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0. Pulling A Thread 

 

I shall focus this discussion on one small thread in the increasingly complex weave of 

Artificial Intelligence and Philosophy of Mind: the attempt to explain how rational 

thought is mechanically possible.  This is, historically, the crucial place where Artificial 

Intelligence meets Philosophy of Mind.  But it is, I shall argue, a place in flux.  For our 

conceptions of what rational thought and reason are, and of what kinds of mechanism 

might explain them, are in a state of transition.  To get a sense of this sea change, I shall 

compare several visions and approaches, starting with what might be termed the Turing-

Fodor conception of mechanical reason, proceeding through connectionism with its skill-

based model of reason, then moving to issues arising from robotics, neuroscientific 

studies of emotion and reason, and work on “ecological rationality”.  As we shall see 

there is probably both more, and less, to human rationality than originally met the eye. 

 

First, though, the basic (and I do mean basic) story… 

 

1. The Core Idea, Classically Morphed 

 

One core idea, common to all the approaches I’ll consider today, is that sometimes form 

can do duty for meaning.  This is surely the central insight upon which all attempts to 

give a mechanical account of reason are based.  Broadly understood, it is this same trick 

that is at work in logic, in the Turing Machine, in symbolic Artificial Intelligence, in 

connectionist artificial intelligence, and even in “anti-representationalist” robotics.  The 

trick is to organize and orchestrate some set of non-semantically specifiable properties or 

features so that a device thus built, in a suitable environment, can end up displaying 

“semantic good behavior”.  The term ‘semantic good behaviors covers, intentionally, a 

wide variety of things.  It covers the capacity to carry out deductive inferences, to make 
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good guesses, to behave appropriately upon receipt of an input or stimulus, and so on.  

Anything that (crudely put) looks like it knows what it is doing, is exhibiting semantic 

good behavior: cases include the logician who infers –A from (C? - A,C), the person who 

chooses to take out an umbrella because they believe it will rain and desire to stay dry, 

the dog who chooses the food rather that the toxin, the robot that recovers its balance and 

keeps on walking after one leg is damaged.  There’s a lot of semantic good behavior 

around, and we understand some of it a whole lot better than the rest.  Where, though, 

does reason come into the picture? 

 

Reason-governed behavior is, arguably at least, a special subset of what I am calling 

semantic good behavior.  It is Jerry Fodor’s  view, for example, that is was not until the 

work of Turing that we began to have a sense of how rationality (which I’ll assume to 

mean reason-governed behavior) could be mechanically possible (for a nice capsule 

statement, see Fodor (1998 p. 204 – 205)).  Formal logic showed us that truth 

preservation could be ensured simply by attending to form, not meaning.  B follows from 

A & B regardless of what A means and what B means, and if your keep to rules defined 

over the shapes of symbols and connectives you will never infer a falsehood from true 

premises, even if you have no idea what either the premises or the conclusions are about.  

Turing, as Fodor notes, showed that for all such formally (“by shape”) specifiable 

routines, a well-programmed machine could replace the human.   

It is at about this point that what was initially just an assertion of physicalist faith (that 

somehow or other, semantic good behavior has always and everywhere an explanatorily 

sufficient material base) morphs into a genuine research program targeting reason-

governed behavior.  The idea, rapidly enshrined in the research program of classical, 

symbolic Artificial Intelligence, was that reason could be mechanically explained as the 

operation of appropriate computational processes on symbols, where symbols are non-
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semantically individable items (items typed by form, shape, voltage, whatever) and 

computational processes are mechanical, automatic processes that recognize, write and 

amend symbols in accordance with rules (which themselves, up to a certain point, can be 

expressed as symbols).  In such systems, as Haugeland (1981, p. 23) famously remarks, 

“if you take care of the syntax [the non-semantic features and properties] the semantics 

will take care of itself”.  The core idea, as viewed through the lens of both Turing’s 

remarkable achievements and then further developments in classical Artificial 

Intelligence, thus began to look both more concrete, and less general.  It became the idea, 

in Fodor’s words, that: 

“…some, at least, of what makes minds rational is their ability to perform 

computations on thoughts; when thoughts…are assumed to be syntactically 

structured, and where ‘computation” means formal operations in the manner of 

Turing”  

Fodor (1998) p.205. 

