7, no. 1, 2017.

[24] Z.-Q. Jiang and W.-X. Zhou, “Statistical significance of the
rich-club phenomenon in complex networks,” New Journal of
Physics, vol. 10, no. 4, article 043002, 2008.

[25] M. Cinelli, G. Ferraro, and A. Iovanella, “Rich-club ordering
and the dyadic effect: Two interrelated phenomena,” Physica A:
Statistical Mechanics and its Applications, vol. 490, pp. 808-818,
2018.

[26] R.]J. Mondragén and S. Zhou, “Random networks with given
rich-club coefficient,” The European Physical Journal B, vol. 85,
no. 9, article 328, 2012.

[27] S. Zhou and R. J. Mondragén, “Structural constraints in com-
plex networks,” New Journal of Physics, vol. 9, no. 6, article 173,
2007.

[28] G. Thedchanamoorthy, M. Piraveenan, D. Kasthuriratna, and
U. Senanayake, “Node assortativity in complex networks: An
alternative approach,” in Proceedings of the 14th Annual Inter-
national Conference on Computational Science, ICCS 2014, pp.
2449-2461, June 2014.

[29] N. Masuda and N. Konno, “VIP-club phenomenon: Emergence
of elites and masterminds in social networks,” Social Networks,
vol. 28, no. 4, pp. 297-309, 2006.

[30] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, “Or-
ganization, development and function of complex brain net-
works,” Trends in Cognitive Sciences, vol. 8, no. 9, pp. 418-425,
2004.

[31] M.P.vanden Heuvel, R. S. Kahn, ]. Goni, and O. Sporns, “High-
cost, high-capacity backbone for global brain communication,”
Proceedings of the National Acadamy of Sciences of the United
States of America, vol. 109, no. 28, pp. 11372-11377, 2012.

[32] M. P. van den Heuvel and O. Sporns, “Rich-club organization
of the human connectome,” The Journal of Neuroscience, vol. 31,
no. 44, pp. 15775-15786, 2011.

[33] J. W. Simpson-Porco, E Dérfler, and E Bullo, “Voltage collapse
in complex power grids,” Nature Communications, vol. 7, Article
1D 10790, 2016.

(19

Complexity

[34] R. Jacob, K. P. Harikrishnan, R. Misra, and G. Ambika, “Mea-
sure for degree heterogeneity in complex networks and its
application to recurrence network analysis,” Royal Society Open
Science, vol. 4, no. 1, 2017.

[35] T. A. B. Snijders, “The degree variance: An index of graph het-
erogeneity;” Social Networks, vol. 3, no. 3, pp. 163-174, 1981.

[36] RDevelopment Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2008. ISBN 3-900051-07-0.

[37] G.Csardiand T. Nepusz, “The igraph software package for com-
plex network research,” International Journal of Complex Sys-
tems, vol. 1695, 2006.

[38] X.-B. Cao, C. Hong, W.-B. Du, and J. Zhang, “Improving the
network robustness against cascading failures by adding links,”
Chaos, Solitons & Fractals, vol. 57, pp. 35-40, 2013.

[39] Y.-H. Eom and H.-H. Jo, “Generalized friendship paradox in
complex networks: The case of scientific collaboration,” Scien-
tific Reports, vol. 4, article 4603, 2014.



Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization




