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Abstract

This paper presents a semantical analysis of the Weak Kleene Logics Kw
3 and PWK from the

tradition of Bochvar and Halldén. These are three-valued logics in which a formula takes the
third value if at least one of its components does. The paper establishes two main results: a
characterization result for the relation of logical consequence in PWK—that is, we individuate
necessary and sufficient conditions for a set ∆ of formulas to follow from a set Γ in PWK—
and a characterization result for logical consequence in Kw

3 . The paper also investigates two
subsystems of Kw

3 and PWK and discusses the relevance of the results against existing back-
ground. Finally, the paper discusses some issues related to Weak Kleene Logics—in particular,
their philosophical interpretation and the reading of conjunction and disjunction—and points
at some open issues.

Keywords: Weak Kleene tables, contamination, Bochvar, Halldén, variable inclusion require-
ments, containment logic.

1 Introduction

Weak Kleene logics are interpreted on the weak tables that are independently introduced by
(Bochvar, 1938; Halldén, 1949; Kleene, 1952) in order to deal with one non-classical truth value
beside the classical ones. The distinctive features of these logics is that, if A is assigned the third
value, any formula B where A occurs will have the third value, regardless of the syntactic structure
of B. This feature is called contamination (Ciuni, 2015; Ciuni and Carrara, 2016; Correia, 2002)
or infectiousness (Ferguson, 2014b; Omori and Szmuc, 2017; Szmuc, 2017)—for clear reasons, we
believe. Despite the variety of their philosophical applications (see below), there is little formal
analysis of Weak Kleene logics. In particular, the relations of logical consequence in Weak Kleene
logics remain largely unexplored.

This paper contributes to fill this gap and makes first steps toward a systematic analysis of
Weak Kleene logics (from now on, WKLs). We focus on the two basic formalisms of the family: the
so-called internal logic Kw3 by (Bochvar, 1938) and Paraconsistent Weak Kleene PWK investigated
in (Ciuni, 2015) and (Ciuni and Carrara, 2016)—this is in turn the standard propositional fragment
of the logic from (Halldén, 1949).1 The main results of the paper are two characterization results
for logical consequence in PWK and Kw3 , respectively—that is, we individuate necessary and suffi-
cient conditions for a set ∆ of formulas to be a PWK- (a Kw3 -) consequence of a set Γ of premises.

1In this paper we include LP and PWK in the family of Kleene logics, since they are based of Kleene’s strong and
weak tables, respectively. Notice, however, that the philosophical project by Kleene went along with paracomplete
logics only. By including LP and PWK in the family of Kleene logics, we do not presuppose any historical filiation
from Kleene’s project.
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Besides, we prove that our main results can be generalized to the logics Leb′ and Lb′e, which are two
sublogics of PWK and Kw3 that have been recently introduced by (Barrio et al., 2016) and (Szmuc,
2017). We believe that this proves the fruitfulness of our methods and the possibility to extend
it beyond the two three-valued WKLs. Finally, the paper briefly reviews some philosophical and
technical points concerning WKLs, such as the interpretation of these logics, their extension with
the so-called meaningfulness operators, and the addition of detachable conditionals.

The paper proceeds as follows. The remainder of this section introduces some background and
discusses the relevance of the results and the methodology of the paper. Section 2 introduces the
basic semantics of WKLs. Sections 3 and 4 establish the characterization result for PWK and Kw3 ,
respectively. The two sections also discuss some interesting features of the two theorems, and their
relation with background literature. Section 5 presents the characterization results for Leb′ and Lb′e.
Section 6 reviews philosophical and technical points that are independent from the results of the
paper, and yet help get a better grasp of WKLs. Any reader that has an expertise in WKLs can
skip this section,2 but we believe that the non-expert could gain a more complete understanding
of WKLs by reading it. Section 7 opens some issues for future research, and Section 8 sums up the
content of the paper.

1.1 Background

The so-called weak tables for the connectives (see Table 1) have been independently introduced by
(Bochvar, 1938), (Halldén, 1949) and (Kleene, 1952). The name ‘weak tables’ is due to (Kleene,
1952),3 that defined them along the more famous strong tables below:

¬A
t f
n n
f t

A ∨B t n f

t t t t
n t n n
f t n f

A ∧B t n f

t t n f
n n n f
f f f f

A ⊃ B t n f

t t n f
n t n n
f t t t

(Kleene, 1952) just uses the weak tables in order to prove some facts on the definability of
partial recursive shemata out of primitive recursive ones, but he finds that the strong tables are
a more natural way to capture how partial information affects reasoning.4 By contrast, the weak
tables lie at the hearth of the philosophical projects by (Bochvar, 1938) and (Halldén, 1949), that
wish to capture the import of meaningless expressions on our reasoning (see Section 6).

The systems Kw3 and PWK—that we consider in this paper—are the so-called internal logics
of the two projects.5 These logics capture the effects of meaninglessness on our reasoning, but
they cannot express that a given statement is meaningless. The so-called external logics B3 and H3

provide this additional expressive power (see Sections 6 and 7).

2With the exception, maybe, of §6.4, which discusses very recent work on WKLs and is relevant for a better
understanding of the last two paragraphs of Section 7.

3Since (Bochvar, 1938) and (Halldén, 1949) were not much known at the time, the tables retained the name given
by Kleene, and the resulting logics were named after him.

4The strong tables provide the semantical basics of two well-known many-valued logics, namely the paracomplete
K3 from (Kleene, 1938), and its paraconsistent counterpart, the Logic of Paradox LP from (Priest, 2006). A slight
adaptation of the tables as to include a fourth value is used to interpret the logic FDE by (Belnap, 1977).

5Notice that (Bochvar, 1938) calls Σ0 what we call Kw
3 today, and (Halldén, 1949) calls C0 what we call PWK.
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The weak Kleene tables have further echo in philosophy, where the idea of a contaminating
non-classical value is recurrent: (Bochvar, 1938) applies them to Russell’s paradox, (Halldén, 1949)
applies them to vagueness, semantic paradoxes and many other phenomena, (Prior, 1967) ap-
plies them to reference to non-existent objects. Besides, the five-valued logic independently de-
signed by (Daniels, 1990) and (Priest, 2010)—on fiction and the tetralemma from Buddhist logic,
respectively—includes a contaminating truth value. We expand on this in Section 6.

1.2 Relevance and Methodolgy of the Paper

There is increasing interest today toward WKLs. (Coniglio and Corbalan, 2012) develop sequent
calculi for them, (Ciuni, 2015) explores some connections between PWK and LP, (Ciuni and Car-
rara, 2016) focus on logical consequence in PWK. Also, (Barrio et al., 2016), (Cobreros and Carrara,
2016) (in progress), and (Bonzio et al., 2017), (Fitting, 2006), (Omori and Szmuc, 2017) show that
there are efforts converging on WKLs from different angles (proof-theory, algebra, philosophical
logic). Finally, logics related to WKLs are investigated in (Ferguson, 2014a; Ferguson, 2014b; Sz-
muc, 2017).

Relevance of the results. The relevance of Theorem 3.4 and Theorem 4.3 (Sections 3 and 4,
respectively) follows from the understanding of WKLs that they secure, and the progress they make
w.r.t (with respect to) existing background. For instance, Theorem 3.4 gives a unified explanation
of the failures in PWK, including failure of Conjunctive Simplification, that is the most distinctive
feature of PWK. Similarly, Theorem 4.3 explains all the failures in Kw3 , and most prominently
failure of Disjunctive Additivity.

As for connections with existing background, the results from (Paoli, 2007), (Coniglio and Cor-
balan, 2012), and (Urquahrt, 2002) all follow from our theorems. The first two results can be
derived from Theorem 3.4, the last one can be derived from Theorem 4.3. In particular, (Paoli,
2007) establishes a characterization result for the FDE-fragment of PWK. Also, (Coniglio and Cor-
balan, 2012) discuss one direction of Theorem 3.4, but their results cannot be directly generalized
to a characterization result. Also, notice that Theorem 3.4 generalizes the main result from (Ciuni
and Carrara, 2016). Finally, (Urquahrt, 2002) captures the single-conclusion version of logical
consequence in Kw3 , and his result immediately follows from our results. A further progress w.r.t.
(Ciuni and Carrara, 2016) is that the latter does not provide any characterization result for Kw3 .

Methodology of the paper. The paper deploys a semantical methodology. In particular, we will
focus on the interpretation of the connectives on Table 1, which implicitly defines the so-called
Weak Kleene algebra, and on the different options for designation of truth values and definition of
logical consequence. This approach is overall equivalent to the investigation of WKLs as matrix-
based logics. We do not go through proof-theoretical results for WKLs in this paper, since well-
understood proof systems for them have been established already. In particular, (Bonzio et al.,
2017) provide a complete Hilbert-style proof-system for PWK, (Priest, 2019) presents a complete
natural deduction system for PWK, and (Coniglio and Corbalan, 2012) devise complete sequent
calculi for Kw3 and PWK.
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2 Weak Kleene Logics: Language and Semantics

The language L of WKLs is the standard propositional language. Given a denumerable set Var =
{p, q, r . . .} of propositional variables, the language is defined by the following Backus-Naur Form
(BNF):

ΦL ∶∶= p ∣ ¬A ∣ A ∨B ∣ A ∧B ∣ A ⊃ B

We use Γ,Φ,Ψ,Σ, . . . to denote sets of arbitrary formulas. A useful notation is this: Var(Γ) is the
set of variables occurring in some formula A ∈ Γ. Whenever ∆ = {A}, we write Var(A) instead of
Var({A}).

Propositional variables from Var are interpreted by a valuation function V ∶ Var → {t,n, f}
that assigns one out of three values to each p ∈ Var. The valuation extends to arbitrary formulas
according to the following definition:

Definition 2.1 (Valuation) A valuation V ∶ ΦL → {t,n, f} is the unique extension of a mapping
V ∶ Var → {t,n, f} that is induced by the tables from Table 1.

Table 1: Weak Tables for Logical Connectives in L

¬A
t f
n n
f t

A ∨B t n f
t t n t
n n n n
f t n f

A ∧B t n f
t t n f
n n n n
f f n f

A ⊃ B t n f
t t n f
n n n n
f t n t

We let V be the set V,V ′, V ′′, . . . of valuations conforming to Definition 2.1. We call VCL the set
of valuations of Classical Logic CL, with VCL = {V ∈ V ∣ V (p) ≠ n for every p ∈ Var}. It is clear that
VCL ⊂ V.

Table 1 provides the weak tables from (Kleene, 1952, §64), that obtain ‘by supplying [the third
value] throughout the row and column headed by [the third value]’. The way n transmits is usually
called contamination (or infection), since the value propagates from any A ∈ ΦL to any construction
k(A,B), independently from the value of B (here, k is any connective defined in terms of ∨, ∧, ⊃).
The following gives a straightforward and intuitive expression to contamination:

Fact 2.1 (Contamination) For all formulas A in ΦL and valuation V ∈ V:

V (A) = n iff V (p) = n for some p ∈ Var(A)

The LTR (left-to-right) direction is shared by all the most widespread three-valued logics; the RTL
(right-to-left) direction is clear from Table 1, and it implies that A takes value n if some p ∈ Var(A)
has the value, and no matter what the value of q is for any q ∈ Var(A) ∖ {p}.

3 Characterizing Logical Consequence in PWK

The Paraconsistent Weak Kleene logic PWK originates from (Halldén, 1949), and it is the standard
propositional fragment of the logic of nonsense presented there. Halldén believes that logic should
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also account for nonsensical sentences. In his jargon, these are expressions that are syntactically
well-formed and yet fail to convey a proposition. In this category, (Halldén, 1949) includes the Liar
and Russell’s paradox as well as ambiguous and vague sentences, and sentences referring to non-
existent objects. Halldén’s treatment can be captured semantically by (1) interpreting nonsense
(or nonsensical) as the non-classical truth value satisfying the tables from Table 1, (2) accepting
the very same tables for ¬, ∨, ∧, ⊃, and (3) designating n alongside t. Halldén’s logic of nonsense H3

also includes a unary connective that allows to build statements such as ‘A is meaningful’ and does
not satisfy contamination. PWK corresponds to the so-called internal logic developed by (Halldén,
1949)—that is, PWK includes just standard propositional connectives and cannot express that its
own statements are meaningless (or meaningful).6

The above remarks yields the following definition of logical consequence in PWK as preservation
of t or n. From now on, we will call this ‘PWK-consequence’:

Definition 3.1 (PWK-Consequence) PWK-consequence is a relation ⊧PWK ⊆ ℘(ΦL) × ℘(ΦL)
such that:

Γ ⊧PWK ∆ iff For every V ∈ V, if V (A) ∈ {t,n} for every A ∈ Γ, then V (B) ∈ {t,n} for some B ∈ ∆.

If Γ ⊧PWK ∆, then we say that ∆ is a PWK-consequence of Γ, or equivalently, ∆ follows from Γ
in PWK. We write A,B ⊧PWK C,D for {A,B} ⊧PWK {C,D}. A set ∆ ⊆ ℘(ΦL) is a tautology iff
∅ ⊧PWK ∆. We define the set VPWK(Γ) = {V ∈ V ∣ V (A) ∈ {t,n} for every A ∈ Γ} of the valuations
in V that satisfy a set Γ of formulas in PWK. Γ is satisfiable in PWK iff VPWK(Γ) ≠ ∅, and it is a
tautology iff VPWK(Γ) = V.

We establish some preliminary results and then we go to the characterization result for PWK
(Theorem 3.4).

Fact 3.1 If Γ ⊧PWK ∆, then Γ ⊧CL ∆

Due to VCL ⊂ V. The other direction clearly does not hold, since , by the definition of VCL, V ∉ VCL
for all the V ∈ V such that V (p) = n for at least a p ∈ Var.

Fact 3.2 ∅ ⊧PWK ∆ iff ∅ ⊧CL ∆

The LTR direction is a special case of Fact 3.1. As for RTL direction, suppose it fails. Then there
must be a valuation V ∈ V such that V (B) = f for every B ∈ ∆. By Fact 2.1, V (p) ≠ n for every
p ∈ Var(∆), and hence V could be extended to a classical valuation V ′ ∈ VCL such that V ′(p) = V (p)
if p ∈ Var(∆). This implies V ′(B) = f for every B ∈ ∆, contrary to the assumption that ∅ ⊧CL ∆.
The following will also be useful when proving Theorem 3.4:

Fact 3.3 (Monotonicity) If Γ ⊧PWK ∆ then Γ,Σ ⊧PWK ∆.

This follows from VPWK(Γ ∪Σ) ⊆ VPWK(Γ). Given a pair {Γ,∆} from ℘(ΦL) × ℘(ΦL), we define
the set

GΓ,∆ = {Γ′ ⊆ Γ ∣ Γ′ ≠ ∅ and Var(Γ′) ⊆ Var(∆)}

of those non-empty subsets of Γ whose variables are all included in the variables from ∆. We will
need this notion in the following results.

6We come back to Halldén’s external logic and his interpretation of the weak Kleene machinery in Section 6.
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Proposition 3.2 If Γ ⊧PWK ∆ and ∅ /⊧PWK ∆, then GΓ,∆ ≠ ∅.

Proof. Assume the antecedent (Γ ⊧PWK ∆ and ∅ /⊧PWK ∆) as an initial hypothesis, and suppose
GΓ,∆ = ∅. The latter implies that for every A ∈ Γ, Var(A) /⊆ Var(∆). For every A ∈ Γ, take the set
DA = Var(A)∖Var(∆). Since Var(A) /⊆ Var(∆), we have DA ≠ ∅. Now take a valuation V ∈ V such
that

● V (B) = f for every B ∈ ∆,
● V (p) = n for every p ∈ DA and A ∈ Γ.

This valuation exists, since the value-assignments to every element of DA and Var(∆) are indepen-
dent. We have that V (B) = f for every B ∈ ∆ and, by Fact 2.1, V (A) = n for every A ∈ Γ. As a
consequence, Γ /⊧PWK ∆. But this contradicts the initial hypothesis. ∎

The statement in Proposition 3.2 is equivalent with: (i) if Γ ⊧PWK ∆ and GΓ,∆ = ∅, then ∅ ⊧PWK ∆,
and (ii) if ∅ /⊧PWK ∆ and GΓ,∆ = ∅, then Γ /⊧PWK ∆. The only case where the (sets of) variables
of premises and conclusions are disjoint in a PWK-valid inference is the case where the conclusion
is a tautology.

Proposition 3.3 If Γ ⊧PWK ∆ and ∅ /⊧PWK ∆, then ∃Γ′ ∈ GΓ,∆ such that Γ′ ⊧CL ∆.

Proof. We prove that the antecedent of the statement implies ∃Γ′ ∈ GΓ,∆ such that Γ′ ⊧PWK ∆.
From this and Fact 3.1, the result follows. Assume ∅ /⊧PWK ∆ and Γ ⊧PWK ∆ as the initial hy-
pothesis. Suppose that Γ′ /⊧PWK ∆ for every Γ′ ∈ GΓ,∆. This implies that there is a valuation
V ∈ V such that V (B) = f for every B ∈ ∆ and V (A) ∈ DPWK for every A ∈ ⋃Γ′∈GΓ,∆

Γ′. Due to
Fact 2.1, we have V (p) ≠ n for every p ∈ var(∆) and, by the definition of GΓ,∆, V (A) ≠ n for every
A ∈ ⋃Γ′∈GΓ,∆

Γ′. This implies V (A) = t for every A ∈ ⋃Γ′∈GΓ,∆
Γ′. V can be extended to a valuation

V ′ ∈ V such that V ′(p) = V (p) if p ∈ var(∆), and V ′(p) = n otherwise. This implies V ′(C) = n
for every C ∈ Γ such that C ∉ ⋃Γ′∈GΓ,∆

Γ′, V ′(A) = t for every A ∈ ⋃Γ′∈GΓ,∆
Γ′, and V ′(B) = f for

every B ∈ ∆. But this contradicts the initial hypothesis. From this, we have that, if Γ ⊧PWK ∆
and ∅ /⊧ ∆, then ∃Γ′ ∈ GΓ,∆ such that Γ′ ⊧PWK ∆. From this and Fact 3.1, we conclude that, if
Γ ⊧PWK ∆ and ∅ /⊧∆, then ∃Γ′ ∈ GΓ,∆ such that Γ′ ⊧CL ∆. ∎

Proposition 3.2 states that, unless ∆ is a tautology, if the inference from Γ to ∆ is valid, then there
must be some non-empty subset Γ′ of Γ whose variables are all contained in the variables of ∆.
Proposition 3.3 establishes the additional requirement that ∆ classically follows from (at least) one
such subset Γ′.

Just to give a concrete grasp of this, consider that A, (B ∨C),D ⊧PWK (B ∨C)∧D. Of course,
the variables from the premise-set need not be a subset of those from the conclusion (suppose
A,B,C,D are four distinct propositional variables p, q, r, s). However, there is a subset of the
premise-set (namely, {(B ∨C),D}) that implies the conclusion in CL, and whose variables are all
contained in the conclusion. Now we are ready to present the main result of this section:

Theorem 3.4

Γ ⊧PWK ∆ iff

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∅ ⊧CL ∆, or

Γ′ ⊧CL ∆ for at least a non-empty

Γ′ ⊆ Γ s.t. Var(Γ′) ⊆ Var(∆).
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Proof. The LTR direction immediately follows from Fact 3.1, Fact 3.2 and Proposition 3.3. As for
the RTL direction, we prove it in two steps. If ∅ ⊧CL ∆, we have Γ ⊧PWK ∆ by Fact 3.2 and Fact 3.3.
Let us now assume ∅ /⊧CL ∆ and Γ′ ⊧CL ∆ for at least a non-empty Γ′ ⊆ Γ s.t. Var(Γ′) ⊆ Var(∆).
Let VCL(∆) = {V ∈ VCL ∣ V (B) = f for every B ∈ ∆} be the set of ‘classical’ valuations in V that give
truth value f to every B ∈ ∆—and, of course, n to no variable. The first assumption implies that
VCL(∆) ≠ ∅. The second implies VCL(Γ′) ⊆ VCL(∆). To establish Γ′ ⊧PWK ∆, fix any valuation
V ∈ V such that V (A) ∈ {n, t} for every A ∈ Γ′. Our goal is to show that V (B) = {n, t} for some
B ∈ ∆. We consider two cases:
Case 1): V (A) = n for some A ∈ Γ′. Fix some formula C ∈ Γ′ such that V (C) = n. By Fact 2.1,
there is a q ∈ var(C) such that V (q) = n. Since var(Γ′) ⊆ var(∆) and C ∈ Γ′, q ∈ var(∆). Again
by Fact 2.1, this implies V (B) = n for some B ∈ ∆, as desired.
Case2): V (A) ≠ n for every A ∈ Γ′. This implies that V (A) = t for every A ∈ Γ′. Since Γ′ ⊧CL ∆
(by our initial hypothesis), we have that V (B) = t for some B ∈ ∆, as desired.
Since these two cases are jointly exhaustive (that is, every valuation V ∈ V(Γ′) fits in one of them),
we conclude Γ′ ⊧PWK ∆. From this and the monotonicity of ⊧PWK (Fact 3.3), it follows that
Γ ⊧PWK ∆. ∎

An immediate corollary of Theorem 3.4 is the following:

Corollary 3.5 If Var(Γ) ⊆ Var(∆) and Γ ⊧CL ∆, then Γ ⊧PWK ∆.

That is: Var(Γ) ⊆ Var(∆) is sufficient for a classical inference to be PWK-valid. This is just a
special case of the RTL direction of Theorem 3.4—namely the case where Γ ∈ GΓ,∆.

Remark 3.6 Of course, the general inclusion requirement ‘Var(Γ) ⊆ Var(∆) and Γ ⊧CL ∆’
from Corollary 3.5 cannot provide a necessary condition for a classical inference to be PWK-
valid, even in case ∆ is not a tautology. Monotonicity of ⊧PWK (Fact 3.3) suffices to see this:
if Γ ⊧PWK ∆, then Ψ ∪ Γ ⊧PWK ∆, even if Var(Ψ) /⊆ Var(∆). However, the general inclusion
requirement Var(∆) ⊆ Var(Γ)—since now on, GIR—still proves illuminating in understanding the
insight of Theorem 3.4. Indeed, given a classically valid inference from Γ to ∆, with ∆ not a
classical tautology, the strategy prescribed by Theorem 3.4 is to find a subset Γ′ ⊆ Γ such that the
pair (Γ′,∆) satisfies GIR. If there is at least one such set, then Γ ⊧PWK ∆, otherwise, Γ /⊧PWK ∆.
Ideally, in case Γ ∉ GΓ,∆, the theorem suggests that we find the smallest subsets that, together
with ∆, satisfies GIR.

3.1 Examples of classical failures

We can use Theorem 3.4 in order to individuate interesting failures of classically valid inferences in
PWK. For instance, Ex Contradictione Quodlibet (ECQ) and Conjunctive Simplification (CS) fail:
these are inferences where the variables from the premise need not to be included in those from the
conclusion, to the effect that the conditions from Theorem 3.4 is not met.

A ∧ ¬A /⊧PWK B ECQ
A ∧B /⊧PWK B CS

Failure of ECQ implies that PWK is paraconsistent—whence the name.7 Notice that, in the failure
of CS, Fact 2.1 is crucial: V (A) = n suffices to have V (A ∧B) = n. Notice that, contrary to PWK,

7Any valuation V ∈ V with V (A) = n and V (B) = f suffices to invalidate the rule.
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the Logic of Paradox LP from (Priest, 2006) verifies CS. Other examples include:

A,A ⊃ B /⊧PWK B Modus Ponens MP
¬B,A ⊃ B /⊧PWK ¬A Modus Tollens MT
A ⊃ B,B ⊃ C /⊧PWK A ⊃ C Transitivity of Conditional TR ⊃
A ⊃ (B ∧ ¬B) /⊧PWK ¬A Reductio ad Absurdum RAA

None of these satisfy the conditions from Theorem 3.4.8 The theorem also helps individuate those
classical inferences that are valid in PWK. We just give two examples:

A ∧B ⊧PWK A,B CS′

A ∧ ¬A ⊧PWK A ∧B

Both rules satisfy the conditions from Theorem 3.4: there is a subset of the premise-set (in this
case, the premise-set itself) such that you can classically infer the conclusion-set from it, and such
that its variables are included in those from the premise-set.9

3.2 Discussion of Theorem 3.4

Theorem 3.4 is an advancement w.r.t. existing results on PWK-consequence: relevant theorems
by (Paoli, 2007) and (Coniglio and Corbalan, 2012) turn to be consequences of Theorem 3.4 and
Corollary 3.5, respectively. Below, we discuss the connection between the results from (Coniglio
and Corbalan, 2012) and (Paoli, 2007) and our ones, and we explain why our results make a genuine
progress w.r.t. theirs.

The characterization result by (Paoli, 2007) concerns the FDE-fragment H of PWK. This is
PWK augmented with the (standardly defined) entailment connective ⇒ from the FDE-tradition.
In particular, for every A,B ∈ ΦL, we have: (⋆) ⊧H A⇒ B iff A ⊧PWK B.10 Paoli proves:

Proposition 3.7 (Theorem 1 of (Paoli, 2007)) ⊧H A⇒ B iff A ⊧CL B and either ∅ ⊧CL B or
Var(A) ⊆ Var(B).

Given ⋆, Theorem 1 from (Paoli, 2007) follows as a special case of our Theorem 3.4, namely the case
where Γ = {A} and ∆ = {B} for some A,B ∈ ΦL. (Coniglio and Corbalan, 2012) define a sequent
calculi for Kw3 and PWK and present some results on the relation between PWK-consequence and
CL-consequence. In particular, they prove:

Proposition 3.8 (Theorem 8 of (Coniglio and Corbalan, 2012)) If Γ ⊧CL B and (Var(Γ) ⊆
Var(B) or ∅ ⊧CL B), then Γ ⊧PWK B.

which is in turn a single-conclusion version of Corollary 3.5. More precisely, Corollary 3.5 to-
gether with Fact 3.2 and Fact 3.3 imply Corollary 3.8. As for Corollary 3.5, the theorem from

8Once again, it is easy to check these failures via counterexample. Any V ∈ V such that V (A) = n and V (B) = f
falsifies MP. V (A) = t and V (B) = n, falsifies MT and RAA, V (A) = t, V (B) = n and V (C) = f falsifies TR⊃.

9Fact 2.1 plays a crucial role in the second inference: V (A) = n suffices to have both V (A ∧ ¬A) = n and
V (A ∧B) = n.

10There are many different ways to characterize FDE-logics and -fragments. Here, we find it natural to follow the
one adopted in (Paoli, 2007).
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(Coniglio and Corbalan, 2012) provides a sufficient condition for PWK-consequence, and yet it
does not provide a necessary condition for it: we have seen that A,B∨C,D ⊧PWK (B∨C)∧D, and
clearly the variable inclusion condition from Proposition 3.8/Corollary 3.5 is not satisfied, since
Var({A,B ∨C,D} /⊆ Var({(B ∨C) ∧D}). As a consequence, Proposition 3.8/Corollary 3.5 cannot
be generalized to a characterization of PWK-consequence.

The result from (Paoli, 2007) leaves a question open: ‘How are we to generalize (Paoli, 2007,
Theorem 1) beyond the single-premise/single-conclusion case? ’. This in turn equates with asking
‘How are we to generalize (Coniglio and Corbalan, 2012, Theorem 8) to a characterization of PWK-
consequence? ’—where the latter is the main question left open by the theorem in (Coniglio and
Corbalan, 2012). Theorem 3.4 provides an answer to both questions.

An interesting point is that it is not possible to understand the necessary conditions for PWK-
consequence if we keep our focus on the limit-cases where Var(Γ) ⊆ Var(∆), as (Paoli, 2007) and
(Coniglio and Corbalan, 2012) do. What is at stake here is how information-related requirements
interact with reasoning, and of course the kind of consequence we are considering makes a cru-
cial difference. As for the single-premise/single-conclusion case on which (Paoli, 2007) focuses: if
Γ ⊧CL ∆, and Γ = {A}, ∆ = {B}, then B follows from A if and only if GΓ,∆ = {Γ}; hence the
strategy prescribed by GIR and the strategy prescribed by Theorem 3.4 collapse on one another,
and it is not possible to appreciate the different contributions they can make in the more general
multiple-premise/multiple-conclusion cases. As for the multiple-premise/single-conclusion case, if
Γ ⊧CL ∆ and Γ = {A1, . . . ,An}, ∆ = {B}, then satisfaction of GIR suffices for ∆ to follow Γ in PWK,
but as we have seen, GIR is by no means necessary—see Remark 3.6. But failure of GIR as a nec-
essary condition leaves us, per se, without any hint on what condition we should look for. Thus, an
exclusive focus on the limit cases where Var(Γ) ⊆ Var(∆) may obscure the contribution that sub-
sets of Γ can make, and the relevance of the condition Γ′ ∈ GΓ,∆ for some Γ′ such that Γ′ ⊧PWK ∆.11

Finally, Theorem 3.4 generalizes Theorem 3.8 from (Ciuni and Carrara, 2016), which provides
a characterization result for single-conclusion PWK-consequence. In particular, Theorem 3.8 from
(Ciuni and Carrara, 2016) is the special case of Theorem 3.4 where ∆ = {B}. Theorem 3.4 makes a
progress w.r.t. (Ciuni and Carrara, 2016, Theorem 3.8) in that the former covers a more general case
than the latter. Second, the proof of Theorem 3.4 is significantly different from (and in our view,
more insightful than) the proof of Theorem 3.8 in (Ciuni and Carrara, 2016).12 Also, we see below
(Section 4) that Theorem 3.4 proves helpful in the characterization result for multiple-conclusion
(and multiple-premise) Kw3 -consequence—Theorem 4.3 from Section 4. The latter cannot be as eas-
ily generalized from the characterization of single-conclusion Kw3 -consequence (Corollary 4.7 below).
In this light Theorem 3.4 does not just offer an interesting generalization of an existing result, but
it is also functional to the general characterization of Kw3 -consequence (see Section 4).

We close with a short sum-up of our discussion on variable-inclusion requirements. Consider

11Notice that this considerations do not contradict Remark 3.6. There, we suggest that GIR can help familiarize
with the variable-inclusion requirement from Theorem 3.4 works, since the former provides an easy limit-case of the
letter. What we are denying in the above remark, by contrast, is that focus on situations where GIR is satisfied can
provide a good heuristics in order to find the right necessary and sufficient conditions for PWK-consequence.

12We thank an anonymous reviewer for suggesting further changes and improvements in the proof of Theorem 3.4.
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the following statements:

(i) Γ ⊧PWK ∆;
(ii) ∅ ⊧CL ∆;
(iii) Γ′ ⊧CL ∆ for some Γ′ ⊆ Γ s.t. Var(Γ′) ⊆ Var(∆).

The RTL direction of Theorem 3.4 implies that (ii) and (iii) are individually sufficient for (i)
(each of them implies Γ ⊧PWK ∆). The LTR direction of Theorem 3.4 implies that (ii) and (iii)
are jointly necessary for (i) (if neither condition holds, then Γ /⊧PWK ∆). Now consider

(iv) Γ ⊧CL ∆ and Var(Γ) ⊆ Var(∆).

Since (iv) implies (iii), we have that (iv) is individually sufficient for (i). The fact that (ii)
and (iv) are individually sufficient for (i) is in turn Corollary 3.5 or, equivalently, Theorem 8 by
(Coniglio and Corbalan, 2012). However, (ii) and (iv) are not jointly necessary, since (i) may hold
even if both conditions are false.

4 Characterizing Logical Consequence in Kw
3

Logic Kw3 is introduced by (Bochvar, 1938) in order to deal with meaningless expressions. These
are basically Halldén’s nonsensical sentences (expressions that are syntactically well-formed and yet
fail to convey a proposition), and (Bochvar, 1938) treats meaninglessness as a non-classical truth
value obeying the tables from Table 1, exactly as Halldén. A further analogy is that also Bochvar’s
machinery can be divided in two: the internal logic Kw3 , that includes the standard propositional
connectives and cannot express the meaninglessness of its formulas, and the external logic B, that
adds a unary connective in order to say that its formulas are (or aren’t) meaningful and true.

If we assume again the specific semantical reading from Section 3 (which just expresses the
methodological angle of the paper), then we can represent the crucial difference between (Bochvar,
1938) and (Halldén, 1949) by saying that, in Kw3 , only classical truth must be preserved in reasoning.
Beside, (Bochvar, 1938) is concerned with blocking Russell’s paradox in set theory, and, contrary
to (Halldén, 1949), he devises no application to semantic paradoxes, vagueness, or denotational
failures.13

The logic Kw3 obtains by defining logical consequence as preservation of t. From now on, we will
call this ‘Kw3 -consequence’:

Definition 4.1 (Kw3 -consequence) Kw3 -consequence is a relation ⊧Kw
3
⊆ ℘(ΦL)×℘(ΦL) such that:

Γ ⊧Kw
3

∆ iff For every V ∈ V, if V (A) = t for every A ∈ Γ, then V (B) = t for some B ∈ ∆

If Γ ⊧Kw
3

∆, we say that ∆ is a Kw3 -consequence of Γ or, equivalently, that ∆ follows from Γ in Kw3 .
The definitions of tautology, set of valuations satisfying a formula, and satisfiability are just as for
PWK, with t replacing {t,n}. For every Γ ⊆ ΦL, let Γ¬ be the set {¬A ∈ ΦL ∣ A ∈ Γ}.

Before presenting the characterization result for Kw3 , we give an idea of the strategy of the proof.
We characterize Kw3 -consequence (Theorem 4.3) by exploiting the expected duality between PWK
and Kw3 (Proposition 4.2). Once this is done, Theorem 4.3 simply follows from the duality and

13We come back to Bochvar’s external logic and his interpretation of the weak Kleene machinery in Section 6.
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Theorem 3.4. As for Proposition 4.2, this is not a particularly surprising or challenging result, but
notice that the duality result is unprecedented and is a key to transfer the result from Theorem 3.4
to the case of Kw3 -consequence. Now for the duality result:

Proposition 4.2 Γ ⊧Kw
3

∆ iff ∆¬ ⊧PWK Γ¬

Proof : ∆¬ ⊧PWK Γ¬ holds iff for every valuation V ∈ V, if V (¬B) = {t,n} for every B ∈ ∆, then
V (¬A) = {t,n} for some A ∈ Γ. This equates with having that, for every valuation V ∈ V, if
V (¬A) = f for every A ∈ Γ, then V (¬B) ∈ f for some B ∈ ∆. The latter is in turn equivalent with
having that, if V (A) = t for every A ∈ Γ, then V (B) = t for some B ∈ ∆. But this implies Γ ⊧Kw

3
∆.

This suffices to prove also the RTL direction of the statement. ∎

A characterization result for Kw3 immediately follows from Theorem 3.4 and Proposition 4.2:

Theorem 4.3

Γ ⊧Kw
3

∆ iff

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γ ⊧CL ∅ or

Γ ⊧CL ∆′ for at least a non-empty

∆′ ⊆ ∆ s.t. Var(∆′) ⊆ Var(Γ).

Theorem 4.3 imposes the requirement that Γ ⊧CL ∆′ and Var(∆′) ⊆ Var(Γ) for at least a non-empty
∆′ ⊆ ∆ such that Γ ⊧CL ∆′. This in turn dualizes the inclusion requirement from Proposition 3.3
and Theorem 3.4. A corollary of Theorem 4.3 is:

Corollary 4.4 If Var(∆) ⊆ Var(Γ) and Γ ⊧CL ∆, then Γ ⊧Kw
3

∆.

which dualizes Corollary 3.5 and captures the special case where ∆ ∈ G∆,Γ.

Remark 4.5 Again, the requirement that Var(∆) ⊆ Var(Γ) and Γ ⊧CL ∆ cannot provide a
necessary condition for a classical inference to be Kw3 -valid, even in case Γ is consistent. Indeed,
by the definition of Kw3 -consequence, we have Γ ⊧Kw

3
∆ ∪Ψ if Γ ⊧Kw

3
∆, even if Var(Ψ) /⊆ Var(Γ).

Just to get a concrete feeling of this, consider that A,C ⊧Kw
3
A ∨B,C, and yet the inference may

violate Var(∆) ⊆ Var(Γ): if we take the case where A, B, C are distinct propositional variables
p, q, s, respectively, we have that Var({A,B,C}) /⊆ Var({A,C}). As with PWK, however, the
unrestricted inclusion requirement helps understand the strategy suggested by Theorem 4.3. Given
a classically valid inference from a consistent set Γ to ∆, the theorem suggests to check whether
Var(∆) ⊆ Var(Γ). If this is not the case, the theorem suggests to find a subset ∆′ ⊆ ∆ such
that Γ ⊧CL ∆′ and Var(∆′) ⊆ Var(Γ). If there is at least one such set, then Γ ⊧Kw

3
∆; otherwise,

Γ /⊧Kw
3

∆.

Another corollary of Theorem 4.3 is:

Corollary 4.6 For every Γ,∆ ⊆ ΦL, if Γ /⊧CL ∅, then the following Local Containment Requirement
holds:

(LCR) If Γ ⊧Kw
3

∆ then Var(∆′) ⊆ Var(Γ) for some ∆′ ⊆ ∆ s.t. Γ ⊧CL ∆′

Condition LCR from Corollary 4.6 is closely related to the containment requirement that is imposed
on consequence by some systems of containment logic—see condition PP⊧ below. The label ‘local
containment requirement’ aims at highlighting this connection—the qualification ‘local’ points at
the fact that the inclusion requirement needs not being satisfied by the entire conclusion-set ∆,
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but just by a suitable subset of it. A consequence of Corollary 4.6 is that, if the premise-set Γ is
consistent, then Kw3 -consequence looks analytic in a sense reminiscent of Kant’s: among the concepts
or information we can extract from the conclusion, we will always have concepts or information
that are already in the premise-set.

4.1 Examples of classical failures

We can exploit the duality from 4.2 in order to individuate failures and validities in Kw3 . In
particular, all the classical rules of inference failing in PWK turn valid in Kw3 , including for instance
ECQ, CS and the other rules from section 3.1. By contrast, all the valid formulas from PWK turn
to be invalid in Kw3 . More in general, Kw3 has no tautology:

Fact 4.1 For every set ∆ ⊆ ΦL of formulas, ∅ /⊧Kw
3

∆. (Kw3 is non-tautological.)

The fact is explained by Theorem 4.3: Var(∆′) /⊆ Var(∅) for every non-empty ∆′ ⊆ ∆, to the
effect that the inclusion requirements from Theorem 4.3 are not met.14 A special case of Fact 4.1
is failure of the Law of Identity (LI) ∅ ⊧ A ⊃ A. The duality of PWK and Kw3 also implies that Kw3
is a paracomplete logic—that is, A ∨ ¬A fails in it—but not a paraconsistent one—ECQ is valid in
it. Notice that Disjunctive Adjunction (DA) fails in Kw3 :

A /⊧Kw
3
A ∨B DA

Once again, the condition by Theorem 4.3 is not met by this inference.15 The theorem also explains
some interesting valid inferences in Kw3 , such as:

A ⊧Kw
3
A,B DA′

A ∨B ⊧Kw
3
A ∨ ¬A

4.2 Discussion of Theorem 4.3 and related results

Theorem 4.3 makes a progress w.r.t. an existing theorem by (Urquahrt, 2002), which provides a
characterization of single-conclusion Kw3 -consequence. In particular, the result by (Urquahrt, 2002)
is a special case of our result:

Corollary 4.7 ((Urquahrt, 2002), Theorem 2.3.1)

Γ ⊧Kw
3
B iff

⎧⎪⎪⎨⎪⎪⎩

Γ ⊧CL ∅ or

Γ ⊧CL B, and Var(B) ⊆ Var(Γ)

which immediately follows from Theorem 4.3 and the assumption that ∆ = {B}. Again, focus
on this limit-case does not allow to distinguish the different contributions made by LCR and the
unrestricted containment requirement from Corollary 4.4. Indeed, the two requirements coincide
as far as single-conclusion consequence is considered.

14The failure is also easy to check model-theoretically. For every ∆ ⊆ ΦL and p ∈ Var(∆), there is a V ∈ VKw
3

such
that V (p) = n. By Fact 2.1, this implies that V (A) = n for every formula such that A ∈ ∆. This suffices to dissatisfy
∆.

15A counterexample to DA is given by any V ∈ V such that V (A) = t and V (B) = n: by Fact 2.1, this implies
V (A ∨B) = n.
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Comparison of Theorem 4.3 and Corollary 4.7 also shows that, contrary to PWK-consequence,
the characterization of multiple/multiple Kw3 -consequence cannot obtain by simply generalizing
the characterization of its multiple/single-conclusion case. When it comes to Kw3 -consequence, the
generalization from var(B) ⊆ var(Γ) to var(∆) ⊆ var(Γ) does not give the intended result, as
A ∨ B ⊧Kw

3
A ∨ B,C suffices to show. What we need is to find a subset ∆′ of ∆ that satisfies

the variable-inclusion requirement at stake. Notice that our strategy of proof allows us to exploit
Theorem 3.4 in order to establish the characterization of multiple/multiple Kw3 -consequence without
an explicit investigation of what specific generalization of the condition from Corollary 4.7 would
do the job.

An interesting consequence of Corollary 4.7, however, is that, when ∆ = {B}, the condition
‘Var(∆) ⊆ Var(Γ) and Γ ⊧CL ∆’ is also a necessary condition for ∆ to follow from a consistent Γ.
Indeed:

Corollary 4.8 For every Γ ⊆ ΦL and B ∈ ΦL, if Γ /⊧CL ∅, then the following Global Containment
Requirement holds:

(GCR) If Γ ⊧Kw
3
B, then Var(B) ⊆ Var(Γ)

As condition LCR from Corollary 4.6, condition GCR from Corollary 4.8 connects Kw3 to the so-
called containment logic—see below for further discussion.

Summing up this overview: given a classically valid inference from Γ to ∆ with Γ consistent, the
variable inclusion requirement LCR from Theorem 4.3 is a necessary and sufficient condition for ∆
to follow from Γ in Kw3 . If we confine to single-conclusion consequence, Corollary 4.7 immediately
suggests a simpler requirement.

4.3 Kw3 -consequence and Containment Logic

Containment logic originates from (Parry, 1932). Systems in this family are usually defined by a
single-conclusion relation of consequence, and come in two different fashions: some of them impose
a containment requirement on valid conditionals, others impose a requirement on the relation ⊧ of
logical consequence (or the relation ⊢ of derivability).16 The logic PAI introduced in (Parry, 1932)
obeys the so-called proscriptive principle, that is a containment requirement of the first kind:

PP→ If ⊧ A→ B, then Var(B) ⊆ Var(A)

Containment systems obeying PP→ also include the logics S by (Deutsch, 1977) and S⋆ by (Daniels,
1986), the logic DAI by (Dunn, 1972) and the logic by (Fine, 1986). These logics—and especially
those by (Dunn, 1972) and (Fine, 1986)—are also known as logics of analytic implication. The
other version of the containment requirement is:

PP⊧ If Γ ⊧ B, then Var(B) ⊆ Var(Γ)

We call consequence containment logics the systems that follow this requirement. These include,
among others, the logic AC from (Angell, 1977), the first-degree fragment Sfde of the logic S by
(Deutsch, 1977)—Sfde is independently developed under the name AL by (Oller, 1999)—the first-
degree entailment S⋆fde of S⋆ developed by (Daniels, 1990)—which is independently developed under

16For a recent investigation on containment logics, see (Ferguson, 2014a), that provides a computational inter-
pretation of the containment requirement, and (Ferguson, 2014b), that explores containment logics resulting from
Kw

3 .
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the name FDEφ by (Priest, 2010)—the logic RC by (Johnson, 1976), and some of the systems from
(Szmuc, 2017) and (Barrio et al., 2016)—more precisely, logics Lne, Lnb′e, Lbb′e, Lnbb′e, as well as
logics Leb′ and Lb′e, which we discuss in Section 5.

Logic Kw3 vacuously satisfies PP→, since it has no tautologies and, a fortiori, no valid condi-
tional. As for PP⊧, the condition is, basically, just GCR. The crucial difference between Kw3 and
consequence-containment logic is in the range of application of GCR: in Corollary 4.8, GCR is a
necessary condition for B to follow from a consistent set Γ in Kw3 , while PP⊧ makes it a necessary
condition for consequence independently from any further condition.

It is clear that Kw3 does not qualify as a containment logic in the sense of PP⊧ , even if we confine
ourselves to single-conclusion consequence. (Ferguson, 2014b) and (Ferguson, 2014a) discuss three
strategies to ‘turn’ Kw3 into a containment logic. We refer the reader to those papers for further
insights on the issue.

5 Two sublogics of PWK and Kw
3

There is increasing interest nowadays toward sublogics of WKLs. For instance, (Barrio et al., 2016)
and (Szmuc, 2017) discuss a number of systems where more than one contaminating value is at
stake, with all such values being ordered in a linear hierarchy of contaminating values (this requires
relaxing the notion of contamination, see introduction to Fact 5.1 below). In this section, we show
that the methods and results that we have deployed in the previous sections prove helpful also
when it comes to (at least some) sublogics of PWK and Kw3 . In particular, we prove that the results
from Section 3 and Section 4 extend in a straightforward way to the four-valued logics Leb′ and Lb′e
from (Barrio et al., 2016) and (Szmuc, 2017).17 The former obtains by including an additional des-
ignated contaminating value to the semantics of Kw3 , the latter obtains by including an additional
non-designated contaminating value to the semantics of PWK. Theorem 5.4 below shows that, in a
sense, Leb′ is to Kw3 what PWK is to CL: it imposes on PWK the same variable-inclusion requirement
that Kw3 imposes on CL. In a similar way, Theorem 5.7 shows that Lb′e is to PWK what Kw3 is to CL.18

In order to interpret Leb′ and Lb′e, we need to generalize our valuation function V from Defini-
tion 2.1 to a valuation function U ∶ Var → {t,n1,n2, f}. The valuation extends to arbitrary formulas
according to the following definition:

Definition 5.1 (Valuation, 2) A valuation U ∶ ΦL → {t,n1,n2, f} is the unique extension of a
mapping U ∶ Var → {t,n1,n2, f} that is induced by the tables from Table 2

In a nutshell, the tables from Table 2 generalize Table 1 by introducing two values n1 and n2,
where n2 contaminates all other values (in the sense of contamination supplied by Fact 2.1), and
n1 contaminates all the classical values (in a weaker, yet informally clear, sense of contamination).
In order to give a rigorous formal account of this behavior, we need to adjust the notion of contam-
ination from Fact 2.1. First, let us denote by U be the set U,U ′, U ′′, . . . of valuations conforming
to Definition 5.1. Once this is done, we notice that the following fact holds for L when interpreted
on Table 2:

17These logics are called dSw
fde and Sw

fde in (Da Re et al., 2018). We keep the notation from (Szmuc, 2017) for the
sake of coherence with the labels of the other logics from (Szmuc, 2017) that we mention at the end of Section 4.

18The names of the two four-valued logics in questions come from a convention that is followed by (Barrio et al.,
2016) and (Szmuc, 2017), which denotes by e the non-designated contaminating value from Kw

3 and by b′ the designated
contaminated value from PWK.
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Table 2:

¬A
t f

n1 n1

n2 n2

f t

A ∨B t n1 n2 f
t t n1 n2 t

n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

f t n1 n2 f

A ∧B t n1 n2 f
t t n1 n2 f

n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

f f n1 n2 f

A ⊃ B t n1 n2 f
t t n1 n2 f

n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

f t n1 n2 t

Fact 5.1 (Contamination, 2) For all formulas A in ΦL, valuation U ∈ U , and values ni,nj ∉ {t, f}
with i, j ∈ N :

U(A) = ni iff

⎧⎪⎪⎨⎪⎪⎩

U(p) = ni for some p ∈ Var(A), and

U(q) ≠ nj for every p ∈ Var(A) and j > i

In this section, when talking about ‘contaminating values’, we will be referring to values that
satisfy Fact 5.1—which gives us, of course, a looser notion of ‘contaminating value’ than the one
from Fact 2.1. We believe that it is clear that:

Fact 5.2 For every valuation U ∈ U such that U(p) ≠ ni for i ∈ {1,2} and for every p ∈ Var, we
can build a corresponding valuation V ∈ V such that V (p) = U(p) if U(p) ∈ {t, f}, and V (p) = n if
U(p) = nj for j ∈ {1,2} and j ≠ i.

This implies that those valuation for Leb′ and Lb′e where just one of n1 and n2 is assigned are,
basically, valuations for PWK and Kw3 . The fact proves helpful in what follows.

Exactly as for PWK and Kw3 , Leb′ and Lb′e share the same valuation functions and differ in the
way they define their relations of consequence. In particular, Leb′-consequence is preservation of t
or n2 through reasoning:

Definition 5.2 (Leb′-Consequence) Leb′-consequence is a relation ⊧Leb′ ⊆ ℘(ΦL) × ℘(ΦL) such
that:
Γ ⊧Leb′ ∆ iff For every U ∈ U , if U(A) ∈ {t,n2} for every A ∈ Γ, then U(B) ∈ {t,n2} for some
B ∈ ∆.

By contrast, Lb′e-consequence is preservation of t or n1:

Definition 5.3 (Lb′e-Consequence) Lb′e-consequence is a relation ⊧Lb′e ⊆ ℘(ΦL) × ℘(ΦL) such
that:
Γ ⊧Leb′ ∆ iff For every U ∈ U , if U(A) ∈ {t,n1} for every A ∈ Γ, then U(B) ∈ {t,n1} for some
B ∈ ∆.

We adopt, with the necessary adjustments, the same conventions we specified in Section 3.

Both Leb′ and Lb′e designate a contaminating value, and both comprise a non-designated con-
taminating value. The difference is that Leb′ designates the most contaminating value, while Lb′e
designates the least contaminating one. Below, we will see that this makes (1) the characterization
of Leb′ similar to that of PWK (in the sense that the same variable inclusion requirement is needed),
(2) the characterization of Lb′e similar to that of Kw3 (in the same sense).

It is clear by Fact 5.2 that Leb′ and Lb′e are sublogics of both Kw3 and PWK. In particular, this
implies:
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Fact 5.3 Leb′ and Lb′e are:

1. non-tautological: ∅ /⊧S ∆ for every ∆ ⊆ ΦL
2. paraconsistent: Γ /⊧S ∅ for every Γ ⊆ ΦL

where S ∈ {Leb′ ,Lb′e}. A consequence of this is that both logics are paracomplete: ∅ /⊧S A ∨ ¬A.
Also, it is clear that Leb′ and Lb′e are monotonic. As for the relations between Leb′ and Lb′e, neither
is a sublogic of the other. Indeed:

A ∧ ¬A ⊧Leb′ A ∧B A ∧ ¬A /⊧Lb′e A ∧B

A ∨B /⊧Leb′ A ∨ ¬A A ∨B ⊧Lb′e A ∨ ¬A

As for A∧¬A ⊧ A∧B, any valuation U ∈ U such that U(A) = n2 is such that U(A∧¬A) = n2 and,
by Fact 5.1, U(A ∧ B) = n2. Given Definition 5.2, this suffices to prove A ∧ ¬A ⊧Leb′ A ∧ B. By
contrast, any valuation U ∈ U such that U(A) = n1 and U(B) = n2 will have U(A ∧ ¬A) = n1 and,
by Fact 5.1, U(A ∧B) = n2. Given Definition 5.3, this suffices to prove A ∧ ¬A /⊧Lb′e A ∧B.

As for A ∨ B ⊧ A ∨ ¬A, any valuation U ∈ U such that U(A) = n1 and U(B) = n2 is such
that U(A ∨B) = n2, by Fact 5.1, and U(A ∨ ¬A) = n1. Given Definition 5.2, this suffices to prove
A ∨B /⊧Leb′ A ∨ ¬A. By contrast, any valuation U ∈ U such that U(A ∨B) = n1 will be such that
U(A) ∈ {t,n1, f}, by Fact 5.1. The latter implies that U(A ∨ ¬A) ∈ {t,n1}. Given Definition 5.3,
this suffices to prove A ∨B ⊧Lb′e A ∨ ¬A.

5.1 Characterizing logical consequence in Leb′

With the above notions and facts at hand, we are ready to provide the characterization result for
Leb′ :

Theorem 5.4

Γ ⊧Leb′ ∆ iff Γ′ ⊧Kw
3

∆ for at least a non-empty Γ′ ⊆ Γ s.t. Var(Γ′) ⊆ Var(∆).