The general idea of using form (broadly construed) to do duty for meaning, thus gently 

morphed into the Turing Machine dominated vision of reading, writing and transposing 

symbols: a vision which found full expression in early work in Artificial Intelligence.  

Here we encounter Newell and Simon’s (1976) depiction of intelligence as grounded in 

the operations of so-called physical symbol systems: systems in which non-semantically 

identifiable entities act as the vehicles of specific contents (thus becoming “symbols”) 

and are subject to a variety of familiar operations (typically copying, combining, creating 

and destroying the symbols, according to instructions).  For example, the story 

understanding program of Schank (1975) used a special event description language to 

encode the kind of background knowledge needed to respond sensibly to questions about 
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simple stories, thus developing a symbolic data-base to help it “fill in” the missing 

details. 

Considered as stories about how rational, reason-guided thought is mechanically 

possible, the classical approach thus displays a satisfying directness.  It explains 

semantically sensible thought-transitions (“they enjoyed the meal, so they probably left a 

tip,” “it’s raining, I hate the rain, so I’ll take an umbrella”) by imagining that each 

participating thought has an inner symbolic echo, and that these inner echoes share 

relevant aspects of the structure of the thought.  As a result, syntax-sensitive processes 

can regulate processes of inference (thought-to-thought transitions) in ways that respect 

semantic relations between the thoughts. 

 

2. The Core Idea, Non-classically Morphed 

The idea that reason-guided thought transitions are grounded in syntactically driven 

operations on inner symbol strings has a famous competitor.  The competing idea, 

favored by (many) researchers working with artificial neural networks, is that reason-

guided thought-transitions are grounded in the vector-to-vector transformations supported 

by a parallel web of simple processing elements.  A proper expression of the full details 

of this contrast is beyond the scope of this paper (see Clark (1989)(1993) for my best 

attempts).  But we can at least note one especially relevant point of (I think) genuine 

contrast.  It concerns what I’ll call the “best targets” of the two approaches.  For classical 

(Turing Machine-like) Artificial Intelligence, the best targets are rational inferences that 

can be displayed and modeled in sentential space.  By ‘sentential space’ I mean an 

abstract space populated by meaning-carrying structures (interpreted syntactic items) that 

share the logical form of sentences: sequential strings of meaningful elements, in which 

different kinds of syntactic item reliably stand for different things, and in which the 
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overall meaning is a function of the items (tokens) and their sequential order, including 

the modifying effects of other tokens (e.g. the “not” in “it is not raining”).  Rational 

inferences that can be satisfyingly reconstructed in sentential space include all of Fodor’s 

favorite examples (about choosing to take the umbrella, etc.), all cases of deductive 

inference defined over sentential expressions, and all cases of abductive inference 

(basically, good guessing) in which the link between premises and conclusions can be 

made by the creative retrieval of deployment of additional sentences (as in Schank’s 

story understanding program mentioned earlier). 

The best targets for the artificial neural network approach, by contrast, are various 

species of reasonable ‘inference’ in which the inputs are broadly speaking perceptual and 

the outputs are (often) broadly speaking motoric.  Reasonable inferences of this kind are 

implicit in, for example, the cat’s rapid assessment of the load-bearing capacity of a 

branch, leading to a swift and elegant leap to a more secure resting point, or the 

handwriting expert’s rapid intuitive conviction that the signature is a forgery, a 

conviction typically achieved in advance of the conscious isolation of specific tell-tale 

signs. 

This is not to say, however, that the connectionist approach is limited to the perceptuo-

motor domain.  Rather, the point is that its take on rational inference (and, more broadly, 

on rational choice) is structurally continuous with its take on perceptuo-motor skill.  

Reasoning and inference are reconstructed, on all levels, as (roughly speaking) processes 

of pattern-completion and pattern-evolution carried out by cascades of vector-to-vector 

transformations between populations of simple processing units.  For example, a network 

exposed to an input depicting the visual features of a red-spotted young human face may 

learn to produce as output a pattern of activity corresponding to a diagnosis of measles.  

