Skip to main content
Log in

The Thermodynamical Arrow of Time: Reinterpreting the Boltzmann–Schuetz Argument

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The recent surge of interest in the origin of the temporal asymmetry of thermodynamical systems (including the accessible part of the universe itself) has put forward two possible explanatory approaches to this age-old problem. Hereby we show that there is a third possible alternative, based on the generalization of the classical (“Boltzmann–Schuetz”) anthropic fluctuation picture of the origin of the perceived entropy gradient. This alternative (which we dub the Acausal-Anthropic approach) is based on accepting Boltzmann's statistical measure at its face value, and accomodating it within the quantum cosmological concept of the multiverse. We argue that conventional objections raised against the Boltzmann–Schuetz view are less forceful and serious than it is usually assumed. A fortiori, they are incapable of rendering the generalized theory untenable. On the contrary, this analysis highlights some of the other advantages of the multiverse approach to the thermodynamical arrow of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Boltzmann, Lectures on Gas Theory, translated by S. G. Brush (University of California Press, Berkeley, 1964).

    Google Scholar 

  2. H. D. Zeh, The Physical Basis of the Direction of Time (Springer, New York, 1992).

    Google Scholar 

  3. H. Price, Time's Arrow and Archimedes' Point (Oxford University Press, Oxford, 1996).

    Google Scholar 

  4. E. Lieb and J. Yngvason, “The physics and mathematics of the second law of thermodynamics, ” Phys. Rep. 310, 1(1999).

    Google Scholar 

  5. D. Albert, “The foundations of quantum mechanics and the approach to thermodynamic equilibrium, ” Brit. J. Phil. Sci. 45, 669(1994);Time and Chance (Harvard University Press, Cambridge, 2000).

    Google Scholar 

  6. J. Uffink, “Bluff your way in the second law of thermodynamics, ” Stud. Hist. Philos. Modern Phys. B 32, 305(2001).

    Google Scholar 

  7. H. R. Brown and J. Uffink, “The origins of time-asymmetry in thermodynamics: the minus first law, ” Stud. Hist. Philos. Modern Phys. B 32, 525(2001).

    Google Scholar 

  8. H. Price, “Boltzmann's time bomb, ” British J. Philos. Sci. 53, 83(2002).

    Google Scholar 

  9. H. Price, “Burbury's last case: The mystery of the entropic arrow, ” forthcoming in Time, Reality and Experience, Craig Callender, ed. (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  10. H. Bondi, Cosmology, 2nd edn. (Cambridge University Press, London, 1961).

    Google Scholar 

  11. P. A. M. Dirac, “The cosmological constants, ” Nature 139, 323(1937);“Cosmological models and the large numbers hypothesis, ” Proc. R. Soc. A 338, 439(1974).

    Google Scholar 

  12. W. Davidson, “Some cosmological implications of Dirac's large numbers hypothesis, ” Mon. Not. R. astr. Soc. 200, 645(1982).

    Google Scholar 

  13. R. H. Dicke, “Dirac's cosmology and Mach's principle, ” Nature 192, 440(1961).

    Google Scholar 

  14. R. W. Hellings et al., “Experimental test of the variability of G using Viking lander ranging data, ” Phys. Rev. Lett. 51, 1609(1983).

    Google Scholar 

  15. T. Damour, G. W. Gibbons, and J. H. Taylor, “Limits on the variability of G using binary-pulsar data, ” Phys. Rev. Lett. 61, 1151(1988).

    Google Scholar 

  16. P. A. M. Dirac, “Dirac replies [to Dicke's letter, Ref. 13], ” Nature 192, 441(1961).

    Google Scholar 

  17. H. R. Pagels, “Cozy cosmology, ” in Modern Cosmology and Philosophy, J. Leslie, ed. (Prometheus Books, New York, 1998), p. 180.

