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Abstract. Logics based on Weak Kleene Algebra (WKA) and related structures have
been recently proposed as a tool for reasoning about flaws in computer programs [11].
The key element of this proposal is the presence, in WKA and related structures, of a
non-classical truth-value that is “contaminating” in the sense that whenever the value is
assigned to a formula φ, any complex formula in which φ appears is assigned that value
as well. Under the interpretation by [11], the contaminating states ‘represents’ occurrence
of a flaw. However, since different programs and machines can interact with (or be nested
into) one another, we need to account for different kind of errors, and this calls for
an evaluation of systems with multiple contaminating values. In this paper, we make
first steps toward these evaluation systems by considering the logics HYB1 and HYB2 by
[19], whose semantic interpretation accounts for two contaminating values beside classical
values 0 and 1. In particular, we provide two main formal contributions. First, we give
a characterization of their relations of (mutiple-conclusion) logical consequence—that is,
necessary and sufficient conditions for a set ∆ of formulas to logically follow from a set
Γ of formulas in HYB1 or HYB2. Second, we provide sound and complete sequent calculi
for the two logics.

1 Introduction

Applications of logic to the topic of reasoning about computer errors date back at least to
[17]. There, critical errors affecting sequential computing are considered, and the main intuition
concerning such errors is that the exact step of the computation in which the error occurs
determine which string of information fails to be computed. For instance, if one is computing
the value of φ∨ψ and an error occurs while computing the value of φ, then the computation will
stop without establishing a value [1]. By contrast, if the error occurs when computing the value
of ψ and after computing the value of φ—assigning, say, 1—then the computation will prove
successful and assign value 1 to φ ∨ ψ. This kind of error, in a nutshell, suggests the need for a
non-commutative disjunction (and conjunction). [1] made a progress w.r.t. [17] by providing a
reasoning tool for errors in parallel computing, and by proposing a four-valued logic for reasoning
about the interaction of the two kinds of errors. In particular, the logic for reasoning on errors in
parallel computing is the Strong Kleene Logic K3, which is in turn interpreted on the so-called
(Strong) Kleene Algebra from [16].

More recently, [11] has discussed another kind of errors, which is due to failure to declare a
variable in programs that are based on C + +. An interesting consequence by the discussion in
[11] is that this kind of errors are not suitably represented by structures such as Strong Kleene
Algebra, or by the matrix proposed in [17]. By contrast, such errors would be better represented
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by Weak Kleene Algebra (WKA). This algebra comprises a non-classical value n beside 0 and
1; such a value, in turn, contaminates the other, in the sense that, if it is assigned to any input
of a truth function, it will be assigned to the output of the truth function, independently from
the value of the other inputs.

Two non-trivial logics are based on WKA, namely systems Kw
3 from [4] and PWK from [15].

[11] considers the former in his computational interpretation of the third value from WKA.
The kind of errors pointed at in [11] are novel w.r.t. [1, 17], but contrary to [1], [11] does not

consider the interaction of different kinds of errors. This is limiting, since a host of different errors
may display the contaminating behavior of value n, or a very close behavior—see Section 4 below.
This seems to call for sublogics of Kw

3 , where each contaminating value represent a different kind
of error.

In this paper, we consider two families of computer errors that, in our view, can be represented
by a contaminating value. These are code errors involving some virtual machine, and physical
errors involving the operating systems—see Section 4 below. In order to provide reasoning tools
that can, in principle, capture the interaction of these two kinds of errors, we introduce a four-
valued algebra that is somehow inspired to WKA; we call this further structure ‘hybrid algebra’,
since it hybridizes two different contaminating values. Also, we introduce two logics that are
interpreted on the hybrid algebra, namely the four-valued systems HYB1 and HYB2. These in
turn provides reasoning tools that can account for the interaction of the two kinds of errors
above.

Given the role played by contaminating values in the systems we present here, we call Kw
3 ,

PWK, HYB1 and HYB2 ‘contaminating logics’. We provide some semantic and proof-theoretical
results for the two four-valued contaminating logics HYB1 and HYB2. In particular, we provide
sound and complete sequent calculi, and a characterization of the two logics—that is, a way
to establish HYB1- and HYB2-consequence relations on the ground of Kw

3 - or PWK-consequence
relations, or, alternatively, on the ground of classical consequence. In view of the results concern-
ing sequent calculi, we focus on so-called multiple-conclusion consequence relations. We believe
this secures a nice uniformity between the semantic and the proof-theoretic parts of the paper.

The paper proceeds as follows. After introducing some preliminaries in Section 2, in Section 3
we present the basic contaminating logics Kw

3 and PWK from [4] and [15], respectively. This
will allow the reader to familiarize with contaminating logics and their envisaged applications
to computer errors. In section 4, we discuss the interaction of different sources of computer
errors, with each of the sources discussed operating at different levels. In order to capture such
an interaction, we introduce the hybrid algebra HYB and two four-valued contaminating logics
interpreted on it, namely systems HYB1 and HYB2. In Section 5, we provide sound and complete
annotated sequent calculi for the two logics. Section 6 provides conclusions and discuss some
research directions.

2 Preliminaries

Given a similarity type ν and a countably infinitely set X = {p, q, r, . . . } of generators (the
propositional variables), we define the formula algebra Fml over X of type ν as the absolutely
free algebra defined on X, with Fml denoting the universe of Fml, and the members of Fml
being formulas, which we denote by φ, ψ, θ, . . . . Γ,∆, Ψ . . . denote sets of formulas. In this paper,
Fml will be a formula algebra of type (1, 2, 2), namely, of the type containing the connectives
¬,∨,∧. Given this, we feel free to omit reference to the type ν in what follows.4

4 Throughout the paper, we adopt the standard notation and basic definitions from Abstract Algebraic
Logic, as presented e.g. in [13]. One important exception with regard to [13], however, concerns our
definition of multiple-conclusion matrix consequence (see below).
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We define a logic (of type ν) as a pair S = 〈Fml,`S〉, with Fml a formula algebra (of type ν)
and `S ⊆ P(Fml)×P(Fml) a substitution invariant multiple-conclusion consequence relation.

We define a matrix as a pair M = 〈A,D〉 with A an algebra (of some given type ν) with
universe A and D ⊂ A. D is called the filter ofM. Informally, we think of the members of A as
truth-values, and of members of D as designated truth values.5

The following notion of a submatrix is relevant for our purposes:

Definition 1. A matrix M = 〈A,D〉 is a submatrix of a matrix M′ = 〈A′,D′〉 (M vM′) if
and only if A is a subalgebra of A′ and D = D′ ∩A.

In this paper, we focus on matrices that have theMCL of Classical Logic as a submatrix. In
particular, Classical Logic CL can be defined as 〈Fml, |=MCL

〉, andMCL is defined as 〈B2, {1}〉,
where B2 = 〈{0, 1},¬,∨,∧〉 is the well-known two-element Boolean algebra of type (1, 2, 2). The
elements 0 and 1 of its universe are informally interpreted as ‘false’ and ‘true’, respectively, with
1 being the only designated value in MCL.

A further relevant notion is that of a valuation:

Definition 2. A valuation is a homomorphism v : Fml −→ A from a formula algebra Fml
into an algebra A of the same type.

We denote by HomFml,A the set of valuations for Fml defined on A. When Fml is clear by the
context and we wish to focus on the matrix rather than on the algebra, we write HomM . For
every M = 〈A,D〉, we let HomM(Γ ) be the set {v ∈ HomM | v[Γ ] ⊆ D} of the models of Γ
based on M.

Logical matrices, in turn, can be seen to give raise to substitution invariant multiple-
conclusion consequence relations—the so-called matrix consequence relation—as the next defi-
nition illustrates:

Definition 3. Given a matrix M = 〈A,D〉, the relation |=M ⊆ P(Fml)×P(Fml) defined as
follows:

Γ |=M ∆ ⇔ for every v ∈ HomM , ν[Γ ] ⊆ D implies ν(ψ) ∈ D for some ψ ∈ ∆

is a multiple-conclusion matrix consequence relation.

We follow standard terminology and say that ∆ is a tautology if and only if ∅ |=M ∆, and we
say that Γ is unsatisfiable if and only if Γ |=M ∅—if Γ has no models. We write φ |=M ψ
instead of {φ} |=M {ψ}, and φ, ψ |=M γ, δ instead of {φ, ψ} |=M {γ, δ}. We also use other
notation, writing e.g. Γ,∆ for Γ ∪ ∆, or Γ, φ for Γ ∪ {φ}.6 Finally, when |=MS

is the matrix
consequence relation of a logic S, we refer to |=MS

as to S-consequence.
Notice that the notion of multiple-conclusion consequence from Definition 3 differs from the

one given in [13] in that the former comes with a disjunctive reading of the right side of |=M ,
while [13, Definition 1.7] comes with a conjunctive reading of it—implying that all the formulas
in the conclusion-set have to be satisfied. In [13], the author himself notices that his definition
is not standard.

5 Notice that, in using these notions, we do not assume or even try to stress that we do not allow
the presence of matrices whose algebraic reduct is the trivial algebra. However, as will become clear
shortly, in this paper our interest is in investigating logics induced by matrices having contaminating
values which, in turn, extend the two-valued matrix inducing Classical Logic—i.e. the matrix whose
algebraic reduct is the two-element Boolean algebra. We would like to thank an anonymous reviewer
for urging us to clarify this issue.

6 For this notation, see also [13, Chapter 1].
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Since the disjunctive reading of the right side of |=M fits the interpretation of two-sided
sequents in sequent calculi, we believe that in the present paper Definition 3 proves more suitable
than the one from [13]. In particular, a uniform reading seems more appropriate in view of the
results on sequent calculi from Section 5.

3 Basic Contaminating Logics

Here, we introduce two logics that are based on the so-called Weak Kleene Algebra (WKA) from
[16]. These are relevant for our purposes, since the WKA is a submatrix of the structures on
which HYB1 and HYB2 are based.

Definition 4. [Weak Kleene Algebra] The Weak Kleene Algebra (WKA) is the algebra WKA
of type (1, 2, 2) such that (1) WKA = 〈{0, n, 1},¬,∨,∧〉 and (2) has operations ¬,∨,∧ behaving
as per Table 1.

Table 1.

¬
1 0
n n
0 1

∨ 1 n 0

1 1 n 1
n n n n
0 1 n 0

∧ 1 n 0

1 1 n 0
n n n n
0 0 n 0

Given its behavior w.r.t. the connectives, value n from Table 1 is usually said to be contaminating
[6, 9] or infectious [11, 19]. Here, we prefer the first label. The following gives a straightforward
and intuitive expression to this intuitive notion:

Observation 1 (Contamination) For all formulas φ in Fml and valuation v ∈ HomFml,WKA:

v(φ) = n iff v(p) = n for some p ∈ var(φ)

The LTR (left-to-right) direction is shared by all the most widespread three-valued logics; the
RTL (right-to-left) direction is clear from Table 1, and it implies that φ takes value n if some
p ∈ var(φ) has the value, and no matter what the value of q is for any q ∈ var(φ) \ {p}.

WKA provides the simplest case of contamination, where a value n contaminates all the
values in the universe A of the algebra in question. Another example of this is the four-valued
matrix used to interpret the system Sfde from [10].

Two distinct non-trivial systems can be defined on WKA:7 The logic Kw
3 has been introduced

in [4] in order to reason about Russell’s paradox and related set-theoretic antinomies. [11] has
later proposed Kw

3 and cognate formalisms as a tool to reason about the way C + + processes
information (see below). The logic PWK has been first introduced in [15] in order to reason
about meaningless expressions and is investigated by [5, 6, 8]. We discuss some background and
motivations for these logics at the end of the present section. Kw

3 and PWK are defined as follows:

Definition 5. Kw
3 = 〈Fml, |=MKw

3
〉 and PWK = 〈Fml, |=MPWK

〉, where:

MKw
3

= 〈WK, {1}〉 MPWK = 〈WK, {n, 1}〉

The following observation details some validities and the most notable failures of Kw
3 and

PWK:
7 We do not consider here the trivial systems resulting from D = A and D = ∅.
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Observation 2 The following holds for Kw
3 -consequence and PWK-consequence:

1a ∅ 6|=MKw
3
φ 1b ∅ |=MPWK

φ

for every φ ∈ Fml for φ a classical tautology
2a β 6|=MKw

3
α 2b β |=MPWK

α

for α a classical tautology for α a classical tautology
3a α,¬α |=MKw

3
β 3b α,¬α 6|=MPWK

β

4a α ⊃ (β ∧ ¬β) |=MKw
3
¬α 4b α ⊃ (β ∧ ¬β) 6|=MPWK

¬α
5a α, α ⊃ β |=MKw

3
β 5b α, α ⊃ β 6|=MPWK

β

We refer the reader to [6, 11] for these failures and validities. Given the standard definitions of
paraconsistency and paracompleteness,8 an immediate consequence of Observation 2 is that Kw

3

is paracomplete and PWK is paraconsistent.

Kw
3 shares the above failures and validities with the related Strong Kleene Logic K3 from

[16], while PWK shares the above failures and validities with the related LP by [18].

The contaminating behavior of n contributes to some further failure, which are distinctive
of Kw

3 , PWK, and their sublogics:

φ 6�MKw
3
φ ∨ ψ Failure of Addition

φ ∧ ψ 6�MPWK
φ Failure of Simplification

In particular, we have v(φ ∨ ψ) = n in any valuation v such that v(φ) = 1 and v(ψ) = n.
Since n /∈ DMKw

3
, this implies failure of disjunctive addition in Kw

3 . Also, v(φ ∧ ψ) = n in any

valuation v such that v(φ) = 0 and v(ψ) = n. Since DMPWK
= {n, 1}, this implies failure of

conjunctive simplification.

By contrast, the following local versions of these properties hold:

φ ∨ ψ �MKw
3
φ ∨ ¬φ Local Excluded Middle

φ ∧ ¬φ �MPWK
φ ∧ ψ Local Explosion

[8] provides sound and complete sequent calculi for Kw
3 and PWK. [5] provides a sound

and complete Hilbert-style axiomatization of PWK. [7] proves that Kw
3 -consequence and PWK-

consequence can be determined by classical consequence via two different variable-inclusion
requirements. In particular:

Proposition 1 ([7], Theorem 3.4 and Theorem 4.3). MKw
3
- and MPWK-consequence can

be characterized as follows:

Γ �MKw
3
∆ ⇔ V ar(∆′) ⊆ V ar(Γ ) for some ∆′ ⊆ ∆ s.t. Γ �MCL

∆′

Γ �MPWK
∆⇔ V ar(Γ ′) ⊆ V ar(∆) for some Γ ′ ⊆ Γ s.t. Γ ′ �MCL

∆

This result provides a characterization of Kw
3 and PWK—that is, they specify necessary and

sufficient conditions for a set ∆ to follow from a set Γ of formulas in Kw
3 and PWK, respectively.

8 A system is paraconsistent if it falsifies Ex Falso Quodlibet φ,¬φ |= β, and is paracomplete if it
falsifies Excluded Middle ∅ |= φ ∨ ¬φ.
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Discussion. PWK has been introduced by [15] in order to capture the impact of meaningless
expressions on reasoning. One point worth noting is that [15] supports that some formulas should
be valid even if there are occasions in which they are meaningless—in our matrix-based setting,
this equates with designating n alongside 1. [15] defends this by arguing that the validity of a
formula should be judged solely on the basis of its meaningful instances.

The idea motivating introduction of Kw
3 in [4] is that statements such as Russell’s paradox

would be meaningless. Under this interpretation, the third value n in WKA represents this
further semantical category, and any v(p) = n is a valuation where p is deemed meaningless.

Notice that this ‘meaninglessness’ interpretation fares well with the fact that n is a contam-
inating element in WKA: if p is meaningless, then it is not possible to process any information
involving it—that is, it is not possible to process any formula φ in which p occurs.

[11] provides a computational application of this conceptual and formal apparatus, with a
particular attention to programming language C++. In this language, if some syntactical object
p is to be used as a Boolean variable, the interpreter must be informed that p is to be used in this
way. When the program is run, an instruction is made to allocate sufficient memory for p to take
a value. To declare the Boolean variable p is to allocate the necessary resources. If a variable
is undeclared, then it is meaningless: even if a formula is well-formed, if its atomic variables
have not yet been declared, it is no more serviceable than an ill-formed string of symbols. In
particular, the algorithm from Figure 1 exemplifies how a C + +-based program would react
when fed with an undeclared variable.

procedure Declaration(y)
boolean p← 1
x← (p or q)

end procedure

Fig. 1. Algorithm with Undeclared Variables

The fact that undeclared variables in a formula prevents the entire formula to be processed
matches the contaminating behavior of the third value n from WKA; also, a formula that cannot
be processed cannot be assigned values 0 or 1 as well, and this fits with n /∈ D. The algorithm in
Figure 1 shows that addition is bound to fail exactly as it does in Kw

3 [11, p. 352]. All this confirms
[11] in suggesting that Kw

3 is a suitable tool to reason about the way C++ processes information.

Figure 1 also suggests that undeclared variables also bring a kind of computer error: if they
are involved, a C + +-based program becomes unable to process relevant information along the
lines of classical logic (or the logic of choice on which the program is based).

Application of logic to computer errors is not new. [17] proposes non-commutative disjunction
and conjunction in order to reason about errors in sequential computing. Crucial to this proposal
is a matrix-based semantics involving a third truth value beside 1 and 0. [1] applies the system
by [17] to critical errors from sequential computing—that is, errors that make the computation
stop—and the Strong Kleene Logic from [16] to non-critical errors from parallel computing—
that is, errors that can be somehow remedied. Also, [1] proposes a four-valued sublogic of both
McCarthy’s and Kleene’s systems, which allows for reasoning on both kinds of errors.

Errors due to undeclared variables differ from those considered by [1] and [17], insofar as they
represent computation stops that are due to a syntactic failure. This, and the logical features
of errors due to undeclared variables, justify the application of a different system such as Kw

3 or
some relevant subsystem.
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4 Four-valued contaminating logics

Failure to assign a value to an undeclared variable in C++ is an error in code, and hence on the
level of software. Errors of this kind may cause a process to halt. Beside these kinds of errors, we
have errors on the level of hardware. An instance of these are the physical errors that are caused
when an environment attempts to retrieve a value from a physical address that is corrupt.

Physical errors that cause some failure at the level of the operating system also affects the
virtual machines in the system. By contrast, errors causing failure at the level of a virtual
machine need not propagate to all the environments in the system. Both errors may happen,
but they will affect the entire system in different ways. This calls for an interaction of different
types of errors, and this interaction seems to be hierarchical in a sense, since the level at which
an error takes place contributes to determine how much of the environment is affected by that
error. We believe that this interaction is suitably captured by applying two contaminating values
similar to the value n from Table 1, and we briefly discuss why.

Errors in code and physical errors. Consider errors in code. The triggering of the syntactic
error at the local level—that is, within the virtual machine—may cause the environment within
which the executable was run to halt prematurely. This calls for some truth value that displays
a contaminating behavior in the style of n from Table 1, since the situation we have described
represents the capacity of an error to affect any string of information or environment in which the
error takes place. At the same time, however, this error happens within the scope of a virtual
machine, which in turn insulates the operating system from such local errors. This is better
represented by a value that is just partially contaminating, that is a value that contaminates
some, but not all other values. Value n from Table 1 cannot capture this, since it contaminates
all other values in the universe of WKA. Thus, we need to adjust n to fit our current purpose.

Going to physical errors at the level of the hardware, if the operating system attempts
to retrieve a value on behalf of a virtual machine from a bad address, the error that causes
the operating system to fail will bring down the virtual machine alongside it. This calls for
a contaminating value that affects all other values, including possibly partially contaminating
values like the one discussed above.

In a nutshell, the logical representation of the interaction of the two kinds of errors above
requires two values that are contaminating in some sense—in particular, we need one value to
be contaminating in a weaker sense than n, and the other to be contaminating in exactly the
same sense of n.