Proof. We start with the LTR direction. We first prove that if Γ ⊧Leb′ ∆, then Γ′ ⊧Leb′ ∆ for
at least a non-empty Γ′ ⊆ Γ such that Var(Γ′) ⊆ Var(∆). Assume the antecedent as the initial
hypothesis, and suppose that Γ′ /⊧Leb′ ∆ for every Γ′ ⊆ Γ such that Var(Γ′) ⊆ Var(∆). This implies
that there is valuation U ∈ U such that U(B) ∈ {n1, f} for every B ∈ ∆ and yet U(A) ∈ {t,n2} for
every A ∈ Γ′. By Fact 5.1, we have U(p) ≠ n2 for every p ∈ var(∆), and by this, we have U(q) ≠ n2

for every q ∈ var(⋃Γ′∈GΓ,∆
). This implies that U(A) = t for every A ∈ ⋃Γ′∈GΓ,∆

. U can be extended
to a valuation U ′ ∈ U such that U ′(p) = U(p) if p ∈ var(∆), and U ′(p) = n2 otherwise. This implies
that U ′(A) = t for every A ∈ ⋃Γ′∈GΓ,∆

, U ′(C) = n2 for every C ∈ Γ ∖⋃Γ′∈GΓ,∆
, and U(B) = {n1, f}

for every B ∈ ∆. But this in turn contradicts the initial hypothesis, given Definition 5.2. Thus, we
have that, if Γ ⊧Leb′ ∆, then Γ′ ⊧Leb′ ∆ for at least a non-empty Γ′ ⊆ Γ such that Var(Γ′) ⊆ Var(∆).
Since Leb′ is a sublogic of Kw3 , we conclude that Γ ⊧Leb′ ∆ implies that Γ′ ⊧Kw

3
∆ for at least a

non-empty Γ′ ⊆ Γ such that Var(Γ′) ⊆ Var(∆).
As for the RTL direction, assume as the initial hypothesis that Γ′ ⊧Kw

3
∆ for at least a non-

empty Γ′ ⊆ Γ such that Var(Γ′) ⊆ Var(∆). To establish Γ′ ⊧Leb′ ∆, fix any valuation U ∈ U such
that U(A) ∈ {t,n2} for every A ∈ Γ′. Our goal is to show that U(B) ∈ {t,n2} for some B ∈ ∆. We
consider two cases:
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Case 1): U(A) = n2 for some A ∈ Γ′. Fix some formula C ∈ Γ′ such that U(C) = n2. By Fact 5.1,
there is a q ∈ var(C) such that V (q) = n2. Since var(Γ′) ⊆ var(∆) and C ∈ Γ′, q ∈ var(∆). Again
by Fact 5.1, this implies U(B) = n2 for some B ∈ ∆, as desired.
Case 2): U(A) ≠ n2 for every A ∈ Γ′. This implies that U(A) = t for every A ∈ Γ′, and, by Fact 5.1,
U(p) = t for every p ∈ var(Γ′). From this and Γ′ ⊧CL ∆ (which follows from the initial hypothesis
Γ′ ⊧Kw

3
∆), we have that U(B) = t for some B ∈ ∆, as desired.

Since these two cases are jointly exhaustive, we conclude Γ′ ⊧Leb′ ∆. From this and the mono-
tonicity of ⊧Leb′ , it follows that Γ ⊧Leb′ ∆. ∎

Theorem 5.4 explains A ∨B /⊧Leb′ A ∨ ¬A. Indeed, although the inference is Kw3 -valid, there is no
guarantee that the variables of A∨B are all contained in those of A—notice that A∨B is, in turn,
the only non-empty subset of A ∨B. An immediate corollary of Theorem 5.4 is:

Corollary 5.5 If Var(Γ) ⊆ Var(∆) and Γ ⊧Kw
3

∆, then Γ ⊧Leb′ ∆.

That is: those Kw3 -valid inferences in which the information from the premises is contained in the
information from the conclusions are Leb′-valid inferences. The corollary explains A ∧ ¬A ⊧Leb′
A∧B: the inference is Kw3 -valid (since the logic validates ECQ), and the variables from the premise
are contained in the variables from the conclusion. Corollary 5.5 is just a special case of the
RTL direction of Theorem 5.4. Also, Theorem 4.3 and Theorem 5.4 together imply the following
alternative characterization of Leb′-consequence:

Corollary 5.6

Γ ⊧Leb′ ∆ iff Γ′ ⊧CL ∆′ for some non-empty Γ′ ⊆ Γ and ∆′ ⊆ ∆
s.t. Var(∆′) ⊆ Var(Γ′) ⊆ Var(∆).

In a nutshell, Corollary 5.6 explicitly displays the variable-inclusion requirements for Kw3 -consequence,
which is implicit in Theorem 5.4 and integrates the requirement for PWK-consequence (which is
already explicit in Theorem 5.4, by contrast). This in turn enable us to analyze Leb′-consequence
as a given restriction of CL-consequence. Indeed, Corollary 5.6 implies that the Leb′-valid infer-
ences are those valid classical inference that satisfy the combination of requirements for Kw3 - and
PWK-consequence that is expressed by the nesting Var(∆′) ⊆ Var(Γ′) ⊆ Var(∆).

5.2 Characterizating logical consequence in Lb′e

The following is a characterization result for Lb′e:

Theorem 5.7

Γ ⊧Lb′e ∆ iff Γ ⊧PWK ∆′ for at least a non-empty ∆′ ⊆ ∆ s.t. Var(∆′) ⊆ Var(Γ).

Proof. Again, we start with the LTR direction. We first prove that if Γ ⊧Lb′e ∆, then Γ′ ⊧Lb′e ∆
for at least a non-empty ∆′ ⊆ ∆ such that Var(∆′) ⊆ Var(Γ). Assume the antecedent as the initial
hypothesis, and suppose that Γ /⊧Lb′e ∆′ for every ∆ ⊆ ∆′ such that Var(∆′) ⊆ Var(Γ). This implies
that there is valuation U ∈ U such that U(B) ∈ {n2, f} for every B ∈ ∆′ and yet U(A) ∈ {t,n1}
for every A ∈ Γ. By Fact 5.1 and Var(∆′) ⊆ Var(Γ), this implies U(B) = f for every B ∈ ∆′. More
in general, we have U(p) ≠ n2 for every p ∈ var(Γ), and by this, we have U(q) ≠ n2 for every
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q ∈ var(⋃∆′∈G∆,Γ
). This implies that U(A) = {n1, t} for every A ∈ Γ. U can be extended to a

valuation U ′ ∈ U such that U ′(p) = U(p) if p ∈ var(Γ), and U ′(p) = n2 otherwise. This implies that
U ′(A) ∈ {t,n1} for every A ∈ Γ, U ′(C) = n2 for every C ∈ ∆ ∖ ⋃∆′∈G∆,Γ

, and U(B) = f for every
B ∈ ∆. But this in turn contradicts the initial hypothesis, given Definition 5.3. Thus, we have that,
if Γ ⊧Lb′e ∆, then Γ ⊧Lb′e ∆′ for at least a non-empty ∆′ ⊆ ∆ such that Var(∆′) ⊆ Var(Γ). Since
Leb′ is a sublogic of PWK, we conclude that Γ ⊧Lb′e ∆ implies Γ ⊧PWK ∆′ for at least a non-empty
∆′ ⊆ ∆ such that Var(∆′) ⊆ Var(Γ).

As for the RTL direction, assume as the initial hypothesis that Γ ⊧PWK ∆′ for at least a non-
empty ∆′ ⊆ ∆ such that Var(∆′) ⊆ Var(Γ). To establish Γ ⊧Leb′ ∆′, fix any valuation U ∈ U such
that U(A) ∈ {t,n1} for every A ∈ Γ′. Our goal is to show that U(B) ∈ {t,n1} for some B ∈ ∆. We
consider two cases:
Case 1): U(A) = n1 for some A ∈ Γ. Fix some formula C ∈ Γ such that U(C) = n1. By Fact 5.1,
there is a q ∈ var(C) such that U(q) = n1. Remember that var(∆′) ⊆ var(Γ), and suppose that
q ∈ var(Γ)∩var(∆′). Since var(∆′) ⊆ var(Γ) and v(p) ≠ n2 for every p ∈ var(Γ), we have v(q) ≠ n2

for every q ∈ var(∆′). Suppose now that U(A) ∈ {t,n1} for every A ∈ Γ and U(B) = f for every
B ∈ ∆′. By Fact 5.2, this implies that there is a valuation V ∈ V such that V (A) ∈ {t,n} for every
A ∈ Γ and V (B) = f for every B ∈ ∆′. But this contradicts the initial hypothesis that Γ ⊧PWK ∆′.
Case 2): U(A) ≠ n1 for every A ∈ Γ′. This implies that U(A) = t for every A ∈ Γ, and, by Fact 5.1,
U(p) = t for every p ∈ var(Γ). From this and Γ ⊧CL ∆′ (which follows from the initial hypothesis
Γ ⊧PWK ∆′), we have that U(B) = t for some B ∈ ∆, as desired.

Since these two cases are jointly exhaustive, we conclude Γ ⊧Leb′ ∆′. From this and the Defini-
tion of ⊧Lb′e , it follows that Γ ⊧Lb′e ∆. ∎

Theorem 5.7 has some interesting consequence, that trace the corollaries of Theorem 4.3. For
instance:

Corollary 5.8 If Var(∆) ⊆ Var(Γ) and Γ ⊧PWK ∆, then Γ ⊧Lb′e ∆.

That is: those PWK-valid inferences in which the information from the conclusions in contained in
the information from the premises are Lb′e-valid inferences. Corollary 5.8 is a special case of the
RTL direction of Theorem 5.7. A special cases of the full statement of Theorem 5.7 concerns the
single-conclusion version of Lb′e-consequence:

Corollary 5.9
Γ ⊧Lb′e B iff Γ ⊧PWK B, and Var(B) ⊆ Var(Γ)

which states that the Lb′e-valid single-conclusion inferences are exactly the PWK-valid single-
conclusion inferences in which the information from the conclusion is comprised in that from the
premises. This in turn explains why the PWK-valid inference from A∧¬A to A∧B fails in Lb′e, while
the PWK-valid inference from A ∨B to A ∨ ¬A is valid in Lb′e. The former violates the variable-
inclusion requirement from Corollary 5.9, the second complies with it. An interesting consequence
of Corollary 5.9 is that the single-conclusion version of Lb′e-consequence satisfies the requirement
GCR from Section 4. Thus, Lb′e is a containment logic.

Finally, Theorem 3.4 and Theorem 5.7 together imply the following alternative characterization
of Lb′e-consequence:
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Corollary 5.10

Γ ⊧Lb′e ∆ iff Γ′ ⊧CL ∆′ for some non-empty Γ′ ⊆ Γ and ∆′ ⊆ ∆
s.t. Var(Γ′) ⊆ Var(∆′) ⊆ Var(Γ).

Again, the corollary unpacks all the variable-inclusion requirements that are implied by Theo-
rem 5.7, while highlighting in particular the variable-inclusion requirements for PWK-consequence,
which is just implicit in Theorem 5.7. This in turn enable us to conceive Leb′-consequence as a
filter on CL-consequence that is determined by the combination of requirements for PWK- and
Kw3 -consequence that is expressed by the nesting Var(Γ′) ⊆ Var(∆′) ⊆ Var(Γ).

5.3 Discussion of Theorem 5.4 and Theorem 5.7

Sublogics like Leb′ and Lb′e are attracting increasing attention, and they are natural way to generalize
the three-valued contaminating setting from WKLs to more than one contaminating value (see also
Section 7 for this). However, very little is known about these logics to this day. The two theorems
from the present section make a significant progress in our knowledge of such logics, and we believe
that this explains their relevance.

Theorem 5.4 and Corollary 5.5 impose the same variable-inclusion requirements on Leb′-consequence
as Theorem 3.4 and Corollary 3.5 impose on PWK-consequence. The last group of results impose
those conditions as to restrict classical consequence, the first group impose them as to restrict
PWK-consequence. In this sense, we may say that Leb′-consequence is a way to ‘Halldénize’ Kw3 -
consequence. Analogously, a look at Theorem 5.7 and Corollary 5.8 suffices to understand that
Lb′e-consequence is a way to ‘Bochvarize’ PWK-consequence.

The proof of Theorem 5.4 goes along the very same lines as the proof of Theorem 3.4. We believe
that, far from being a limit, this shows that our approach in Section 3 is extremely fruitful. In
particular, the proof of Theorem 3.4 relies on a mechanism that is given syntactic expression by the
variable-inclusion requirement from the theorem. We conjecture that PWK shares this mechanism
with every logic that includes a most contaminating designated value in the style of n in PWK
and n2 in Leb′ . If our conjecture is right, Theorem 3.4 and Theorem 5.4 could prove the most
basic sample of a general characterization method, which would comprise an infinite number of
characterization results as its special cases.

Similar considerations go for Kw3 and Lb′e. Theorem 4.3 and Theorem 5.7 could turn to be the
simplest cases of a general characterization method, at least if the variable-inclusion requirement
from Theorem 4.3 and Theorem 5.7 is shared, as we conjecture, by every logic that includes a most
contaminating non-designated value in the style of n2 in Lb′e. Also, notice that we did not derive
Theorem 5.7 from a duality result, since we thought in case of two contaminating values interacting,
it was important to see the different variable-inclusion requirements directly in action.

Finally, we believe that our results make a significant progress w.r.t. (Ferguson, 2014b, Ob-
servation 1), that also provides a clear direction for a general characterization methods for logics
endowed with many contaminating values. First, (Ferguson, 2014b, Observation 1) is concerned
with single-conclusion consequence relations, while our results can suggest a method that would
apply to the more general multiple-conclusion case. Second, and more important, (Ferguson, 2014b,
Observation 1) concerns logics where ‘nonsensical values’ are not designated, while Theorem 3.4
and Theorem 5.4 turn to provide an insight that is relevant also for logics that comprise one (or
more) designated nonsensical value. Although the insight from (Ferguson, 2014b, Observation 1)
easily extends to Lb′e, it is not clear if it extends naturally to Leb′ or, in general, to logics whose
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most contaminating value is designated. Thus, we believe that the insights offered by our results
are more general than those offered by (Ferguson, 2014b, Observation 1).