This diagnosis may lead, via a similar mechanism, to a prescription of penicillin.  The 

vector-to-vector transformations involved are perfectly continuous(on this model) with 
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those by which we perform more basic acts of recognition and control, as when we 

recognize a familiar face or co-ordinate visual proprioceptive inputs in walking.  Such 

pattern completing processes, carried out in networks of simple processing units 

connected by numerically weighted links, are prima facie quite unlike the sentential 

Artificial Intelligence models in which a medical judgment (for example) might depend 

on the consultation of a stored set of rules and principles.  One important source of the 

difference lies in the way the connectionist system typically acquires the connection 

weights that act both as knowledge-store and processing-engine.  Such weightings are 

acquired by exposing the system to a wide range of exemplars (training instances): a 

regime which leads, courtesy of the special learning rules deployed, to the development 

of a prototype-dominated knowledge base (see Churchland (1989)).  What this means in 

practice is that the system learns to ‘think about’ a domain in terms of the most salient 

features of a body of exemplar cases, and that its responses, judgments and actions are 

guided by the perceived similarity of the current case to the patterns of features and 

responses most characteristic of the exemplars.  And what this means, in turn, is that 

what such a system knows is seldom, if ever, neatly expressible as a set of sentences, 

rules, or propositions about the domain.  Making the expert medical judgment, on this 

model, has more in common with knowing how to ride a bicycle than with consulting a 

set of rules in a symbolic date-base.  A well-tuned connectionist network may thus issue 

judgments that are rationally appropriate but that nonetheless resist quasi-deductive 

sentential reconstruction as the conclusion of an argument that takes symbolic 

expressions as its premises.  Such appropriate responses and judgments are, on this view, 

the fundament of reason, and of rationality.  Linguaform argument and inference is 

depicted as just a special case of this general prototype-based reasoning capacity, 

different only in that the target and training domain here involves the symbol strings of 

public speech and text. 



 8

Connectionism and classicism thus differ (at least in the characteristic incarnations I am 

considering) in their visions of reason itself.  The latter depicts reason as, at root, symbol-

guided state transitions in quasi-linguistic space.  The former depicts reason as, at root, 

the development of prototype-style knowledge guiding vector-to-vector transformations 

in the same kinds of (typically) non-sentential space that also underlie perceptuo-motor 

response.  Beneath this contrast, however, lies a significant agreement.  Both camps 

agree that rational thoughts and actions involve the use of inner resources to represent 

salient states of affairs, and the use of transformative operations (keyed to non-semantic 

features of those internal representations) designed to yield further representations (in a 

cascade of vector-to-vector transformations in the connectionist case) and, ultimately, 

action.   

3. Robotics: Beyond The Core? 

Is it perhaps possible to explain reasoned action without appeal to inner, form-based 

vehicles of meaning at all?  Might internal representations be tools we can live without? 

Consider the humble house-fly.  Marr (1982, p. 32-33, reported by McLamrock (1995) p. 

85) notes that the fly gets by without in any sense encoding the knowledge that the action 

of flying requires the command to flap your wings.  Instead, the fly’s feet, when not in 

contact with ground, automatically activate the wings.  The decision to jump thus 

automatically results (via abolition of foot contact) in the flapping of wings. 

Now imagine such circuitry multiplied.  Suppose the “decision to jump” is itself by-

passed by e.g. directly wiring a “looming shadow” detector to the neural command for 

jumping.  And imagine that the looming shadow detector is itself nothing but a dumb 

routine that uses the raw outputs of visual cells to compute some simple, perceptual 

invariant.  Finally, imagine if you will a whole simple creature, made up of a fairly large 

number of such basic, automatic routines, but with the routines themselves orchestrated – 
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by exactly the same kind of tricks – so that they turn each other on and off at (generally 

speaking) ecologically appropriate moments.  For example, a ‘consume food” routine 

may be overridden by the “something looming-so-jump” routine, which in turn causes the 

“flap wings” routine, and so on.  What you have imagined is, coarsely but not 

inaccurately, the kind of “subsumption architecture” favored by robotists such as Rodney 

Brooks (1991), and responsible for provocative paper titles such as “Intelligence Without 

Representation” and slogans (now co-opted as movie titles!) such as “Fast, Cheap and 

Out of Control.” 