Reasoning about the interaction of the two errors. In this section we propose the two
logics HYB1 and HYB2 as tools that can be used for reasoning about the interaction of the kind
of errors that we have been discussed above. Both HYB1 and HYB2display the two different
types of contaminating values that we see fit in capturing the two different kinds of errors that
we have discussed above. Also, HYB1 and HYB2 comprise a designated and an undesignated
contaminating value.

Whether one or more contaminating values should be designated or not is, in our view, a
pragmatic issue, determined by an end user’s interest. For instance, an end user may be concerned
with the stability of the code itself and not in the stability of the physical memory. Thus, one
might be justified in modeling this global error via a designated value. Take the concrete case
of a large ontology with an integrated theorem prover, for example. Here, one might wish for
certain theorems to be derivable, in spite of the potential for hardware errors. In this case,
practical concerns make lead the ontology’s developers to discount this type of situation from
consideration when judging validity, just as Halldén elects to discount meaninglessness. Also,
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when one is testing code, some tiers of errors are important to acknowledge while others are
not. Simply put, whether one’s code leads to a software error is part of a developer’s concern;
the fact that a particular piece of hardware upon which the software runs crashes due to faulty
RAM is not.

We acknowledge that the examples above do not bring conclusive evidence for designating a
contaminating values, but we also believe that they provide reasons for it, which would deserve
further discussion and testing. We postpone a detailed discussion of this issue to a further paper.
In this paper, we take this provisional reasons as strong enough to support the elaboration of
four-valued logics with both designated and undesignated values.

Thus, in the next sections we extend our previous considerations to build appropriate se-
mantic tools to model such settings. We do this by appealing to the idea of a linear order of
contaminating values, such that the greater contaminating values contaminate the smaller ones
and, of course, the non-contaminating values.

4.1 An algebra for the interaction of different computer errors

First, we introduce a structure that can represent the interaction between computer errors that
we have envisaged above:

Definition 6. [Hybrid Algebra] The Hybrid Algebra (HA) is the algebra HYB of type (1, 2, 2)
such that (1) HYB = 〈{0, n1, n2, 1},¬,∨,∧〉 and (2) has operations ¬,∨,∧ behaving as per
Table 2.

Table 2.

¬
1 0
n1 n1

n2 n2

0 1

∨ 1 n1 n2 0

1 1 n1 n2 1
n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

0 1 n1 n2 0

∧ 1 n1 n2 0

1 1 n1 n2 0
n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

0 0 n1 n2 0

Values n1 and n2 from Table 2 enjoys a sort of contaminating behavior in the style of n,
but notice that the behavior of n1 does not satisfy the conditions sorted out by Observation 1,
contrary to n2 does not. In order to qualify their different behaviors, we adjust the notion of
contamination from Observation 1 and we define a full-fledged, general notion of contamination:

Definition 7. An algebra A of type ν has a contaminating element k if and only if there is a
non-empty A′ ⊆ A, with A′ 6= {k}, such that for every m-ary g ∈ ν and every {a1, . . . , am} ⊆ A′:

if k ∈ {a1, . . . , am} then gA(a1, . . . , am) = k

Both n1 and n2 satisfy Definition 7. Since n2 contaminates every other value, we will say that
n2 is absolutely contaminating. By contrast, we will say that n1 is just partially contaminating,
since it contaminates all values but n2.

Discussion of the two contaminating values. Given its partially contaminating behavior,
value n1 fits our description of how errors in code work. Indeed, n1 does not trump any other
value, and this seems to fit the fact that errors in code do not necessarily affect any environ-
ment, while they do prevent computation to proceed in the virtual machine where they occur.
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By contrast, given its absolutely contaminating behavior, value n2 fits our description of how
physical errors work at the level of the operating system. Again, the former trumps any other
value, and this seems fit the fact that a physical errors occurring in the operating system affects
any environment.

4.2 Logics based on HYB

Two logics induced by logical matrices built using the HYB algebra, the Systems HYB1 and
HYB2 are two non-trivial logics definable on HYB. We give sound and complete sequent calculi
in Section 5. In what follows, we familiarize with the two systems, and provide characterizations
in the style of Theorem 3.4 and Theorem 4.3 from [7]. The two logics are defined as follows:

Definition 8. HYB1 = 〈Fml, |=MHYB1
〉 and HYB2 = 〈Fml, |=MHYB2

〉, where:

MHYB1 = 〈HYB, {n1, 1}〉 MHYB2 = 〈HYB, {n2, 1}〉

Each of HYB1 and HYB2 shares all the failures of Kw
3 and PWK, since the former are subsys-

tems of the latter. Additionally, the following distinguish the two logics HYB1 and HYB2 from
Kw
3 and PWK:

φ ∨ ψ �MHYB1
φ ∨ ¬φ φ ∧ ¬φ 6�MHYB1

φ ∧ ψ
φ ∨ ψ 6�MHYB2

φ ∨ ¬φ φ ∧ ¬φ �MHYB2
φ ∧ ψ

As for Local Excluded Middle, any valuation v such that v(ψ) = v(φ ∨ ψ) = n2 and v(φ) = n1
is such that v(φ ∨ ψ) ∈ DMHYB2

and v(φ ∨ ¬φ) /∈ DMHYB2
. Also, for every valuation v such that

v(φ∨ψ) ∈ {n1, 1}, we have v(φ∨¬φ) ∈ {n1, 1}. Since DMHYB1
= {n1, 1}, the rule has no counter-

model inMHYB1
. As for Local Explosion, any valuation v where v(φ∧¬φ) = n1 and v(ψ) = n2

provides a countermodel to the rule in HYB1; for every valuation v where v(φ) = v(φ∧¬φ) = n2,
we have v(φ∧ψ) = n2 by contamination. Since DMHYB2

= {n2, 1}, the rule has no countermodel
in MHYB2 .

The following lemma plays a crucial role in proving Theorem 2 from this section and Theo-
rem 6 from Section 5:

Lemma 1. The consequence relations |=MHYB1
and |=Mhybh

are dual, that is:

Γ |=MHYB1
∆⇔ ∆¬ |=MHYB2

Γ¬

where, for every Γ ⊆ Fml, Γ¬ = {¬φ ∈ Fml | φ ∈ Γ}.

Discussion of the interaction of n1 and n2 in HYB1 and HYB2. Values n1 and n2 may
represent, as we have discussed above, code errors in a virtual machine, and physical errors in
the operating system. Given what we have proposed about the pragmatic nature of designation
of a contaminating value, two combinations are possible: code errors are taken as unthreatening
and physical errors as fatal, or vice versa. The two options correspond to taking HYB1 and
HYB2 as one’s logic of choice, respectively. Under this informal reading, φ ∨ ψ |=MHYB1

φ ∨ ¬φ
can be seen as a way of expressing that, if both φ and ψ are safe from fatal errors at the
software level, then any of the involved formulas can be assigned a value—which implies that
either φ or its negation will receive a designated value, given the behavior of ¬. By contrast,
φ ∨ ψ 6|=MHYB2

φ ∨ ¬φ implies that, if some supposedly unthreatening error occurs in processing
either of φ or ψ, nothing excludes that the other piece of information is not involved in some
error in code, which is less contaminating but fatal, under this specific interpretation.