We plan to devote future research to the verification of our conjecture and the pursue of a
general characterization method for logics endowed with a hierarchy of contaminating value in the
style of (Barrio et al., 2016) and (Szmuc, 2017)—see Section 7.

6 Discussion

In this section we briefly review the main philosophical interpretations of Weak Kleene logics, their
extension with the so-called meaningfulness operators from (Bochvar, 1938) and (Halldén, 1949),
and the extension of PWK and Kw3 with detachable conditionals (that is, conditionals obeying MP).

The results that we have presented in Sections 3 and 4 are independent from these issues, but
since the philosophical and mathematical literature on Weak Kleene logics (and related systems)
is quite sparse, we believe it is worth giving the reader a bird-eye view of the three topics. Also,
familiarity with some of the issues below helps understand the open problems that we mention in
Section 7.

6.1 Philosophical Interpretation of WKLs

The idea of a contaminating non-classical value is recurrent in philosophy, and it comes along
with different interpretations. We have seen in Section 3 and Section 4 that (Bochvar, 1938) and
(Halldén, 1949) interpret the third value of PWK as nonsensical—or meaningless, in Bochvar’s
jargon.19 This interpretation goes along with the way n propagates to a compound formula from
its components: the sense of a compound sentence depends on that of its components, and if some
component makes no sense, the sentence as a whole will make no sense either.20

However, the interpretation of PWK as a logic of meaninglessness has been generally met with
skepticism. (Brady and Routley, 1973) claim that designating a ‘meaninglessness’ value implies
that we can be justified in asserting logical nonsense, which in turn ‘destroys the philosophical point
of meaninglessness as a value to be assigned to non-significant sentences’.21 The reaction by Brady
and Routley presuppose the view that a sentence A can be rightfully asserted if and only if it has
a designated value (in the model that we take to represent our world); a consequence of this view
is that we should select a set X of designated values because we (believe that we) can rightfully
assert a sentence A iff A is assigned a value from X. Let us call this the ‘assertion-designation
harmony’ (ADH).22

19(Bochvar, 1938) and (Halldén, 1949) use nonsensical—or meaningless—as an umbrella term including paradoxical
statements such as the Liar (Halldén, 1949) and Russell’s paradox (Bochvar, 1938), vague sentences, denotational
failure, ambiguity (Halldén, 1949). We do not review them in detail, since this would go much beyond the purpose
of the present discussion.

20The principle is also endorsed by (Goddard, 1968) and (Goddard and Routley, 1973). Exactly as (Bochvar, 1938)
and (Halldén, 1949), these works are after a logic of meaninglessness.

21(Brady, 1976) is also critical of preservation of a ‘meaninglessness’ value. Notice that Brady and Routley seem
not to be aware of of Halldén’s work. However, their criticism hits the very core of the interpretation of PWK that
we are discussing.

22ADH is a natural adjustment to many-valued settings of the view that the aim of an assertion is to state a true
sentence—to the effect that a sentence A can be rightfully asserted if and only if A is true, and to the exclusion of
f from the range of designated values. This view has been explicitly discussed by (Dummett, 1981; Williams, 1966),
where CL is taken as the reasoning framework of reference.
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Notice that Brady and Routley are not the only supporters of ADH in the philosophy of many-
valued logic. Indeed, ADH seems to be shared also by a major project such as the dialetheism by
Graham Priest, which is based on the logic LP.23 In particular, the project in question holds that
(true) contradictions may be rightfully asserted—see (Priest, 2018) and (Priest and Sylvan, 1989)—
and the assertion of a sentence A fits its own aim iff A is consistently true or inconsistently true
(Priest, 2006; Priest, 2018). This view goes along with designation of both t and n in LP—where
n behaves as per the strong Kleene tables exemplified in Section 1.24

Assumption of ADH calls for Brady and Routley’s reaction to the interpretation of PWK as
a logic of meaninglessness—that is: the interpretation sounds unconvincing, since it would entitle
us to assert any meaningless sentence. Notice that (Halldén, 1949, p. 47) justifies its choice for
PWK-consequence by purporting the view that we want to stay as close as possible to classical
validity, not by defending that nonsense is rightfully assertable.25 Thus, what we describe as the
designation of the nonsensical value (alongside truth) would just be a by-product of Halldén’s
stance on validity in a three-valued setting, rather than a feature that Halldén took as a conceptual
desideratum. However, the (standard) notion of validity is defined in terms of satisfaction, and in
a matrix-based logic, this equates with defining the notion in terms of the set of values that a logic
designates. Thus, the argument from this particular stance by Halldén’s is not able to counter the
reaction displayed by the supporter of ADH: she will keep seeing Halldén’s project as a (dubious)
entitlement to assert nonsense. Of course, ADH is not forced upon us: there can be plenty of
different views on the conceptual import of designating a set X of value, and on the consequences
this would have in our reasoning and assertion practices. However, supporters of PWK as a logic of
meaninglessness have not come (at least to our knowledge) with an alternative and articulated view
on the conceptual import of designating the ‘meaninglessness’ value alongside truth. Lack of such
a view and the popularity of ADH, together, considerably diminish the appeal of the interpretation
of PWK as a logic of meaninglessness.26

The logic from (Bochvar, 1938) does not share the problem above, since it does not preserve
the third value and, under ADH, this in turn implies that nonsensical sentences are not rightfully
assertable. In any case, Bochvar’s third value has been also given other interpretations by (Beall,
2016), (Ferguson, 2014a), and (Fitting, 2006).

(Beall, 2016) advances an interpretation of the value as ‘off-topic’. The main motivating intu-
ition is that any interpreted theory naturally ranges on some possible topics (but not on all possible
topics); value n being assigned to a variable would then ideally represent the variable being off-
topic w.r.t. the intended theory; the additional (and in our view, reasonable) assumption that an
arbitrary formula is on-topic iff all of its variables are on-topic justifies the contaminating behavior

23Notice also that some projects in non-classical or many-valued logic cannot get along with ADH. For instance,
the semantics for strict-tolerant consequence by (Cobreros et al., 2012) does not include a set of designated value (we
thank an anonymous reviewer for this remark). Semantics of this kind cannot come together with ADH. Of course,
this does not mean that they cannot come with a theory of the connections between assertion and logic. Simply, such
a theory will use a package of notions that does not include the notion of a designated value.

24The reading of n as ‘inconsistently true’ in LP is justified by the fact that DLP = {n, t} and v(A ∧ ¬A) ≠ f
iff v(A) = v(A ∧ ¬A) = n, for an arbitrary valuation v defined on the strong Kleene tables. However, notice that
alternative interpretations of n have been proposed relative to LP—see (Beall and Ripley, 2004) for an example.

25This point is highlighted in (Ferguson, 2014a).
26To be sure, we are not claiming that it is impossible to come with a view that convincingly supports the

interpretation of PWK as a logic of meaninglessness. We are simply highlighting what we perceive as limits of the
way the interpretation has been proposed thus far.
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of ‘being off-topic’, which in turn seems a fit interpretation for n.
(Ferguson, 2014a) advances a computational interpretation of the third value as ‘missing vari-

able declaration’, which in turn draws inspiration from the papers on computation errors from
(McCarthy, 1963) and on free disjunction from (Zimmerman, 2000). In this interpretation, value
n is assigned, ideally, to those formulas that contain a propositional variable p that has not been
declared—this in turn means that the program has not been instructed to use p as a variable.

Finally, (Fitting, 2006) proposes an epistemic interpretation of Kw3 which equates t with ‘all the
relevant experts have a positive opinion’ (on the given formula), f with ‘all the relevant experts
have a negative opinion’, and n with ‘some relevant experts have no opinion at all’. This interpre-
tation is sustained by an algebraic reconstruction of the operations from Kw3 in terms of a cut-down
operation ⊕ and its dual ⊗ defined on bilattices. We refer to (Ferguson, 2014a) and (Fitting, 2006)
for further details.

A third contaminating truth value is also involved in the propositional fragment of Prior’s modal
logic Q (Prior, 1957; Prior, 1967). Prior deals with the modal problem of referring to contingent
objects that do not exist in the actual world, and his main tenet is: sentences that make reference
to (at least some) nonexistent entities lack any classical truth value.27 Contamination fits Prior’s
focus: ‘Pegasus runs on Fifth Avenue or Bob Dylan is a musician’ makes reference to a nonexistent
entity, since ‘Pegasus runs on Fifth Avenue’ does. Thus, the former gets the non-classical value,
because the latter does. Interestingly, Prior defines valid inferences as going from non-false premises
to non-false conclusions.28 Thus, the propositional fragment of Q would be PWK or a logic closely
related to it. It is not clear whether Prior’s proposal is really coherent. On the one hand, he
wishes to retain classical tautologies, which prompts preservation of non-false formulas through
reasoning. On the other hand, his view on reference to nonexistent entities seems to fit better with
the paracomplete tradition, and with a reading of the third value as neither true nor false. Under
this reading, however, preserving the third value through reasoning does not seem to make much
sense.29

A contaminating truth value is also involved in the five-valued logic by (Priest, 2010), which
is in turn a sublogic of FDE and Kw3 .30 This formalism is introduced to model the logic of the
catuskoti (tetralemma) from Buddhist philosophy. Its name notwithstanding, in some versions of
the catuskoti all the four corners are said not to hold good, and this prompts the need of (at
least) a fifth option. The four non-contaminating values in (Priest, 2010) are read as true, false,
both true and false, neither true nor false, as in FDE. The contaminating value is not preserved
through reasoning, and it is read by Priest as ineffable, on the ground of evidence from Buddhist
philosophical literature. The ‘ineffability reading’ seems to fare well with contamination and non-
designatedness: a sentence is ineffable if any of its component is, and ineffable sentences should not
be asserted or used as premises of our reasoning.

27See (Prior, 1957; Prior, 1967) for the motivations of Q and Prior’s view on standard quantified modal logic.
(Menzel, 1991) comes with an excellent overview of philosophical background and formal machinery of Q.

28Prior seems not to notice that this implies the satisfiability of contradictions, and he is somewhat loose on formal
details in (Prior, 1957; Prior, 1967), but evidence for all the above points is convincingly summed up by (Menzel,
1991).

29Notice that preservation of classical tautologies is the only reason given by Prior for preservation of non-falsity,
which makes the move look ad hoc.

30The same logic is deployed by (Daniels, 1990) and is applied to fiction. The paper does not rise the question of
the reading of the contaminating value, though.
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6.2 Meaningfulness Operators

The full systems of Bochvar and Halldén extend the language of Kw3 and PWK with meaningfulness
operators. The operator from (Bochvar, 1938), that we symbolize by ⊚, is an operator that restitutes
true formulas when applying to true formulas: extending our valuation function V to the new
connective, V (⊚A) = t ⇔ V (A) = t, and V (⊚A) = f ⇔ V (A) ≠ t. In the interpretation by
Bochvar, the operator reads ‘meaningful and true’. Extension of Kw3 with ⊚ yields the external
logic B3. The operator from (Halldén, 1949), that we symbolize by ⊛, restitutes true formulas
when applying to true or false formulas: V (⊛A) = t ⇔ V (A) ≠ n, and V (⊛A) = f ⇔ V (A) = n.
In the interpretation by Halldén, the operator reads ‘meaningful’. Extension of PWK with ⊛ yields
Halldén’s external logic H3. The following table gives an overview of the formal behavior of the
two operators:

Table 3: Operators for ‘meaningful and truth’ and ‘meaningful’

⊚A
t t
n f
f f

⊛A
t t
n f
f t

These operators are also introduced, under the same interpretation, by systems of significance
logic—see especially (Goddard, 1968) and (Goddard and Routley, 1973). Also, ⊛ is introduced
(under a different interpretation) in the logic Q by (Prior, 1957; Prior, 1967), where it is read as
‘it is statable that . . . ’, and this in turn expresses that the formula does not make reference to any
nonexistent entities.

The ‘meaningfulness’ interpretation is just one of many possible interpretations. In a paracon-
sistent three-valued logic, ⊛ works as a consistency operator in the style of the Logics of Formal
Inconsistency (LFIs) by (Carnielli and Marcos, 2002), with ⊛A stating that A does not verify
A∧¬A. Similarly, ⊚ works as a just true operator, with ⊛A stating that A is consistent and true—
see (Beall, 2009) for a discussion on ‘just true’ devices. In a paracomplete three-valued logic, the
two operators receive dual readings: ⊛ works as a bivalence operator, with ⊛A stating that A is
either true or false, and ⊚ works as a truth operator, with ⊚A stating that A is true.31

6.3 Detachable Conditionals

Conditional ⊃ from L fails MP in PWK (Section 3) and the Law of Identity in Kw3 (Section 4). These
rules are desirable for (if not constitutive of) conditional.32 Since the two logics are not truth-
functionally complete,33 the failures are easily fixed by adding appropriate primitive conditionals.

31If more than three values are into account, the semantics of ⊚ or ⊛ can be extended in different ways, capturing
a variety of different notions. See (Omori and Sano, 2013).

32To be sure, a number of researchers from philosophical logic have argued, on different grounds, that MP is not
meaning-constitutive for the conditional. See for instance (Beall, 2013) and (McGee, 1985). However, the opposite
view is still the most popular—see for instance (Priest, 2006, p.83): any conditional worth its salt should satisfy the
modus ponens principle. We do not engage in this debate here, since this goes beyond the purpose of this paper.