It is not at all obvious, however, that such a story could (even in principle) be simply 

scaled-up so as to give us “rationality without representation”.  For one thing, it is not 

obvious when we should say of some complex inner states that it constitutes at least some 

kind of representation of events, or states of affairs.  The house-fly wing-flapping routine 

looks like a simple reflex, yet even here there is room for someone to suggest that, given 

the evolutionary history of the reflex circuit, certain states of that circuit (the ones 

activated by the breaking of foot-surface contact) represent the fact that the feet have left 

the surface.  What Brooks and others are really suggesting, it often seems, is rather the 

absences of a certain type of internal representation viz the broadly linguaform 

representations favored by classical Artificial Intelligence. 

A more fundamental difficulty, however, (which goes well beyond the vagueness of the 

term “internal representation”) concerns the kinds of behavior that can plausibly be 

explained by any complex of reflex-like mechanisms.  The problematic cases here are 

obviously deliberative reason and abstract thought.  The kinds of behavior that might be 

involved include planning next years family vacation, thinking about U. S. gun control 

issues (e.g. “should gun manufacturers be held responsible for producing more guns than 

the known legal market requires?”), using mental images to count the number of 

windows in your spanish apartment while relaxing on the river Thames, and so on.  These 
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cases are by no means all of a piece.  But they share at least one common characteristic: 

they are all “represention hungry” (to use a term from Clark and Toribio (1994)) in quite 

a strong sense.  All these cases, on the face of it, require the brain to use internal stand-

ins for external states of affairs, where a “stand-in”, in this strong sense (see Clark & 

Grush (1999)) is an item designed not just to carry information about some state of affairs 

(in the way that, e.g., the inner circuit might carry information about the breaking of foot-

surface contact in the fly) but to allow the system to key its behavior to features of 

specific states of affairs even in the absence of direct physical connection.  A system 

which must coordinate it’s activity with the distal (the windows in my spanish apartment) 

and the non-existent (the monster in the tool-shed) is thus a good candidate for the use of 

(strong) internal representations: inner states which are meant to act as full-blooded 

stand-ins, not just as ambient information-carriers.  (For some excellent discussion of the 

topics of connection and disconnection, see B. C. Smith (1996).  By contrast, nearly all 

(but see Stein (1996) and Beer (2000)) the cases typically invoked to show 

representation-free adaptive response are cases in which the relevant behavior is 

continuously driven by, and modified by, ambient input from the states of affairs to 

which the behavior is keyed. 

Rational behavior is, in some sense, behavior that is guided by, or sensitive to, reasons.  

Intuitively, this seems to involve some capacity to step back, and assess the options; to 

foresee the consequences, and to act accordingly.  But this vision of rationality 

(‘deliberative rationality’) places rational action squarely in the “representation-hungry” 

box.  For future consequences, clearly, cannot directly guide current action (in the way 

that, say an ambient light source may directly guide a photosensitive robot).  Such 

consequences will be effective only to the extent that the system uses something else to 

stand-in for those consequences during the process of reasoning.  And that, at least on the 

face of it, requires the use of internal representations in some fairly robust sense. 
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4. Emotions and Reason  

A mechanical explanation of our capacities to display reason-guided behavior cannot, it 

seems, afford to dispense with the most basic notion of inner stand-ins capable of 

directing behavior and inference in the absence of the events and states of affairs 

concerned.  Work in connectionism and real-world robotics is best viewed (I believe) as 

expanding our conceptions of the possible nature of such stand-ins, and as highlighting 

the many ways in which bodily and environmental structures, motion, and active 

intervention may all serve to transform the problems that the brain needs to solve.  The 

use of pen and paper, for example, may greatly alter the problems that the brain needs to 

solve when confronting complex arithmetical tasks, when planning a long-term strategy, 

and even when reasoning about gun control.  But such transformations do not by-pass the 

need for internal structure-sensitive operations defined over inner content-bearing 

vehicles: rather, they re-shape the problems that such an inner economy needs to solve. 

The stress on reason-sensitive thought and inference can, however, blind us to the crucial 

importance of a further dimension of human cognition.  For human reason is tightly, 

perhaps inextricably, interwoven with human emotion.  Doing justice to this significant 

interaction is one of the two major challenges for the next generation of Artificial 

Intelligence models. 

