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EDITOR’S NOTE

A exceptionally large number of excellent commentary proposals inspired a special research topic for further discussion of
this target article’s subject matter, edited by Axel Cleeremans and Shimon Edelman in Frontiers in Theoretical and Philo-
sophical Psychology. This discussion has a preface by Cleeremans and Edelman and 25 commentaries and includes a sep-
arate rejoinder from Andy Clark. See:

http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology/researchtopics/Forethought_as_an_evolutionary/1031

Whatever next? Predictive brains,
situated agents, and the future of
cognitive science

Andy Clark
School of Philosophy, Psychology, and Language Sciences,
University of Edinburgh, EH8 9AD Scotland, United Kingdom

andy.clark@ed.ac.uk
http://www.philosophy.ed.ac.uk/people/full-academic/andy-clark.html

Abstract: Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and
action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a
hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such
accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the
special contribution of cortical processing to adaptive success. This target article critically examines this “hierarchical prediction
machine” approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2
lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the
evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches
might impact our more general vision of mind, experience, and agency.

Keywords: action; attention; Bayesian brain; expectation; generative model; hierarchy; perception; precision; predictive coding;
prediction; prediction error; top-down processing

1. Introduction: Prediction machines

1.1. From Helmholtz to action-oriented predictive
processing

“The whole function of the brain is summed up in: error
correction.” So wrote W. Ross Ashby, the British psychia-
trist and cyberneticist, some half a century ago.1 Compu-
tational neuroscience has come a very long way since
then. There is now increasing reason to believe that
Ashby’s (admittedly somewhat vague) statement is

correct, and that it captures something crucial about the
way that spending metabolic money to build complex
brains pays dividends in the search for adaptive success.
In particular, one of the brain’s key tricks, it now seems,
is to implement dumb processes that correct a certain
kind of error: error in the multi-layered prediction of
input. In mammalian brains, such errors look to be cor-
rected within a cascade of cortical processing events in
which higher-level systems attempt to predict the inputs
to lower-level ones on the basis of their own emerging
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models of the causal structure of the world (i.e., the signal
source). Errors in predicting lower level inputs cause the
higher-level models to adapt so as to reduce the discre-
pancy. Such a process, operating over multiple linked
higher-level models, yields a brain that encodes a rich
body of information about the source of the signals that
regularly perturb it.
Such models follow Helmholtz (1860) in depicting per-

ception as a process of probabilistic, knowledge-driven
inference. From Helmholz comes the key idea that
sensory systems are in the tricky business of inferring
sensory causes from their bodily effects. This in turn
involves computing multiple probability distributions,
since a single such effect will be consistent with many
different sets of causes distinguished only by their relative
(and context dependent) probability of occurrence.
Helmholz’s insight informed influential work by MacKay

(1956), Neisser (1967), and Gregory (1980), as part of the
cognitive psychological tradition that became known as
“analysis-by-synthesis” (for a review, see Yuille & Kersten
2006). In this paradigm, the brain does not build its
current model of distal causes (its model of how the
world is) simply by accumulating, from the bottom-up, a
mass of low-level cues such as edge-maps and so forth.
Instead (see Hohwy 2007), the brain tries to predict the
current suite of cues from its best models of the possible
causes. In this way:

The mapping from low- to high-level representation (e.g. from
acoustic to word-level) is computed using the reverse mapping,
from high- to low-level representation. (Chater & Manning
2006, p. 340, their emphasis)

Helmholz’s insight was also pursued in an important
body of computational and neuroscientific work. Crucial
to this lineage were seminal advances in machine learning
that began with pioneering connectionist work on back-
propagation learning (McClelland et al. 1986; Rumelhart
et al. 1986) and continued with work on the aptly named
“Helmholz Machine” (Dayan et al. 1995; Dayan &
Hinton 1996; see also Hinton & Zemel 1994).2 The Helm-
holtz Machine sought to learn new representations in a
multilevel system (thus capturing increasingly deep regu-
larities within a domain) without requiring the provision
of copious pre-classified samples of the desired input-
output mapping. In this respect, it aimed to improve (see
Hinton 2010) upon standard back-propagation driven
learning. It did this by using its own top-down connections
to provide the desired states for the hidden units, thus (in
effect) self-supervising the development of its perceptual
“recognition model” using a generative model that tried

to create the sensory patterns for itself (in “fantasy,” as it
was sometimes said).3 (For a useful review of this crucial
innovation and a survey of many subsequent developments,
see Hinton 2007a).
A generative model, in this quite specific sense, aims to

capture the statistical structure of some set of observed
inputs by tracking (one might say, by schematically recapi-
tulating) the causal matrix responsible for that very struc-
ture. A good generative model for vision would thus seek
to capture the ways in which observed lower-level visual
responses are generated by an interacting web of causes –
for example, the various aspects of a visually presented
scene. In practice, this means that top-down connections
within a multilevel (hierarchical and bidirectional) system
come to encode a probabilistic model of the activities of
units and groups of units within lower levels, thus tracking
(as we shall shortly see in more detail) interacting causes in
the signal source, which might be the body or the external
world – see, for example, Kawato et al. (1993), Hinton and
Zemel (1994), Mumford (1994), Hinton et al. (1995),
Dayan et al. (1995), Olshausen and Field (1996), Dayan
(1997), and Hinton and Ghahramani (1997).
It is this twist – the strategy of using top-down connec-

tions to try to generate, using high-level knowledge, a
kind of “virtual version” of the sensory data via a deep
multilevel cascade – that lies at the heart of “hierarchical
predictive coding” approaches to perception; for
example, Rao and Ballard (1999), Lee and Mumford
(2003), Friston (2005). Such approaches, along with
their recent extensions to action – as exemplified in
Friston and Stephan (2007), Friston et al. (2009),
Friston (2010), Brown et al. (2011) – form the main
focus of the present treatment. These approaches
combine the use of top-down probabilistic generative
models with a specific vision of one way such downward
influence might operate. That way (borrowing from
work in linear predictive coding – see below) depicts the
top-down flow as attempting to predict and fully
“explain away” the driving sensory signal, leaving only
any residual “prediction errors” to propagate information
forward within the system – see Rao and Ballard (1999),
Lee and Mumford (2003), Friston (2005), Hohwy et al.
(2008), Jehee and Ballard (2009), Friston (2010), Brown
et al. (2011); and, for a recent review, see Huang and
Rao (2011).
Predictive coding itself was first developed as a data com-

pression strategy in signal processing (for a history, see Shi
& Sun 1999). Thus, consider a basic task such as image
transmission: In most images, the value of one pixel regu-
larly predicts the value of its nearest neighbors, with differ-
ences marking important features such as the boundaries
between objects. That means that the code for a rich
image can be compressed (for a properly informed recei-
ver) by encoding only the “unexpected” variation: the
cases where the actual value departs from the predicted
one. What needs to be transmitted is therefore just the
difference (a.k.a. the “prediction error”) between the
actual current signal and the predicted one. This affords
major savings on bandwidth, an economy that was the
driving force behind the development of the techniques
by James Flanagan and others at Bell Labs during the
1950s (for a review, see Musmann 1979). Descendents of
this kind of compression technique are currently used in
JPEGs, in various forms of lossless audio compression,
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and in motion-compressed coding for video. The infor-
mation that needs to be communicated “upward” under
all these regimes is just the prediction error: the divergence
from the expected signal. Transposed (in ways we are about
to explore) to the neural domain, this makes prediction
error into a kind of proxy (Feldman & Friston 2010) for
sensory information itself. Later, when we consider predic-
tive processing in the larger setting of information theory
and entropy, we will see that prediction error reports the
“surprise” induced by a mismatch between the sensory
signals encountered and those predicted. More formally –
and to distinguish it from surprise in the normal, experien-
tially loaded sense – this is known as surprisal (Tribus 1961).

Hierarchical predictive processing combines the use,
within a multilevel bidirectional cascade, of “top-down” prob-
abilistic generative models with the core predictive coding
strategy of efficient encoding and transmission. Such
approaches, originally developed in the domain of percep-
tion, have been extended (by Friston and others – see sect.
1.5) to encompass action, and to offer an attractive, unifying
perspective on the brain’s capacities for learning, inference,
and the control of plasticity. Perception and action, if these
unifying models are correct, are intimately related and
work together to reduce prediction error by sculpting and
selecting sensory inputs. In the remainder of this section, I
rehearse some of the main features of these models before
highlighting (in sects. 2–5 following) some of their most con-
ceptually important and challenging aspects.

1.2. Escaping the black box

A good place to start (following Rieke 1999) is with what
might be thought of as the “view from inside the black
box.” For, the task of the brain, when viewed from a
certain distance, can seem impossible: it must discover
information about the likely causes of impinging signals
without any form of direct access to their source. Thus,
consider a black box taking inputs from a complex external
world. The box has input and output channels along which
signals flow. But all that it “knows”, in any direct sense, are
the ways its own states (e.g., spike trains) flow and alter. In
that (restricted) sense, all the system has direct access to is
its own states. The world itself is thus off-limits (though the
box can, importantly, issue motor commands and await
developments). The brain is one such black box. How,
simply on the basis of patterns of changes in its own internal
states, is it to alter and adapt its responses so as to tune itself
to act as a useful node (one that merits its relatively huge
metabolic expense) for the origination of adaptive
responses? Notice how different this conception is to
ones in which the problem is posed as one of establishing
a mapping relation between environmental and inner
states. The task is not to find such a mapping but to infer
the nature of the signal source (the world) from just the
varying input signal itself.

Hierarchical approaches in which top-down generative
models are trying to predict the flow of sensory data
provide a powerful means for making progress under
such apparently unpromising conditions. One key task per-
formed by the brain, according to these models, is that of
guessing the next states of its own neural economy. Such
guessing improves when you use a good model of the
signal source. Cast in the Bayesian mode, good guesses
thus increase the posterior probability4 of your model.

Various forms of gradient descent learning can progress-
ively improve your first guesses. Applied within a hierarch-
ical predictive processing5 regime, this will – if you survive
long enough – tend to yield useful generative models of the
signal source (ultimately, the world).
The beauty of the bidirectional hierarchical structure is

that it allows the system to infer its own priors (the prior
beliefs essential to the guessing routines) as it goes along.
It does this by using its best current model – at one
level – as the source of the priors for the level below, enga-
ging in a process of “iterative estimation” (see Dempster
et al. 1977; Neal & Hinton 1998) that allows priors and
models to co-evolve across multiple linked layers of proces-
sing so as to account for the sensory data. The presence of
bidirectional hierarchical structure thus induces “empirical
priors”6 in the form of the constraints that one level in the
hierarchy places on the level below, and these constraints
are progressively tuned by the sensory input itself. This
kind of procedure (which implements a version of “empiri-
cal Bayes”; Robbins 1956) has an appealing mapping to
known facts about the hierarchical and reciprocally con-
nected structure and wiring of cortex (Friston 2005; Lee
& Mumford 2003).7

A classic early example, combining this kind of hierarch-
ical learning with the basic predictive coding strategy
described in section 1.1, is Rao and Ballard’s (1999)
model of predictive coding in the visual cortex. At the
lowest level, there is some pattern of energetic stimu-
lation, transduced (let’s suppose) by sensory receptors
from ambient light patterns produced by the current
visual scene. These signals are then processed via a multi-
level cascade in which each level attempts to predict the
activity at the level below it via backward8 connections.
The backward connections allow the activity at one stage
of the processing to return as another input at the pre-
vious stage. So long as this successfully predicts the
lower level activity, all is well, and no further action
needs to ensue. But where there is a mismatch, “predic-
tion error” occurs and the ensuing (error-indicating)
activity is propagated to the higher level. This automatically
adjusts probabilistic representations at the higher level so
that top-down predictions cancel prediction errors at the
lower level (yielding rapid perceptual inference). At the
same time, prediction error is used to adjust the structure
of the model so as to reduce any discrepancy next time
around (yielding slower timescale perceptual learning).
Forward connections between levels thus carry the
“residual errors” (Rao & Ballard 1999, p. 79) separating
the predictions from the actual lower level activity, while
backward connections (which do most of the “heavy
lifting” in these models) carry the predictions themselves.
Changing predictions corresponds to changing or tuning
your hypothesis about the hidden causes of the lower
level activity. The concurrent running of this kind of pre-
diction error calculation within a loose bidirectional hierar-
chy of cortical areas allows information pertaining to
regularities at different spatial and temporal scales to
settle into a mutually consistent whole in which each
“hypothesis” is used to help tune the rest. As the authors
put it:

Prediction and error-correction cycles occur concurrently
throughout the hierarchy, so top-down information influences
lower-level estimates, and bottom-up information influences
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higher-level estimates of the input signal. (Rao & Ballard 1999,
p. 80)
In the visual cortex, such a scheme suggests that back-

ward connections from V2 to V1 would carry a prediction
of expected activity in V1, while forward connections
from V1 to V2 would carry forward the error signal9 indicat-
ing residual (unpredicted) activity.
To test these ideas, Rao and Ballard implemented a

simple bidirectional hierarchical network of such “predic-
tive estimators” and trained it on image patches derived
from five natural scenes. Using learning algorithms that
progressively reduce prediction error across the linked
cascade and after exposure to thousands of image
patches, the system learnt to use responses in the first
level network to extract features such as oriented edges
and bars, while the second level network came to
capture combinations of such features corresponding to
patterns involving larger spatial configurations. The
model also displayed (see sect. 3.1) a number of interest-
ing “extra-classical receptive field” effects, suggesting that
such non-classical surround effects (and, as we’ll later
see, context effects more generally) may be a rather
direct consequence of the use of hierarchical predictive
coding.
For immediate purposes, however, what matters is that

the predictive coding approach, given only the statistical
properties of the signals derived from the natural images,
was able to induce a kind of generative model of the struc-
ture of the input data: It learned about the presence and
importance of features such as lines, edges, and bars, and
about combinations of such features, in ways that enable
better predictions concerning what to expect next, in
space or in time. The cascade of processing induced by
the progressive reduction of prediction error in the hierar-
chy reveals the world outside the black box. It maximizes
the posterior probability of generating the observed states
(the sensory inputs), and, in so doing, induces a kind of
internal model of the source of the signals: the world
hidden behind the veil of perception.

1.3. Dynamic predictive coding by the retina

As an example of the power (and potential ubiquity) of the
basic predictive coding strategy itself, and one that now
moves context center stage, consider Hosoya et al.’s
(2005) account of dynamic predictive coding by the
retina. The starting point of this account is the well-estab-
lished sense in which retinal ganglion cells take part in
some form of predictive coding, insofar as their receptive
fields display center-surround spatial antagonism, as well
as a kind of temporal antagonism. What this means, in
each case, is that neural circuits predict, on the basis of
local image characteristics, the likely image characteristics
of nearby spots in space and time (basically, assuming
that nearby spots will display similar image intensities)
and subtract this predicted value from the actual value.
What gets encoded is thus not the raw value but the differ-
ences between raw values and predicted values. In this way,
“Ganglion cells signal not the raw visual image but the
departures from the predictable structure, under the
assumption of spatial and temporal uniformity” (Hosoya
et al. 2005, p. 71). This saves on bandwidth, and also flags

what is (to use Hosoya et al.’s own phrase) most “news-
worthy” in the incoming signal.10

These computations of predicted salience might be
made solely on the basis of average image statistics. Such
an approach would, however, lead to trouble in many eco-
logically realistic situations. To take some of the more dra-
matic examples, consider an animal that frequently moves
between a watery environment and dry land, or between
a desert landscape and a verdant oasis. The spatial scales
at which nearby points in space and time are typically
similar in image intensity vary markedly between such
cases, because the statistical properties of the different
types of scene vary. This is true in less dramatic cases
too, such as when we move from inside a building to a
garden or lake. Hosoya et al. thus predicted that, in the
interests of efficient, adaptively potent, encoding, the be-
havior of the retinal ganglion cells (specifically, their recep-
tive field properties) should vary as a result of adaptation to
the current scene or context, exhibiting what they term
“dynamic predictive coding.”
Putting salamanders and rabbits into varying environ-

ments, and recording from their retinal ganglion cells,
Hosoya et al. confirmed their hypothesis: Within a space
of several seconds, about 50% of the ganglion cells
altered their behaviors to keep step with the changing
image statistics of the varying environments. A mechanism
was then proposed and tested using a simple feedforward
neural network that performs a form of anti-Hebbian learn-
ing. Anti-Hebbian feedforward learning, in which corre-
lated activity across units leads to inhibition rather than to
activation (see, e.g., Kohonen 1989), enables the creation
of “novelty filters” that learn to become insensitive to the
most highly correlated (hence most “familiar”) features of
the input. This, of course, is exactly what is required in
order to learn to discount the most statistically predictable
elements of the input signal in the way dynamic predictive
coding suggests. Better yet, there are neuronally plausible
ways to implement such a mechanism using amacrine cell
synapses to mediate plastic inhibitory connections that in
turn alter the receptive fields of retinal ganglion cells (for
details, see Hosoya et al. 2005, p. 74) so as to suppress
the most correlated components of the stimulus. In sum,
retinal ganglion cells seem to be engaging in a computa-
tionally and neurobiologically explicable process of
dynamic predictive recoding of raw image inputs, whose
effect is to “strip from the visual stream predictable and
therefore less newsworthy signals” (Hosoya et al. 2005,
p. 76).

1.4. Another illustration: Binocular rivalry

So far, our examples have been restricted to relatively low-
level visual phenomena. As a final illustration, however,
consider Hohwy et al.’s (2008) hierarchical predictive
coding model of binocular rivalry. Binocular rivalry (see,
e.g., essays in Alais & Blake 2005, and the review article
by Leopold & Logothetis 1999) is a striking form of
visual experience that occurs when, using a special exper-
imental set-up, each eye is presented (simultaneously)
with a different visual stimulus. Thus, the right eye might
be presented with an image of a house, while the left
receives an image of a face. Under these (extremely – and
importantly – artificial) conditions, subjective experience
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unfolds in a surprising, “bi-stable” manner. Instead of
seeing (visually experiencing) a confusing all-points
merger of house and face information, subjects report a
kind of perceptual alternation between seeing the house
and seeing the face. The transitions themselves are not
always sharp, and subjects often report a gradual breaking
through (see, e.g., Lee et al. 2005) of elements of the
other image before it dominates the previous one, after
which the cycle repeats.

Such “binocular rivalry,” as Hohwy et al. remind us, has
been a powerful tool for studying the neural correlates of
conscious visual experience, since the incoming signals
remain constant while the percept switches to and fro
(Frith et al. 1999). Despite this attention, however, the
precise mechanisms at play here are not well understood.
Hohwy et al.’s strategy is to take a step back, and to
attempt to explain the phenomenon from first principles
in a way that makes sense of many apparently disparate
findings. In particular, they pursue what they dub an “epis-
temological” approach: one whose goal is to reveal binocu-
lar rivalry as a reasonable (knowledge-oriented) response to
an ecologically unusual stimulus condition.

The starting point for their story is, once again, the emer-
ging unifying vision of the brain as an organ of prediction
using a hierarchical generative model. Recall that, on
these models, the task of the perceiving brain is to
account for (to “explain away”) the incoming or “driving”
sensory signal by means of a matching top-down prediction.
The better the match, the less prediction error then propa-
gates up the hierarchy. The higher-level guesses are thus
acting as priors for the lower-level processing, in the
fashion of so-called “empirical Bayes” (such methods use
their own target data sets to estimate the prior distribution:
a kind of bootstrapping that exploits the statistical indepen-
dencies that characterize hierarchical models).

Within such a multilevel setting, a visual percept is deter-
mined by a process of prediction operating across many levels
of a (bidirectional) processing hierarchy, each concerned with
different types and scales of perceptual detail. All the com-
municating areas are locked into a mutually coherent predic-
tive coding regime, and their interactive equilibrium
ultimately selects a best overall (multiscale) hypothesis con-
cerning the state of the visually presented world. This is
the hypothesis that “makes the best predictions and that,
taking priors into consideration, is consequently assigned
the highest posterior probability” (Hohwy et al. 2008,
p. 690). Other overall hypotheses, at that moment, are
simply crowded out: they are effectively inhibited, having
lost the competition to best account for the driving signal.

Notice, though, what this means in the context of the
predictive coding cascade. Top-down signals will explain
away (by predicting) only those elements of the driving
signal that conform to (and hence are predicted by) the
current winning hypothesis. In the binocular rivalry case,
however, the driving (bottom-up) signals contain infor-
mation that suggests two distinct, and incompatible,
states of the visually presented world – for example, face
at location X/house at location X. When one of these is
selected as the best overall hypothesis, it will account for
all and only those elements of the driving input that the
hypothesis predicts. As a result, prediction error for that
hypothesis decreases. But prediction error associated with
the elements of the driving signal suggestive of the

alternative hypothesis is not suppressed; it is now propa-
gated up the hierarchy. To suppress those prediction
errors, the system needs to find another hypothesis. But
having done so (and hence, having flipped the dominant
hypothesis to the other interpretation), there will again
emerge a large prediction error signal, this time deriving
from those elements of the driving signal not accounted
for by the flipped interpretation. In Bayesian terms, this is
a scenario in which no unique and stable hypothesis com-
bines high prior and high likelihood. No single hypothesis
accounts for all the data, so the system alternates between
the two semi-stable states. It behaves as a bi-stable system,
minimizing prediction error in what Hohwy et al. describe
as an energy landscape containing a double well.
What makes this account different from its rivals (such as

that of Lee et al. 2005) is that whereas they posit a kind of
direct, attention-mediated but essentially feedforward,
competition between the inputs, the predictive processing
account posits “top-down” competition between linked sets
of hypotheses. The effect of this competition is to selec-
tively suppress the prediction errors associated with the
elements of the driving (sensory) signals suggesting the
current winning hypothesis. But this top-down suppression
leaves untouched the prediction errors associated with the
remaining elements of the driving signal. These errors are
then propagated up the system. To explain them away
the overall interpretation must switch. This pattern
repeats, yielding the distinctive alternations experienced
during dichoptic viewing of inconsistent stimuli.11

Why, under such circumstances, do we not simply experi-
ence a combined or interwoven image: a kind of house/face
mash-up for example? Although such partially combined
percepts do apparently occur, for brief periods of time,
they are not sufficiently stable, as they do not constitute a
viable hypothesis given our more general knowledge about
the visual world. For it is part of that general knowledge
that, for example, houses and faces are not present in the
same place, at the same scale, at the same time. This kind
of general knowledge may itself be treated as a systemic
prior, albeit one pitched at a relatively high degree of
abstraction (such priors are sometimes referred to as “hyper-
priors”). In the case at hand, what is captured is the fact that
“the prior probability of both a house and face being co-loca-
lized in time and space is extremely small” (Hohwy et al.
2008, p. 691). This, indeed, is the deep explanation of the
existence of competition between certain higher-level
hypotheses in the first place. They compete because the
system has learnt that “only one object can exist in the
same place at the same time” (Hohwy et al. 2008, p. 691).
(This obviously needs careful handling, since a single state
of the world may be consistently captured by multiple
high-level stories that ought not to compete in the same
way: for example, seeing the painting as valuable, as a
Rembrandt, as an image of a cow, etc.)