33This is clear by the fact that ⊛ cannot be defined in terms of ¬, ∨, or ∧ in PWK or Kw
3 .
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Here, we just discuss a pair of options. To PWK, we can add the detachable conditional34 from
RM3,35 and, to Kw3 , we can add the conditional from the logic  L3 by  Lukasiewicz, that was indeed
designed to obey the Law of Identity. We call them →1 and →2, respectively. Their truth tables
are:

Table 4: Conditionals →1 from RM3 and →2 from  L3.

A→1 B t n f
t t f f
n t n f
f t t t

A→2 B t n f
t t n f
n t t n
f t t t

Whenever B gets value f and A gets t or n, A →1 B gets value f . This in turn implies that MP
proves valid in an extension of PWK with →1. Also, a conditional formula from  L3 gets value t if
antecedent and consequent has the same value, to the effect that the Law of Identity is valid in an
extension of Kw3 with →2.

Remark 6.1 No conditional that makes MP or the Law of Identity valid will satisfy contamina-
tion—a look at Table 4 suffices to realize this. Of course, this rises the question whether we would
like to extend contamination to some (all) logical operators beyond ¬,∨,∧,⊃, or not. One possible
reply is pragmatic, and claims that admissibility of connectives that do not satisfy contamination
depends on the application one is pursuing. From this point of view, it may be good to have condi-
tionals like →1 and →2 that simply do the job with fixing MP and Law of Identity. Two replies are
extreme. The first extreme reply claims that no further connective should satisfy contamination.
This, however, makes sense just if one has viable conceptual reasons to associate contamination to
¬,∨,∧,⊃ and no other connective, and there is hardly any. The second extreme reply claims that all
further connectives should satisfy contamination; once we accept the principle, this reply would go
on, we must accept it with no restriction. The problem with this is that it systematically prevents
any attempt to get back any of the (desirable) inferential powers that are lost with WKLs. Also,
it prevents the introduction of operators ⊛ and ⊚ (defined semantically as per Table 3), to the
effect that we would never be able to (truly) say that a sentence is meaningless. A fourth and more
reasonable reply has it that some further connectives may fail to satisfy contamination, provided
that they come with an insightful informal reading. In turn, whether a connectives has an appeal-
ing informal meaning depends on the informal interpretation of the whole logic at hand. Thus, for
instance, if we interpret Kw3 and PWK as logics of meaninglessness, as Bochvar and Halldén did,
then →1 and →2 will hardly qualify. However, we believe that conditionals →3 and →4 from Table
5 could qualify:

It is straightforward to check that →3 and →4 make MP and the Law of Identity valid, respectively
(→4 also validates MP). Also, their truth tables provide an intuitive informal reading for them.

34Adding a detachable conditional to a paraconsistent logic turns to be troublesome if the language expresses its
own truth predicate. In this case, MP opens the way for Curry Paradox. As far as no truth predicate is added,
however, a detachable conditional brings no trouble.

35This is a move that has already been suggested for LP in (Priest, 2008). RM3 is a formalism related to relevant
logic, for which a three-valued semantics has also been designed. It owes its name to the criterion of Relevance for
relevant logic and the so-called ‘M ingle Axiom’ AÔ⇒ (AÔ⇒ A), where Ô⇒ is a so-called relevant conditional.
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Table 5: Conditionals →3 and →4.

A→3 B t n f
t t f f
n f f f
f t f t

A→4 B t n f
t t f f
n f t f
f t f t

A formula like A →3 B reads ‘It is meaningful and true that if A, then B’—or else, ‘It is just
true that if A, then B’. A formula like A →4 B reads ‘Either it is just true that if A, then B,
or both A and B are meaningless’. The two readings can be checked via the definability of →3

and →4 in extensions of PWK and Kw3 with the operator ⊚. In particular, A →3 B = ⊚(A ⊃ B).
As per A →4 B, a bit of trivial formal work shows that the following definition is adequate:
A→4 B = ⊚(A ⊃ B)∨(¬⊚(A∨¬A)∧¬⊚(B ∨¬B)). In turn, this definition helps grasp the reading
we propose for →4.

6.4 Disjunction in Kw3 and Conjunction in PWK

Disjunction in K3. Bochvar’s disjunction is non-adjunctive—that is, it fails DA. Non-adjunctive
disjunctions abound in non-classical logics—some examples include the disjunction from contain-
ment logic, multiplicative disjunction from linear logic (Girard, 1987), intensional disjunction from
relevant logic (Anderson and Belnap, 1975), free-choice disjunction from (Zimmerman, 2000) and
cut-down disjunction from (Fitting, 2006). There are a number of reasons to believe that these
connectives qualify as disjunction albeit failing DA. In particular, (Anderson and Belnap, 1975),
(Girard, 1987), and (Zimmerman, 2000) rely on the fact that disjunction, as practiced in natural
language or mathematical reasoning, might not follow the intuition that disjunction must make
DA valid.

Notice that, with the remarkable exception of a family of containment logics and Fitting’s cut-
down disjunction, all the connectives above are equipped with an intensional semantics, and so one
could worry whether some connective can (i) enjoy a truth-functional semantics, (ii) fail DA, and
yet (iii) be considered a ‘real disjunction’.36

As for Kw3 -disjunction, the recent (Omori and Szmuc, 2017) provides an interesting contribution.
In particular, the paper sheds light on some important conceptual aspect of the issue, and it shows
that Kw3 -disjunction cannot be ‘disjunction, as traditionally conceived ’ (Omori and Szmuc, 2017,
p. 281)—that is, it cannot receive a semantics that (a) is truth-functional and (b) goes along with
the traditional truth-functional intuition that a disjunction is true if and only if at least one of its
disjuncts is true. For this reason, we briefly discuss it here.

(Omori and Szmuc, 2017) interprets Kw3 on a variation of the plurivalent semantics by (Priest,
2014). Given a set of truth values T , the semantics by (Priest, 2014) assigns each propositional
variable p in the language a set of values in 2T . The negative plurivalent semantics (nps) by (Omori
and Szmuc, 2017) admits the sets from 2{t,f} ∖ {t, f} as possible (sets of) truth values, and let

36Notice that Fitting’s cut-down disjunction is defined as a derived algebraic operation combining different meets
and joins. The connective can in turn receive the truth-functional semantics illustrated in Table 1, but the informal
interpretation of the connective relies on a way more complex algebraic reading, and the latter does not immediately
justify the reading of Kw

3 -disjunction as a ‘real disjunction’.
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...
D = {...v ∈ 2{t,f} ∖ {t, f} ∣ x ∈ {t} for some x ∈ ...v} be the set of designated sets of values.37 Thus,
a variable p can just receive {t}, {f}, and ∅ as a value, and just {t} is to be preserved through
reasoning.38 We refer the reader to (Omori and Szmuc, 2017) for the truth clauses for arbitrary
formulas from L; here, we are interested to a consequence of the clause of disjunction, that is:

t ∈ ...v(A ∨B) iff for some x, y ∈ {t, f}, x ∈ ...v(A), y ∈ ...v(B) and t = f∨(x, y)

where f∨ is the operation corresponding to ∨ in the standard two-element Boolean algebra. It is
clear by this equivalence that, if

...
v(A) = {t} and

...
v(B) = ∅, then t ∉ ...v(A ∨B), since the clause that

t ∈ ...v(B) or f ∈ ...v(B) is not satisfied. This implies that the truth of one disjunct does not suffice to
secure the truth of a disjunction.39

This feature is interesting for two reasons. First, (Omori and Szmuc, 2017) shows that, when
it comes to the plurivalent semantics currently available, contaminating values can be represented
just by means of nps—they cannot be represented, for instance, by the plurivalent semantics intro-
duced in (Priest, 2014). Second, the biconditional above is a consequence of the general clause for
connectives in the nps from (Omori and Szmuc, 2017, Definition 13), which implies that, for every
connective k available, if t ∈ ...v(k(A,B)), then x ∈ ...v(A) and x ∈ ...v(B) for x ∈ {t, f}. This suffices
to realize that, in nps, failure of the traditional account of disjunction is just a consequence of a
condition that is actually imposed on all connectives in L.

In our view, one main contribution by (Omori and Szmuc, 2017) is to clarify the status of Kw3 -
disjunction w.r.t. the traditional account of disjunction. In doing this, they help us understand that
that arguments (or proofs) to the effect that the Kw3 -disjunction is not traditional disjunction do
not amount to arguments that Kw3 -disjunction is not a disjunction in its own right. Indeed, (Omori
and Szmuc, 2017) correctly show that Kw3 -disjunction cannot receive a semantics that satisfies both
(a) and (b), but this, of course, does not imply that points (i) and (ii) above are incompatible with
point (iii).40

Coming back to this issue, we believe that a number of readings of Kw3 -disjunction justify the
view that the connective is a ‘real’ disjunction. For instance, Bochvar’s reading of the third value
n as meaningless does make sense of failure of DA. If we follow that reading, we will be justified in
assuming that the connective ∨ in Kw3 is good old disjunction, and failure of DA is what happens to
disjunction when meaningless expressions are around. In addition, the computational reading by
(Ferguson, 2014a) also comes with an intuitive explanation: failure of DA is what happens when
one disjunct is true, but not all the variables in the other disjunct have been declared. In our view,
these two interpretations justify the reading of ∨ in Kw3 as ‘disjunction’, even though it fails DA.
In light of this, we believe that the position that (i) and (ii) leads to deny (iii) is not justified, at
least when it comes to Kw3 -disjunction.

37The negative plurivalent semantics from (Omori and Szmuc, 2017) is more general than this. However, unless
stated otherwise, in this paper we refer just to the special case from (Omori and Szmuc, 2017, Definition 13), which
provides the nps interpretation of Kw

3 .
38Again, this holds if we consider the nps from (Omori and Szmuc, 2017, Definition 13), but it does not hold for

all the special cases of (Omori and Szmuc, 2017, Definition 12).
39The same applies to the more traditional matrix-based semantics for WKLs that we investigate in this paper, in

which v(A ∨B) = t iff v(A) = t and v(B) ∈ {f , t} or v(A) ∈ {f , t} and v(B) = t.
40Indeed, in order to deny (iii), we would need the additional assumption that a connective that enjoys (a) but not

(b) is no disjunction, full stop.
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Conjunction in PWK. Halldén’s conjunction faces a dual failure: the connective is non-simplifying—
that is, it fails CS (see Section 3). Contrary to failure of DA for disjunction, no tradition in
non-classical logic has held that CS is not distinctive of conjunction, when the latter is understood
truth-functionally,41 and no argument in favor of that has been presented.42 Be it as it may, the
issue at stake is whether a connective can (i) enjoy a truth-functional semantics, (ii) fail CS, and
yet (iii) qualify as a ‘real conjunction’.

One possible argument that CS should not be distinctive of conjunction goes as follows: ‘exactly
as Kw3 -disjunction, PWK-conjunction is good old conjunction, and failure of CS is what happens to
conjunction when meaningless expressions are around’. This would qualify PWK-conjunction as a
‘real conjunction’, albeit enjoying a truth-functional semantics and invalidating CS. However, we
see below that this view may turn to be problematic.

(Omori and Szmuc, 2017) also provides an interesting insight on PWK-conjunction. In par-
ticular, Omori and Szmuc hold that PWK-conjunction ‘is conjunction, as traditionally conceived ’,
where the traditional account of conjunction holds that ‘a conjunction is true if and only if both its
conjuncts are true’—call this TA, for short.43 In order to get an nps interpretation of PWK, take
(Omori and Szmuc, 2017, Definition 13) and switch the definition of the designated sets of values
to

...
D = {...v ∈ 2{t,f} ∖ {t, f} ∣ x ∉ {f} for all x ∈ ...v}—see (Omori and Szmuc, 2017, pp.278–279) for

this. The clauses for the connectives remain the same as the ones from (Omori and Szmuc, 2017,
Definition 13), and the nps clause for conjunction from (Omori and Szmuc, 2017) has the following
consequence:44

t ∈ ...v(A ∧B) iff for some x, y ∈ {t, f}, x ∈ ...v(A), y ∈ ...v(B) and t = f∧(x, y)

This implies that t ∈ ...v(A∧B) if and only if {t} = ...v(A) = ...v(B), or: a conjunction is true if and only
if all its conjuncts are true. A glimpse at Table 1 suffices to see that PWK-conjunction fits this.

One interesting point of (Omori and Szmuc, 2017) is that one can have a conjunction that
satisfies the ‘traditional account of conjunction’ while yet failing CS, as is clear by the nps inter-
pretation of PWK. In our view, one of the reasons that make (Omori and Szmuc, 2017) relevant
is that it clarifies that the traditional account of conjunction does not secure satisfaction of CS,
at least if one follows the (certainly viable) reading of the account by (Omori and Szmuc, 2017).
However, we believe that the considerations by (Omori and Szmuc, 2017) could fail to prevent a
negative reply to points (i)—(iii). In particular, we believe that, even in considering the clarity
brought by the analysis by (Omori and Szmuc, 2017), the supporter of ADH (see beginning of this
section) could take PWK-conjunction not to be a ‘real conjunction’. Indeed, under ADH a more
appropriate formulation of the ‘traditional account of conjunction’ is: ‘a conjunction is designated
if and only if all its conjuncts are designated’. Let us call this the ‘generalized traditional account

41The intensional conjunction or fusion from the relevantist tradition (see Section 7) fails CS, but it receives an
intensional semantics. Beside, its reading as a conjunction is far from being universally assumed. For instance,
(Read, 2010) interprets the connective as a compatibility operator.

42An exception is (Thompson, 1991). His defense of a non-simplifying conjunction is largely independent from the
intensional or extensional nature of the semantics on which the connectives are interpreted. However, we believe that
Thompson’s argument connecting non-simplifying conjunction and inductive reasoning are far from being conclusive.