Emotions were long regarded (at least in a broadly Kantian tradition) as the enemy of 

reason.  And we certainly do speak of (for example) judgments being clouded by envy, 

acts as being driven by short-lived bursts of fury and passion rather than by reasoned 

reflection, and so on.  It is becoming increasingly clear, however, that the normal 
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contributions of emotion to rational response are far from detrimental.  They are, in fact, 

best seen as part of the mechanism of reason itself.  Consider, to take a famous example, 

the case of Phineas Gage.  Gage was a 19th century railway worker whose brain was 

damaged when an iron rod was driven through his skull in an explosion.  Despite 

extensive damage to prefrontal cortex, the injury left Gage’s language, motor skills, and 

basic reasoning abilities intact.  It seemed as if he had escaped all cognitive compromise.  

Over, subsequent years, however, this proved sadly incorrect.  Gage’s personal and 

professional life took noticeable turns for the worse.  He lost jobs, got into fights, failed 

to plan for the future and to abide by normal conventions of social conduct, became a 

different and markedly less successful person.  The explanation, according to H. 

Damasio, et. al. (1996) was that the damage to prefrontal cortex had interfered with a 

system of (what they termed) “somatic markers” – brain states that tie the image/trace of 

an event to a kind of gut reaction (aversion or attraction, according to the outcome).  This 

marker system operates automatically (in normal subjects) influencing both on-the-spot 

response and the array of options that we initially generate for further consideration and 

reflection.  It is active also – and crucially- when we imagine an event or possible action, 

yielding a positive or negative affective signal that manifests itself in (among other 

things) galvanic skin response.  Gage, it is hypothesized, would have lacked such 

responses, and would not have had his reasoning and deliberations constrained by the 

automatic option-pruning and choice-influencing operations of the somatic marker 

system gradually acquired during his lifetime’s experience of social and professional 

action.  Contemporary studies seem to confirm and clarify this broad picture.  E. V. R. (a 

patient displaying similar ventromedial frontal damage) shares Gage’s profile.  Though 

scoring well on standard I.Q. and reasoning tests, E. V. R. likewise lost control of his 

professional and social life. In an interesting series of experiments (Bechera, Damasio, et 

al (1997)) normal controls and prefrontally lesioned patients played a card game 

involving (unbeknownst to the subjects) two winning decks and two losing decks.  
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Subjects could choose which deck (A, B, C, or D) to select cards from. After a little play, 

the normal controls fix on the better decks (smaller immediate rewards, but less secure 

penalties and more reliable long-term) and rapidly show a heightened galvanic skin 

response when reaching for the “bad” decks.  This skin response, interestingly, appears 

before the subjects could articulate any reasons for preferring the better decks.  E. V. R., 

by contrast, shows no such skin response.  And this absence of somatic cues seems to 

interfere with his capacity to choose the better decks even once his conscious mind has 

figured it all out – he will know that A and B are losing decks, yet continue to favor them 

during play. 

There is obviously much to discuss here.  Are these cases best understood, as P. S. 

Churchland ((1998) p. 241) suggests, as arising from “the inability of emotions to affect 

[the patient’s] reason and decision-making”.  Or is it a case of inappropriate emotional 

involvement – the triumph of short-term reward over deferred (but greater) gratification.  

Perhaps these are not really incompatible: either way it is the lack of the on-the-spot 

unconscious negative responses (evidenced by the flat galvanic skin responses) that 

opens the door to cognitive error. 

Human reason, it seems fair to conclude, is not best conceived as the operation of an 

emotionless logic engine occasionally locked into combat with emotional outbursts.  

Instead, truly rational behavior (in humans) is the result of a complex and iterated series 

of interactions in which deliberative reason and subtle (often quite unconscious) affect-

laden responses conspire to guide action and choice.  Emotional elements (at least as 

suggested by the somatic marker hypothesis) function, in fact, to help rational choice 

operate across temporal disconnections.  Somatic markers thus play a role deeply 

analogous to internal representations (broadly construed); they allow us to reason 

projectively, on the basis of past experience.  What could be more appropriately deemed 

part of the mechanism of reason itself than something that allows us to imaginatively 
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probe the future, using the hard-won knowledge of a lifetimes choices and experiences all 

neatly distilled into a network of automatic affective reverberations? 