    Google Scholar 

  18. A. S. Eddington, “The end of the world: from the standpoint of mathematical physics, ” Nature 127, 447(1931).

    Google Scholar 

  19. G. Kutrovátz, “Heat death in ancient and modern thermodynamics, ” Open Sys. & Information Dyn. 8, 349(2001).

    Google Scholar 

  20. L. Boltzmann, “On certain questions of the theory of gases, ” Nature 51, 413(1895).

    Google Scholar 

  21. J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle (Oxford University Press, New York, 1986).

    Google Scholar 

  22. J. Bekenstein, “Black holes and entropy, ” Phys. Rev. D 7, 2333(1973).

    Google Scholar 

  23. S. W. Hawking, “Black hole explosions?” Nature 248, 30(1974).

    Google Scholar 

  24. L. M. Krauss and M. S. Turner, “Geometry and destiny, ” Gen. Relativity Gravitation 31, 1453(1999).

    Google Scholar 

  25. M. M. Ćirković and N. Bostrom, “Cosmological constant and the final anthropic hypothesis, ” Astrophys. Space Sci. 274, 675(2000).

    Google Scholar 

  26. G. W. Gibbons and S. W. Hawking, “Cosmological event horizons, thermodynamics, and particle creation, ” Phys. Rev. D 15, 2738(1977).

    Google Scholar 

  27. R. Penrose, The Emperor's New Mind (Oxford University Press, Oxford, 1989).

    Google Scholar 

  28. G. F. R. Ellis and G. B. Brundrit, “Life in the infinite universe, ” Q. J. Roy. Astron. Soc. 20, 37(1979).

    Google Scholar 

  29. N. Bostrom, Anthropic Bias: Observation Selection Effects in Science and Philosophy (Routledge, New York, 2002).

    Google Scholar 

  30. H. Poincaré, The Foundations of Science (Science Press, Lancaster, 1946).

    Google Scholar 

  31. N. Wiener, Cybernetics (Wiley, New York, 1961).

    Google Scholar 

  32. L. Brillouin, Science and Information Theory (Academic, New York, 1962).

    Google Scholar 

  33. S. Lloyd and H. Pagels, “Complexity as thermodynamical depth, ” Ann. Phys. 188, 186(1988).

    Google Scholar 

  34. R. A. Treumann, “Evolution of the information in the universe, ” Astrophys. Space Sci. 201, 135(1993).

    Google Scholar 

  35. M. Tegmark, “Does the universe in fact contain almost no information?” Found. Phys. Lett. 9, 25(1996).

    Google Scholar 

  36. J. Collier, “Intrinsic information, ” in Information, Language and Cognition: Vancouver Studies in Cognitive Science, P. P. Hanson, ed. (Oxford University Press, Oxford, 1990), p. 390.

    Google Scholar 

  37. S. C. Shapiro, “Computationalism, ” Minds and Machines 5, 517(1995).

    Google Scholar 

  38. S. W. Hawking, “Arrow of time in cosmology, ” Phys. Rev. D 32, 2489(1985).

    Google Scholar 

  39. J. Earman, “An attempt to add a little direction to ‘the problem of the direction of time,’ ” Phil. Sci. 41, 15(1974).

    Google Scholar 

  40. A. D. Linde, Inflation and Quantum Cosmology (Academic, San Diego, 1990).

    Google Scholar 

  41. A. Albrecht, in The Birth of the Universe and Fundamental Physics, F. Occhionero, ed. (Springer, New York, 1994), preprint gr-qc/9408023.