43See (Omori and Szmuc, 2017, p.280). Notice that the arguments from (Omori and Szmuc, 2017) does not
specifically deal with PWK-conjunction. However, it is clear from the following considerations that their argument
applies to PWK-conjunction in a straightforward way.

44We refer the reader to (Omori and Szmuc, 2017) for the exact nps-clause for conjunction.
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of conjunction’ (GTA, for short).45 We see below why this version should look more appropriate
then TA to the supporter of ADH. For the time being, we just notice that GTA is just another
way to formulate CS, to the effect that no conjunction failing CS—including PWK-conjunction—
can satisfy this version of the traditional account. Thus, GTA prompts a negative reply to points
(i)–(iii) above. Just to get a concrete feeling of this in the nps by (Omori and Szmuc, 2017): given
the general clause for the connectives, we have that

∅ = ...v(A ∧B) iff ∅ = ...v(A) or ∅ = ...v(B)

to the effect that, if ∅ = ...
v(A) and {f} = ...

v(B), then ∅ = ...
v(A ∧B). Since ∅ is a designated set of

values in the nps interpretation of PWK, we have that A∧B can be designated even in cases where B
is false (and hence, non-designated).46 Of course, acceptance of GTA has direct consequences also
for the view that ‘PWK-conjunction is good old conjunction, and failure of CS is what happens to
conjunction when meaningless expressions are around’. Under GTA, PWK-conjunction cannot be
‘good old conjunction’ at all, since in her view, ‘good old conjunction’ is something that satisfies CS.
In sum, if we accept GTA as a more appropriate version of the ‘traditional account of conjunction’,
then we will give a negative reply to (i)–(iii).

Now we explain why, in our view, GTA would prove more appealing than TA under ADH.
Given any matrix-based consequence ⊧S,47 ADH implies a reading of A ⊧S B as ‘if one can right-
fully assert A, then one can rightfully assert B’. A key question for the supporters of ADH, then,
is (⋆) ‘What can one rightfully assert, in case one can rightfully assert sentences A1, . . .An? ’ If
one aims at replying this question, the ‘traditional conception of conjunction’ is better represented
by (for every well-formed sentences A and B)

(⋆⋆) A and B are both rightfully asserted if and only if A ∧B is rightfully asserted.

Which coincides (under ADH) with GTA and, in turn, with CS.48 As we have just seen, GTA
comes with a negative reply to (i)–(iii). Of course, the fact that (i)–(iii) are not co-tenable under
ADH and GTA does not provide a conclusive reason against (i)–(iii) holding together. However,
since ADH is a widespread position, and GTA is a convincing way to formulate the traditional
account of conjunction, their consequences for (i)–(iii) are a relevant issue that the supporter of
PWK-conjunction should explicitly discuss and counter. In absence of a view that replaces ADH
and GTA, a positive reply to (i)–(iii) seems hardly likely to pack some punch.49

45Notice that, as far as the paracomplete Kw
3 is concerned, this formulation coincides with the one by (Omori and

Szmuc, 2017), since DKw
3
= {t}.

46The same applies to the more traditional matrix-based semantics for WKLs that we investigate in this paper.
Indeed, we have that v(A ∧B) = n iff v(A) = n or v(B) = n. Since n is a designated value in the semantics for PWK
from Section 2, we have that A∧B can be designated even in cases where B (say) is false (and hence, non-designated).

47Here, we extend the label ‘matrix-based consequence’ as to include the consequence relations defined in nps. This
seems reasonable, since nps themselves are based on matrices, with designated value-sets being the non-standard
element in these semantics. We extend the term ‘matrix-based logic’ in a similar way.

48Notice that, under ADH, (⋆⋆) collapses on TA just in matrix-based logics where truth (t or {t}) is the only
designated value, like CL, K3, or Kw

3 . With respect to those reasoning frameworks, TA will do the job of the ‘traditional
account’ for the supporter of ADH. If other values (or value-sets) such as n (or ∅) are designated alongside t (or
{t}), however, TA does not do the job anymore for the supporter of ADH, since it does not cover all the cases in
which a conjunction is rightfully asserted.

49To be sure, ADH does not imply endorsement of (⋆⋆)—and, hence, of GTA and CS. However, rejection of (⋆⋆)
calls for a justification, at least because no tradition in non-classical logic has supported (i)–(iii). To the best of our
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7 Issues for Future Research

This paper makes first steps toward a systematic analysis of WKLs. Here we briefly discuss three
open problems that we wish to approach in further developments of our research. First, the analysis
of logical consequence in the external logics by (Bochvar, 1938) and (Halldén, 1949). Second, the
construction of many-valued logics with two or more contaminating values. Third, the possibility
of a relevantist interpretation of Bochvar’s disjunction and Halldén’s conjunction.

Additionally, one reviewer pointed a further interesting issue at us, namely: ‘Is it possible to
prove the semantical characterization results from Theorem 3.4 and Theorem 4.3 in terms of the
sequent calculi by (Coniglio and Corbalan, 2012)? ’ We plan to devote future investigation to this
topic, which we take to be a valuable direction of further research on WKLs.

Meaningfulness Operators. (Barrio et al., 2016) is a recent paper that focuses on the external
logics from (Bochvar, 1938) and (Halldén, 1949) and their four- and five-valued extensions. In par-
ticular, they prove that the extensions of WKLs with ⊛ and a transparent truth predicate are not
trivial, contrary to the corresponding extensions of their strong kins LP and K3. The Derivability
Adjustment Theorems 7.2.20 and 7.3.22 (Corbalan, 2012) establish how the operators ⊚ and ⊛
help recapture the classical tautologies that are lost in Kw3 and the classical inferences that fail in
PWK, respectively. In ongoing research, (Ciuni and Carrara, 2018) we provide classical recapture
theorems for different families of logics; from these theorems, the recapture results for extensions
of Kw3 and PWK with ⊛ follows as particular cases. Recapture results for a number of subsystems
of the two extensions also follow from the general recapture theorems.

More than one contaminating value. The idea of the contaminating truth value is that it
transmits from a subformula to a formula regardless of the values of the other subformulas. If we
want to have more than one contaminating value, this condition must be relaxed, since at most
one of the contaminating values will prevail over the other. There are many ways to do this for k
contaminating values with k ≥ 2. One option, which is implicit in (Barrio et al., 2016) and (Szmuc,
2017), is to to allow for a (linear) hierarchy of contaminating values.50 This naturally generates
sublogics in the intersection of Kw3 and PWK. The issue of adapting the results from Theorem 3.4
and Theorem 4.3 to this family of many-valued logics is not trivial. In Section 5, we have proved
characterization results (Theorems 5.4 and 5.7) for two sublogics of PWK and Kw3 in the style of
(Barrio et al., 2016) and (Szmuc, 2017). We plan to devote future research to a general character-
ization method for many-valued logics based on a linear contamination order.

Relevantist reading of Bochvar’s Disjunction. In section 6, we have seen that failure of
DA does not pose a conceptual problem to Kw3 -disjunction, and that, together with Bochvar’s
interpretation, the computational interpretation from (Ferguson, 2014a) gives an appealing reading
to the failure. Further interpretations are possible, of course. For instance, (Ferguson, 2014a) also
explores a relevantist interpretation of Bochvar’s disjunction.51 In particular, the right-introduction

knowledge, a justification of this position has not yet proposed by any project in the philosophy of many-valued logic
that comprises ADH, which in turn makes this option hardly appealing.

50That is, for every k ∈ N and 1 ≤ i ≤ k, if there are k contaminating values n1, . . . ,nk, then value ni transmits
from A to any formula B where A occurs iff all the other formulas occurring in A have value t, f or nj with j ≤ i.

51(Ferguson, 2014a) actually reviews different non-classical traditions that can suggest an interpretations of
Bochvar’s disjunction, including linear logic (Girard, 1987), and the machineries from (Fitting, 2006) and (Zim-
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rule of the non-adjunctive intensional disjunction ⊕ from relevant logic:

Γ ⊢ A,B,∆

Γ ⊢ A⊕B,∆

is the same as the introduction rule for Bochvar’s disjunction (Coniglio and Corbalan, 2012). From
this, (Ferguson, 2014a) concludes that Bochvar’s disjunction and intensional disjunction may be
seen as the same connective, in line with the traditional proof-theoretical idea that ‘introductions
represent the definitions of the symbols concerned’ (Gentzen, 1969).

As a referee points out, this line of reasoning omits the important fact that the calculus from
(Coniglio and Corbalan, 2012) imposes a variable-inclusion requirement var(A,B) ⊆ var(Γ) to the
right-introduction rule for ∨, while the right-introduction rule for ⊕ does not come with this restric-
tion. In light of this, we believe that Ferguson’s conclusion is in need for more conclusive support.
In our view, the real solidity of a relevantist interpretation can only be decided by a fully developed
comparison between the truth-functional semantics of Bochvar’s disjunction and the intensional
semantics of ⊕. In future research, we plan to provide a full-fledged relevantist (intensional) se-
mantics for Bochvar’s disjunction. In particular, this semantics would attest the possibility to
read Bochvar’s disjunction as a special kind of intensional disjunction, which comes with an addi-
tional variable-inclusion constraint. This special intensional disjunction would naturally support
a special kind of conditional, which very likely combines features typical of analytic implication
(Dunn, 1972; Fine, 1986) with features typical of relevant implication (Anderson and Belnap, 1975).

Halldén’s Conjunction. Halldén’s conjunction fails CS (see Section 3), and this is really at odd
with our understanding of a conjunction (see Section 6). Again, we believe that comparison with
relevant logic could help get a better understanding of what the connective is. As (Ciuni, 2015)
notices, Halldén’s conjunction carries some interesting similarities with the fusion operator ○ (also
called intensional conjunction) from relevant logic.52 Fusion expresses a notion of informational
compatibility :53 A ○ B holds at a given information state s iff A and B separately hold at two
(possibly different) states s′ and s′′ that are compatible with s, respectively.

Fusion and Halldén’s conjunction share a number of properties, such as communtativity and
idemotency,54 which are also properties of the traditional extensional conjunction. In addition,
fusion is non-simplifying, exactly as conjunction in PWK—see (Mares, 2004) for this. Again, the
similarity stretches further, and in a more significant way: the left-introduction rule for the non-
simplifying fusion ○ from relevant logic:

Γ,A,B ⊢∆

Γ,A ○B ⊢∆

merman, 2000). In addition, he advances a computational interpretation of Bochvar’s disjunction.
52The same notation is used for fusion and the consistency operator of LFIs, but the two cannot be confused. For

one, the consistency operator is unary, while fusion is binary.
53Here we are presupposing the informational interpretation of relevant logic advanced by (Dunn, 1993) and (Dunn

and Restall, 2002). Notice that ○ has been first introduced by (Lewis and Langford, 1917) as a compatibility operator.
(Read, 2010) defends this interpretation of the operator in relevant logic.

54Commutativity is expressed by A ○B ⊧ B ○A and A ∧B ⊧PWK B ∧A, respectively. Idempotency is expressed by
A ○A ⊧ A and A ∧A ⊧PWK A, respectively. Actually, fusion is idempotent only in the systems accepting the ‘mingle’
principle A ⊧ AÔ⇒ A. The principle is in turn equivalent with A○A ⊧ A, due to the definition A○B = ¬(AÔ⇒ ¬B).
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is the same as the introduction rule for Halldén’s conjunction (Coniglio and Corbalan, 2012).
However, we also have the same kind of mismatch that we had with Bochvar’s and intensional
disjunction: again, the calculus from (Coniglio and Corbalan, 2012) imposes a variable-inclusion
requirement—in this case, var(A,B) ⊆ var(∆)—to the left-introduction rule for ∧, and again the
left-introduction rule for ○ does not come with such a restriction. In light of these conflicting
matches and mismatches, we believe that a semantical approach can help understanding how far
we can push the similarities between Halldén’s conjunction and fusion.

In future research, we plan to provide a full-fledged relevantist (intensional) semantics for
Bochvar’s disjunction. In particular, this semantics would attest the possibility to read Bochvar’s
disjunction as a special kind of intensional disjunction, which imposes an additional variable-
inclusion constraint. This special intensional disjunction would naturally support a special kind
of relevantist conditional, which we plan to investigate in further research. A confirmation of the
fact that Halldén’s conjunction can be read a special kind of fusion would provide us with a more
articulated view on the species of compatibility operators that can obtain in relevant reasoning.

8 Conclusions

In this paper we have established characterization results for two Weak Kleene logics dating back
to (Bochvar, 1938) and (Halldén, 1949): the paracomplete logic Kw3 and the paraconsistent logic
PWK. These results provide necessary and sufficient conditions for a set ∆ of formulas to be a
logical consequence of a set Γ in PWK and Kw3 , respectively. The two results make a significative
progress with respect to existing literature, and highlight the role of two particular variable in-
clusion requirements. Some related theorems by (Coniglio and Corbalan, 2012), (Paoli, 2007) and
(Urquahrt, 2002) turn to be derivable from our results. Besides, we have generalized the main
results of the paper to the four-valued logics Leb′ and Lb′e from (Barrio et al., 2016) and (Szmuc,
2017). The paper also gives an overview of the main philosophical interpretations of Weak Kleene
Logics, reviews the so-called meaningfulness operators from (Bochvar, 1938) and (Halldén, 1949),
and the extensions of Weak Kleene Logics with detachable conditionals. Finally, some issues for
future research are briefly discussed.
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