1.5. Action-oriented predictive processing

Recent work by Friston (2003; 2010; and with colleagues:
Brown et al. 2011; Friston et al. 2009) generalizes this
basic “hierarchical predictive processing” model to
include action. According to what I shall now dub
“action-oriented predictive processing,”12 perception and
action both follow the same deep “logic” and are even
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implemented using the same computational strategies. A
fundamental attraction of these accounts thus lies in their
ability to offer a deeply unified account of perception,
cognition, and action.
Perception, as we saw, is here depicted as a process that

attempts to match incoming “driving” signals with a cascade
of top-down predictions (spanning multiple spatial and
temporal scales) that aim to cancel it out. Motor action
exhibits a surprisingly similar profile, except that:

Inmotor systems error signals self-suppress, not through neuron-
ally mediated effects, but by eliciting movements that change
bottom-up proprioceptive and sensory input. This unifying per-
spective onperception and action suggests that action is both per-
ceived and caused by its perception. (Friston 2003, p. 1349)

This whole scenario is wonderfully captured by Hawkins
and Blakeslee, who write that:

As strange as it sounds, when your own behaviour is involved,
your predictions not only precede sensation, they determine
sensation. Thinking of going to the next pattern in a sequence
causes a cascading prediction of what you should experience
next. As the cascading prediction unfolds, it generates the
motor commands necessary to fulfil the prediction. Thinking,
predicting, and doing are all part of the same unfolding of
sequences moving down the cortical hierarchy. (Hawkins &
Blakeslee 2004, p. 158)

A closely related body of work in so-called optimal feed-
back control theory (e.g., Todorov 2009; Todorov & Jordan
2002) displays the motor control problem as mathemat-
ically equivalent to Bayesian inference. Very roughly – see
Todorov (2009) for a detailed account – you treat the
desired (goal) state as observed and perform Bayesian
inference to find the actions that get you there. This
mapping between perception and action emerges also in
some recent work on planning (e.g., Toussaint 2009). The
idea, closely related to these approaches to simple move-
ment control, is that in planning we imagine a future goal
state as actual, then use Bayesian inference to find the set
of intermediate states (which can now themselves be
whole actions) that get us there. There is thus emerging a
fundamentally unified set of computational models which,
as Toussaint (2009, p. 29) comments, “does not distinguish
between the problems of sensor processing, motor control,
or planning.” Toussaint’s bold claim is modified, however,
by the important caveat (op. cit., p. 29) that we must, in
practice, deploy approximations and representations that
are specialized for different tasks. But at the very least, it
now seems likely that perception and action are in some
deep sense computational siblings and that:

The best ways of interpreting incoming information via percep-
tion, are deeply the same as the best ways of controlling out-
going information via motor action … so the notion that
there are a few specifiable computational principles governing
neural function seems plausible. (Eliasmith 2007, p. 380)

Action-oriented predictive processing goes further,
however, in suggesting that motor intentions actively
elicit, via their unfolding into detailed motor actions, the
ongoing streams of sensory (especially proprioceptive)
results that our brains predict. This deep unity between
perception and action emerges most clearly in the context
of so-called active inference, where the agent moves its
sensors in ways that amount to actively seeking or generat-
ing the sensory consequences that they (or rather, their

brains) expect (see Friston 2009; Friston et al. 2010). Per-
ception, cognition, and action – if this unifying perspective
proves correct –work closely together to minimize sensory
prediction errors by selectively sampling, and actively
sculpting, the stimulus array. They thus conspire to move
a creature through time and space in ways that fulfil an
ever-changing and deeply inter-animating set of (sub-per-
sonal) expectations. According to these accounts, then:

Perceptual learning and inference is necessary to induce prior
expectations about how the sensorium unfolds. Action is
engaged to resample the world to fulfil these expectations. This
places perception and action in intimate relation and accounts
for both with the same principle. (Friston et al. 2009, p. 12)

In some (I’ll call them the “desert landscape”) versions of
this story (see especially Friston 2011b; Friston et al. 2010)
proprioceptive prediction errors act directly as motor com-
mands. On these models it is our expectations about the pro-
prioceptive consequences of moving and acting that directly
bring the moving and acting about.13 I return briefly to
these “desert landscape” scenarios in section 5.1 further on.

1.6. The free energy formulation

That large-scale picture (of creatures enslaved to sense and
to act in ways that make most of their sensory predictions
come true) finds fullest expression in the so-called free-
energy minimization framework (Friston 2003; 2009;
2010; Friston & Stephan 2007). Free-energy formulations
originate in statistical physics and were introduced into
the machine-learning literature in treatments that include
Neal and Hinton (1998), Hinton and von Camp (1993),
Hinton and Zemel (1994), and MacKay (1995). Such for-
mulations can arguably be used (e.g., Friston 2010) to
display the prediction error minimization strategy as itself
a consequence of a more fundamental mandate to mini-
mize an information-theoretic isomorph of thermodynamic
free-energy in a system’s exchanges with the environment.
Thermodynamic free energy is a measure of the energy

available to do useful work. Transposed to the cognitive/infor-
mational domain, it emerges as the difference between the
way the world is represented as being, and the way it actually
is. The better the fit, the lower the information-theoretic free
energy (this is intuitive, since more of the system’s resources
are being put to “effective work” in representing the world).
Prediction error reports this information-theoretic free
energy, which is mathematically constructed so as always to
be greater than “surprisal” (where this names the sub-person-
ally computed implausibility of some sensory state given a
model of the world – see Tribus (1961) and sect. 4.1 in the
present article). Entropy, in this information-theoretic rendi-
tion, is the long-term average of surprisal, and reducing infor-
mation-theoretic free energy amounts to improving the
world model so as to reduce prediction errors, hence redu-
cing surprisal14 (since better models make better predic-
tions). The overarching rationale (Friston 2010) is that
good models help us to maintain our structure and organiz-
ation, hence (over extended but finite timescales) to appear
to resist increases in entropy and the second law of thermo-
dynamics. They do so by rendering us good predictors of
sensory unfoldings, hence better poised to avoid damaging
exchanges with the environment.
The “free-energy principle” itself then states that “all the

quantities that can change; i.e. that are part of the system,
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will change to minimize free-energy” (Friston & Stephan
2007, p. 427). Notice that, thus formulated, this is a claim
about all elements of systemic organization (from gross mor-
phology to the entire organization of the brain) and not just
about cortical information processing. Using a series of
elegant mathematical formulations, Friston (2009; 2010)
suggests that this principle, when applied to various elements
of neural functioning, leads to the generation of efficient
internal representational schemes and reveals the deeper
rationale behind the links between perception, inference,
memory, attention, and action scouted in the previous sec-
tions. Morphology, action tendencies (including the active
structuring of environmental niches), and gross neural archi-
tecture are all expressions, if this story is correct, of this single
principle operating at varying time-scales.

The free-energy account is of great independent interest. It
represents a kind of “maximal version” of the claims scouted
in section 1.5 concerning the computational intimacy of per-
ception and action, and it is suggestive of a general framework
that might accommodate the growing interest (see, e.g.,
Thompson 2007) in understanding the relations between
life and mind. Essentially, the hope is to illuminate the very
possibility of self-organization in biological systems (see, e.g.,
Friston 2009, p. 293). A full assessment of the free energy
principle is, however, far beyond the scope of the present
treatment.15 In the remainder of this article, I turn instead
to a number of issues and implications arising more directly
from hierarchical predictive processing accounts of percep-
tion and their possible extensions to action.

2. Representation, inference, and the continuity of
perception, cognition, and action

The hierarchical predictive processing account, along with
the more recent generalizations to action represents, or so I
shall now argue, a genuine departure frommany of our pre-
vious ways of thinking about perception, cognition, and the
human cognitive architecture. It offers a distinctive account
of neural representation, neural computation, and the rep-
resentation relation itself. It depicts perception, cognition,
and action as profoundly unified and, in important respects,
continuous. And it offers a neurally plausible and computa-
tionally tractable gloss on the claim that the brain performs
some form of Bayesian inference.

2.1. Explaining away

To successfully represent the world in perception, if these
models are correct, depends crucially upon cancelling out
sensory prediction error. Perception thus involves “explain-
ing away” the driving (incoming) sensory signal by matching
it with a cascade of predictions pitched at a variety of spatial
and temporal scales. These predictions reflect what the
system already knows about the world (including the
body) and the uncertainties associated with its own proces-
sing. Perception here becomes “theory-laden” in at least
one (rather specific) sense: What we perceive depends
heavily upon the set of priors (including any relevant hyper-
priors) that the brain brings to bear in its best attempt to
predict the current sensory signal. On this model, percep-
tion demands the success of some mutually supportive
stack of states of a generative model (recall sect. 1.1
above) at minimizing prediction error by hypothesizing an

interacting set of distal causes that predict, accommodate,
and (thus) “explain away” the driving sensory signal.
This appeal to “explaining away” is important and

central, but it needs very careful handling. It is important
as it reflects the key property of hierarchical predictive pro-
cessing models, which is that the brain is in the business of
active, ongoing, input prediction and does not (even in the
early sensory case) merely react to external stimuli. It is
important also insofar as it is the root of the attractive
coding efficiencies that these models exhibit, since all
that needs to be passed forward through the system is the
error signal, which is what remains once predictions and
driving signals have been matched.16 In these models it is
therefore the backward (recurrent) connectivity that
carries the main information processing load. We should
not, however, overplay this difference. In particular, it is
potentially misleading to say that:

Activation in early sensory areas no longer represents sensory
information per se, but only that part of the input that has
not been successfully predicted by higher-level areas. (de-Wit
et al. 2010, p. 8702)

It is potentially misleading because this stresses only one
aspect of what is (at least in context of the rather specific
models we have been considering17) actually depicted as
a kind of duplex architecture: one that at each level com-
bines quite traditional representations of inputs with rep-
resentations of error. According to the duplex proposal,
what gets “explained away” or cancelled out is the error
signal, which (in these models) is depicted as computed
by dedicated “error units.” These are linked to, but distinct
from, the so-called representation units meant to encode
the causes of sensory inputs. By cancelling out the activity
of the error units, activity in some of the laterally interact-
ing “representation” units (which then feed predictions
downward and are in the business of encoding the putative
sensory causes) can actually end up being selected and
sharpened. The hierarchical predictive processing account
thus avoids any direct conflict with accounts (e.g., biased-
competition models such as that of Desimone & Duncan
1995) that posit top-down enhancements of selected
aspects of the sensory signal, because:

High-level predictions explain away prediction error and tell
the error units to “shut up” [while] units encoding the causes
of sensory input are selected by lateral interactions, with the
error units, that mediate empirical priors. This selection stops
the gossiping [hence actually sharpens responses among the lat-
erally competing representations]. (Friston 2005, p. 829)

The drive towards “explaining away” is thus consistent, in
this specific architectural setting, with both the sharpening
and the dampening of (different aspects of) early cortical
response.18 Thus Spratling, in a recent formal treatment
of this issue,19 suggests that any apparent contrast here
reflects:

A misinterpretation of the model that may have resulted from
the strong emphasis the predictive coding hypothesis places
on the error-detecting nodes and the corresponding under-
emphasis on the role of the prediction nodes in maintaining
an active representation of the stimulus. (Spratling 2008a,
p. 8, my emphasis)

What is most distinctive about this duplex architectural
proposal (and where much of the break from tradition
really occurs) is that it depicts the forward flow of infor-
mation as solely conveying error, and the backward flow
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as solely conveying predictions. The duplex architecture
thus achieves a rather delicate balance between the familiar
(there is still a cascade of feature-detection, with potential
for selective enhancement, and with increasingly complex
features represented by neural populations that are more
distant from the sensory peripheries) and the novel (the
forward flow of sensory information is now entirely
replaced by a forward flow of prediction error).
This balancing act between cancelling out and selective

enhancement is made possible, it should be stressed, only
by positing the existence of “two functionally distinct sub-
populations, encoding the conditional expectations of per-
ceptual causes and the prediction error respectively”
(Friston 2005, p. 829). Functional distinctness need not,
of course, imply gross physical separation. But a common
conjecture in this literature depicts superficial pyramidal
cells (a prime source of forward neuro-anatomical connec-
tions) as playing the role of error units, passing prediction
error forward, while deep pyramidal cells play the role of
representation units, passing predictions (made on the
basis of a complex generative model) downward (see,
e.g., Friston 2005; 2009; Mumford 1992). However it
may (or may not) be realized, some form of functional sep-
aration is required. Such separation constitutes a central
feature of the proposed architecture, and one without
which it would be unable to combine the radical elements
drawn from predictive coding with simultaneous support
for the more traditional structure of increasingly complex
feature detection and top-down signal enhancement. But
essential as it is, this is a demanding and potentially proble-
matic requirement, which we will return to in section 3.1.

2.2. Encoding, inference, and the “Bayesian Brain”

Neural representations, should the hierarchical predictive
processing account prove correct, encode probability
density distributions20 in the form of a probabilistic genera-
tive model, and the flow of inference respects Bayesian
principles that balance prior expectations against new
sensory evidence. This (Eliasmith 2007) is a departure
from traditional understandings of internal representation,
and one whose full implications have yet to be understood.
It means that the nervous system is fundamentally adapted
to deal with uncertainty, noise, and ambiguity, and that it
requires some (perhaps several) concrete means of intern-
ally representing uncertainty. (Non-exclusive options here
include the use of distinct populations of neurons, varieties
of “probabilistic population codes” (Pouget et al. 2003), and
relative timing effects (Deneve 2008) – for a very useful
review, see Vilares & Körding 2011). Predictive processing
accounts thus share what Knill and Pouget (2004, p. 713)
describe as the “basic premise on which Bayesian theories
of cortical processing will succeed or fail,” namely, that:

The brain represents information probabilistically, by coding
and computing with probability density functions, or approxi-
mations to probability density functions (op. cit., p. 713)
Such a mode of representation implies that when we rep-

resent a state or feature of the world, such as the depth of a
visible object, we do so not using a single computed value
but using a conditional probability density function that
encodes “the relative probability that the object is at differ-
ent depths Z, given the available sensory information”
(Knill & Pouget 2004, p. 712). The same story applies to

higher-level states and features. Instead of simply repre-
senting “CAT ON MAT,” the probabilistic Bayesian brain
will encode a conditional probability density function,
reflecting the relative probability of this state of affairs
(and any somewhat-supported alternatives) given the avail-
able information. This information-base will include both
the bottom-up driving influences from multiple sensory
channels and top-down context-fixing information of
various kinds. At first, the system may avoid committing
itself to any single interpretation, while confronting an
initial flurry of error signals (which are said to constitute a
major component of early evoked responses; see, e.g.,
Friston 2005, p. 829) as competing “beliefs” propagate up
and down the system. This is typically followed by rapid
convergence upon a dominant theme (CAT, MAT), with
further details (STRIPEY MAT, TABBY CAT) sub-
sequently negotiated. The set-up thus favors a kind of
recurrently negotiated “gist-at-a-glance” model, where we
first identify the general scene (perhaps including general
affective elements too – for a fascinating discussion, see
Barrett & Bar 2009) followed by the details. This affords
a kind of “forest first, trees second” approach (Friston
2005, p. 825; Hochstein & Ahissar 2002).
This does not mean, however, that context effects will

always take time to emerge and propagate downward.21

In many (indeed, most) real-life cases, substantial context
information is already in place when new information is
encountered. An apt set of priors is thus often already
active, poised to impact the processing of new sensory
inputs without further delay. This is important. The
brain, in ecologically normal circumstances, is not just sud-
denly “turned on” and some random or unexpected input
delivered for processing. So there is plenty of room for
top-down influence to occur even before a stimulus is pre-
sented. This is especially important in the crucial range of
cases where we, by our own actions, help to bring the
new stimulus about. In the event that we already know
we are in a forest (perhaps we have been hiking for
hours), there has still been prior settling into a higher
level representational state. But such settling need not
occur within the temporal span following each new
sensory input.22 Over whatever time-scale, though, the
endpoint (assuming we form a rich visual percept) is the
same. The system will have settled into a set of states that
make mutually consistent bets concerning many aspects
of the scene (from the general theme all the way down to
more spatio-temporally precise information about parts,
colors, orientations, etc.). At each level, the underlying
mode of representation will remain thoroughly probabilis-
tic, encoding a series of intertwined bets concerning all
the elements (at the various spatio-temporal scales) that
make up the perceived scene.
In what sense are such systems truly Bayesian? Accord-

ing to Knill and Pouget:

The real test of the Bayesian coding hypothesis is in whether
the neural computations that result in perceptual judgments
or motor behaviour take into account the uncertainty available
at each stage of the processing. (Knill & Pouget 2004, p. 713)

That is to say, reasonable tests will concern how well a
system deals with the uncertainties that characterize the
information it actually manages to encode and process,
and (I would add) the general shape of the strategies it
uses to do so. There is increasing (though mostly indirect –
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see sect. 3.1) evidence that biological systems approximate,
in multiple domains, the Bayesian profile thus understood.
To take just one example (for others, see sect. 3.1) Weiss
et al. (2002) – in a paper revealingly titled “Motion illusions
as optimal percepts” – used an optimal Bayesian estimator
(the “Bayesian ideal observer”) to show that a wide
variety of psychophysical results, including many motion
“illusions,” fall naturally out of the assumption that
human motion perception implements just such an estima-
tor mechanism.23 They conclude that:

Many motion “illusions” are not the result of sloppy compu-
tation by various components in the visual system, but rather
a result of a coherent computational strategy that is optimal
under reasonable assumptions. (Weiss et al. 2002, p. 603)

Examples could be multiplied (see Knill & Pouget [2004]
for a balanced review).24 At least in the realms of low-level,
basic, and adaptively crucial, perceptual, and motoric com-
putations, biological processing may quite closely approxi-
mate Bayes’ optimality. But what researchers find
in general is not that we humans are – rather astoundingly –
“Bayes’ optimal” in some absolute sense (i.e., responding
correctly relative to the absolute uncertainties in the stimu-
lus), but rather, that we are often optimal, or near optimal,
at taking into account the uncertainties that characterize
the information that we actually command: the information
that is made available by the forms of sensing and proces-
sing that we actually deploy (see Knill & Pouget 2004,
p. 713). That means taking into account the uncertainty
in our own sensory and motor signals and adjusting the rela-
tive weight of different cues according to (often very subtle)
contextual clues. Recent work confirms and extends this
assessment, suggesting that humans act as rational Bayesian
estimators, in perception and in action, across a wide
variety of domains (Berniker & Körding 2008; Körding
et al. 2007; Yu 2007).

Of course, the mere fact that a system’s response profiles
take a certain shape does not itself demonstrate that that
system is implementing some form of Bayesian reasoning.
In a limited domain, a look-up table could (Maloney &
Mamassian 2009) yield the same behavioral repertoire as
a “Bayes’ optimal” system. Nonetheless, the hierarchical
and bidirectional predictive processing story, if correct,
would rather directly underwrite the claim that the
nervous system approximates, using tractable compu-
tational strategies, a genuine version of Bayesian inference.
The computational framework of hierarchical predictive
processing realizes, using the signature mix of top-down
and bottom-up processing, a robustly Bayesian inferential
strategy, and there is mounting neural and behavioral evi-
dence (again, see sect. 3.1) that such a mechanism is
somehow implemented in the brain. Experimental tests
have also recently been proposed (Maloney & Mamassian
2009; Maloney & Zhang 2010) which aim to “operationa-
lize” the claim that a target system is (genuinely) computing
its outputs using a Bayesian scheme, rather than merely
behaving “as if” it did so. This, however, is an area that war-
rants a great deal of further thought and investigation.

Hierarchical predictive processing models also suggest
something about the nature of the representation relation
itself. To see this, recall (sect. 1.2 above) that hierarchical
predictive coding, in common with other approaches
deploying a cascade of top-down processing to generate
low-level states from high-level causes, offers a way to get

at the world from “inside” the black box. That procedure
(which will work in all worlds where there is organism-
detectable regularity in space or time; see Hosoya et al.
2005; Schwartz et al. 2007) allows a learner reliably to
match its internal generative model to the statistical prop-
erties of the signal source (the world) yielding contents
that are, I submit, as “grounded” (Harnad 1990) and
“intrinsic” (Adams & Aizawa 2001) as any philosopher
could wish for. Such models thus deliver a novel framework
for thinking about neural representation and processing,
and a compelling take on the representation relation
itself: one that can be directly linked (via the Bayesian
apparatus) to rational processes of learning and belief
fixation.