    Google Scholar 

  42. M. Tegmark, “Is ‘the Theory of Everything’ merely the ultimate ensemble theory?” Ann. Phys. 270, 1(1998).

    Google Scholar 

  43. R. Nozick, Philosophical Explanations (Harvard University Press, Cambridge, 1981).

    Google Scholar 

  44. J. Rosen, “Self-generating universe and many worlds, ” Found. Phys. 21, 977(1991).

    Google Scholar 

  45. J. J. C. Smart, Our Place in the Universe: A Metaphysical Discussion (Blackwell, Oxford, 1989).

    Google Scholar 

  46. A. D. Linde, “Eternally existing self-reproducing chaotic inflationary universe, ” Phys. Lett. B 175, 395(1986).

    Google Scholar 

  47. M. Clutton-Brock, “Entropy per baryon in a ‘many-worlds’ cosmology, ” Astrophys. Space Sci. 47, 423(1977).

    Google Scholar 

  48. M. Clutton-Brock, “The arrow of time in a bouncing universe, ” Observatory 102, 147(1982).

    Google Scholar 

  49. M. Tegmark and M. J. Rees, “Why is the cosmic microwave background fluctuation level 10−5?” Astrophys. J. 499, 526(1998).

    Google Scholar 

  50. R. P. Feynman, The Character of Physical Law (Cox and Wyman, London, 1965).

    Google Scholar 

  51. C. von Weizsäcker, “Der zweite Hauptsatz und der Unterschied von der Vergangenheit und Zukunft, ” Ann. Phys. 36, 275(1939).

    Google Scholar 

  52. E. Wilson, The Diversity of Life (Harvard University Press, Cambridge, 1992).

    Google Scholar 

  53. H. P. Yockey, “A calculation of the probability of spontaneous biogenesis by information theory, ” J. Theor. Biol. 67, 377(1977).

    Google Scholar 

  54. H. P. Yockey, “Self-organization origin of life scenarios and information theory, ” J. Theor. Biol. 91, 13(1981).

    Google Scholar 

  55. F. Hoyle, “The universe—past and present reflections, ” Ann. Rev. Astron. Astrophys. 20, 1(1982).

    Google Scholar 

  56. F. H. Crick and L. E. Orgel, “Directed panspermia, ” Icarus 19, 341(1973).

    Google Scholar 

  57. F. Raulin-Cerceau, M.-C. Maurel, and J. Schneider, “From panspermia to bioastronomy, the evolution of the hypothesis of universal life, ” Orig. Life Evol. Biosph. 28, 597(1998).

    Google Scholar 

  58. F. Hoyle and N. C. Wickramasinghe, “Comets–a vehicle for panspermia, ” Astrophys. Space Sci. 268, 333(1999).

    Google Scholar 

  59. D. N. F. Dunbar, W. A. Wensel, and W. Whaling, “The 7.68-Mev State in C12, ” Phys. Rev. 92, 649(1953).

    Google Scholar 

  60. C. B. Collins and S. W. Hawking, “Why is the universe isotropic?” Astrophys. J. 180, 317(1973).

    Google Scholar 

  61. C. B. Collins, “The postulate of uniform thermal histories—a new formulation and its application to a special class of spacetimes, ” Classical Quantum Gravity 7, 1983(1990).

    Google Scholar 

  62. H. Kragh, Cosmology and Controversy (Princeton University Press, Princeton, 1996).

    Google Scholar 

  63. J. Collier, “Information originates in symmetry breaking, ” Symmetry: Science and Culture 7, 247(1996).

    Google Scholar 

  64. J. L. Borges, Collected Fictions(Penguin, New York, 1999).

    Google Scholar 

  65. G. Oppy, “Physical eschatology, ” Philo 4(2)(2001).

  66. F. C. Adams and G. Laughlin, “A dying universe: the long-term fate and evolution of astrophysical objects, ” Rev. Mod. Phys. 69, 337(1997).

    Google Scholar 

  67. L. P. Horwitz, R. T. Arshansky, and A. C. Elitzur, “On the two aspects of time: the distinction and its implications, ” Found. Phys. 18, 1159(1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ćirković, M.M. The Thermodynamical Arrow of Time: Reinterpreting the Boltzmann–Schuetz Argument. Foundations of Physics 33, 467–490 (2003). https://doi.org/10.1023/A:1023715732166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023715732166

Navigation