Although we have a preference for the option that supports HYB1 over HYB2—we feel that
physical errors at the level of the operating system can be hardly seen as unthreatening—we
believe that it is worth exploring both options.
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4.3 Characterizating logical consequence in HYB1

The following is a characterization result for HYB1:

Theorem 1.

Γ |=HYB1
∆ iff Γ |=PWK ∆

′ for at least a non-empty ∆′ ⊆ ∆ s.t. var(∆′) ⊆ var(Γ ).

This fits with the way HYB1 conceives of the hierarchy of errors represented by n1 and n2:
since the fatal errors are those represented by the most contaminating value, any information
that is included in the premises will be safe from fatal errors, since the premises itself must be,
if they are to be designated.

Theorem 1 in turn explains why the PWK-valid inference from φ∧¬φ to φ∧ψ fails in HYB1,
while the PWK-valid inference from φ ∨ ψ to φ ∨ ¬φ is valid in HYB1. The former violates the
variable-inclusion requirement from Theorem 1, while the latter complies with it.

4.4 Characterizing logical consequence in HYB2

With the above notions and facts at hand, we are ready to provide the characterization result
for HYB2:

Theorem 2.

Γ |=HYB2 ∆ iff Γ ′ |=Kw
3
∆ for at least a non-empty Γ ′ ⊆ Γ s.t. var(Γ ′) ⊆ var(∆).

This fits with the way HYB2 conceives of the hierarchy of errors represented by n1 and n2:
since the fatal errors are those represented by the least contaminating value, if information from
part of the premise is included in the conclusion, then the latter will be safe from fatal errors,
since otherwise the premises would not be.

Theorem 2 explains φ∨ψ 6|=HYB2 φ∨¬φ. Indeed, although the inference is Kw
3 -valid, there is

no guarantee that the variables of φ∨ψ are all contained in those of φ—notice that φ∨ψ is, in
turn, the only non-empty subset of φ ∨ ψ.

The following corollary will be helpful in proving Lemma 2 from Section 5. It is a straight-
forward consequence of Proposition 1, Theorem 1 and Theorem 2:

Corollary 1. MHYB1
-consequence and MHYB2

-consequence can be characterized as follows:

Γ �MHYB1
∆⇔ V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ )

for some Γ ′ ⊆ Γ,∆′ ⊆ ∆ s.t. Γ ′ �MCL
∆′

Γ �MHYB2
∆⇔ V ar(∆′) ⊆ V ar(Γ ′) ⊆ V ar(∆)

for some Γ ′ ⊆ Γ,∆′ ⊆ ∆ s.t. Γ ′ �MCL
∆′

4.5 Discussion of Theorem 1 and Theorem 2

Sublogics like HYB1 and HYB2 are attracting increasing attention [3, 19], and they are natural
way to generalize the three-valued contaminating setting from WKLs to more than one contam-
inating value. However, very little is known about these logics to this day. The two theorems
from the present section make a significant progress in our knowledge of such logics, and we
believe that this explains their relevance.

Additionally, we believe that our results make a significant progress w.r.t. [12, Observation
1], that also provides a clear direction for a general characterization methods for logics endowed
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with many contaminating values. First, [12, Observation 1] is concerned with single-conclusion
consequence relations, while our results can suggest a method that would apply to the more
general multiple-conclusion case. Second, and more important, [12, Observation 1] concerns
logics where contaminating values are not designated, while Theorem 2 provides an insight that
is relevant also for logics that comprise one (or more) designated contaminating values. Although
the insight from [12, Observation 1] easily extends to HYB1, it is not clear if it extends naturally
to HYB2. Thus, the present results offer an insight that is more general than the insight offered
by [12, Observation 1].

5 Sequent Calculi

We go now to the sequent calculi for HYB1 and HYB2. More precisely, we provide sound and
complete calculi of annotated sequents for the two four-valued logics. An annotated sequent is
an object of the form Γ, JΓ ′K⇒ ∆, J∆′K where Γ, Γ ′, ∆,∆′ are sets of formulas of the language.
In annotated sequent calculi, additional rules are provided in order to capture the interaction
among formulas within squared brackets, outside square brackets, and the interaction of formulas
within square brackets and formulas outside the brackets.

Our results extend the ones from [8] for Kw
3 and PWK. As in [8], each of our calculi places

restrictions on several rules—more precisely, the rules need some variable inclusion condition to
be satisfied in order to be applicable. We will specify the relevant restrictions when needed.

Below, we present the rules for the two annotated calculi, and we briefly discuss the differences
between them and many-sided sequent calculi in the style of [2] . After that, we go to soundness
and completeness of the two calculi.

5.1 Rules

Both systems include the following three rules, where for every Γ ⊆ Fml, Γ ∗ is any modification
of Γ by permuting elements, absorbing redundancies, or duplicating formulas:

[Axiom]
∅, JpK⇒ ∅, JpK

Γ, JΞK⇒ ∆, JΘK
[Structural]

Γ ∗, JΞ∗K⇒ ∆∗, JΘ∗K

Γ, JΓ ′K⇒ ∆, J∆′K
[Weak]

Γ,Ξ, JΓ ′K⇒ ∆,Θ, J∆′K

[Axiom] secures the validity of those classical axioms in which a propositional variable is within
the scope of a square bracket in each sequent. [Structural] grants standard structural rules, but
Weakening, within any of the four slots. [Weak] differs from the Weakening for non-annotated
calculus in that we can only allow Weakening outside the scope of the bracket. The following
“push” rules below meet the need to shift formulas from outside the scope of a square bracket
to within its scope. It is with these rules that variable-inclusion restrictions come into play:

Γ, φ, JΓ ′K⇒ ∆, J∆′K
[PushL]

Γ, JΓ ′, φK⇒ ∆, J∆′K
Γ, JΓ ′K⇒ ∆,ψ, J∆′K

[PushR]
Γ, JΓ ′K⇒ ∆, J∆′, ψK

Restrictions for PushL and PushR . In the HYB1 calculus, [PushL] requires the restriction
V ar(φ) ⊆ V ar(∆′) and [PushR] requires V ar(ψ) ⊆ V ar(Γ ∪Γ ′). In the HYB2 calculus, the two
rules require V ar(φ) ⊆ V ar(∆ ∪∆′) and V ar(ψ) ⊆ V ar(Γ ′), respectively.
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Negation rules come with a pair of right rules and a pair of left rules, since we need to
distinguish the case where we are introducing the sign within the scope of a square bracket from
that where we are introducing the sign out of such a scope. The right rules:

Γ, JΓ ′, φK⇒ ∆, J∆′K
[¬R1]

Γ, JΓ ′K⇒ ∆, J∆′,¬φK
Γ, φ, JΓ ′K⇒ ∆, J∆′K

[¬R2]
Γ, JΓ ′K⇒ ∆,¬φ, J∆′K

The left rules:

Γ, JΓ ′K⇒ ∆, J∆′, ψK
[¬L1]

Γ, JΓ ′,¬ψK⇒ ∆, J∆′K
Γ, JΓ ′K⇒ ∆,ψ, J∆′K

[¬L2]
Γ,¬ψ, JΓ ′K⇒ ∆, J∆′K

Restrictions for ¬R1,¬R2, and ¬L 1,¬R2. In the HYB1 calculus, [¬R1] and [¬R2] require
V ar(φ) ⊆ V ar(Γ ∪Γ ′); in the HYB2 calculus, [¬R1] requires that V ar(φ) ⊆ V ar(Γ ′), and [¬R1]
has no proviso. In both calculi, [¬L1] requires that V ar(ψ) ⊆ V ar(∆′) and [¬L2] has no proviso.

Conjunction rules also come in pairs:

Γ, JΓ ′, φ, ψK⇒ ∆, J∆′K
[∧L1]

Γ, JΓ ′, φ ∧ ψK⇒ ∆, J∆′K
Γ, φ, ψ, JΓ ′K⇒ ∆, J∆′K

[∧L2]
Γ, φ ∧ ψ, JΓ ′K⇒ ∆, J∆′K

Rules [∧L1] and [∧L2] require no provisos in either HYB1 or HYB2. However, the following mixed
rule requires a variable-inclusion restriction:

Γ, φ, JΓ ′, ψK⇒ ∆, J∆′K
[∧L∗]

Γ, JΓ ′, φ ∧ ψK⇒ ∆, J∆′K

In HYB1, the rule is admissible provided that V ar(φ) ⊆ V ar(∆′), while in HYB2, V ar(φ) ⊆
V ar(∆ ∪∆′) is required. For the right rules, we consider the case in which both conjuncts are
outside of the scope of J−K and the case in which both are within its scope. Note, again, that
we can appeal to [PushR] in order to cover mixed cases.

Γ, JΓ ′K⇒ ∆, J∆′, φK Γ, JΓ ′K⇒ ∆, J∆′, ψK
[∧R1]

Γ, JΓ ′K⇒ ∆, J∆′, φ ∧ ψK

Γ, JΓ ′K⇒ ∆,φ, J∆′K Γ, JΓ ′K⇒ ∆,ψ, J∆′K
[∧R2]

Γ, JΓ ′K⇒ ∆,φ ∧ ψ, J∆′K

Again, neither [∧R1] nor [∧R2] requires a proviso in the two logics, but one could define an
admissible rule that requires that V ar(φ) ⊆ V ar(Γ ∪ Γ ′) in HYB1 and V ar(φ) ⊆ V ar(Γ ′) in
HYB2:

Γ, JΓ ′K⇒ ∆,φ, J∆′K Γ, JΓ ′K⇒ ∆, J∆′, ψK
[∧R∗]

Γ, JΓ ′K⇒ ∆, J∆′, φ ∧ ψK

Disjunction rules are as follows:

Γ, JΓ ′, φK⇒ ∆, J∆′K Γ, JΓ ′, ψK⇒ ∆, J∆′K
[∨L1]

Γ, JΓ ′, φ ∨ ψK⇒ ∆, J∆′K

Γ, φ, JΓ ′K⇒ ∆, J∆′K Γ, ψ, JΓ ′K⇒ ∆, J∆′K
[∨L2]

Γ, φ ∨ ψ, JΓ ′K⇒ ∆, J∆′K
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Neither [∨L1] nor [∨L2] require provisos. Again, for the right rules, we consider the case in which
both disjuncts are outside of the scope of J−K and the case in which both are within its scope.
Note, again, that we can appeal to [PushR] in order to cover mixed cases.

Γ, JΓ ′K⇒ ∆, J∆′, φ, ψK
[∨R1]

Γ, JΓ ′K⇒ ∆, J∆′, φ ∨ ψK
Γ, JΓ ′K⇒ ∆,φ, ψ, J∆′K

[∨R2]
Γ, JΓ ′K⇒ ∆,φ ∨ ψ, J∆′K

5.2 Soundness and completeness

Now we state soundness and completeness of HYB1 is sound and complete with respect to
MHYB2

(Theorem 3 and Theorem 4), and HYB2 is sound and complete with respect to MHYB1

(Theorem 5 and Theorem 6).

Theorem 3 (Soundness of HYB1). If Γ, JΓ ′K ⇒ ∆, J∆′K is provable in HYB1, then Γ ∪
Γ ′ �MHYB2

∆ ∪∆′.

In what follows, when we talk about ‘the two-sided sequent calculi for PWK and Kw
3 ’, we will

be referring to the calculi from [8], which are presented there as fragments of Gentzen’s sequent
calculus for Classical Logic (indeed, as fragments where some of the operational rules were re-
stricted with variable inclusion requirements). This is important for understanding the following
lemma, which helps prove the completeness of HYB1 with respect to MHYB2

.

Lemma 2. If Γ �MHYB2
∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆, V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ ) and

Γ ′ �MCL
∆′, then Γ ′ ⇒ ∆′ is provable in the calculus for PWK.

Definition 9. In the HYB1 calculus, a PWK rule that applies only to formulas within brackets
is a “bracketed rule”.

Theorem 4 (Completeness of HYB1). If Γ �MHYB2
∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆, V ar(Γ ′) ⊆

V ar(∆′) ⊆ V ar(Γ ) and Γ ′ �MCL
∆′, then Γ ′, JΓ ′′K ⇒ ∆′, J∆′′K is provable in HYB1, where

Γ = Γ ′ ∪ Γ ′′ and ∆ = ∆′ ∪∆′′.

By similar means, we arrive at the corresponding results for HYB2.

Theorem 5 (Soundness of HYB2). If Γ, JΓ ′K ⇒ ∆, J∆′K is provable in HYB2, then Γ ∪
Γ ′ �MHYB1

∆ ∪∆′.

Theorem 6 (Completeness of HYB2). If Γ �MHYB1
∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆, V ar(∆′) ⊆

V ar(Γ ′) ⊆ V ar(∆) and Γ ′ �MCL
∆′, then Γ ′, JΓ ′′K ⇒ ∆′, J∆′′K is provable in HYB2, where

Γ = Γ ′ ∪ Γ ′′ and ∆ = ∆′ ∪∆′′.