2.3. The delicate dance between top-down and bottom-up

In the context of bidirectional hierarchical models of brain
function, action-oriented predictive processing yields a new
account of the complex interplay between top-down and
bottom-up influences on perception and action, and
perhaps ultimately of the relations between perception,
action, and cognition.
As noted by Hohwy (2007, p. 320) the generative model

providing the “top-down” predictions is here doing much of
the more traditionally “perceptual” work, with the bottom-
up driving signals really providing a kind of ongoing feed-
back on their activity (by fitting, or failing to fit, the
cascade of downward-flowing predictions). This procedure
combines “top-down” and “bottom–up” influences in an
especially delicate and potent fashion, and it leads to the
development of neurons that exhibit a “selectivity that is
not intrinsic to the area but depends on interactions
across levels of a processing hierarchy” (Friston 2003,
p. 1349). Hierarchical predictive coding delivers, that is
to say, a processing regime in which context-sensitivity is
fundamental and pervasive.
To see this, we need only reflect that the neuronal

responses that follow an input (the “evoked responses”)
may be expected to change quite profoundly according to
the contextualizing information provided by a current
winning top-down prediction. The key effect here (itself
familiar enough from earlier connectionist work using the
“interactive activation” paradigm – see, e.g., McClelland
& Rumelhart 1981; Rumelhart et al. 1986) is that, “when
a neuron or population is predicted by top-down inputs it
will be much easier to drive than when it is not” (Friston
2002, p. 240). This is because the best overall fit between
driving signal and expectations will often be found by (in
effect) inferring noise in the driving signal and thus recog-
nizing a stimulus as, for example, the letter m (say, in the
context of the word “mother”) even though the same bare
stimulus, presented out of context or in most other contexts,
would have been a better fit with the letter n.25 A unit nor-
mally responsive to the letter m might, under such circum-
stances, be successfully driven by an n-like stimulus.
Such effects are pervasive in hierarchical predictive pro-

cessing, and have far-reaching implications for various
forms of neuroimaging. It becomes essential, for
example, to control as much as possible for expectations
when seeking to identify the response selectivity of
neurons or patterns of neural activity. Strong effects of
top-down expectation have also recently been demon-
strated for conscious recognition, raising important
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questions about the very idea of any simple (i.e., context
independent) “neural correlates of consciousness.” Thus,
Melloni et al. (2011) show that the onset time required to
form a reportable conscious percept varies substantially
(by around 100 msec) according to the presence or
absence of apt expectations, and that the neural (here,
EEG) signatures of conscious perception vary accordingly –
a result these authors go on to interpret using the appar-
atus of hierarchical predictive processing. Finally, in a par-
ticularly striking demonstration of the power of top-down
expectations, Egner et al. (2010) show that neurons in
the fusiform face area (FFA) respond every bit as strongly
to non-face (in this experiment, house) stimuli under high
expectation of faces as they do to face-stimuli. In this study:

FFA activity displayed an interaction of stimulus feature and
expectation factors, where the differentiation between FFA
responses to face and house stimuli decreased linearly with
increasing levels of face expectation, with face and house
evoked signals being indistinguishable under high face expec-
tation. (Egner et al. 2010, p. 16607)

Only under conditions of low face expectation was FFA
response maximally different for the face and house
probes, suggesting that “[FFA] responses appear to be
determined by feature expectation and surprise rather
than by stimulus features per se” (Egner et al. 2010,
p. 16601). The suggestion, in short, is that FFA (in many
ways the paradigm case of a region performing complex
feature detection) might be better treated as a face-expec-
tation region rather than as a face-detection region: a result
that the authors interpret as favoring a hierarchical predic-
tive processing model. The growing body of such results
leads Muckli to comment that:

Sensory stimulation might be the minor task of the cortex,
whereas its major task is to … predict upcoming stimulation
as precisely as possible. (Muckli 2010, p. 137)

In a similar vein, Rauss et al. (2011) suggest that on such
accounts:

neural signals are related less to a stimulus per se than to its
congruence with internal goals and predictions, calculated on
the basis of previous input to the system. (Rauss et al. 2011,
p. 1249)

Attention fits very neatly into this emerging unified
picture, as a means of variably balancing the potent inter-
actions between top-down and bottom-up influences by fac-
toring in their precision (degree of uncertainty). This is
achieved by altering the gain (the “volume,” to use a
common analogy) on the error-units accordingly. The
upshot of this is to “control the relative influence of prior
expectations at different levels” (Friston 2009, p. 299). In
recent work, effects of the neurotransmitter dopamine are
presented as one possible neural mechanism for encoding
precision (see Fletcher & Frith [2009, pp. 53–54] who
refer the reader to work on prediction error and themesolim-
bic dopaminergic system such as Holleman & Schultz 1998;
Waelti et al. 2001). Greater precision (however encoded)
means less uncertainty, and is reflected in a higher gain on
the relevant error units (see Friston 2005; 2010; Friston
et al. 2009). Attention, if this is correct, is simply one
means by which certain error-unit responses are given
increased weight, hence becomingmore apt to drive learning
and plasticity, and to engage compensatory action.
More generally, this means that the precise mix of top-

down and bottom-up influence is not static or fixed.

Instead, the weight given to sensory prediction error is
varied according to how reliable (how noisy, certain, or
uncertain) the signal is taken to be. This is (usually) good
news, as it means we are not (not quite) slaves to our expec-
tations. Successful perception requires the brain to mini-
mize surprisal. But the agent is able to see very (agent-)
surprising things, at least in conditions where the brain
assigns high reliability to the driving signal. Importantly,
that requires that other high-level theories, though of an
initially agent-unexpected kind, win out so as to reduce sur-
prisal by explaining away the highly weighted sensory evi-
dence. In extreme and persistent cases (more on this in
sect. 4.2), this may require gradually altering the underlying
generative model itself, in what Fletcher and Frith (2009,
p. 53) nicely describe as a “reciprocal interaction between
perception and learning.”
All this makes the lines between perception and cognition

fuzzy, perhaps even vanishing. In place of any real distinction
between perception and belief we now get variable differ-
ences in the mixture of top-down and bottom-up influence,
and differences of temporal and spatial scale in the internal
models that are making the predictions. Top-level (more
“cognitive”) models26 intuitively correspond to increasingly
abstract conceptions of the world, and these tend to
capture or depend upon regularities at larger temporal and
spatial scales. Lower-level (more “perceptual”) ones capture
or depend upon the kinds of scale and detail most strongly
associated with specific kinds of perceptual contact. But it
is the precision-modulated, constant, content-rich inter-
actions between these levels, often mediated by ongoing
motor action of one kind or another, that now emerges as
the heart of intelligent, adaptive response.
These accounts thus appear to dissolve, at the level of the

implementing neural machinery, the superficially clean dis-
tinction between perception and knowledge/belief. To per-
ceive the world just is to use what you know to explain away
the sensory signal across multiple spatial and temporal
scales. The process of perception is thus inseparable from
rational (broadly Bayesian) processes of belief fixation,
and context (top-down) effects are felt at every intermedi-
ate level of processing. As thought, sensing, and movement
here unfold, we discover no stable or well-specified inter-
face or interfaces between cognition and perception.
Believing and perceiving, although conceptually distinct,
emerge as deeply mechanically intertwined. They are con-
structed using the same computational resources, and (as
we shall see in sect. 4.2) are mutually, reciprocally,
entrenching.

2.4. Summary so far

Action-oriented (hierarchical) predictive processing models
promise to bring cognition, perception, action, and atten-
tion together within a common framework. This framework
suggests probability-density distributions induced by hier-
archical generative models as our basic means of represent-
ing the world, and prediction-error minimization as the
driving force behind learning, action-selection, recognition,
and inference. Such a framework offers new insights into a
wide range of specific phenomena including non-classical
receptive field effects, bi-stable perception, cue inte-
gration, and the pervasive context-sensitivity of neuronal
response. It makes rich and illuminating contact with
work in cognitive neuroscience while boasting a firm
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foundation in computational modeling and Bayesian
theory. It thus offers what is arguably the first truly sys-
tematic bridge27 linking three of our most promising tools
for understanding mind and reason: cognitive neuro-
science, computational modelling, and probabilistic Baye-
sian approaches to dealing with evidence and uncertainty.

3. From action-oriented predictive processing to an
architecture of mind

Despite that truly impressive list of virtues, both the hier-
archical predictive processing family of models and their
recent generalizations to action face a number of important
challenges, ranging from the evidential (what are the exper-
imental and neuroanatomical implications, and to what
extent are they borne out by current knowledge and investi-
gations?) to the conceptual (can we really explain so much
about perception and action by direct appeal to a fundamen-
tal strategy of minimizing errors in the prediction of sensory
input?) to the more methodological (to what extent can
these accounts hope to illuminate the full shape of the
human cognitive architecture?) In this section I address
each challenge in turn, before asking (sect. 4) how such
models relate to our conscious mental life.

3.1. The neural evidence

Direct neuroscientific testing of the hierarchical predictive
coding model, and of its action-oriented extension, remains
in its infancy. The best current evidence tends to be indir-
ect, and it comes in two main forms. The first (which is
highly indirect) consists in demonstrations of precisely
the kinds of optimal sensing and motor control that the
“Bayesian brain hypothesis” (sect. 2.2) suggests. Good
examples here include compelling bodies of work on cue
integration (see also sects. 2.2 above and 4.3 following)
showing that human subjects are able optimally to weight
the various cues arriving through distinct sense modalities,
doing so in ways that delicately and responsively reflect the
current (context-dependent) levels of uncertainty associ-
ated with the information from different channels (Ernst
& Banks 2002; Knill & Pouget 2004 – and for further dis-
cussion, see Mamassian et al. 2002; Rescorla, in press).
This is beautifully demonstrated, in the case of combining
cues from vision and touch, by Bayesian models such as
that of Helbig and Ernst (2007). Similar results have
been obtained for motion perception, neatly accounting
for various illusions of motion perception by invoking stat-
istically valid priors that favor slower and smoother
motions – see Weiss et al. (2002) and Ernst (2010).
Another example is the Bayesian treatment of color percep-
tion (see Brainard 2009), which again accounts for various
known effects (here, color constancies and some color illu-
sions) in terms of optimal cue combination.

The success of the Bayesian program in these arenas (for
some more examples, see Rescorla [in press] and sect. 4.4)
is impossible to doubt. It is thus a major virtue of the hier-
archical predictive coding account that it effectively
implements a computationally tractable version of the so-
called Bayesian Brain Hypothesis (Doya et al. 2007; Knill
& Pouget 2004; see also Friston 2003; 2005; and comments
in sects. 1.2 and 2.2 above). But behavioral demonstrations
of Bayesian performance, though intrinsically interesting

and clearly suggestive, cannot establish strong conclusions
about the shape of the mechanisms generating those
behaviors.
More promising in this regard are other forms of indirect

evidence, such as the ability of computational simulations
of predictive coding strategies to reproduce and explain a
variety of observed effects. These include non-classical
receptive field effects, repetition suppression effects, and
the bi-phasic response profiles of certain neurons involved
in low-level visual processing.
Thus consider non-classical receptive field effects (Rao &

Sejnowski 2002). In one such effect, an oriented stimulus
yields a strong response from a cortical cell, but that
response is suppressed when the surrounding region is
filled with a stimulus of identical orientation, and it is
enhanced when the orientation of the central stimulus
is orthogonal to those of the surrounding region. This is a
surprising set of features. A powerful explanation of this
result, Rao and Sejnowski (2002) suggest, is that the
observed neural response here signals error rather than
some fixed content. It is thus smallest when the central
stimulus is highly predictable from the surrounding ones,
and largest when it is actively counter-predicted by the sur-
roundings. A related account (Rao & Ballard 1999, based
on the simulation study sketched in sect. 1.2) explains
“end-stopping” effects, in which a lively neural response
to a preferred stimulus such as an oriented line segment
ceases or becomes reduced when the stimulus extends
farther than the neuron’s standard receptive field. Here,
too, computational simulations using the predictive
coding strategy displayed the same effect. This is because
the natural images used to train the network contained
many more instances of these longer line segments, facili-
tating prediction in (and only in) such cases. Extended
line segments are thus more predictable, so error-signaling
responses are reduced or eliminated. In short, the effect is
explained once more by the assumption that activity in
these units is signaling error/mismatch. Similarly, Jehee
and Ballard (2009) offer a predictive processing account
of “biphasic response dynamics” in which the optimal
stimulus for driving a neuron (such as certain neurons in
LGN – lateral geniculate nucleus) can reverse (e.g., from
preferring bright to preferring dark) in a short (20 msec)
space of time. Once again the switch is neatly explained
as a reflection of a unit’s functional role as an error or differ-
ence detector rather than a feature detector as such. In
such cases, the predictive coding strategy (sect. 1.1) is in
full evidence because:

Low-level visual input [is] replaced by the difference between
the input and a prediction from higher-level structures….
higher-level receptive fields … represent the predictions of
the visual world while lower-level areas … signal the error
between predictions and the actual visual input. (Jehee &
Ballard 2009, p. 1)

Finally, consider the case of “repetition suppression.”
Multiple studies (for a recent review, see Grill-Spector
et al. 2006) have shown that stimulus-evoked neural activity
is reduced by stimulus repetition.28 Summerfield et al.
(2008) manipulated the local likelihood of stimulus rep-
etitions, showing that the repetition-suppression effect is
itself reduced when the repetition is improbable/unex-
pected. The favored explanation is (again) that repetition
normally reduces response because it increases predictabil-
ity (the second instance was made likelier by the first) and
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thus reduces prediction error. Repetition suppression thus
also emerges as a direct effect of predictive processing in
the brain, and as such its severity may be expected to
vary (just as Summerfield et al. found) according to our
local perceptual expectations. In general then, the predic-
tive coding story offers a very neat and unifying expla-
nation, of a wide variety of such contextual effects.
Can we find more direct forms of evidence as well?

Functional imaging plays an increasing role here. For
example, an fMRI study by Murray et al. (2002) revealed
just the kinds of relationships posited by the predictive pro-
cessing (hierarchical predictive coding) story. As higher
level areas settled into an interpretation of visual shape,
activity in V1 was dampened, consistent with the successful
higher-level predictions being used to explain away (cancel
out) the sensory data. More recently, Alink et al. (2010)
found decreased responses for predictable stimuli using
variants on an apparent motion illusion, while den Ouden
et al. (2010) report similar results using arbitrary contingen-
cies that were manipulated rapidly during the course of
their experiments.29 Finally, the study by Egner et al.
(2010; described in sect. 2.3 above) went on to compare,
in simulation, several possible models that might be used
to account for their results. The authors found a predictive
processing regime involving the co-presence of represen-
tation and error units (see sect. 2.1 earlier) to offer by far
the best fit for their data. In that best-fit simulation, error
(“face-surprise”) units are modeled as contributing twice
as much to the fMRI signal as representation (“face-expec-
tation”) units, leading the authors to comment that:

The current study is to our knowledge the first investigation to
formally and explicitly demonstrate that population responses
in visual cortex are in fact better characterized as a sum of
feature expectation and surprise responses than by bottom-up
feature detection. (Egner et al. (2010, p. 16607)

The predictive processing model also suggests testable
hypotheses concerning the ways in which interfering
(e.g., using TMS – transcranial magnetic stimulation – or
other methods) with the message-passing routines linking
higher to lower cortical areas should impact performance.
To take one specific example, the model of binocular
rivalry rehearsed in section 1.4 predicts that:

LGN and blind spot representation activity measured with
fMRI will not suggest that rivalry is resolved before binocular
convergence, if deprived of backwards signals from areas
above binocular convergence. (Hohwy et al. 2008, p. 699)

In general, if the predictive processing story is correct,
we expect to see powerful context effects propagating
quite low down the processing hierarchy. The key prin-
ciple – and one that also explains many of the observed
dynamics of evoked responses – is that (subject to the
caveats mentioned earlier concerning already active expec-
tations) “representations at higher levels must emerge
before backward afferents can reshape the response
profile of neurons in lower areas” (Friston 2003, p. 1348).
In the case of evoked responses, the suggestion (Friston
2005, sect. 6) is that an early component often tracks an
initial flurry of prediction error: one that is soon suppressed
(assuming the stimulus is not novel or encountered out of
its normal context) by successful predictions flowing back-
wards from higher areas. Such temporal delays, which are
exactly what one would expect if perception involves
recruiting top-level models to explain away sensory data,

are now widely reported in the literature (see, e.g., Born
et al. 2009; Pack & Born 2001).
One extremely important and as yet not well-tested

implication of the general architectural form of these
models is (recall sect. 2.1) that each level of processing
should contain two functionally distinct sub-populations
of units. One sub-population, recall, is doing the “real”
work of representing the current sensory cause: These
units (“representational neurons” or “state units”) encode
the area’s best guess, in context as processed so far, at
the current stimulus. They thus encode what Friston
(2005, p. 829) describes as the area’s “conditional expec-
tations of perceptual causes.” The other sub-population is
in the business of encoding precision-weighted prediction
errors: These units (so-called error units) fire when there
is a mismatch between what is predicted and what is appar-
ently being observed. The two sets of units are assumed to
interact in the manner prescribed by the hierarchical pre-
dictive coding model. That is to say, the error units
process signals from the representation units both at their
own level and at the level above, and the representation
units send signals to the error units both at their own
level and at the level below. Forward connections thus
convey error, while backward connections are free to con-
struct (in a potentially much more complex, and highly non-
linear fashion) predictions that aim to cancel out the error.
Unfortunately, direct, unambiguous neural evidence for
these crucial functionally distinct sub-populations is still
missing. Hence:
One limitation of these models – and of predictive coding in
general – is that to date no single neuron study has systemati-
cally pursued the search for sensory prediction error responses.
(Summerfield & Egner 2009, p. 408)
The good news is that there is, as we saw, mounting and

converging indirect evidence for such a cortical architec-
ture in the form (largely) of increased cortical responses
to sensory surprise (surprisal). Crucially, there also exists
(sect. 2.1) a plausible neuronal implementation for such a
scheme involving superficial and deep pyramidal cells.
Nonetheless, much more evidence is clearly needed for
the existence of the clean functional separation (between
the activity of different neuronal features or sub-popu-
lations) required by these models.30

3.2. Scope and limits

According to Mumford:
In the ultimate stable state, the deep pyramidals [conveying
predictions downwards] would send a signal that perfectly pre-
dicts what each lower area is sensing, up to expected levels of
noise, and the superficial pyramidals [conveying prediction
errors upwards] wouldn’t fire at all. (Mumford 1992, p. 247)
In an intriguing footnote, Mumford then adds:
In some sense, this is the state that the cortex is trying to
achieve: perfect prediction of the world, like the oriental
Nirvana, as Tai-Sing Lee suggested to me, when nothing sur-
prises you and new stimuli cause the merest ripple in your con-
sciousness. (op. cit., p. 247, Note 5)
This remark highlights a very general worry that is some-

times raised in connection with the large-scale claim that
cortical processing fundamentally aims to minimize predic-
tion error, thus quashing the forward flow of information
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and achieving what Mumford evocatively describes as the
“ultimate stable state.” It can be put like this:

How can a neural imperative to minimize prediction error by
enslaving perception, action, and attention accommodate the
obvious fact that animals don’t simply seek a nice dark room
and stay in it? Surely staying still inside a darkened room
would afford easy and nigh-perfect prediction of our own
unfolding neural states? Doesn’t the story thus leave out
much that really matters for adaptive success: things like
boredom, curiosity, play, exploration, foraging, and the thrill
of the hunt?

The simple response (correct, as far as it goes) is that
animals like us live and forage in a changing and challen-
ging world, and hence “expect” to deploy quite complex
“itinerant” strategies (Friston 2010; Friston et al. 2009) to
stay within our species-specific window of viability.
Change, motion, exploration, and search are themselves
valuable for creatures living in worlds where resources
are unevenly spread and new threats and opportunities
continuously arise. This means that change, motion,
exploration, and search themselves become predicted –
and poised to enslave action and perception accordingly.
One way to unpack this idea would be to look at the poss-
ible role of priors that induce motion through a state space
until an acceptable, though possibly temporary or other-
wise unstable, stopping point (an attractor) is found. In pre-
cisely this vein Friston (2011a, p. 113) comments that
“some species are equipped with prior expectations that
they will engage in exploratory or social play.”

The whole shape of this space of prior expectations is
specific to different species and may also vary as a result
of learning and experience. Hence, nothing in the large-
scale story about prediction error minimization dictates
any general or fixed balance between what is sometimes
glossed as “exploration” versus “exploitation” (for some
further discussion of this issue, see Friston & Stephan
2007, pp. 435–36). Instead, different organisms amount
(Friston 2011a) to different “embodied models” of their
specific needs and environmental niches, and their expec-
tations and predictions are formed, encoded, weighted,
and computed against such backdrops. This is both good
news and bad news. It’s good because it means the
stories on offer can indeed accommodate all the forms of
behavior (exploration, thrill-seeking, etc.) we see. But it’s
bad (or at least, limiting) because it means that the accounts
don’t in themselves tell us much at all about these key fea-
tures: features which nonetheless condition and constrain
an organism’s responses in a variety of quite fundamental
ways.

In one way, of course, this is clearly unproblematic. The
briefest glance at the staggering variety of biological (even
mammalian) life forms tells us that whatever fundamental
principles are sculpting life and mind, they are indeed com-
patible with an amazing swathe of morphological, neuro-
logical, and ethological outcomes. But in another way it
can still seem disappointing. If what we want to understand
is the specific functional architecture of the human mind,
the distance between these very general principles of pre-
diction-error minimization and the specific solutions to
adaptive needs that we humans have embraced remains
daunting. As a simple example, notice that the predictive
processing account leaves wide open a variety of deep and
important questions concerning the nature and format of
human neural representation. The representations on

offer are, we saw, constrained to be probabilistic (and gen-
erative model based) through and through. But that is
compatible with the use of the probabilistic-generative
mode to encode information using a wide variety of differ-
ent schemes and surface forms. Consider the well-docu-
mented differences in the way the dorsal and ventral
visual streams code for attributes of the visual scene.
The dorsal stream (Milner & Goodale 2006) looks to
deploy modes of representation and processing that are
at some level of interest quite distinct from those coded
and computed in the ventral stream. And this will be
true even if there is indeed, at some more fundamental
level, a common computational strategy at work through-
out the visual and the motor cortex.
Discovering the nature of various inner representational

formats is thus representative of the larger project of unco-
vering the full shape of the human cognitive architecture. It
seems likely that, as argued by Eliasmith (2007), this larger
project will demand a complex combination of insights,
some coming “top-down” from theoretical (mathematical,
statistical, and computational) models, and others coming
“bottom-up” from neuroscientific work that uncovers the
brain’s actual resources as sculpted by our unique evol-
utionary (and – as we’ll next see – sociocultural) trajectory.