5. Global Reasoning 

A further source of complication concerns what Fodor ((1983) p. 111) calls “global 

properties of belief systems”.  Artificial Intelligence according to Fodor, confronts a 

special problem hereabouts.  For the Turing Machine model of rational inference (recall 

section 1 above) is said to be irredeemably local.  It is great at explaining how the 

thought (syntactically tokened) that it is raining gives way to the thought that an umbrella 

is indicated.  It is great, too, at explaining (given a few classical assumptions – see Fodor 

and Pylyshyn (1998)) why the space of possible thoughts (for an individual) exhibits a 

certain kind of closure under recombination – the property of ‘systematicity’, wherein 

those who can think aRb typically also think bRa, and so on.  But where current Artificial 

Intelligence based models crash and burn, Fodor insists, is when confronting various 

forms of more globally sensitive inference.  For example, cases of abductive inference in 

which the best explanation for some event might be hidden anywhere in the entire 

knowledge base of the system: a knowledge-based deemed too large by far to succumb to 

any process of exhaustive search.  Fodor rejects classical attempts to get around this 

problem by the use of heuristics and simplifying assumptions (such as the use of 

“frames” – see Minsky (1975), Fodor (1983) p. 116) arguing that this simply relocates 

the problem as a problem of “executive control” viz how to find the right frames (or 

whatever) at the right time.  Since even the decision to take the umbrella against the rain 

is potentially sensitivity to countervailing information coming from anywhere in the 

knowledge base, Fodor is actually left with a model of  mechanical rationality which (as 

far as I can see) can have nothing to say about any genuine but non-deductive case of 

reasoning whatsoever.  The Fodor-Turing model of rational mechanism works best, as 

Fodor frequently seems to admits, only in the domain of “informationaly encapsulated 
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systems” – typically, perceptual systems that process a restricted range of input signals in 

a way allegedly insensitive to all forms of top-down knowledge-driven inference.  Hardly 

the seat of reason, one cannot help but feel.  

Give this pessimistic scenario (enshrined in Fodor’s “first law of the non-existence of 

cognitive science”: “the more global…a cognitive process is, the less anybody 

understands it.  Very global processes…aren’t understood at all” Fodor (1983) p. 107), it 

is not surprising to find some theorists (Clark (1993) p.111, Churchland (1989) p. 178) 

arguing for connectionist approaches as one solution to this problem of “globally 

sensitive reason”.  Such approaches are independently rejected by Fodor for failing to 

account for systematicity and local syntax-sensitive inference.  But it now seems to me 

(though this is a long story – see Clark (in progress)) that the problem of global abductive 

inference really does affect connectionist approaches too.  Very roughly, it emerges 

therein as a problem of routing and searching: a question of how to use information, 

which could be drawn from anywhere in the knowledge-base, to sculpt and redirect the 

flow of processing itself, ensuring that the right input probes are processed by the right 

neural sub-populations at the right times. 

Churchland (1989) and Clark (1993) depict this problem as solved (in the connectionist 

setting) because “relevant aspects of the creature’s total information are automatically 

accessed by the coded stimuli themselves” (Churchland, op cit p. 187).  And certainly, 

input probes will (recall section 2 above) automatically activate the prototypes that best 

fit the probe, along whatever stimulus dimensions are represented.  But this, is at best a 

first step in the process of rational responsiveness.  For having found these best syntactic 

fits (for this is still, ultimately, a form-driven process) it is necessary to see if crucially 

important information is stored elsewhere, unaccessed due to lack of surface matching to 

the probe.  And it is this step which, I think, does most of the work in the types of cases 

with which Fodor is (properly) concerned.  
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The good news, which I make much of in Clark (in progress) but cannot pursue here, is 

that this second step now looks potentially computationally tractable, thanks to an odd 

combination of neuro-connectionist research and an innovative “second-order” search 

procedure developed for use on the world wide web (Kleinberg (1999)).  The idea is to 

combine a first pass (dumb, pattern-matching, syntax-based) search with a follow-up 

search based on the patterns of connections into and away from the elements identified 

on the first pass.  But the point, for present purposes, is simply to acknowledge the 

special problems that truly globally sensitive processing currently presents to all existing 

models of the neural computations underlying human reason. 