5.3 Annotated and many-sided calculi.

Our calculi for HYB1 and HYB2 are decorated, since we use a bracketing device in each of the
antecedent and succedent to track variable-inclusion properties. It is of crucial importance not
to confuse this ‘decoration’ with the labelling deployed by the so-called many-sided sequent
calculi, and not to mistake our calculi for four-sided sequent calculi. We briefly explain why.

Given a set A = {a1, a2, . . . , an} whose members are interpreted as truth values and where
a1 = 0 and a2 = 1, many-side sequent calculi allow for sequents of the form Γ1 | · · · | Γn. The
standard informal meaning of such a sequent is: ‘for some i between 1 and n, and some φ in Γi,
φ has value ai’. In a nutshell, each “side” of a sequent plays the role of a distinct truth-value.
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This suffices to understand the different between the calculi we are presenting here and
many-sided sequent calculi. Contrary to the latter, the bracketing in our calculi for HYB1 and
HYB2 is not supposed to capture (and needs not be understood as capturing) any semantic
feature underlying the logic; by contrast, the device we deploy is syntactic in nature, since it
tracks variable-inclusion properties.

We believe this difference is relevant for our proposal for at least two reasons. First, many-
sided sequent calculi are often criticized, in light of the standard interpretation above, as smug-
gling semantics into proof theory, which is usually supposed not to be desirable. Our bracketing
device, by contrast, does not imply any mixing of semantics and proof theory and is, therefore,
free from such a criticism.

Second, the construction of a many-sided sequent calculus is a quite trivial business today,
thanks to existing tools such as MUltseq—described, e.g., in [14])—that can construct sound
and complete many-sided sequent calculi for any finitely-valued logic. Since our calculi do not
belong, in fact, to the family of many-sided sequent calculi, they do not fall prey of such a
triviality.

6 Conclusions

In this paper, we have discussed the interaction of computer errors that come from different
sources and, especially, takes place at different levels in the system. Some of these errors are
suitably represented by values that are contaminating in a sense closely resembling the third
value from Weak Kleene Algebra WKA. The paper discusses this structure together with the
two non-trivial logics can be interpreted on it. These are the systems PWK from [15] and Kw

3

from [4]. In particular, Kw
3 and cognate formalisms have been given a computational interpre-

tation in [11], where the logic is used in order to reason about those failures in C + +-based
programs that are due to the presence of undeclared variables (Section 3). Since computer errors
may have a variety of different sources, and differ in their effects on the environment, we discuss
the interaction of two different kinds of computer errors, namely those which occur at the level
of some virtual machine, and those which occur at the level of the operating system (Section 4).
In order to capture the interaction of these two kinds of errors, we introduce the four-valued
algebra HYB, and two logics based on that: the systems HYB1 and HYB2. We provide charac-
terization results for the two logics—that is, we provide necessary and sufficient conditions for
two sets Γ and ∆ of formulas to be in the relation of HYB1- or HYB2-consequence. Sound and
complete sequent calculi for the systems in question are presented (Section 5). Before closing,
we discuss some directions for future research.

First, we plan to devote future work to an investigation into the matter of designation
(or not) of contaminating truth-values (see Section 4 for the issue). This is a very important
point. Indeed, he current state of the art in applied computer science frequently encounters
programs running in a cascade virtual machines nested in one another. Interest of the user
and specific application may lead to discount some errors and consider them uninteresting and
unthreatening. In this case, one might want to designate the relevant contaminating truth value,
since this represent the ability of the computation to go on, the error notwithstanding. We wish
to cast this general framework against the background of concrete scenarios of nested computer
errors.

Another interesting issue concerns the proof complexity of HYB1 and HYB2. One way to
look at the trade-off between the calculi that we have described and the method of many-sided
sequent calculi is that our presentation has limited the number of additional rules at the cost
of a possibly exponential increase of the search space. In particular, verifying that Γ ⇒ ∆
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is provable seems to require a back-and-forth procedure grabbing subsets of Γ and ∆ with
appropriate variable-inclusion properties until landing on Γ ′ ⊆ Γ and ∆′ ⊆ ∆ for which we can
confirm that Γ ′ ⇒ ∆′ is classically provable. This seems to indicate a worst-case complexity of
verifying provability of a sequent as being in EXPTIME. We plan to devote future work to the
investigation of proof complexity and related issues.
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Appendix

Proof of Lemma 1: We start with the LTR direction. Suppose that Γ �MHYB1
∆. This means

that, if v(ψ) = {0, n2} for every ψ ∈ ∆, then v(φ) = {0, n2} for some φ ∈ Γ and every
v ∈ HomFml,HYB. Given the behavior of n2 w.r.t. negation, this implies that, if v(θ) = {1, n2}
for every θ ∈ ∆¬, then v(ζ) = {1, n2} for some ζ ∈ Γ¬ and every v ∈ HomFml,HYB. Since
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DHYB2
= {1, n2}, this implies ∆¬ |=MHYB2

Γ¬. The RTL direction is proved along the very same
lines. �

Proof of Theorem 1: We start with the LTR direction. We first prove that if Γ |=HYB1 ∆,
then Γ ′ |=HYB1

∆ for at least a non-empty ∆′ ⊆ ∆ such that var(∆′) ⊆ var(Γ ). Assume
the antecedent as the initial hypothesis, and suppose that Γ 6|=HYB1

∆′ for every ∆ ⊆ ∆′

such that var(∆′) ⊆ var(Γ ). This implies that there is valuation v ∈ HomFml,HYB such that
v(ψ) ∈ {n2, 0} for every ψ ∈ ∆′ and yet v(φ) ∈ {1, n1} for every φ ∈ Γ . By the contaminating
behavior of n2 from Table 2 and var(∆′) ⊆ var(Γ ), this implies v(ψ) = 0 for every ψ ∈ ∆′. More
in general, we have v(p) 6= n2 for every p ∈ var(Γ ), and by this, we have v(q) 6= n2 for every
q ∈ var(

⋃
∆′∈G∆,Γ

). This implies that v(φ) = {n1, 1} for every φ ∈ Γ . v can be extended to a

valuation v′ ∈ HomFml,HYB such that v′(p) = v(p) if p ∈ var(Γ ), and v′(p) = n2 otherwise.
This implies that v′(φ) ∈ {1, n1} for every φ ∈ Γ , v′(θ) = n2 for every θ ∈ ∆ \

⋃
∆′∈G∆,Γ

,

and v(ψ) = 0 for every ψ ∈ ∆. But this in turn contradicts the initial hypothesis, given the
definition of HYB1-consequence. Thus, we have that, if Γ |=HYB1

∆, then Γ |=HYB2
∆′ for at

least a non-empty ∆′ ⊆ ∆ such that var(∆′) ⊆ var(Γ ). Since HYB2 is a sublogic of PWK,
we conclude that Γ |=HYB1

∆ implies Γ |=PWK ∆′ for at least a non-empty ∆′ ⊆ ∆ such that
var(∆′) ⊆ var(Γ ).