3.3. Neats versus scruffies (twenty-first century replay)

Back in the late 1970s and early 1980s (the heyday of clas-
sical Artificial Intelligence [AI]) there was a widely held
view that two personality types were reflected in theorizing
about the human mind. These types were dubbed, by
Roger Schank and Robert Abelson, the “neats” versus the
“scruffies.”31 Neats believed in a few very general, truth-
conducive principles underlying intelligence. Scruffies
saw intelligence as arising from a varied bag of tricks: a
rickety tower of rough-and-ready solutions to problems,
often assembled using various quick patches and local
ploys, and greedily scavenging the scraps and remnants of
solutions to other, historically prior, problems and needs.
Famously, this can lead to scruffy, unreliable, or sometimes
merely unnecessarily complex solutions to ecologically
novel problems such as planning economies, building
railway networks, and maintaining the Internet. Such his-
torically path-dependent solutions were sometimes called
“kluges” – see, for example, Clark (1987) and Marcus
(2008). Neats favored logic and provably correct solutions,
while scruffies favored whatever worked reasonably well,
fast enough, in the usual ecological setting, for some
given problem. The same kind of division emerged in
early debates between connectionist and classical AI (see,
e.g., Sloman 1990), with connectionists often accused of
developing systems whose operating principles (after train-
ing on some complex set of input-output pairs) was opaque
and “messy.” The conflict reappears in more recent debates
(Griffiths et al. 2010; McClelland et al. 2010) between
those favoring “structured probabilistic approaches” and
those favoring “emergentist” approaches (where these are
essentially connectionist approaches of the parallel distrib-
uted processing variety).32

My own sympathies (Clark 1989; 1997) have always lain
more on the side of the scruffies. Evolved intelligence, it
seemed to me (Clark 1987), was bound to involve a kind
of unruly motley of tricks and ploys, with significant path-
dependence, no premium set on internal consistency, and

Andy Clark: Predictive brains, situated agents, and the future of cognitive science

BEHAVIORAL AND BRAIN SCIENCES (2013) 36:3 193



fast effective situated response usually favored at the
expense of slower, more effortful, even if more truth-con-
ducive modes of thought and reasoning. Seen through
this lens, the “Bayesian brain” seems, at first glance, to
offer an unlikely model for evolved biological intelligence.
Implemented by hierarchical predictive processing, it
posits a single, fundamental kind of learning algorithm
(based on generative models, predictive coding, and pre-
diction-error minimization) that approximates the rational
ideal of Bayesian belief update. Suppose such a model
proves correct. Would this amount to the final triumph of
the neats over the scruffies? I suspect it would not, and
for reasons that shed additional light upon the questions
about scope and limits raised in the previous section.
Favoring the “neats,” we have encountered a growing

body of evidence (sects. 2.2 and 2.3) showing that for
many basic problems involving perception and motor
control, human agents (as well as other animals) do
indeed manage to approximate the responses and choices
of optimal Bayesian observers and actors. Nonetheless, a
considerable distance still separates such models from the
details of their implementation in humans or other
animals. It is here that the apparent triumph of the neats
over the scruffies may be called into question. For the
Bayesian brain story tells us, at most, what the brain (or
better, the brain in action) manages to compute. It also
suggests a good deal about the forms of representation
and computation that the brain must deploy: For
example, it suggests (sect. 2.2) that the brain must deploy
a probabilistic representation of sensory information; that
it must take into account uncertainty in its own sensory
signals, estimate the “volatility” (frequency of change) of
the environment itself (Yu 2007), and so on. But that still
leaves plenty of room for debate and discovery as regards
the precise shape of the large-scale cognitive architecture
within which all this occurs.
The hierarchical predictive processing account takes us

a few important steps further. It offers a computationally
tractable approximation to true Bayesian inference. It
says something about the basic shape of the cortical
micro-circuitry. And, at least in the formulations I have
been considering, it predicts the presence of distinct
neural encodings for representation and error. But even
taken together, the mathematical model (the Bayesian
brain) and the hierarchical, action-oriented, predictive
processing implementation fail to specify the overall
form of a cognitive architecture. They fail to specify, for
example, how the brain (or better, the brain in the
context of embodied action) divides its cognitive labors
between multiple cortical and subcortical areas, what
aspects of the actual world get sensorially coded in the
first place, or how best to navigate the exploit–explore
continuum (the grain of truth in the “darkened room”
worry discussed in sect. 3.2 above). It also leaves unan-
swered a wide range of genuine questions concerning
the representational formats used by different brain
areas or for different kinds of problems. This problem is
only compounded once we reflect (Anderson 2007; also
see sect. 3.4 following) that the brain may well tackle
many problems arising later in its evolutionary trajectory
by cannily redeploying resources that were once used for
other purposes.
In the most general terms, then, important questions

remain concerning the amount of work (where the goal is

that of understanding the full human cognitive architec-
ture) that will be done by direct appeal to action-oriented
predictive processing and the amount that will still need
to be done by uncovering evolutionary and developmental
trajectory-reflecting tricks and ploys: the scruffy kluges that
gradually enabled brains like ours to tackle the complex
problems of the modern world.

3.4. Situated agents

We may also ask what, if anything, the hierarchical predic-
tive processing perspective suggests concerning situated,
world-exploiting agency (Clark 1997; 2008; Clark & Chal-
mers 1998; Haugeland 1998; Hurley 1998; Hutchins
1995; Menary 2007; Noë 2004; 2009; Rowlands 1999;
2006; Thelen & Smith 1994; Wheeler 2005; Wilson 1994;
2004). At least on the face of it, the predictive processing
story seems to pursue a rather narrowly neurocentric
focus, albeit one that reveals (sect. 1.5) some truly intimate
links between perception and action. But dig a little deeper
and what we discover is a model of key aspects of neural
functioning that makes structuring our worlds genuinely
continuous with structuring our brains and sculpting our
actions. Cashing out all the implications of this larger
picture is a future project, but a brief sketch may help set
the scene.
Recall (sects. 1.5 and 1.6) that these models display per-

ception and action working in productive tandem to reduce
surprisal (where this measures the implausibility of some
sensory state given a model of the world). Perception
reduces surprisal by matching inputs with prior expec-
tations. Action reduces surprisal by altering the world
(including moving the body) so that inputs conform with
expectations. Working together, perception and action
serve to selectively sample and actively sculpt the stimulus
array. These direct links to active sculpting and selective
sampling suggest deep synergies between the hierarchical
predictive processing framework and work in embodied
and situated cognition. For example, work in mobile
robotics already demonstrates a variety of concrete ways
in which perception and behavior productively interact
via loops through action and the environment: loops that
may now be considered as affording extra-neural opportu-
nities for the minimization of prediction error. In precisely
this vein, Verschure et al. (2003), in work combining
robotics and statistical learning, note that “behavioural
feedback modifies stimulus sampling and so provides an
additional extra-neuronal path for the reduction of predic-
tion errors” (Verschure et al. 2003, p. 623).
More generally, consider recent work on the “self-struc-

turing of information flows.” This work, as the name
suggests, stresses the importance of our own action-based
structuring of sensory input (e.g., the linked unfolding
across multiple sensory modalities that occurs when we
see, touch, and hear an object that we are actively manipu-
lating). Such information self-structuring has been shown
to promote learning and inference (see, e.g., Pfeifer et al.
2007, and discussion in Clark 2008). Zahedi et al. (2010)
translate these themes directly into the present framework
using robotic simulations in which the learning of complex
coordination dynamics is achieved by maximizing the
amount of predictive information present in sensorimotor
loops.
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Extensions into the realm of social action and multi-
agent coordination are then close to hand. For, a key prox-
imal goal of information self-structuring, considered from
the action-oriented predictive-processing perspective, is
the reduction of mutual prediction error as we collectively
negotiate new and challenging domains (see, e.g., recent
work on synchronization and shared musical experience:
Overy & Molnar-Szakacs 2009; and the “culture as pat-
terned practices” approach suggested by Roepstorff et al.
2010). Such a perspective, by highlighting situated practice,
very naturally encompasses various forms of longer-term
material and social environmental structuring. Using a
variety of tricks, tools, notations, practices, and media, we
structure our physical and social worlds so as to make
them friendlier for brains like ours. We color-code consu-
mer products, we drive on the right (or left), paint white
lines on roads, and post prices in supermarkets. At multiple
time-scales, and using a wide variety of means (including
words, equations, graphs, other agents, pictures, and all
the tools of modern consumer electronics) we thus stack
the dice so that we can more easily minimize costly predic-
tion errors in an endlessly empowering cascade of contexts
from shopping and socializing, to astronomy, philosophy,
and logic.

Consider, from this perspective, our many symbol-
mediated loops into material culture via notebooks, sketch-
pads, smartphones, and, as Pickering & Garrod (2007) have
observed, conversations with other agents. (For some intri-
guing speculations concerning the initial emergence of all
those discrete symbols in predictive, probabilistic contexts,
see König & Krüger 2006.) Such loops are effectively
enabling new forms of reentrant processing: They take a
highly processed cognitive product (such as an idea about
the world), clothe it in public symbols, and launch it out
into the world so that it can re-enter our own system as a
concrete perceptible (Clark 2006a; 2008), and one now
bearing highly informative statistical relations to other
such linguaform perceptibles.33 It is courtesy of all that
concrete public vehicling in spoken words, written text, dia-
grams, and pictures that our best models of reality (unlike
those of other creatures) are stable, re-inspectable objects
apt for public critique and refinement. Our best models
of the world are thus the basis for cumulative, communally
distributed reasoning, rather than just the means by which
individual thoughts occur. The same potent processing
regimes, now targeting these brand new types of statisti-
cally pregnant “designer inputs,” are then enabled to dis-
cover and refine new generative models, latching onto
(and at times actively creating) ever more abstract structure
in the world. Action and perception thus work together to
reduce prediction error against the more slowly evolving
backdrop of a culturally distributed process that spawns a
succession of designer environments whose impact on the
development (e.g., Smith & Gasser 2005) and unfolding
of human thought and reason can hardly be overestimated.

Such culturally mediated processes may incur costs (sect.
3.3) in the form of various kinds of path-dependence
(Arthur 1994) in which later solutions build on earlier
ones. In the case at hand, path-based idiosyncrasies may
become locked in as material artifacts, institutions, nota-
tions, measuring tools, and cultural practices. But it is
that very same trajectory-sensitive process that delivers
the vast cognitive profits that flow from the slow, multi-gen-
erational development of stacked, complex “designer

environments” for thinking such as mathematics,
reading,34 writing, structured discussion, and schooling, in
a process that Sterelny (2003) nicely describes as “incre-
mental downstream epistemic engineering.” The upshot
is that the human-built environment becomes a potent
source of new intergenerationally transmissible structure
that surrounds our biological brains (see, e.g., Griffiths &
Gray 2001; Iriki & Taoka 2012; Oyama 1999; Sterelny
2007; Stotz 2010; Wheeler & Clark 2009).
What are the potential effects of such stacked and trans-

missible designer environments upon prediction-driven
learning in cortical hierarchies? Such learning routines
make human minds permeable, at multiple spatial and
temporal scales, to the statistical structure of the world
as reflected in the training signals. But those training
signals are now delivered as part of a complex develop-
mental web that gradually comes to include all the
complex regularities embodied in the web of statistical
relations among the symbols and other forms of socio-cul-
tural scaffolding in which we are immersed. We thus self-
construct a kind of rolling “cognitive niche” able to induce
the acquisition of generative models whose reach and
depth far exceeds their apparent base in simple forms of
sensory contact with the world. The combination of “iter-
ated cognitive niche construction” and profound neural
permeability by the statistical structures of the training
environment is both potent and self-fueling. When these
two forces interact, repeatedly reconfigured agents are
enabled to operate in repeatedly reconfigured worlds,
and the human mind becomes a constantly moving
target. The full potential of the prediction-error minimiz-
ation model of how cortical processing fundamentally
operates will emerge only (I submit) when that model is
paired with an appreciation of what immersion in all
those socio-cultural designer environments can do (for
some early steps in this direction, see Roepstorff et al.
2010). Such a combined approach would implement a
version of so-called neuroconstructivism (Mareschal et al.
2007) which asserts that:

The architecture of the brain…and the statistics of the environ-
ment, [are] not fixed. Rather, brain-connectivity is subject to a
broad spectrum of input-, experience-, and activity-dependent
processes which shape and structure its patterning and
strengths…These changes, in turn, result in altered inter-
actions with the environment, exerting causal influences on
what is experienced and sensed in the future. (Sporns 2007,
p. 179)

All this suggests a possible twist upon the worries (sects.
3.2 and 3.3) concerning the ability of the predictive proces-
sing framework to specify a full-blown cognitive architec-
ture. Perhaps that lack is not a vice but a kind of virtue?
For what is really on offer, or so it seems to me, is best
seen as a framework whose primary virtue is to display
some deep unifying principles covering perception,
action, and learning. That framework in turn reveals us as
highly responsive to the statistical structures of our environ-
ments, including the cascade of self-engineered “designer
environments.” It thus offers a standing invitation to evol-
utionary, situated, embodied, and distributed approaches
to help “fill in the explanatory gaps” while delivering a sche-
matic but fundamental account of the complex and comp-
lementary roles of perception, action, attention, and
environmental structuring.
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4. Content and consciousness

How, finally, do the accounts on offer relate to a human
mental life? This, of course, is the hardest – though poten-
tially the most important – question of all. I cannot hope to
adequately address it in the present treatment, but a few
preliminary remarks may help to structure a space for sub-
sequent discussion.

4.1. Agency and experience

To what extent, if any, do these stories capture or explain
facts about what we might think of as personal (or agent-
level) cognition – the flow of thoughts, reasons, and ideas
that characterize daily conscious thought and reason? A
first (but fortunately merely superficial) impression is that
they fall far short of illuminating personal-level experience.
For example, there seems to be a large disconnect between
surprisal (the implausibility of some sensory state given a
model of the world – see sect. 1.6) and agent-level surprise.
This is evident from the simple fact that the percept that,
overall, best minimizes surprisal (hence minimizes predic-
tion errors) “for” the brain may well be, for me the agent,
some highly surprising and unexpected state of affairs –
imagine, for example, the sudden unveiling of a large and
doleful elephant elegantly smuggled onto the stage by a
professional magician.
The two perspectives are, however, easily reconciled.

The large and doleful elephant is best understood as
improbable but not (at least not in the relevant sense –
recall sect. 3.2) surprising. Instead, that percept is the
one that best respects what the system knows and expects
about the world, given the current combination of driving
inputs and assigned precision (reflecting the brain’s
degree of confidence in the sensory signal). Given the
right driving signal and a high enough assignment of pre-
cision, top-level theories of an initially agent-unexpected
kind can still win out so as to explain away that highly-
weighted tide of incoming sensory evidence. The sight of
the doleful elephant may then emerge as the least surpris-
ing (least “surprisal-ing”!) percept available, given the
inputs, the priors, and the current weighting on sensory
prediction error. Nonetheless, systemic priors did not
render that percept very likely in advance, hence
(perhaps) the value to the agent of the feeling of surprise.
The broadly Bayesian framework can also seem at odds

with the facts about conscious perceptual experience for
a different reason. The world, it might be said, does not
look as if it is encoded as an intertwined set of probability
density distributions! It looks unitary and, on a clear day,
unambiguous. But this phenomenology again poses no
real challenge. What is on offer, after all, is a story about
the brain’s way of encoding information about the world.
It is not directly a story about how things seem to agents
deploying that means of encoding information. There is
clearly no inconsistency in thinking that the brain’s perva-
sive use of probabilistic encoding might yield conscious
experiences that depict a single, unified, and quite unam-
biguous scene. Moreover, in the context of an active
world-engaging system, such an outcome makes adaptive
sense. For, the only point of all that probabilistic betting
is to drive action and decision, and action and decision
lack the luxury of being able to keep all options indefinitely

alive. It would do the evolved creature no good at all to
keep experiencing the scene as to some degree uncertain
if the current task requires a firm decision, and if its
neural processing has already settled on a good, strongly
supported bet as to what’s (most probably) out there.
One way to begin to cash that out is to recall that biologi-

cal systems will be informed by a variety of learned or
innate “hyperpriors” concerning the general nature of the
world. One such hyperprior, as remarked during the discus-
sion of binocular rivalry in section 1.4, might be that there is
only one object (one cause of sensory input) in one place, at
a given scale, at a given moment.35 Another, more germane
to the present discussion, might be that the world is usually
in one determinate state or another. To implement this, the
brain might36 simply use a form of probabilistic represen-
tation in which each distribution has a single peak
(meaning that each overall sensory state has a single best
explanation). This would rule out true perceptual ambiguity
while leaving plenty of room for the kind of percept-switch-
ing seen in the binocular rivalry cases. The use of such a
representational form would amount to the deployment
of an implicit formal hyperprior (formal, because it con-
cerns the form of the probabilistic representation itself)
to the effect that our uncertainty can be described using
such a unimodal probability distribution. Such a prior
makes adaptive sense, given the kinds of brute fact about
action mentioned above (e.g., we can only perform one
action at a time, choosing the left turn or the right but
never both at once).
Such appeals to powerful (and often quite abstract)

hyperpriors will clearly form an essential part of any
larger, broadly Bayesian, story about the shape of human
experience. Despite this, no special story needs to be told
about either the very presence or the mode of action of
such hyperpriors. Instead, they arise quite naturally
within bidirectional hierarchical models of the kind we
have been considering where they may be innate (giving
them an almost Kantian feel) or acquired in the manner
of empirical (hierarchical) Bayes.37 Nonetheless, the sheer
potency of these highly abstract forms of “systemic expec-
tation” again raises questions about the eventual spread of
explanatory weight: this time, between the framework on
offer and whatever additional considerations and modes of
investigation may be required to fix and reveal the contents
of the hyperpriors themselves.38

4.2. Illuminating experience: The case of delusions

It might be suggested that merely accommodating the
range of human personal-level experiences is one thing,
while truly illuminating them is another. Such positive
impact is, however, at least on the horizon. We glimpse
the potential in an impressive body of recent work con-
ducted within the predictive processing (hierarchical pre-
dictive coding) framework addressing delusions and
hallucination in schizophrenia (Corlett et al. 2009a;
Fletcher & Frith 2009).
Recall the unexpected sighting of the elephant described

in the previous section. Here, the system already com-
manded an apt model able to “explain away” the particular
combination of driving inputs, expectations, and precision
(weighting on prediction error) that specified the doleful,
gray presence. But such is not always the case. Sometimes,
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dealing with ongoing, highly-weighted sensory prediction
error may require brand new generative models gradually
to be formed (just as in normal learning). This might hold
the key, as Fletcher and Frith (2009) suggest, to a better
understanding of the origins of hallucinations and delusion
(the two “positive symptoms”) in schizophrenia. These two
symptoms are often thought to involve two mechanisms
and hence two breakdowns, one in “perception” (leading
to the hallucinations) and one in “belief” (allowing these
abnormal perceptions to impact top-level belief). It seems
correct (see, e.g., Coltheart 2007) to stress that perceptual
anomolies alone will not typically lead to the strange and
exotic belief complexes found in delusional subjects. But
must we therefore think of the perceptual and doxastic
components as effectively independent?

A possible link emerges if perception and belief-for-
mation, as the present story suggests, both involve the
attempt to match unfolding sensory signals with top-down
predictions. Importantly, the impact of such attempted
matching is precision-mediated in that the systemic
effects of residual prediction error vary according to the
brain’s confidence in the signal (sect. 2.3). With this in
mind, Fletcher and Frith (2009) canvass the possible con-
sequences of disturbances to a hierarchical Bayesian
system such that prediction error signals are falsely gener-
ated and –more important – highly weighted (hence
accorded undue salience for driving learning).

There are a number of potential mechanisms whose
complex interactions, once treated within the overarching
framework of prediction error minimization, might con-
spire to produce such disturbances. Prominent contenders
include the action of slow neuromodulators such as dopa-
mine, serotonin, and acetylcholine (Corlett et al. 2009a;
Corlett et al. 2010). In addition, Friston (2010, p. 132)
speculates that fast, synchronized activity between neural
areas may also play a role in increasing the gain on predic-
tion error within the synchronized populations.39 The key
idea, however implemented, is that understanding the posi-
tive symptoms of schizophrenia requires understanding dis-
turbances in the generation and weighting of prediction
error. The suggestion (Corlett et al. 2009a; 2009b; Fletcher
& Frith 2009) is that malfunctions within that complex
economy (perhaps fundamentally rooted in abnormal dopa-
minergic functioning) yield wave upon wave of persistent
and highly weighted “false errors” that then propagate all
the way up the hierarchy forcing, in severe cases (via the
ensuing waves of neural plasticity) extremely deep revisions
in our model of the world. The improbable (telepathy, con-
spiracy, persecution, etc.) then becomes the least surpris-
ing, and – because perception is itself conditioned by the
top-down flow of prior expectations – the cascade of misin-
formation reaches back down, allowing false perceptions
and bizarre beliefs to solidify into a coherent and mutually
supportive cycle.

Such a process is self-entrenching. As new generative
models take hold, their influence flows back down so that
incoming data is sculpted by the new (but now badly misin-
formed) priors so as to “conform to expectancies” (Fletcher
& Frith 2009, p. 348). False perceptions and bizarre beliefs
thus form an epistemically insulated self-confirming cycle.40

This, then, is the dark side of the seamless story (sect. 2)
about perception and cognition. The predictive processing
model merges – usually productively – perception, belief,

learning, and affect into a single overarching economy: one
within which dopamine and other neurotransmitters
control the “precision” (the weighting, hence the impact
on inference and on learning) of prediction error itself.
But when things go wrong, false inferences spiral and feed
back upon themselves. Delusion and hallucination then
become entrenched, being both co-determined and co-
determining.
The same broadly Bayesian framework can be used

(Corlett et al. 2009a) to help make sense of the ways in
which different drugs, when given to healthy volunteers,
can temporarily mimic various forms of psychosis. Here,
too, the key feature is the ability of the predictive coding
framework to account for complex alterations in both
learning and experience contingent upon the (pharmaco-
logically modifiable) way driving sensory signals are
meshed, courtesy of precision-weighted prediction
errors, with prior expectancies and (hence) ongoing pre-
diction. The psychotomimetic effects of ketamine, for
example, are said to be explicable in terms of a disturbance
to the prediction error signal (perhaps caused by AMPA
upregulation) and the flow of prediction (perhaps via
NMDA interference). This leads to a persistent prediction
error and – crucially – an inflated sense of the importance
or salience of the associated events, which in turn drives
the formation of short-lived delusion-like beliefs (see
Corlett et al. 2009a, pp. 6–7; also, discussion in Gerrans
2007). The authors go on to offer accounts of the varying
psychotomimetic effects of other drugs (such as LSD and
other serotonergic hallucinogens, cannabis, and dopamine
agonists such as amphetamine) as reflecting other possible
varieties of disturbance within a hierarchical predictive pro-
cessing framework.41

This fluid spanning of levels constitutes, it seems to me,
one of the key attractions of the present framework. We
here move from considerations of normal and altered
states of human experience, via computational models
(highlighting prediction-error based processing and the
top-down deployment of generative models), to the imple-
menting networks of synaptic currents, neural synchronies,
and chemical balances in the brain. The hope is that by thus
offering a new, multilevel account of the complex, systema-
tic interactions between inference, expectation, learning,
and experience, these models may one day deliver a
better understanding even of our own agent-level experi-
ence than that afforded by the basic framework of “folk psy-
chology.” Such an outcome would constitute a vindication
of the claim (Churchland 1989; 2012) that adopting a “neu-
rocomputational perspective” might one day lead us to a
deeper understanding of our own lived experience.