6. Fast and Frugal Heuristics 

It might reasonably be objected, however, that this whole vision of human rationality is 

wildly inflated.  Very often, we don’t manage to access the relevant items of knowledge; 

very often, we don’t choose that which makes us happiest, or most successful; we even 

(go on, admit it) make errors in simple logic.  What is nonetheless surprising is that we 

very often do as well as we do. The explanation, according to recent theories of 

“ecological rationality” is our (brains) use of simple, short-cut strategies designed to 

yield good results given the specific constraints and opportunities that characterize the 

typical contexts of human learning and human evolution.  A quick example is the so-

called “recognition heuristic”.  If you ask me which city has the largest population, San 

Diego or San Antonio, I may well assume San Diego, simply because I have heard of San 

Diego.  Should I recognize both names, I might deploy a different fast and frugal 

heuristic, checking for other cues.  Maybe I think a good cue is “have I heard of their 

symphony?”, and so on. The point is that I don’t try any harder than that.  There may be 

multiple small cues and indicators, which I could try to “factor in”.  But doing so, 

according to an impressive body of recent research (see e.g. Chase, Hertwig and 

Gigerenzer (1998)) is likely to be both time-consuming and (here’s the cruncher) 
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unproductive.  I’ll probably choose worse by trying to replace the fast and frugal 

heuristic with something slower and (apparently) wiser. 

It is not yet clear how (exactly) this important body of research should impact our vision 

of just what you need to explain in order to explain how rationality is mechanically 

possible.  A likely alliance might see fans of robotics and Artificial Life based 

approaches (section 3) using relatively simple neural network controllers (section 2) to 

learn fast and frugal heuristics that maximally exploit local opportunities and structures.  

The somatic marker mechanism (section 4), might be conceived as, in a sense, 

implementing just another kind of fast and frugal heuristic enabling current decision-

making to cheaply profit from past experience.  Under such an onslaught, it is possible 

that much of the worry about global abductive inference (section 5) simply dissolves.  

My own view, as stated above, is that something of the puzzle remains.  But the solution 

I favor (see Clark, in progress) can itself be seen as a special instance of a fast and frugal 

heuristic: a cheap procedure that replaces global content-based search with something 

else (the second pass, connectivity-pattern based search mentioned earlier). 

7. Conclusions: Moving Targets and Multiple Technologies 

Rationality, we have now seen, involves a whole lot more, and a whole lot less, than 

originally met the eye.  It involves a whole lot more than local, syntax-based inference 

defined over tractable sets of quasi-sentential encodings.  Even Fodor admits this  - or at 

least, he admits that it is not yet obvious how to explain global abductive inference using 

such resources.  It also involves a whole lot more than (as it were) the dispassionate 

deployment of information in the service of goals.  For human reason seems to depend on 

a delicate interplay in which emotional responses (often unconscious ones) help sift our 

options and bias our choices in ways which enhance our capacities of fluent, reasoned, 

rational response.  These emotional systems, I have argued, are usefully seen as a kind of 
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wonderfully distilled store of hard-won knowledge concerning a lifetime’s experiences of 

choosing and acting. 

But rationality may also involve significantly less than we tend to think.  Perhaps human 

rationality (and I an taking that as our constant target) is essentially a quick-and-dirty 

compromise forged in the heat of our ecological surround.  Fast and frugal heuristics, 

geared to making the most of the cheapest cues that allow us to get by, may be as close as 

nature usually gets to the space of reasons.  Work in robotics and connectionism further 

contributes to this vision of less as more, as features of body and world are exploited to 

press maximal benefit from basic capacities of on-board, prototype-based reasoning.  

Even the bugbear of global abductive reason, it was hinted, just might succumb to some 

wily combination of fast and frugal heuristics and simple syntactic search. 

Where then does this leave the reputedly fundamental question “how is rationality 

mechanically possible?”.  It leaves it, I think, at an important crossroads, uncertainly 

poised between the old and the new.  If (as I believe) the research programs described in 

sections 3-7 are each tackling important aspects of the problem, then the problem of 

rationality becomes, precisely, the problem of explaining the production, in social, 

environmental and emotional context, of broadly appropriate adaptive response. 

Rationality (or as much of it as we humans typically enjoy) is what you get when this 

whole medley of factors are tuned and interanimated in a certain way.  Figuring out this 

complex ecological balancing act just is figuring out how rationality is mechanically 

possible. 
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