As for the RTL direction, assume as the initial hypothesis that Γ |=PWK ∆′ for at least a
non-empty ∆′ ⊆ ∆ such that var(∆′) ⊆ var(Γ ). To establish Γ |=HYB1

∆′, fix any valuation
U ∈ Hom such that v(φ) ∈ {1, n1} for every φ ∈ Γ ′. Our goal is to show that v(ψ) ∈ {1, n1} for
some ψ ∈ ∆. We consider two cases:
Case 1): v(φ) = n1 for some φ ∈ Γ . Fix some formula θ ∈ Γ such that v(θ) = n1. By the
contaminating behavior of n1 from Table 2, there is a q ∈ var(θ) such that v(q) = n1. Remember
that var(∆′) ⊆ var(Γ ), and suppose that q ∈ var(Γ ) ∩ var(∆′). Since var(∆′) ⊆ var(Γ ) and
v(p) 6= n2 for every p ∈ var(Γ ), we have v(q) 6= n2 for every q ∈ var(∆′). Suppose now that
v(φ) ∈ {1, n1} for every φ ∈ Γ and v(ψ) = 0 for every ψ ∈ ∆′.This implies that there is a
valuation V ∈ Hom such that v(φ) ∈ {1, n} for every φ ∈ Γ and v(ψ) = 0 for every ψ ∈ ∆′. But
this contradicts the initial hypothesis that Γ |=PWK ∆

′.
Case 2): v(φ) 6= n1 for every φ ∈ Γ ′. This implies that v(φ) = 1 for every φ ∈ Γ , and, by the
contaminating behavior of n1, n2 from Table 2, v(p) = 1 for every p ∈ var(Γ ). From this and
Γ |=CL ∆

′ (which follows from the initial hypothesis Γ |=PWK ∆′), we have that v(ψ) = 1 for
some ψ ∈ ∆, as desired.

Since these two cases are jointly exhaustive, we conclude Γ |=HYB1
∆′. From this and the

Definition of |=HYB1 , it follows that Γ |=HYB1 ∆. �

Proof of Theorem 2: By Theorem 1 and Lemma 1. �

Proof of Theorem 3: Any initial sequent ∅, JpK ⇒ ∅, JpK has the form Γ, JΓ ′K ⇒ ∆, J∆′K in
which Γ and ∆ are empty and Γ ′ = ∆′ = {p}. In this case, the sequent enjoys the property
that:9

1. V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ ∪ Γ ′)
2. Γ ′ ⊆ Γ ∪ Γ ′ and ∆′ ⊆ ∆ ∪∆′
3. The sequent Γ ′ ⇒ ∆′ is derivable in LK

It can be easily checked that that this property is preserved under each of the foregoing rules.
The case of the Exchange and Contraction rules, and Weakening (outside the scope of the square
brackets) can be noted to preserve this property, since they correspond to properties that are

9 As usual, this label denotes the standard sequent calculus for Classical Logic CL.
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valid in every Tarskian logic and HYB1 is a Tarskian logic, as every matrix logic is—see [20].
We notice that this property is preserved by the other rules as follows. Moreover, this can also
be checked to apply straightforwardly to the “push” rules and the operational rules (in- and
outside the square brackets). Hence, any derivable sequent enjoys the above tripartite property.

Now, we know that Ξ �MHYB2
Θ if and only if there exists a Ξ ′ ⊆ Ξ and a Θ′ ⊆ Θ such that

V ar(Ξ ′) ⊆ V ar(Θ′) ⊆ V ar(Ξ) and Ξ ′ �MCL
Θ′. Because of soundness of LK (a presentation of

which is described in [8]), the above tripartite property entails validity inMHYB2
. Soundness of

HYB2 with respect to MHYB1 is proved by similar reasoning. �

Proof of Lemma 2: Assume Γ �MHYB2
∆. Then by Corollary 1 forMHYB2

, we know that there
are Γ ′ ⊆ Γ , ∆′ ⊆ ∆, with V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ ) and Γ ′ �MCL

∆′ . By completeness
of LK, this implies that Γ ′ ⇒ ∆′ is provable in LK. We also know that V ar(Γ ′) ⊆ V ar(∆′).
Hence, by [8, Lemma 21], these two observations jointly imply that Γ ′ ⇒ ∆′ is provable in the
sequent calculus for PWK. �

Proof of Theorem 4: Assume that Γ �MHYB2
∆. Then, by Lemma 2, there is a PWK proof of

Γ ′ ⇒ ∆′. Call this proof, i.e. a rooted binary tree, Π. We can design an algorithm to transform
a PWK proof of this sequent into an HYB1 proof of Γ, JΓ ′K⇒ ∆, J∆′K.

First, replace every node Ξ ⇒ Θ of Π by a node ∅, JΞK ⇒ ∅, JΘK. Then, place below each
leaf, or axiom node, one instance of [Weak], such that from an axiom ∅, JpK⇒ ∅, JpK we infer in
one step the sequent Γ, JpK⇒ ∆, JpK. After that, for each non-axiom node place Γ to the left of
the square brackets in the antecedent and ∆ to the left of the square brackets in the succedent. In
the resulting proof, each PWK rule is applied within the scope of the square brackets. Moreover,
we can check that every application of a PWK rule corresponds to a “bracketed rule” in HYB1

that respects the corresponding provisos.
Actually, since Weakening is not fully admissible within the scope of square brackets, some-

thing must be said about this case. Suppose in an H proof of Γ ′ ⇒ Γ ′ there is an ineliminable
application of Weakening that allows to go from a node Ξ ⇒ Θ to a node Ξ,Ξ ′ ⇒ Θ,Θ′—
whence we can legitimately call Ξ ′ and Θ′ the active (sets of) formulas in this step. Then the
current algorithm can be further specified by saying that if Π is a proof which has no inelim-
inable application of Weakening, then we proceed as previously stated. However, if Π has an
ineliminable application of Weakening, then we enlarge every node (outside the square brackets)
with Γ and Ξ ′, and ∆ and Θ′, in their respective sides. Finally, when the Π requires the corre-
sponding application of Weakening, we mimic this in HYB1 applying the [PushL] and [PushR]
rules to Ξ ′ and Θ′, as needed.

This renders a rooted binary tree Π∗ with Γ, JΓ ′K⇒ ∆, J∆′K as its terminal sequent. We then
proceed to apply the rules [PushL], [PushR] followed by elimination of duplicate formulas in Γ ′

and ∆′. We end up with a HYB1 proof ending with Γ ′′, JΓ ′K⇒ ∆′′, J∆′K, for which Γ ′′ ∪Γ ′ = Γ
and ∆′′ ∪∆′ = ∆ and V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ ′′ ∪ Γ ′) = Γ . �

Proof of Theorem 6: By Theorem 4 and Lemma 1. �
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