4.3. Perception, imagery, and the senses

Another area in which these models are suggestive of deep
facts about the nature and construction of human experi-
ence concerns the character of perception and the relations
between perception and imagery/visual imagination. Pre-
diction-driven processing schemes, operating within hier-
archical regimes of the kind described above, learn
probabilistic generative models in which each neural popu-
lation targets the activity patterns displayed by the neural
population below. What is crucial here –what makes such
models generative as we saw in section 1.1 – is that they
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can be used “top-down” to predict activation patterns in the
level below. The practical upshot is that such systems,
simply as part and parcel of learning to perceive, develop
the ability to self-generate42 perception-like states from
the top down, by driving the lower populations into the pre-
dicted patterns.
There thus emerges a rather deep connection between

perception and the potential for self-generated forms of
mental imagery (Kosslyn et al. 1995; Reddy et al. 2010).
Probabilistic generative model based systems that can
learn to visually perceive a cat (say) are, ipso facto,
systems that can deploy a top-down cascade to bring
about many of the activity patterns that would ensue in
the visual presence of an actual cat. Such systems thus
display (for more discussion of this issue, see Clark (forth-
coming) a deep duality of perception and imagination.43

The same duality is highlighted by Grush (2004) in the
“emulator theory of representation,” a rich and detailed
treatment that shares a number of key features with the
predictive processing story.44

Hierarchical predictive processing also provides a mech-
anism that explains a variety of important phenomena that
characterize sensory perception, such as cross- and multi-
modal context effects on early sensory processing. Murray
et al. (2002) displayed (as noted in sect. 3.1) the influence
of high-level shape information on the responses of cells
in early visual area V1. Smith and Muckli (2010) show
similar effects (using as input partially occluded natural
scenes) even on wholly non-stimulated (i.e., not directly
stimulated via the driving sensory signal) visual areas.
Murray et al. (2006) showed that activation in V1 is influ-
enced by a top-down size illusion, while Muckli et al.
(2005) and Muckli (2010) report activity relating to an
apparent motion illusion in V1. Even apparently “unimo-
dal” early responses are influenced (Kriegstein & Giraud
2006) by information derived from other modalities, and
hence commonly reflect a variety of multimodal associ-
ations. Even the expectation that a relevant input will
turn out to be in one modality (e.g., auditory) rather than
another (e.g., visual) turns out to impact performance, pre-
sumably by enhancing “the weight of bottom-up input for
perceptual inference on a given sensory channel”
(Langner et al. 2011, p. 10).
This whole avalanche of context effects emerges natu-

rally given the hierarchical predictive processing model.
If so-called visual, tactile, or auditory sensory cortex is actu-
ally exploiting a cascade of downward influence from
higher levels whose goal is actively to predict the unfolding
sensory signals (the ones originally transduced using the
various dedicated receptor banks of vision, sound, touch,
etc.) extensive downward-reaching multimodal and cross-
modal effects (including various kinds of “filling-in”) will
follow. For any statistically valid correlations, registered
within the increasingly information-integrating (or “meta-
modal” – Pascual-Leone & Hamilton 2001; Reich et al.
2011) areas towards the top of the processing hierarchy,
can inform the predictions that cascade down, through
what were previously thought of as much more unimodal
areas, all the way to areas closer to the sensory peripheries.
Such effects appear inconsistent with the idea of V1 as a
site for simple, stimulus-driven, bottom-up feature-detec-
tion using cells with fixed (context-inflexible) receptive
fields. But they are fully accommodated by models that
depict V1 activity as constantly negotiated on the basis of

a flexible combination of top-down predictions and
driving sensory signal.
But then why, given this unifying model in which the

senses work together to provide ongoing “feedback” on
top-down predictions that aim to track causal structure in
the world, do we experience sight as different from
sound, touch as different from smell, and so on? Why,
that is, do we not simply experience the overall best-esti-
mated external states of affairs without any sense of the
structure of distinct modalities in operation as we do so?
This is a surprisingly difficult question, and any answer

must remain tentative in advance of a mature scientific
story about conscious experience itself. A place to start,
though, is by noticing that despite the use of a single
general processing strategy (the use of top-down predic-
tions to attempt to explain away sensory prediction error),
there remain important differences between what is
being “explained away” within the different modalities.
This is probably best appreciated from the overarching per-
spective of Bayesian perceptual inference. Thus, vision,
haptics, taste, and audition each trade in sensory signals
captured by distinct transducers and routed via distinct
early processing pathways. The different sensory systems
then combine priors and driving signals in ways that may
yield differing estimates even of the very same distal
state. It is true that the overall job of the perceptual
system is to combine these multiple estimates into a
single unified model of the distal scene. But different
sensory systems specialize (unless one is pressed into
unusual service, as in the interesting case of sensory-substi-
tution technologies45) in estimating different environ-
mental features, and even where they estimate the same
feature, their estimates, and the reliability (in context) of
those estimates will vary. In a thick fog, for example,
vision is unreliable (delivering shape information with
high uncertainty) while touch is less affected, whereas
when wearing thick gloves the reverse may be true. That
means that even where two senses are reporting on the
very same environmental state (e.g., shape by sight, and
shape by touch) they may deliver different “guesses”
about what is out there: guesses that reflect inferences
made on the basis of distinct priors, different sensory
signals, and the differing uncertainties associated with
those signals.
Such differences, it seems to me, should be enough to

ground the obvious experiential differences between the
various modalities. At the same time, the operation of a
common underlying processing strategy (Bayesian infer-
ence, here implemented using hierarchical predictive
coding) accounts for the ease with which multiple conflict-
ing estimates are usually reconciled into a unified percept.
In this way the framework on offer provides a powerful set
of “fundamental cognitive particles” (generative models
and precision-weighted prediction-error-driven proces-
sing) whose varying manifestations may yet capture both
the variety and the hidden common structure of our
mental lives.
Difficult questions also remain concerning the best way

to connect an understanding of such “fundamental par-
ticles” and the gross structure of our daily (and by now mas-
sively culturally underwritten) conception of our own
mental lives. In this daily or “folk” conception, we rather
firmly distinguish between perceptions, thoughts,
emotions, and reasons, populating our minds with distinct
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constructs such as memories, beliefs, hopes, fears, and
(agent-level) expectations. We thus depict minds and
selves in ways that are likely to make at best indirect
contact (see, e.g., Barrett 2009; Clark 1989; Dennett
1978; 1987) with the emerging scientific vision. Yet brid-
ging between these visions (the manifest and the scientific
image; Sellars 1962) remains essential if we are to gain
maximal benefits from a better understanding of the
inner (and outer) machinery itself. It is essential if, for
example, we aspire to deploy our new understandings to
improve social relations and education, to increase human
happiness, or to inform our responses to social problems.
To bridge this gap will plausibly require effort and compro-
mise from both sides (Humphrey 2000), as the folk
conception alters under the influence of a scientific under-
standing that must itself recognize the causal potency of
the folk-psychological constructs: constructs which we
encounter and model just as surely as we encounter and
model other constructs such as marriage, divorce, and taxes.

4.4. Sensing and world

What, then, of the mind–world relation itself? Hohwy
(2007) suggests that:

One important and, probably, unfashionable thing that this
theory tells us about the mind is that perception is indirect …
what we perceive is the brain’s best hypothesis, as embodied
in a high-level generative model, about the causes in the
outer world. (Hohwy 2007, p. 322)

There is something right about this. The bulk of our daily
perceptual contact with the world, if these models are on the
mark, is determined as much by our expectations concerning
the sensed scene as by the driving signals themselves. Even
more strikingly, the forward flow of sensory information con-
sists only in the propagation of error signals, while richly con-
tentful predictions flow downward, interacting in complex
non-linear fashions via the web of reciprocal connections.
One result of this pattern of influence is a greater efficiency
in the use of neural encodings, since:

an expected event does not need to be explicitly represented or
communicated to higher cortical areas which have processed all
of its relevant features prior to its occurrence. (Bubic et al.
2010, p. 10)

If this is indeed the case, then the role of perceptual
contact with the world is only to check and, when necess-
ary, correct the brain’s best guessing concerning what is
out there. This is a challenging vision, as it suggests that
our expectations are in some important sense the primary
source of all the contents of our perceptions, even though
such contents are constantly being checked, nuanced, and
selected by the prediction error signals consequent upon
the driving sensory input.46 Perhaps surprisingly, the
immediate role of the impinging world is thus most
marked when error signals, in a well-functioning brain,
drive the kinds of plasticity that result in perceptual learn-
ing, rather than in the cases where we are simply success-
fully engaging a well-understood domain.

Nonetheless, we may still reject the bald claim that “what
we perceive is the brain’s best hypothesis.” Even if our own
prediction is indeed (at least in familiar, highly learnt con-
texts) doing much of the heavy lifting, it remains correct to
say that what we perceive is not some internal

representation or hypothesis but (precisely) the world.
We do so courtesy of the brain’s ability to latch on to how
the world is by means of a complex flow of sub-personal
processes. That flow, if these stories are on track, fully war-
rants the “Helmholtzian” description of perception as infer-
ence. But it is precisely by such means that biological
beings are able to establish a truly tight mind-world
linkage. Brains like these are statistical sponges structured
(sect. 1.2) by individual learning and evolutionary inheri-
tance so as to reflect and register relevant aspects of the
causal structure of the world itself.47

One place where this becomes especially evident is in the
treatment (sect. 2.2) of visual illusions as Bayes-optimal
percepts. The idea, recall, is that the percept – even in
the case of various effects and illusions – is an accurate esti-
mation of the most likely real-world source or property,
given noisy sensory evidence and the statistical distribution,
within some relevant sample, of real-world causes. This is
an important finding that has now been repeated in many
domains, including the sound-induced flash illusion
(Shams et al. 2005), ventriloquism effects (Alais & Burr
2004) and the impact of figure-ground convexity cues in
depth perception (Burge et al. 2010). Additionally, Weiss
et al.’s (2002) Bayes-optimal account of a class of static (fix-
ation-dependent) motion illusions has now been extended
to account for a much wider set of motion illusions gener-
ated in the presence of active eye movements during
smooth pursuit (see Freeman et al. 2010, and discussion
in Ernst 2010). Perceptual experience, even in these illusory
cases, thus looks to be veridically tracking statistical relations
between the sensory data and its most probable real-world
sources. The intervening mechanisms thus introduce no
worrisome barrier between mind and world. Rather, it is
only because of such sub-personal complexities that agents
like us can be perceptually open to the world itself.48

5. Taking stock

5.1. Comparison with standard computationalism

Just how radical is the story we have been asked to con-
sider? Is it best seen as an alternative to mainstream com-
putational accounts that posit a cascade of increasingly
complex feature detection (perhaps with some top-down
biasing), or is it merely a supplement to them: one whose
main virtue lies in its ability to highlight the crucial role
of prediction error in driving learning and response? I do
not think we are yet in a position to answer this question
with any authority. But the picture I have painted suggests
an intermediate verdict, at least with respect to the central
issues concerning representation and processing.
Concerning representation, the stories on offer are

potentially radical in at least two respects. First, they
suggest that probabilistic generative models underlie both
sensory classification and motor response. And second,
they suggest that the forward flow of sensory data is
replaced by the forward flow of prediction error. This
latter aspect can, however, make the models seem even
more radical than they actually are: Recall that the
forward flow of prediction error is here combined with a
downward flow of predictions, and at every stage of proces-
sing the models posit (as we saw in some detail in sect. 2.1)
functionally distinct “error units” and “representation
units.” The representation units that communicate
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predictions downward do indeed encode increasingly
complex and more abstract features (capturing context
and regularities at ever-larger spatial and temporal scales)
in the processing levels furthest removed from the raw
sensory input. In a very real sense then, much of the stan-
dard architecture of increasingly complex feature detection
is here retained. What differs is the shape of the flow of
information, and (relatedly) the pivotal role assigned to
the computation and propagation of prediction error.
A related issue concerns the extent to which the new fra-

mework reproduces traditional insights concerning the
specialization of different cortical areas. This is a large
question whose full resolution remains beyond the scope
of the present discussion. But in general, the hierarchical
form of these models suggests a delicate combination of
specialization and integration. Different levels learn and
deploy different sets of predictions, corresponding to
different bodies of knowledge, aimed at the level below
(specialization) but the system settles in a way largely deter-
mined by the overall flow and weighting of prediction error,
where this flow is itself varied according to current context
and the reliability and relevance of different types of infor-
mation (integration).49

A second source of potential radicalism lies with the sug-
gestion (sect. 1.5) that, in extending the models to include
action (“action-oriented predictive processing”), we might
simultaneously do away with the need to appeal to goals
and rewards, replacing them with the more austere con-
struct of predictions. In this vein, we read that:

Crucially, active inference does not invoke any “desired conse-
quences.” It rests only on experience-dependent learning and
inference: Experience induces prior expectations, which
guide perceptual inference and action. (Friston et al. 2011,
p. 157)

In this desert landscape vision, there are neither goals nor
reward signals as such. Instead, there are only (both learnt
and species-specific) expectations, across many spatial and
temporal scales, which directly enslave both perception
and action. Cost functions, in other words, are replaced
by expectations concerning actions and their sensory
(especially proprioceptive) consequences. Here, I remain
unconvinced. For even if such an austere description is
indeed possible (and for some critical concerns, see Gersh-
man & Daw 2012), that would not immediately justify our
claiming that it thereby constitutes the better tool for
understanding the rich organization of the cognitive
economy. To see this, we need only reflect that it’s all
“just” atoms, molecules, and the laws of physics too, but
that doesn’t mean those provide the best constructs and
components for the systemic descriptions attempted by
cognitive science. The desert landscape theorist thus
needs to do more, it seems to me, to demonstrate the expla-
natory advantages of abandoning more traditional appeals
to value, reward, and cost (or perhaps to show that those
appeals make unrealistic demands on processing or
implementation – see Friston 2011b).
What may well be right about the desert landscape story,

it seems to me, is the suggestion that utility (or more gen-
erally, personal and hedonic value) is not simply a kind of
add-on, implemented by what Gershman and Daw (2011,
p. 296) describe as a “segregated representation of prob-
ability and utility in the brain.” Instead, it seems likely
that we represent the very events over which probabilities
become defined in ways that ultimately fold in their

personal, affective, and hedonic significance. This folding-
in is probably especially marked in frontolimbic cortex
(Merker 2004). But the potent web of backward connec-
tions ensures that such folding-in, once it has occurred, is
able (as noted by Barrett & Bar 2009; see also sect. 2.2)
to impact processing and representation at every lower
stage of the complex processing hierarchy. If this proves
correct, then it is prediction error calculated relative to
these affectively rich and personal-history–laden expec-
tations that drives learning and response.
Thus construed, an action-oriented predictive processing

framework is not so much revolutionary as it is reassuringly
integrative. Its greatest value lies in suggesting a set of deep
unifying principles for understanding multiple aspects of
neural function and organization. It does this by describing
an architecture capable of combining high-level knowledge
and low-level (sensory) information in ways that systemati-
cally deal with uncertainty, ambiguity, and noise. In so
doing it reveals perception, action, learning, and attention
as different but complementary means to the reduction
of (potentially affect-laden and goal-reflecting) prediction
error in our exchanges with the world. It also, and simul-
taneously, displays human learning as sensitively responsive
to the deep statistical structures present in both our natural
and human-built environments. Thus understood, action-
oriented predictive processing leaves much unspecified,
including (1) the initial variety of neural and bodily struc-
tures (and perhaps internal representational forms) man-
dated by our unique evolutionary trajectory, and (2) the
acquired variety of “virtual” neural structures and represen-
tational forms installed by our massive immersion in
“designer environments” during learning and development.
To fill in these details requires, or so I have argued, a

deep (but satisfyingly natural) engagement with evolution-
ary, embodied, and situated approaches. Within that
context, seeing how perception, action, learning, and atten-
tion might all be constructed out of the same base materials
(prediction and prediction error minimization) is powerful
and illuminating. It is there that Friston’s ambitious syn-
thesis is at its most suggestive, and it is there that we
locate the most substantial empirical commitments of the
account. Those commitments are to the computation (by
dedicated error units or some functionally equivalent
means) and widespread use by the nervous system of pre-
cision-weighted prediction error, and its use as proxy for
the forward flow of sensory information. The more wide-
spread this is, the greater the empirical bite of the story.
If it doesn’t occur, or occurs only in a few special circum-
stances, the story fails as a distinctive empirical account.50

5.2. Conclusions: Towards a grand unified theory of the
mind?

Action-oriented predictive processing models come tanta-
lizingly close to overcoming some of the major obstacles
blocking previous attempts to ground a unified science of
mind, brain, and action. They take familiar elements from
existing, well-understood, computational approaches
(such as unsupervised and self-supervised forms of learning
using recurrent neural network architectures, and the use
of probabilistic generative models for perception and
action) and relate them, on the one hand, to a priori con-
straints on rational response (the Bayesian dimension),
and, on the other hand, to plausible and (increasingly)
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testable accounts of neural implementation. It is this potent
positioning between the rational, the computational, and
the neural that is their most attractive feature. In some
ways, they provide the germ of an answer to Marr’s
dream: a systematic approach that addresses the levels of
(in the vocabulary of Marr 1982) the computation, the
algorithm, and the implementation.

The sheer breadth of application is striking. Essentially
the same models here account for a variety of superficially
disparate effects spanning perception, action, and atten-
tion. Indeed, one way to think about the primary “added
value” of these models is that they bring perception,
action, and attention into a single unifying framework.
They thus constitute the perfect explanatory partner, I
have argued, for recent approaches that stress the embo-
died, environmentally embedded, dimensions of mind
and reason.51 Perception, action, and attention, if these
views are correct, are all in the same family business: that
of reducing sensory prediction error resulting from our
exchanges with the environment. Once this basic family
business is revealed, longer-term environmental structur-
ing (both material and socio-cultural) falls neatly into
place. We structure our worlds and actions so that most
of our sensory predictions come true.

But this neatness hides important complexity. For,
another effect of all that material and socio-cultural scaf-
folding is to induce substantial path-dependence as we con-
front new problems using pre-existing material tools and
inherited social structures. The upshot, or so I have
argued, is that a full account of human cognition cannot
hope to “jump” directly from the basic organizing principles
of action-oriented predictive processing to an account of
the full (and in some ways idiosyncratic) shape of human
thought and reason.

What emerges instead is a kind of natural alliance. The
basic organizing principles highlighted by action-oriented
predictive processing make us superbly sensitive to the
structure and statistics of the training environment. But
our human training environments are now so thoroughly
artificial, and our explicit forms of reasoning so deeply
infected by various forms of external symbolic scaffolding,
that understanding distinctively human cognition
demands a multiply hybrid approach. Such an approach
would combine the deep computational insights coming
from probabilistic generative approaches (among which
figure action-oriented predictive processing) with solid
neuroscientific conjecture and with a full appreciation of
the way our many self-structured environments alter and
transform the problem spaces of human reason. The
most pressing practical questions thus concern what
might be thought of as the “distribution of explanatory
weight” between the accounts on offer, and approaches
that explore or uncover these more idiosyncratic or evol-
utionary path-dependent features of the human mind,
and the complex transformative effects of the socio-cultural
cocoon in which it develops.

Questions also remain concerning the proper scope of
the basic predictive processing account itself. Can that
account really illuminate reason, imagination, and action-
selection in all its diversity? What do the local approxi-
mations to Bayesian reasoning look like as we depart
further and further from the safe shores of basic perception
and motor control? What new forms of representation are
then required, and how do they behave in the context of the

hierarchical predictive coding regime? How confident are
we of the basic Bayesian gloss on our actual processing?
(Do we, for example, have a firm enough grip on when a
system is computing its outputs using a “genuine approxi-
mation” to a true Bayesian scheme, rather than merely
behaving “as if” it did so?)
The challenges (empirical, conceptual, and methodologi-

cal) are many and profound. But the potential payoff is
huge. What is on offer is a multilevel account of some of
the deepest natural principles underlying learning and
inference, and one that may be capable of bringing percep-
tion, action, and attention under a single umbrella. The
ensuing exchanges between neuroscience, computational
theorizing, psychology, philosophy, rational decision
theory, and embodied cognitive science promise to be
among the major intellectual events of the early twenty-
first century.
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NOTES
1. This remark is simply described as a “scribbled, undated,

aphorism” in the online digital archive of the scientist’s journal:
See http://www.rossashby.info/index.html.

2. I am greatly indebted to an anonymous BBS referee for
encouraging me to bring these key developments into clearer
(both historical and conceptual) focus.

3. The obvious problem was that this generative model itself
needed to be learnt: something that would in turn be possible if
a good recognition model was already in place, since that could
provide the right targets for learning the generative model. The
solution (Hinton et al. 1995) was to use each to gradually boot-
strap the other, using the so-called “wake-sleep algorithm” – a
computationally tractable approximation to “maximum likelihood
learning” as seen in the expectation-maximization (EM) algorithm
of Dempster et al. (1977). Despite this, the Helmholtz Machine
remained slow and unwieldy when confronted with complex
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problems requiring multiple layers of processing. But it represents
an important early version of an unsupervised multilayer learning
device, or “deep architecture” (Hinton 2002; 2007b; 2010; Hinton
& Salakhutdinov 2006; Hinton et al. 2006; for reviews, see Bengio
2009; Hinton 2007a).

4. This names the probability of an event (here, a worldly
cause), given some set of prior beliefs and the evidence (here,
the current pattern of sensory stimulation). For our purposes, it
thus names the probability of a worldly (or bodily) cause, con-
ditioned on the sensory consequences.

5. In speaking of “predictive processing” rather than resting
with the more common usage “predictive coding,” I mean to high-
light the fact that what distinguishes the target approaches is not
simply the use of the data compression strategy known as predic-
tive coding. Rather, it is the use of that strategy in the special
context of hierarchical systems deploying probabilistic generative
models. Such systems exhibit powerful forms of learning and are
able flexibly to combine top-down and bottom-up flows of infor-
mation within a multilayer cascade.

6. In what follows, the notions of prior, empirical prior, and
prior belief are used interchangeably, given the assumed context
of a hierarchical model.

7. Because these proposals involve the deployment of top-
down probabilistic generative models within a multilayer architec-
ture, it is the organizational structure of the neocortex that most
plausibly provides the requisite implementation. This is not to
rule out related modes of processing using other structures, for
example, in nonhuman animals, but simply to isolate the “best
fit.” Nor is it to rule out the possibility that, moment-to-
moment, details of the large-scale routing of information flow
within the brain might depend on gating effects that, although
cortically mediated, implicate additional structures and areas.
For some work on such gating effects among cortical structures
themselves, see den Ouden et al. (2010).

8. I have adopted the neuroanatomist practice of labeling con-
nections simply as “backward” and “forward” so as to avoid the
functional implications of the labels “feedback” and “feedfor-
ward.” This is important in the context of predictive processing
models, since it is now the forward connections that are really pro-
viding (by conveying prediction error) feedback on the downward-
flowing predictions – see Friston (2005), Hohwy (2007), and dis-
cussion in section 2.5 of the present article. Thanks to one of
the BBS reviewers for this helpful terminological suggestion.

9. Notice that an error signal thus construed is highly informa-
tive, and in this respect it differs from the kinds of error signal
familiar from control theory and systems engineering. The latter
are mostly simple signals that represent the amount of error/mis-
match. The former (“prediction error signals”) are much richer
and carry information not just about the quantity of error but
(in effect) about the mismatched content itself. It is in this
sense that the residual errors are able, as it is sometimes said
(Feldman & Friston 2010) to stand in for the forward flow of
sensory information itself. Prediction errors are as structured
and nuanced in their implications as the predictions relative to
which they are computed. (Thanks to an anonymous BBS
referee for suggesting this important clarification).

10. Hosoya et al. here build on earlier work by Srinivasan et al.
(1982). See also information-theoretic treatments of mutual infor-
mation, such as Linsker (1989). For a larger perspective, see Clif-
ford et al. (2007).

11. What about more common forms of perceptual alterna-
tion, such as those induced by ambiguous figures like the
Necker cube or the duck-rabbit? In these instances, the gross
driving sensory input is exactly the same for the two percepts,
so switching cannot be induced simply by the ongoing influence
of the unexplained portions of bottom-up input. Instead, such
cases are best explained by a similar process involving attentional
modulations (which may, but need not, be deliberate). Attention
(see sect. 2.3) serves to increase the gain on select error units.
By altering the gain on some error units and not others, the

impact of the driving sensory signal is effectively altered so that
the best interpretation flips. Attention thus engages the same
(broadly Bayesian) mechanism, but via a different (and potentially
less automatic) route. This also explains, within the present frame-
work, why we have much more control over the alternation rate in
the case of ambiguous figures (as demonstrated by Meng & Tong
2004).
12. This is also known (see, e.g., Friston et al. 2009) as “active

inference.” I coin “action-oriented predictive processing” as it
makes clear that this is an action-encompassing generalization of
the (hierarchical) predictive coding story about perception. It
also suggests (rightly) that action becomes conceptually primary
in these accounts, since it provides the only way (once a good
world model is in place and aptly activated) to actually alter the
sensory signal so as to reduce sensory prediction error – see
Friston (2009, p. 295). In addition, Friston’s most recent work
on active inference looks to involve a strong commitment (see
especially Friston 2011a) to the wholesale replacement of value
functions, considered as determinants of action, with expectations
(“prior beliefs,” though note that “belief” here is very broadly con-
strued) about action. This is an interesting and challenging sugges-
tion that goes beyond claims concerning formal equivalence and
even beyond the observations concerning deep conceptual
relations linking action and perception. “Action-oriented predic-
tive processing,” as I shall use the term, remains deliberately
agnostic on this important matter (see also sect. 5.1).
13. I note in passing that this radical view resonates with some

influential philosophical work concerning high level (reflective)
intentions and actions: specifically, Velleman’s (1989) account of
practical reasoning in which intentions to act are depicted as
self-fulfilling expectations about one’s own actions (see, e.g., Vel-
leman 1989, p. 98).
14. The most fundamental aspect of the appeal to free energy,

Friston claims, is that it provides an organismically computable
window on surprise (i.e., surprisal) itself, since “…surprise
cannot be quantified by an agent, whereas free energy can”
(Friston 2010, p. 55). I read this as meaning, in the present
context, that prediction error is organismically computable,
since it represents (as we saw in sect. 1.2) an internally calculable
quantity. This, however, is not a feature I will attempt to explore in
the present treatment.
15. For an interesting critique of the most ambitious version of

the free energy story, see section 5.1 in Gershman and Daw
(2012).
16. This kind of efficiency, as one of the BBS referees nicely

noted, is something of a double-edged sword. For, the obvious
efficiencies in forward processing are here bought at the cost of
the multilevel generative machinery itself: machinery whose
implementation and operation requires a whole set of additional
connections to realize the downward swoop of the bidirectional
hierarchy. The case for predictive processing is thus not convin-
cingly made on the basis of “communicative frugality” so much
as upon the sheer power and scope of the systems that result.
17. In personal correspondence, Lee de-Wit notes that his

usage follows that of, for example, Murray et al. (2004) and
Dumoulin and Hess (2006), both of whom contrast “predictive
coding” with “efficient coding,” where the former uses top-
down influence to subtract out predicted elements of lower-
level activity, and the latter uses top-down influence to enhance
or sharpen it. This can certainly make it look as if the two
stories (subtraction and sharpening) offer competing accounts
of, for example, fMRI data such as Murray et al. (2002) showing
a dampening of response in early visual areas as higher areas
settled into an interpretation of a shape stimulus. The accounts
would be alternatives, since the dampening might then reflect
either the subtraction of well-predicted parts of the early response
(“predictive coding”) or the quashing of the rest of the early signal
and the attendant sharpening of the consistent elements. The
models I am considering, however, accommodate both subtrac-
tion and sharpening (see main text for details). This is therefore
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an instance (see sect. 5.1) in which more radical elements of the
target proposals (here, the subtracting away of predicted signal
elements) turn out, on closer examination, to be consistent with
more familiar effects (such as top-down enhancement).

18. The consistency between selective sharpening and the
dampening effects of “explaining away” also makes it harder –
though not impossible – to tease apart the empirical implications
of predictive coding and “evidence accumulation” accounts such
as Gold and Shadlen’s (2001) – for a review, see Smith and Rat-
cliff (2004). For an attempt to do so, see Hesselmann et al.
(2010).

19. In this (2008a) treatment Spratling further argues that the
forms of hierarchical predictive coding account we have been con-
sidering are mathematically equivalent to some forms of “biased
competition” model, but that they nonetheless suggest different
claims concerning neural implementation. I take no position on
these interesting claims here.

20. For an early occurrence of this proposal in the literature of
cognitive neuroscience, see Anderson and Van Essen (1994). That
treatment also anticipates (although it does not attempt to model)
the crucial role of top-down expectations and dynamic forms of
Bayesian inference.

21. Thanks to one of the BBS reviewers for suggesting this
important nuance to the temporal story.

22. This means that we need to be very careful when general-
izing from ecologically strange laboratory conditions that effec-
tively deprive us of such ongoing context. For some recent
discussion, see Kveraga et al. (2007), Bar (2007), Barrett and
Bar (2009), and Fabre-Thorpe (2011).

23. An interesting alternative to the inference-rich Bayesian
account is suggested by Purves and Lotto (2003), who offer a
more direct account in terms of the bare statistics of image-
source relationships. For a comparison with Bayesian approaches,
see Howe et al. (2006).

24. Some of the earliest work depicting perception and per-
ceptual illusions as involving Bayesian inference is that of Hans-
Georg Geissler, working in the 1970s in East Germany. This
work, unfortunately, was not widely known outside the DDR
(Deutsche Demokratische Republik) but see, for example, Geiss-
ler (1983; 1991).

25. I here adapt, merely for brevity of exposition, a similar
example from Friston (2002, p. 237).

26. Technically, there is always a single hierarchical generative
model in play. In speaking here of multiple internal models, I
mean only to flag that the hierarchical structure supports many
levels of processing which distribute the cognitive labor by build-
ing distinct “knowledge structures” that specialize in dealing with
different features and properties (so as to predict events and regu-
larities obtaining at differing temporal and spatial scales).

27. The clear lineage here is with work in connectionism and
recurrent artificial neural networks (see, e.g., Rumelhart et al.
1986, and early discussions such as Churchland 1989; Clark
1989). What is most exciting about the new proposals, it seems
to me, is that they retain many of the insights from this lineage
(which goes on to embrace work on Helmholz machines and
ongoing work on “deep architectures” – see sect. 1.1) while
making explicit contact with both Bayesian theorizing and con-
temporary neuroscientific research and conjecture.

28. Such effects have long been known in the literature, where
they emerged in work on sensory habituation, and most promi-
nently in Eugene Sokolov’s pioneering studies of the orienting
reflex. Sokolov concluded that the nervous system must learn
and deploy a “neuronal model” that is constantly matched to the
incoming stimulus, since even a reduction in the magnitude of
some habituated stimulus could engage “dishabituation” and
prompt a renewed response. See Sokolov (1960). See also
Bindra (1959), Pribram (1980), and Sachs (1967). Here and else-
where I am extremely grateful to one of the BBS referees, whose
extensive knowledge of the history of these ideas has greatly
enriched the present treatment.

29. For an excellent discussion of this recent work, see de-Wit
et al. (2010).

30. Lee de-Wit (personal communication) raises the intriguing
possibility that the distinction between encoding error and encod-
ing representational content might be realized in alternate
dynamics of the very same neuronal substrate, with early
responses encoding error and later ones settling into a represen-
tation of something like “agreed content.” In a related vein,
Engel et al. (2001) discuss the potential role of neural synchrony
as a means of implementing top-down influence on early
processing.

31. These terms, according to a memoir by Wendy Lehnert
(2007), were introduced by Bob Abelson as part of a keynote
address to the 3rd Annual Meeting of the Cognitive Science
Society in 1981.

32. The hierarchical predictive coding family of models that
(along with their extensions to action) form the main focus of
the present treatment are not, in my view, happily assimilated
to either of these camps. They clearly share Bayesian foundations
with the “pure” structured probabilistic approaches highlighted by
Griffiths et al., but their computational roots lie (as we saw in sect.
1.1) in work on machine learning using artificial neural networks.
Importantly, however, hierarchical predictive processing models
now bring “bottom-up” insights from cognitive neuroscience
into increasingly productive contact with those powerful compu-
tational mechanisms of learning and inference, in a unifying fra-
mework able (as Griffiths et al. correctly stress) to accommodate
a very wide variety of surface representational forms. Moreover,
such approaches are computationally tractable because local (pre-
diction-error minimizing) routines are being used to approximate
Bayesian inference. For some excellent antidotes to the appear-
ance of deep and irreconcilable conflict hereabouts, see
Feldman (2010) and Lee (2010).

33. We glimpse the power of the complex internal statistical
relationships enshrined in human languages in Landauer and col-
leagues’ fascinating work on “latent semantic analysis” (Landauer
& Dumais 1997; Landauer et al. 1998). This work reveals the vast
amount of information now embodied in statistical (but deep, not
first order) relations between words and the larger contexts (sen-
tences and texts) in which they occur. The symbolic world we
humans now immerse ourselves in is demonstrably chock-full of
information about meaning-relations in itself, even before we
(or our brains) attempt to hook any of it to practical actions and
the sensory world.

34. For example, Stanislas Dehaene’s (2009) “neural re-
cycling” account of the complex interplay between neural precur-
sors, cultural developments, and neural effects within the key
cognitive domains of reading and writing.

35. Such hyperpriors could, for example, be “built-in” by
“winner-takes-all” forms of lateral (within layer) cortical inhi-
bition – see Hohwy et al. (2008, p. 691).

36. As helpfully pointed out by one of the BBS referees.
37. The introduction of hyperpriors into these accounts is just

a convenient way of gesturing at the increasing levels of abstrac-
tion at which prior expectations may be pitched. Some expec-
tations, for example, may concern the reliability or shape of the
space of expectations itself. In that sense, hyperpriors, although
they can sound quite exotic, are in no way ad hoc additions to
the account. Rather, they are just priors in good standing (but
maintaining the distinction makes it a bit easier to express and
compute some things). Like all priors, they then impact system
dynamics in various ways, according to their specific contents.

38. This worry (concerning the appeal to hyperpriors) was
first drawn to my attention by Mark Sprevak (personal
communication).

39. A much better understanding of such multiple interacting
mechanisms (various slow neuromodulators perhaps acting in
complex concert with neural synchronization) is now needed,
along with a thorough examination of the various ways and
levels at which the flow of prediction and the modulating effects
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of the weighting of prediction error (precision) may be manifest
(for some early forays, see Corlett et al. 2010; see also Friston
& Kiebel 2009). Understanding more about the ways and levels
at which the flow and impact of prediction error may be manipu-
lated is vitally important if we are to achieve a better understand-
ing of the multiple ways in which “attention” (here understood –
see sect. 2.3 – as various ways of modifying the gain on prediction
error) may operate so as to bias processing by flexibly controlling
the balance between top-down and bottom-up influence.

40. There are probably milder versions of this everywhere,
both in science (Maher 1988) and in everyday life. We tend to
see what we expect, and we use that to confirm the model that
is both generating our expectations and sculpting and filtering
our observations.

41. Intriguingly, the authors are also able to apply the model to
one non-pharmacological intervention: sensory deprivation.

42. This need not imply an ability deliberately to engage in
such a process of self-generation. Such rich, deliberate forms of
imagining may well require additional resources, such as the
language-driven forms of cognitive “self-stimulation” described
in Dennett (1991), Chapter 8.

43. It is perhaps worth remarking that, deep duality notwith-
standing, nothing in the present view requires that the system,
when engaged in imagery-based processing, will typically
support the very same kinds of stability and richness of experi-
enced detail that daily sensory engagements offer. In the
absence of the driving sensory signal, no stable ongoing infor-
mation about low-level perceptual details is there to constrain
the processing. As a result, there is no obvious pressure to main-
tain or perhaps even to generate (see Reddy et al. 2010) a stable
hypothesis at the lower levels: there is simply whatever task-deter-
mined downward pressure the active higher-level encoding exerts.

44. Common features include the appeal to forward models
and the provision of mechanisms (such as Kalman filtering – see
Friston 2002; Grush 2004; Rao & Ballard 1999) for estimating
uncertainty and (thus) flexibly balancing the influence of prior
expectations and driving sensory inputs. Indeed, Grush (2004,
p. 393) cites the seminal predictive coding work by Rao and
Ballard (1999) as an account of visual processing compatible
with the broader emulator framework. In addition, Grush’s
account of perception as “environmental emulation” (see section
5.2 of Grush 2004) looks highly congruent with the depiction
(Friston 2003 and elsewhere) of perception as reconstructing
the hidden causes structuring the sensory signal. Where the
accounts seem to differ is in the emphasis placed on prediction
error as (essentially) a replacement for the sensory signal itself,
the prominence of a strong Bayesian interpretation (using the
resources of “empirical Bayes” applied across a hierarchy of pro-
cessing stages), and the attempted replacement of motor com-
mands by top-down proprioceptive predictions alone (for a nice
treatment of this rather challenging speculation, see Friston
2011a). It would be interesting (although beyond the scope of
the present treatment) to attempt a more detailed comparison.

45. An account of such transformed uses might be possible
within the action-oriented predictive coding framework. The
key to such an account would, I conjecture, be to consider the
potential of the substituting technologies to deliver patterns of
sensory stimulation that turn out to be best predicted by the use
of the very same intermediate-level generative models that
characterize the substituted modality. See also Prinz (2005).

46. Thanks to Susanna Siegel for useful discussion of this
point.

47. For some further discussion, see Friston (2005, p. 822).
48. This way of describing things was suggested by my col-

league Matt Nudds (personal communication).
49. For the general story about combining specialization and

integration, see Friston (2002) and discussion in Hohwy (2007).
For a more recent account, including some experimental evidence
concerning the possible role of prediction error in modulating
inter-area coupling, see den Ouden et al. (2010).

50. The empirical bet is thus, as Egner and colleagues recently
put it, that “the encoding of predictions (based on internal forward
models) and prediction errors may be a ubiquitous feature of cog-
nition in the brain… rather than a curiosity of reward learning…
or motor planning” (Egner et al. 2010, p. 16607).
51. When brought under the even-more-encompassing

umbrella of the “free energy principle” (sect. 1.6), the combined
ambition is formidable. If these accounts were indeed to mesh
in the way Friston (2010) suggests, that would reveal the very
deepest of links between life and mind, confirming and extending
the perspective known as “enactivist” cognitive science (see, e.g.,
Di Paolo 2009; Thompson 2007; Varela et al. 1991).
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Abstract:Clark appears to be moving toward epistemic internalism, which
he once rightly rejected. This results from a double over-interpretation of
predictive coding’s significance. First, Clark argues that predictive coding
offers a Grand Unified Theory (GUT) of brain function. Second, he over-
reads its epistemic import, perhaps even conflating causal and epistemic
mediators. We argue instead for a plurality of neurofunctional principles.

The predictive coding model of brain function is a deeply impor-
tant development for neuroscience, and Andy Clark does the
field a service with this careful, thorough, and accessible
review. We are concerned, however, that Clark’s account of
the broad implications of model – and in particular his attempt
to turn it into a Grand Unified Theory (GUT) of brain function –
may be at least four dogmas of empiricism out-of-date (Ander-
son 2006; Chemero 2009; Davidson 1974; Quine 1951). Clark’s
adoption of a thoroughgoing inferential model of perception,
his neo-neo-Kantian view of the relationship between mind
and world, and his insistence that every sensory modality oper-
ates according to the same underlying causal-epistemic logic –
all (individually and severally) threaten to return us to the bad
old days of epistemic internalism (e.g., Rorty 1979) that the
field, including the author of Being There (Clark 1997), rightly
left behind.
Here we suggest that Clark (although not he alone) has made an

error in conflating different senses of “prediction” that ought to be
kept separate. The first sense of “prediction” (henceforth
prediction1) is closely allied with the notion of correlation, as
when we commonly say that the value of one variable “predicts”
another (height predicts weight; education predicts income;
etc.). Prediction1 is essentially model-free, and it comes down to
simple relationships between numbers. The second sense of “pre-
diction” (prediction2), in contrast, is allied instead with abductive
inference and hypothesis testing. Prediction2 involves such cogni-
tively sophisticated moves as inferring the (hidden) causes of our
current observations, and using that hypothesis to predict future
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observations, both as we passively monitor and actively intervene
in the world. It is theory laden and model-rich.

We have no trouble believing that a fundamental part of our
exquisite attunement to environmental contingencies involves
sensitivity to (and the ability to make use of) inter- and cross-
modal correlations in sensory signals. Sensitivity to temporal and
spatial (e.g., across the retina) correlations could underwrite
many functional advantages, including the ones Clark highlights,
such as reducing sensory bandwidth and drawing attention to
salient departures from expectations. In this sense we share
Clark’s belief that predictive1 coding is likely to be a ubiquitous
and fundamental principle of brain operation; neural nets are
especially good at computing correlations.

However, we don’t think that evidence for predictive1 coding
warrants a belief in predictive2 coding. And it is only from
predictive2 coding that many of Clark’s larger implications follow.

Clark makes the move from predictive1 coding to predictive2
coding largely by relying on an innovative account of binocular
rivalry offered by Hohwy et al. (2008). In Clark’s somewhat sim-
plified version of their proposal, the experienced alternation
between seeing the face stimulus presented to one eye and the
house stimulus presented to the other is explained by a knowl-
edge-driven alternation between rival hypotheses (face at location
x, house at location x) neither of which can account for all of the
observations. According to Clark, the reason the images don’t fuse
and lead to a visual steady-state is because we know that faces and
houses can’t coexist that way. If this knowledge-driven account is
the correct way to understand something as perceptually basic as
binocular rivalry, then predictive2 coding can begin to look like a
plausible, multilevel and unifying explanation of perception,
action and cognition: perception is cognitive and inferential; infer-
ence perceptual; and all of it is active.

But while the predictive2 coding model of binocular rivalry may
be consistent with much of the data, it is far from the only possible
explanation of the phenomenon. Here is an outline of a reasonable
predictive1 coding account: Given the generally high-level of
cross-correlation in the inputs of our two eyes, the left eye
signal would predict1 greater correlation with the right eye than
is currently in evidence; this would weaken the inputs associated
with the left eye, unmasking the inputs associated with the right
eye, which would predict1 cross-correlated left eye signals . . .
and so on. However far this particular proposal could be taken,
the point is one can account for the phenomenon with low-
level, knowledge-free, redundancy-reducing inhibitory inter-
actions between the eyes (see, e.g., Tong et al. 2006). After all,
binocular rivalry also occurs with orthogonal diffraction gratings,
indicating that high-level knowledge of what is visually possible
needn’t be the driver of the visual oscillation; humans don’t
have high-level knowledge about the inconsistency of orthogonal
gratings. In general, although not every pair of stimuli induce bis-
table perceptions, the distinction between those that do and those
that don’t appears to have little to do with knowledge (see Blake
[2001] for a review). Adopting a predictive2 coding account is a
theoretical choice not necessitated by the evidence. It is hardly
an inconsequential choice.

Using predictive2 coding as a GUT of brain function, as Clark
proposes, is problematic for several reasons. The first problem is
with the very idea of a grand unified theory of brain function.
There is every reason to think that there can be no grand
unified theory of brain function because there is every reason to
think that an organ as complex as the brain functions according
to diverse principles. It is easy to imagine knowledge-rich
predictive2 coding processes employed in generating expectations
that we will confront a jar of mustard upon opening the refriger-
ator door, while knowledge-free predictive1 coding processes will
be used to alleviate the redundancy of sensory information. We
should be skeptical of any GUT of brain function. There is also
a problem more specific to predictive2 coding as a brain GUT.
Taking all of our experience and cognition to be the result of
high-level, knowledge-rich predictive2 coding makes it seem as

if the world that we experience and think about is a projection
of our minds. Western philosophy has been down this lonely
and unproductive road many times. It would be a shame if the
spotlight that Clark helpfully shines on this innovative work in
neuroscience were to lead us back there.

Attention and perceptual adaptation
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Abstract: Clark advertises the predictive coding (PC) framework as
applying to a wide range of phenomena, including attention. We argue
that for many attentional phenomena, the predictive coding picture
either makes false predictions, or else it offers no distinctive explanation
of those phenomena, thereby reducing its explanatory power.

According to the predictive coding view, at every level of the
visual/cortical hierarchy, there are two kinds of units: error units
and representation units. Representations propagate downward
in the visual hierarchy whereas error signals propagate upward.
Error in this sense might be better called “discrepancy,” since it
is the discrepancy between what the visual system predicts (at a
given level) and what is represented at that level. Clark advertises
the predictive coding (PC) framework as applying to a wide range
of phenomena, including attention, which Clark says “is achieved
by altering the gain (the ‘volume,’ to use a common analogy) on
the error-units” (sect. 2.3, para. 6). We argue that for many atten-
tional phenomena, the predictive coding picture either makes
false predictions, or else it offers no distinctive explanation of
those phenomena, thereby reducing its explanatory power.

Consider a basic result in this area (Carrasco et al. 2004), which
is that attention increases perceived contrast by enhancing “the
representation of a stimulus in a manner akin to boosting its phys-
ical contrast” (Ling & Carrasco 2006, p. 1243). A cross-modal
study using auditory attention-attractors (Störmer et al. 2009)
showed that the contrast-boosting effect correlated with increased
activity in early stages of visual processing that are sensitive to
differences in contrast among stimuli. The larger the cortical
effect, the larger the effect on perceivers’ judgments. Increasing
the contrast of a stimulus has an effect on the magnitude of per-
ceptual adaptation to that stimulus, causing greater threshold acti-
vation in the tilt after-effect and longer recovery time. Ling and
Carrasco (2006) showed that attending to a stimulus while adapt-
ing to that stimulus has the same effect as increasing the contrast
of the adapting stimulus. After attending to the adaptor (70% con-
trast), the contrast sensitivity of all observers was equivalent to the
effect of adapting to a 81–84% contrast adaptor.

How do these results look from a PC perspective? Suppose that
at time t1, the perceiver is not attending to the left side of space
but nonetheless sees a striped grid on the left with apparent con-
trast of 70%. Because there is no movement or other change, at
time t2, the visual system predicts that the patch will continue at
70%. But at t2 the perceiver attends to the patch, raising the
apparent contrast to, say, 82%. Now at t2 there is an error, a dis-
crepancy between what is predicted and what is “observed.” Since
the PC view says attention is turning up the volume on the error
representations, it predicts that at t3 the signal (the represented
contrast) should rise even higher than 82%. But that does
not happen.

There are two important lessons. First, the initial changes due
to attending come before there is an error (at t2 in the example),
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so the PC viewpoint cannot explain them. Second, the PC view
makes the false prediction that the changes due to attending
will be magnified.

Sometimes PC theorists assume the error signal is equal to the
input. Perhaps this identification makes some sense if the percei-
ver’s visual system has no “expectations,” say because the eyes
have just opened. But once the eyes have opened and things in
the environment are seen, it makes no sense to take the error
signal to be the sensory input.

The PC picture also seems to lack a distinctive explanation of
why attention increases spatial acuity. Yeshurun and Carrasco
(1998) showed that increased attention can be detrimental to per-
formance when resolution was already on the border of too high
for the scale of the texture, increasing acuity to the point where
the subject does not see the forest for the trees. Too little atten-
tion can also be detrimental, making it harder to see the trees. Yes-
hurun and Carrasco varied resolution of perception by presenting
textured squares (such as the one in Fig. 1) at different eccentri-
cities (the more foveal, the better the resolution). But they also
varied resolution by manipulating the focus of spatial attention:
With the eyes focused at the center, they attracted attention to
the left or to the right. Combining contributions to resolution
from eccentricity and attention, they found that there was an
optimal level of resolution for detecting the square, with detection
falling off on both ends. Single cell recordings in monkey visual
cortex reveal shrinking receptive fields (the area of space that a
neuron responds to) in mid-to-high level vision, specifically in
V4, MT, and LIP, and this shrinkage in receptive fields is a contri-
butor to explaining the increase in acuity (Carrasco 2011).

Does the PC framework have a distinctive explanation of atten-
tional effects on spatial acuity, in terms of “gain in error-units”? If,
due to the level of acuity, one does not see the square, then the
prediction of no square will be confirmed, and there will be no dis-
crepancy (“error”) to be magnified. Since the gain in error units is
the only distinctive resource of the PC view for explaining atten-
tional phenomena, the view seems to have no distinctive expla-
nation of this result either. Can the predictive coding point of
view simply borrow Carrasco’s explanation? That explanation is
a matter of shrinkage in receptive fields of neurons in the rep-
resentation nodes, not anything to do with prediction error, so
the predictive coding point of view would have to concede that
attention can act directly on representation nodes without a
detour through error nodes.

Finally, attention to certain items – for example, random dot
patterns –makes them appear larger. Anton-Erxleben et al.
(2007) showed that the size of the effect is inversely related to
the size of the stimulus, explaining the result in terms of receptive
field shift (such shifts are also observed from single cell recordings
in monkey visual areas; Womelsdorf et al. 2006). This explanation
depends on the retinotopic and therefore roughly spatiotopic
organization common to many visual areas – not on error units.
Neurons whose receptive fields lie on the periphery of the
pattern shift their receptive fields so as to include the pattern,
moving the portion of the spatiotopically represented space to
include the pattern, resulting in the representation of the

pattern as occupying a larger area. Here too, predictive coding
offers no distinctive explanation.
The facts of attention and adaptation do not fit well with the

predictive coding view or any picture based on how “sensory
neurons should behave” (Lochmann et al. 2012) rather than the
facts of how they do behave. Without a distinctive explanation
of these facts, the explanatory promises of predictive coding are
overdrawn.

Attention is more than prediction precision
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Abstract: A cornerstone of the target article is that, in a predictive coding
framework, attention can be modelled by weighting prediction error with a
measure of precision. We argue that this is not a complete explanation,
especially in the light of ERP (event-related potentials) data showing
large evoked responses for frequently presented target stimuli, which
thus are predicted.

The target article by Andy Clark champions predictive coding as
a theory of brain function. Perception is the domain in which
many of the strongest claims for predictive coding have been
made, and we focus on that faculty. It is important to note
that there are other unifying explanations of perception, one
being that the brain is a salience detector, with salience referring
broadly to relevance to an organism’s goals. These goals reflect a
short-term task set (e.g., searching a crowd for a friend’s face), or
more ingrained, perhaps innate motivations (e.g., avoiding phys-
ical threat). A prominent perspective is, exactly, that one role of
attention is to locate and direct perception towards, salient
stimuli.
The target article emphasises the importance of evoked

responses, particularly EEG event-related potentials (ERPs), in
adjudicating between theories of perception. The core idea is
that the larger the difference between an incoming stimulus and
the prediction, the larger the prediction error and thus the
larger the evoked response. There are indeed ERPs that are
clearly modulated by prediction error, for example, the Mismatch
Negativity (evoked by deviation from a repeating pattern of stimu-
lus presentation), the N400 (evoked by semantic anomalies), and

Figure 1 (Block & Siegel). A display of one of the textured figures (the square on the right) used by Yeshurun and Carrasco (1998). The
square appeared at varying degrees of eccentricity. With low resolution in peripheral locations, attention improved detection of the
square; but with high resolution in central locations, attention impaired detection.
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P3 responses to oddball stimuli. In addition, stimuli that violate
our expectations do often capture attention (Horstmann 2002),
consistent with predictive coding. However, such surprise-
driven orienting is just one aspect of attention, and we question
whether prediction error provides an adequate explanation for
attentional functioning as a whole.

A central aspect of attention, which makes perception highly
adaptive, is that it can purposefully select and enhance expected
stimuli. This arises when an arrow cues where a target will
appear, or a verbal instruction indicates it will be red. However,
in this context, ERPs are largest to the target stimuli (P1, N1,
N2pc, P3; Luck 2006), in line with a saliency account. Such heigh-
tened responses to predicted stimuli do not seem to sit comforta-
bly with predictive coding. As Clark highlights, resolution of this
conundrum has, in analogy with statistical tests, focused on pre-
cision (Feldman & Friston 2010). The two-sample t-test, say, is
a ratio of the difference of two means, and variability in the esti-
mate of that difference. Precision-weighted prediction error is
such a test: The difference between prediction and observation
is weighted by the precision or confidence in that difference –
that is, the inverse of variability, or, in other words, the signal
fed back up the sensory pathway, the evoked response, is a pre-
cision-weighted prediction error. Importantly, attention is pro-
posed to increase precision; that is, the brain has greater
confidence in its estimate of disparity between predicted and
observed when that observation is being spot-lit by attention,
and, indeed, perception does seem more accurate in the presence
of attention (Chennu et al. 2009). This then enables predictive
coding to generate big bottom-up responses to expected, in the
sense of attended stimuli, as simulated for spatial attention in
(Feldman 2010).

Although predictive coding is an elegant and intriguing
approach, obstacles remain to its being fully reconciled with the
saliency perspective. First, precision-weighting has a multiplica-
tive effect. Hence, there has to be a difference between observed
and predicted in the first place for precision to work on. If
observed is exactly as expected, however big precision might be,
the precision-weighted prediction error will be zero. Yet classic
EEG experiments show that attentional enhancement of ERP
components (e.g., P1 and N1) is greatest when targets appear in
the same location for many trials (Van Voorhis & Hillyard
1977). One could of course argue that there is always some
error, and that the effects of attention on precision are extremely
large relative to that error. However, depending upon the extent
to which precision modulates the prediction error, one could

obtain classically predictive or anti-predictive (i.e., salience
sensitive) patterns, and both patterns are found experimentally.
Thus, the theory really requires a computational explanation of
how the modulatory effect of precision varies across experimental
contexts, otherwise there is a risk that it becomes effectively
unfalsifiable.

Second, prediction error is passed back up the sensory pathway
so that parameters can be adjusted to improve predictions (i.e.,
learning), and the amount parameters change is a function of
the size of the precision-weighted prediction error. This,
however, raises a further problem with a big precision-weighted
prediction error being generated through a large (attention-gov-
erned) precision, when observed and predicted are similar.
Specifically, in this case, the parameters should not change and
certainly not a lot, even though precision-weighted prediction
error might mandate it.

Third, directing attention, and thus improving precision, at a
pre-determined location is one thing. But what makes attention
so adaptive is that it can guide towards an object at an unpredict-
able location – simply on the basis of features. For example, we
could ask the reader to find the nearest word printed in bold.
Attention will typically shift to one of the headers, and indeed
momentarily increase precision there, improving reading. But
this makes precision weighting a consequence of attending. At
least as interesting is the mechanism enabling stimulus selection
in the first place. The brain has to first deploy attention before a
precision advantage can be realised for that deployment. Salience
theory proposes that stimuli carrying a target feature become
more salient and thus draw attention. But which predictive
coding mechanism is sensitive to the match between a stimulus
feature and the target description? In typical visual search exper-
iments, observers are looking for, and finding, the same target in
trial after trial. For example, in our rapid serial visual presentation
experiments, each specific distractor appears very rarely (once or
twice), while pre-described targets appear very frequently. We
obtained effectively no evoked response for distractors but a
large deflection for the target (see Fig. 1). It seems that predictive
coding mandates little if any response for this scenario. If any-
thing, should the distractors not have generated the greatest
response, since they were (a) rare, and (b) not matching
predictions?

Even if one could devise a predictive coding framework that allo-
cated a higher precision to the target representation (which is a step
beyond its spatial allocation in Feldman 2010), it is unclear how it
could generate a massive precision-weighted prediction error

Figure 1 (Bowman et al.). An anti-predictive ERP pattern.
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specifically for targets, where predicted and observedmatch exactly.
It is also unclear why such an error is needed.

Applications of predictive control in
neuroscience
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Abstract: The sensory cortex has been interpreted as coding information
rather than stimulus properties since Sokolov in 1960 showed increased
response to an unexpected stimulus decrement. The motor cortex is also
organized around expectation, coding the goal of an act rather than a set
of muscle movements. Expectation drives not only immediate responses
but also the very structure of the cortex, as demonstrated by
development of receptive fields that mirror the structure of the visual
world.

Prediction is a powerful principle in neuroscience, and it is not a new
one. It has been central to interpretation of brain function since the
influential work ofE.N. Sokolov (1960) (see target article,Note 28).
He found that cortical responses depend not on the amplitude of an
incoming signal, but on its information value. An expected stimulus
caused hardly a ripple, while an unexpected one triggered what
Sokolov termed an orienting response. The key experiment was to
repeat a stimulus until its cortical signal nearly disappeared (habitu-
ation of the orienting response, or Clark’s “repetition suppression”).
Then Sokolov decreased the stimulus amplitude or its duration.
Sokolov reasoned that if the cortex were merely echoing stimulus
properties the response should have decreased, but instead it
increased.With a qualitative change, no amount of fussingwith non-
linearities and thresholds could explain the result. The cortex was
coding not stimulus properties but stimulus information, the differ-
ence between signal and expectation. In this context it is no wonder
that we ignore and fail to remember most of the vast streams of
signals emanating from our millions of sensory receptors. So
Clark’s prediction thesis has been the dominant interpretation of
cortical sensory coding for more than a half-century.

Another insight that shaped neuroscience is that the brain is
not about representing the stimulus; it is about organizing
action. The evidence begins with an anatomical paradox that
the precentral “motor” cortex is innervated by the dorsal thala-
mus, a region homologous to the dorsal spinal cord that pro-
cesses sensory information (Pribram 1971, p. 241). Pribram
asks why the motor cortex should be closely tied to an otherwise
sensory structure. His answer is that the motor cortex is really a
sensory cortex for an image of achievement, analogous to the
images in sensory regions and organized similarly. Motor cortex
codes environmental contingencies, not literal muscle move-
ments, and continuously compares progress in execution of an
act with its goal.

Similarly, it has long been known that receptive fields in sensory
cortex are shaped not only by anatomy but also by experience, so
that they encode best what is predicted to be present in the environ-
ment. I was privileged to witness the first evidence that sensory
experience could tune the receptive field properties of the
primary visual cortex (V1). Helmut Hirsch, then a Stanford graduate
student, was studying kittens that he raised wearing masks that
exposed one eye to vertical stripes and the other to horizontal
stripes. Together with Nico Spinelli and Robert Phelps we began
recording from single cells in V1 of the mask-reared kittens, using
the first automated receptive-field mapping apparatus. We prepared
our first kitten and dipped our microelectrode into its cortex.

The first cells we recorded had large, poorly defined receptive
fields of the sort to expect in a visually deprived cat. Then around

10 p.m. we found a cell with a huge, vertically oriented receptive
field. Perhaps it was an artifact, the bursting discharges of an
injured cell as the mapping stimulus swept vertically across our
screen. So we changed to a horizontal scan. The field remained,
five times bigger than any oriented receptive field ever recorded
from a cat. Our jaws dropped as we looked at each other, a
moment of discovery – this wasn’t a normal cortex, but something
completely different. It was the magical moment in science when
you know something about nature that no one else knows. We
covered one eye, then the other; the receptive field disappeared
and reappeared. Later that night we recorded several other
similar fields, all vertical or horizontal, all monocular, and all
huge. It turned out later that the receptive field orientations
matched the mask orientations for the corresponding eye
(Hirsch & Spinelli 1970). Plasticity in this cat’s cortex extended
beyond any mere selection of normal receptive fields, beyond any-
thing that anyone had suspected. The cat had reorganized its
cortex from visual experience alone. Clearly the cortex, by the
structure of its receptive fields, was predicting future input.
This would be an interesting curiosity if not for its under-appreci-

ated implication that the same process must be occurring in normal
cats, and, by extension, in humans as well. Sensory receptive fields
are tuned to the structure of the world that the animal encounters
in its early experience. The receptive fields of normal animals have a
1/f statistical structure, as does the natural world.
It is even possible that the dominance of the foveal projection

onto V1, a quarter of the entire surface in humans, is a conse-
quence of the huge number of projections coming up from the
periphery. The small size of V1 receptive fields representing the
fovea might originate from the better optics and smaller conver-
gence of the foveal anatomy. The distribution of receptive field
orientations and spatial frequencies reflects the properties of the
normal visual environment (Switkes et al. 1978); the cortex is pre-
dicting its own input by its very structure. This is precisely what
Clark realizes when he concludes, “dig a little deeper and what
we discover is a model of key aspects of neural functioning that
makes structuring our worlds genuinely continuous with structur-
ing our brains” (sect. 3.4, para. 1). But the evidence has been there
all along.

When the predictive brain gets it really wrong
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Abstract: Clark examines the notion of the “predictive brain” as a unifying
model for cognitive neuroscience, from the level of basic neural processes
to sensorimotor control. Although we are in general agreement with this
notion, we feel that there are many details that still need to be fleshed
out from the standpoint of perception and action.

In his target article, Clark paints a diverse picture of how predic-
tion is a ubiquitous part of brain and behaviour interactions.
Taking heavy cues from Friston’s “free energy principle,” his
target article summarises ideas at the neural level, suggesting
that the critical variable for sensory coding and motor control is
the deviation from the expected signal, rather than the sensory
or motor processing per se. In the field of sensorimotor control,
this Bayesian approach is a popular one (e.g., Körding &
Wolpert 2004). Many researchers have built their careers
showing that, in a wide range of contexts, an individual’s motor be-
haviour can be modeled as the approximately optimal combi-
nation of the “undiluted” sensory input and the prior probability
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of that sensory event occurring, thus biasing the response one way
or the other. Similarly, a wide range of psychophysical exper-
iments have demonstrated that our conscious perception of
events in the world represents not veridical sensory input, but
the integration of multiple sources of evidence from our sensory
system and our prior experience, rather than the veridical (and
noisy) sensory input itself (Gregory 1998). An especially compel-
ling case for this Bayesian standpoint can be made from the
study of perceptual illusions, and several classic visual illusions
can be explained with this optimal integration strategy (Geisler
& Kersten 2002; Weiss et al. 2002). In these contexts, this inte-
gration is thought to overcome the noise in the system of our
sensory organs, maximising the likelihood of perceptual or
motor “success.”

Despite the apparent descriptive power of optimally combining
sensory prediction with sensory input, there are common situ-
ations where conscious perception is clearly not a product of Baye-
sian-style optimal integration. In fact, when we lift an object and
experience its weight, our conscious perception of how heavy it
feels is almost exactly the opposite of what might be expected if
a perceiver integrates perpetual priors with sensory input. This
incongruence is easily demonstrated with the famous size–
weight illusion (SWI), first described in 1891 by Augustin Char-
pentier (translation by Murray et al. 1999). The SWI occurs
when small and large objects, that otherwise look similar to one
another, are adjusted to have identical weights. When individuals
lift these objects, the small one feels substantially heavier than the
(equally-weighted) larger one – an effect that is persistent and
apparently cognitively impenetrable. The mechanism that under-
pins this illusion is still something of a mystery. It has long been
contended (in a rather vague way) that the illusion is caused by
the violation of an individual’s expectations about how heavy
each object will be – namely, the expectation that the large
objects will outweigh the small objects (Ross 1969). It is not diffi-
cult to imagine how this prior is built up, given the consistency of
the relationship between size and weight outside of the laboratory
setting. It is repeatedly encountering this positive size/weight
relationship throughout our entire lives that presumably serves
to establish a very powerful prior for our perceptions of heaviness
(Flanagan et al. 2008). Crucially, however, this prior is not inte-
grated into the lifter’s percept of how heavy the objects feel, as
one might predict from a Bayesian optimal integration standpoint.
Instead, the lifter’s conscious perception of heaviness contrasts
the prior expectation, leading some authors to label the effect as
“anti-Bayesian” (Brayanov & Smith 2010). Variants of the SWI
can even manifest in a single, unchanging, object, which can be
made to feel different weights by simply manipulating an individ-
ual’s expectations of what they are about to lift (Buckingham &
Goodale 2010).

The functional significance of this contrastive effect has been
the source of great (and largely unresolved) debate –why would
our perceptual system be so stricken with errors? Extending the
conclusions of a recent study by Baugh and colleagues (Baugh
et al. 2012), it could be proposed that the SWI is a product of a
perceptual system specialised for the detection and subsequent
flagging of outliers in the statistics of the environment. Thus, con-
scious weight perception can be framed as an example of a task
where it is important to emphasise the unexpected nature of the
stimuli, in a system which presumably favours more efficient
coding of information.

As lifting behaviour is a largely predictive process, our fingertip
forces are driven by our expectations of how heavy something
looks. And, in a more conventional Bayesian fashion, the weight-
ing of these priors is rapidly adjusted (or rapidly ignored) by the
presence of lifting errors. This provides the sensorimotor system
with the best of both worlds – lifting behaviour that is flexible
enough to rapidly adapt to constantly changing environments
(e.g., a bottle of water which is being emptied by a thirsty
drinker), but will automatically “snap back” to the (generally
correct) lifting forces when the context of the lift is altered (so

that the next time a fresh bottle of water is grasped, the sensori-
motor prediction will have a good chance of being accurate).
Thus, when lifting SWI-inducing cubes for the first time, lifters
will apply excess force to the large cube and apply insufficient
force to the small cube the first time they lift them, but will lift
these two identically-weighted cubes with appropriately identical
forces after only a few experiences with them (Flanagan & Beltz-
ner 2000). Clearly, this adaptive behaviour is a consequence of a
complex interaction between short-term and long-term priors
(Flanagan et al. 2008) – a process that looks far more like the
Bayesian processes outlined by Clark in his target article (Braya-
nov & Smith 2010). It is tempting to ascribe a causal relationship
between the force errors and the perceptual ones. Remarkably,
however, the two kinds of errors appear to be completely isolated
from one another: The magnitude of the SWI remains constant
from one trial to the next, even in the face of the rapid trial-to-
trial adaptation of the gripping and lifting forces. This complicates
the situation even further by suggesting that there must be inde-
pendent sets of priors for motor control and perceptual/cognitive
judgements, which ultimately serve quite different functions.

In conclusion, we have outlined how the deceptively simple
SWI paradigm can uncover the operation of multiple priors oper-
ating simultaneously, with different weightings and different
goals. It is worth noting, however, that while the predictive
brain makes sense in a post-hoc way, providing a computationally
plausible parameter for both the perceptual and lifting effects
(Brayanov & Smith 2010), it is still very much a black-box expla-
nation – and, to date, the term “prior” seems to serve only as a
convenient placeholder in lieu of any tangible mechanism
linking expectations to the perceptual or motor effects they
appear to entail.

Expecting ourselves to expect: The Bayesian
brain as a projector

doi:10.1017/S0140525X12002208

Daniel C. Dennett
Center for Cognitive Studies, Tufts University, Medford, MA 02155.
ddennett@tufts.edu
ase.tufts.edu/cogstud/incbios/dennettd/dennettd.htm

Abstract: Clark’s essay lays the foundation for a Bayesian account of the
“projection” of consciously perceived properties: The expectations that
our brains test against inputs concern the particular affordances that
evolution has designed us to care about, including especially expectations
of our own expectations.

The “Bayesian” brain as a “hierarchical prediction machine” is an
enticing new perspective on old problems, for all the reasons
Clark articulates, ranging over fields as disparate as neuroanat-
omy, artificial intelligence, psychiatry, and philosophy; but he
also catalogues some large questions that need good answers.
While waiting for the details to come in, I want to suggest some
other benefits that this perspective promises. If it turns out not
to be sound, in spite of all the converging evidence Clark
describes, we will have all the more reason for regret.

It is everybody’s job – but particularly the philosophers’ job – to
negotiate the chasm between what Wilfrid Sellars (1962) called the
manifest image and the scientific image. The manifest image is the
everyday world of folk psychology, furnished with people and their
experiences of all the middle-sized things that matter. The scienti-
fic image is the world of quarks, atoms, and molecules, but also (in
this context particularly) sub-personal neural structures with par-
ticular roles to play in guiding a living body safely through life.
The two images do not readily fall into registration, as everybody
knows, leaving lots of room for confusion and compensatory
adjustment (nicely exemplified by the surprise/surprisal pair).
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Consider what I will call Hume’s Strange Inversion (cf. Dennett
2009). One of the things in our world is causation, and we think we
see causation because the causation in the world directly causes us
to see it – the same way round things in daylight cause us to see
round things, and tigers in moonlight cause us to see tigers.
When we see the thrown ball causing the window to break, the
causation itself is somehow perceptible “out there.” Not so, says
Hume. This is a special case of the mind’s “great propensity to
spread itself on external objects” (Treatise of Human Nature,
Hume 1739/1888/1964, I, p. xiv). In fact, he insisted, what we
do is misinterpret an inner “feeling,” an anticipation, as an external
property. The “customary transition” in our minds is the source of
our sense of causation, a quality of “perceptions, not of objects,”
but wemis-attribute it to the objects, a sort of benign user-illusion,
to speak anachronistically. As Hume notes, “the contrary notion is
so riveted in the mind” (p. 167) that it is hard to dislodge. It sur-
vives to this day in the typically unexamined assumption that all
perceptual representations must be flowing inbound from outside.

Here are a few other folk convictions that need Strange Inver-
sions: sweetness is an “intrinsic” property of sugar and honey,
which causes us to like them; observed intrinsic sexiness is what
causes our lust; it was the funniness out there in the joke that
caused us to laugh (Hurley et al. 2011). There is no more familiar
and appealing verb than “project” to describe this effect, but of
course everybody knows it is only metaphorical; colors aren’t lit-
erally projected (as if from a slide projector) out onto the front
surfaces of (colorless) objects, any more than the idea of causation
is somehow beamed out onto the point of impact between the bil-
liard balls. If we use the shorthand term “projection” to try to talk,
metaphorically, about the mismatch between manifest and scien-
tific image here, what is the true long story? What is literally going
on in the scientific image? A large part of the answer emerges, I
propose, from the predictive coding perspective.

Every organism, whether a bacterium or a member of Homo
sapiens, has a set of things in the world that matter to it and
which it (therefore) needs to discriminate and anticipate as best
it can. Call this the ontology of the organism, or the organism’s
Umwelt (von Uexküll 1934/1957). This does not yet have anything
to do with consciousness but is rather an “engineering” concept,
like the ontology of a bank of elevators in a skyscraper: all the
kinds of things and situations the elevators need to distinguish
and deal with. An animal’s Umwelt consists in the first place of
affordances (Gibson 1979), things to eat or mate with, openings
to walk through or look out of, holes to hide in, things to stand
on, and so forth. We may suppose that the Umwelt of a starfish
or worm or daisy is more like the ontology of the elevator than
like our manifest image. What’s the difference? What makes
our manifest image manifest (to us)?

Here is where Bayesian expectations could play an iterated role:
Our ontology (in the elevator sense) does a close-to-optimal job of
representing the things in the world that matter to the behavior our
brains have to control. Hierarchical Bayesian predictions accom-
plish this, generating affordances galore: We expect solid objects
to have backs that will come into view as we walk around them,
doors to open, stairs to afford climbing, cups to hold liquid, and
so forth. But among the things in our Umwelt that matter to our
well-being are ourselves! We ought to have good Bayesian expec-
tations about what we will do next, what we will think next, and
what we will expect next! And we do. Here’s an example:

Think of the cuteness of babies. It is not, of course, an “intrin-
sic” property of babies, though it seems to be. What you “project”
out onto the baby is in fact your manifold of “felt” dispositions to
cuddle, protect, nurture, kiss, coo over, . . . that little cutie-pie. It’s
not just that when your cuteness detector (based on facial pro-
portions, etc.) fires, you have urges to nurture and protect; you
expect to have those very urges, and that manifold of expectations
just is the “projection” onto the baby of the property of cuteness.
When we expect to see a baby in the crib, we also expect to “find it
cute” – that is, we expect to expect to feel the urge to cuddle it and
so forth. When our expectations are fulfilled, the absence of

prediction error signals is interpreted as confirmation that,
indeed, the thing in the world we are interacting with has the
properties we expected it to have. Cuteness as a property passes
the Bayesian test for being an objective structural part of the
world we live in, and that is all that needs to happen. Any
further “projection” process would be redundant. What is
special about properties like sweetness and cuteness is that their
perception depends on particularities of the nervous systems
that have evolved to make much of them. The same is of course
also true of colors. This is what is left of Locke’s (and Boyle’s) dis-
tinction between primary and secondary qualities.

Grounding predictive coding models in
empirical neuroscience research
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Abstract: Clark makes a convincing case for the merits of conceptualizing
brains as hierarchical prediction machines. This perspective has the
potential to provide an elegant and powerful general theory of brain
function, but it will ultimately stand or fall with evidence from basic
neuroscience research. Here, we characterize the status quo of that
evidence and highlight important avenues for future investigations.

The intuition that our brains harbor a predictive (forward) model
linking visual percepts to their probable external causes (Helm-
holtz 1876) has been fleshed out over recent decades by sophisti-
cated models (Friston 2005; Mumford 1992; Rao & Ballard 1999),
inspiring the view that Clark puts forward in the target article, that
predictive coding is a cardinal principle of neural systems (cf.
Friston 2010; Hawkins & Blakeslee 2004). While this perspective
offers elegant post-hoc explanations for a wide array of behavioral
and neural phenomena, empirical studies directly testing the basic
biological assumptions of predictive coding remain scarce. Specifi-
cally, the core empirical hypotheses derived from the predictive
coding scheme are the presence of separable and hierarchically
organized visual expectation and surprise computations (and
associated neural units/signals) in the posterior brain (Friston
2005). These predictions are provocative, because they differ
drastically from traditional views of visual neurons as mere
bottom-up feature detectors (Hubel & Wiesel 1965; Riesenhuber
& Poggio 2000). But what is the empirical evidence directly sup-
porting these claims? We first address results from macroscopic,
human neuroimaging studies, followed by microscopic data
from invasive animal experiments.
At the macroscopic level of inquiry provided by whole-brain

functional neuroimaging, there are at present modest but promis-
ing lines of empirical support for predictive coding’s core prop-
ositions. Most firmly established is the finding of robust occipital
responses evoked by the surprising presence or absence of
visual stimuli, presumably attributable to the computation of pre-
diction error (e.g., Alink et al. 2010; den Ouden et al. 2009; Egner
et al. 2010). Similarly, “repetition suppression,” the attenuated
neural response to a repeated stimulus that predictive coding attri-
butes to a decrease in prediction error (Friston 2005), has repeat-
edly been shown to be modulated by expectations, including in
human functional magnetic resonance imaging (fMRI) (Summer-
field et al. 2008), electroencephalographic (EEG) (Summerfield
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et al. 2011), and magnetoencephalographic (MEG) (Todorovic
et al. 2011) recordings. However, although evidence for visual sur-
prise signals at the neural population level is fairly abundant, the
attribution of these signals to local prediction error computations
is not unequivocal, in that they could instead be argued to reflect
attentional highlighting of unexpected stimuli (cf. Pearce & Hall
1980) driven by predictive processing elsewhere in the brain. In
fact, the precise role that attention plays in the predictive
coding machinery is currently under debate (Feldman & Friston
2010; Summerfield & Egner 2009) and represents an important
line of recent (Kok et al. 2011; Wyart et al. 2012) and future inves-
tigations into the predictive brain hypothesis.

In contrast to this support for the existence visual surprise signals,
the proposition that there are simultaneous computations of predic-
tion and prediction error signals carried out by distinct neural popu-
lations in visual cortex is presently only poorly substantiated. One
recent fMRI study showed that neural population responses in the
ventral visual stream can be successfully modeled as reflecting the
summed activity of putative prediction and prediction error signals
(Egner et al. 2010; Jianget al. 2012). Similarly, a recent computational
model can account for a wide array of auditory EEG responses by
supposing co-existing prediction and prediction error neurons
(Wacongne et al. 2012). However, neither of these studies demon-
strates unambiguously the simultaneous operation of distinct neural
sub-populations coding for expectations and surprise, a finding that
would greatly bolster the biological feasibility of predictive coding
models. Finally, the purported hierarchical nature of the interplay
between expectation and surprise signals has garnered indirect
support from a handful of fMRI studies. For instance, Murray and
colleagues demonstrated the “explaining away” of activity in lower-
level visual regions by activity in higher-level visual cortex when
presenting a coherent visual object compared to its dissembled con-
stituentparts (Murray et al. 2002).Other investigatorshaveemployed
effective connectivity analysis of fMRI data to probe how dynamic
interactions between different brain regions maymediate prediction
and surprise signals (den Ouden et al. 2009; 2010; Kok et al. 2011;
Summerfield & Koechlin 2008; Summerfield et al. 2006). Neverthe-
less, a comprehensive demonstration of predictive coding “message
passing” across several adjacent levels of the visual processing hierar-
chy remains lacking from the literature.

Perhaps most importantly, microscopic or cellular level data
addressing the core tenets of the predictive coding hypothesis
have been particularly scarce. In part, this may be for methodo-
logical reasons: For example, neurons with proposed “predictive
fields” might be excluded from recording studies where cells are
screened according to their bottom-up sensitivity. Moreover,
the dynamics of the reciprocal interaction within the hierarchy
might give rise to complex neural responses, making it hard to seg-
regate prediction and error signals. Nevertheless, recent work has
supplied some promising data. First, Meyer and Olson (2011)
have recently described single neurons in monkey inferotemporal
cortex that exhibit surprise responses to unexpected stimulus tran-
sitions, thus possibly documenting visual prediction error neurons
in the ventral visual stream. Two other recent studies, one in
monkeys (Eliades & Wang 2008) and one in mice (Keller et al.
2012), assessed neuronal activity in the context of sensorimotor
feedback (e.g., the integration of movement with predicted
changes in visual stimulation), observing putative prediction
error signals in primary sensory cortices (for alternative interpret-
ations, see Eliades & Wang 2008). Importantly, in Keller et al.
(2012), these surprise signals co-occurred with both pure motor-
related and sensory-driven signals, thus providing initial evidence
for the possibility of co-habiting prediction and prediction error
neurons in early visual cortex. Moreover, the putative prediction
error neurons were found in supra-granular layers 2/3, which
house precisely the superficial pyramidal cells that have been
posited to support prediction error signaling by theoretical
models of predictive coding (Friston 2008; Mumford 1992).

In conclusion, we submit that the extant data from studies that
directly aimed at testing core tenets of the predictive coding

hypothesis are few but generally supportive. Looking to the
future, additional demonstrations of simultaneous prediction and
surprise computations within a single processing stage (in particular
from single-neuron electrophysiology), as well as evidence for hier-
archical interactions with adjacent stages, are required. We hope
that over coming years, neuroscientists will be inspired to collect
these data.

Prediction, explanation, and the role of
generative models in language processing
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Abstract:We propose, following Clark, that generative models also play a
central role in the perception and interpretation of linguistic signals. The
data explanation approach provides a rationale for the role of prediction in
language processing and unifies a number of phenomena, including
multiple-cue integration, adaptation effects, and cortical responses to
violations of linguistic expectations.

Traditional models of language comprehension assume that
language processing involves recognizing patterns, for example,
words, by mapping the signal onto existing representations,
retrieving information associated with these stored represen-
tations, and then using rules based on abstract categories (e.g.,
syntactic rules) to build structured representations. Four aspects
of the literature are inconsistent with this framework. First, listen-
ers are exquisitely sensitive to fine-grained, sub-categorical prop-
erties of the signal, making use of this information rather than
discarding it (McMurray et al. 2009). Second, comprehenders
rapidly integrate constraints at multiple grains. Third, they gener-
ate expectations about likely input at multiple levels of represen-
tation. Finally, adaptation is ubiquitous in language processing.
These results can be unified if we assume that comprehenders
use internally generated predictions at multiple levels to explain
the source of the input, and that prediction error is used to
update the generative models in order to facilitate more accurate
predictions in the future.

Extended to the domain of language processing, Clark’s frame-
work predicts that expectations at higher levels of representation
(e.g., syntactic expectations) should constrain interpretation at
lower levels of representation (e.g., speech perception). Accord-
ing to this view, listeners develop fine-grained probabilistic expec-
tations about how lexical alternatives are likely to be realized in
context (e.g., net vs. neck) that propagate from top to bottom
through the levels of a hierarchically organized system represent-
ing progressively more fine-grained perceptual information. Pro-
visional hypotheses compete to explain the data at each level,
with the predicted acoustic realization of each alternative being
evaluated against the actual form of the input, resulting in a
residual feed-forward error signal propagated up the hierarchy.
As the signal unfolds, then, the activation of a particular lexical
candidate should be inversely proportional to the joint error
signal at all levels of the hierarchy (i.e., the degree of divergence
between the predicted acoustic realization of that candidate and
the actual incoming signal), such that candidate words whose pre-
dicted realizations are most congruent with the acoustic signal are
favored.

Hierarchical predictive processing therefore provides a poten-
tial explanatory framework for understanding a wide variety of
context effects and cue integration phenomena in spoken word
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recognition. Converging evidence suggests that the initial
moments of competition between lexical alternatives are con-
strained by multiple sources of information from different dimen-
sions of the linguistic input (e.g., Dahan & Tanenhaus 2004;
Kukona et al. 2011), including information external to the linguis-
tic system, such as visually conveyed social information (Hay &
Drager 2010; Staum Casasanto 2008) and high-level information
about a speaker’s linguistic ability (Arnold et al. 2007). Crucially,
lexical processing is influenced by information preceding the
target word by several syllables or clauses (Dilley & McAuley
2008; Dilley & Pitt 2010) and this information affects listeners’
expectations (Brown et al. 2011; 2012). The integration of these
various constraints, despite their diversity, is consistent with the
hypothesis that disparate sources of constraint are integrated
within generative models in the language processing system.

Clark’s framework also helps explain a recent set of results on
context effects in reading that are surprising from the viewpoint
of more traditional theories that emphasize the bottom-up,
feed-forward flow of information. Farmer et al. (2006) demon-
strated that when a sentential context conferred a strong expec-
tation for a word of a given grammatical category (as in The
child saved the…, where a noun is strongly expected), participants
were slower to read the incoming noun when the form of it (i.e., its
phonological/orthographic properties) was atypical with respect to
other words in the expected category. In a subsequent MEG
experiment, Dikker et al. (2010) showed that at about 100 msec
post-stimulus onset – timing that is unambiguously associated
with perceptual processing – a strong neural response was elicited
when there was a mismatch between form and syntactic expec-
tation. Moreover, the source of the effect was localized to the occi-
pital lobe, suggesting that the visual system had access to syntactic
representations. These results provide support for Clark’s hypoth-
esis that “if the predictive processing story is correct, we expect to
see powerful context effects propagating quite low down the pro-
cessing hierarchy” (sect. 3.1, para. 8). Linguistic context is used to
generate expectations about form-based properties of upcoming
words, and these expectations are propagated to perceptual cor-
tices (Tanenhaus & Hare 2007).

This framework also serves to specify the functionality of the pre-
diction error that arises when some degree of mismatch between a
prediction and the incoming signal occurs. In behavioral and
Event-Related Potential (ERP) experiments, prediction-inputmis-
match frequently results in increased processing difficulty, typically
interpreted as evidence that prediction is being made. But, under
Clark’s framework, the error signal assumes functionality; in part,
it serves to adjust higher-levelmodels such that they better approxi-
mate future input. The explanatory power of this hypothesis can
best be seen when considering the large amount of relatively
recent literature on adaptation within linguistic domains.
Whether in the domain of speech perception (Kleinschmidt &
Jaeger 2011; Kraljic et al. 2008), syntactic processing (Farmer
et al. 2011; Fine et al. under review; Wells et al. 2009), prosody
(Kurumada et al. 2012), or pragmatics (Grodner & Sedivy 2011),
it has become increasingly apparent that readers and listeners con-
tinually update their expectations about the likelihood of encoun-
tering some stimulus based on their exposure to the statistical
regularities of a specific experimental context. Adaptation of expec-
tations is predicted by Clark’s framework, and it may be taken as
evidence that prediction-input mismatch produces an error signal
that is fed forward to update the relevant generative models.

In sum, Clark’s hierarchical prediction machine hypothesis
provides a framework that we believe will unify the literature on
prediction in language processing. This unification will necessarily
involve systematic examination of what aspects of the stimulus are
predicted, when in the chain of processing these predictions are
generated and assessed, and the precise form of these generative
models. This task will be challenging because it is likely that gen-
erative models use signal-relevant properties that do not map to
the standard levels of linguistic representation that are incorpor-
ated into most models of language processing.

Active inference and free energy
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Abstract: Why do brains have so many connections? The principles
exposed by Andy Clark provide answers to questions like this by
appealing to the notion that brains distil causal regularities in the
sensorium and embody them in models of their world. For example,
connections embody the fact that causes have particular consequences.
This commentary considers the imperatives for this form of embodiment.

1. Introduction. It is a pleasure to comment upon Andy Clark’s
exposition of the Bayesian brain, predictive coding, and the
free-energy principle. Clark describes modern thinking about
the brain as a constructive and predictive machine in a compelling
and accessible way. Furthermore, he develops the fundaments of
this approach from basic questions about the nature of life and
consciousness – remarkably, without recourse to mathematical
equations.
Clark’s synthesis is impressive – it highlights the consistency

(and convergence) of the underlying ideas from many perspec-
tives, ranging from the psychophysics of perceptual inference
through to motor control and embodiment. The key thing that
emerges from his treatment is that minimising surprise or surpri-
sal (Tribus 1961) accommodates many intuitions and theories
about brain function that have emerged over the past century or
so. Had space allowed, other ideas could have been celebrated
(developed) within this framework; for example, the principle of
efficient coding (Barlow 1961); the notion of perception as
hypothesis testing (Gregory 1980), and the action-perception
cycle (Fuster 2001) – all rest on the premise that we build parsi-
monious models to explain our world (Dayan et al. 1995).
In what follows, I revisit three challenges – highlighted by

Clark – to the free-energy principle, and its incarnations like pre-
dictive coding and the Bayesian brain. Specifically, these are: (1)
the relationship between free-energy minimisation and predic-
tive coding, (2) the dark room problem, and (3) explanatory
power.
2. Free-energy and predictive coding. Clark frames surprise

minimisation in terms of predictive coding in the Bayesian brain
(Mumford 1992; Rao & Ballard 1999; Yuille & Kersten 2006).
This works extremely well and is a useful way to introduce the
ideas. However, it may detract from a simple but important
point: Predictive coding is a consequence of surprise minimisation,
not its cause. Free-energy is a mathematical bound on surprise,
where prediction error is a measure of free-energy that is easy to
compute (neurobiologically). Free-energy minimisation is an
instance of the celebrated principle of least action – because the
average energy over time is also called action. Furthermore, it
entails the maximum entropy principle (Jaynes 1957) – because
free-energy is expected energy minus the entropy of predictions.
These principles will be familiar to anyone in physics or statistics
because they govern the behaviour of known physical systems.
The important thing – for self-organising systems – is that the
long-term average of surprise is (almost surely) equal to the
entropy of sensations. This means that minimising free-energy
minimises sensory entropy. As articulated nicely by Clarke, we
can minimise free-energy (prediction errors) by either changing
our predictions (perception) or changing the things that we
predict (action). The key thing that the free-energy principle
brings to the table is that both perception and action minimise pre-
diction error but only action minimises surprise (because surprise is
an attribute of sensations actively sampled). This is active inference
(Friston 2010). The imperative to minimise surprise rests on the
need to resist a natural tendency to disorder – to minimise
sensory entropy (Ashby 1947). The Bayesian brain and predictive
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coding are then seen as a consequence of, or requirement for, this
fundamental imperative – not as a causal explanation for how our
brains work. This is important, because any evidence that suggests
we are Bayes-optimal can be taken as evidence for active inference.
3. The dark room problem. Clark introduces and then (almost)

dismisses the dark room problem by appeal to itinerant (explora-
tory) behaviours that minimise surprise over long periods of time
(that is, minimise sensory entropy). I think that his discussion is
exactly right; however, the “grain of truth” in the dark room
problem can be dismissed in an even simpler way – by noting
that predication errors are only defined in relation to predictions.
For example, when we enter a dark room, the first thing we do is
switch on a light. This is because we expect the room to be brightly
lit (or more exactly, we expect our bodily movements to bring this
about). In other words, the state of a room being dark is surprising
because we do not expect to occupy dark rooms. This surprise
depends upon (prior) expectations, but where do these prior
beliefs come from? They come from evolution and experience,
in the sense that if we did not have these prior beliefs, we
would be drawn to dark rooms and die there. In short, a
dynamic world can only support a generative model of that
world (prior beliefs) that predicts the dynamics it encounters –
predictions that action fulfils.
4. Evidence and explanatory power. Clark questions the evi-

dence for surprise minimisation and its explanatory power. I am
more complacent about this issue, because the free-energy formu-
lation explains so much already. Potent examples rest on appreciat-
ing that an agent does not have a model of its world – it is a model.
In other words, the form, structure, and states of our embodied
brains do not contain a model of the sensorium – they are that
model. This allows one to equate the long-term minimisation of
surprise with the entropy of our physical (sensory) states – and
explains our curious (biological) ability to resist the second law of
thermodynamics (Ashby 1947). But what does this mean practi-
cally? It means that every aspect of our brain can be predicted
from our environment. This seems a powerful explanation for neu-
roanatomy and neurophysiology. A nice example is the anatomical
division into what and where pathways in visual cortex (Ungerlei-
der & Mishkin 1982). Could this have been predicted from the
free-energy principle? Yes – if anatomical structure in the brain
recapitulates causal structure in the environment, then one
would expect independent causes to be encoded in functionally
segregated neuronal structures. Given that objects can be in differ-
ent places, they possess separable attributes of “what” and “where.”
This translates into separate neuronal representations in segre-
gated visual pathways. In summary, the evidence for the free-
energy principle may not necessarily be in next month’s scientific
journals but may lie in the accumulated wealth of empirical neuro-
biological knowledge that Andy Clark has unpacked for us.

The brain is not an isolated “black box,” nor is
its goal to become one
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Abstract: In important ways, Clark’s “hierarchical prediction machine”
(HPM) approach parallels the research agenda we have been pursuing.

Nevertheless, we remain unconvinced that the HPM offers the best clue
yet to the shape of a unified science of mind and action. The apparent
convergence of research interests is offset by a profound divergence of
theoretical starting points and ideal goals.

We share with Clark a commitment to exploring the deep conti-
nuities of life, mind, and sociality (Froese & Di Paolo 2011).
Similar to the enactive notion of “sense-making,” Clark’s “hier-
archical prediction machine” (HPM) entails that perceiving
cannot be separated from acting and cognizing. Nevertheless,
we disagree with Clark’s theoretical premises and their ideal
consequences.

Clark begins with the assumption that the task of the brain is
analogous to establishing a “view from inside the black box.” On
this view, the mind is locked inside the head and it follows that,
as Clark puts it, “the world itself is thus off-limits” (sect. 1.2,
para. 1). This is the premise of internalism, from which another
assumption can be derived, namely that knowledge about the
world must be indirect. Accordingly, there is a need to create an
internal model of the external source of the sensory signals, or,
in Clark’s terms, of “the world hidden behind the veil of percep-
tion” (sect. 1.2, para. 6). This is the premise of representationalism.

It is important to realize that these two premises set up the basic
problem space, which the HPM is designed to solve. Without them,
the HPM makes little sense as a scientific theory. To be sure,
internalism may seem to be biologically plausible. As Clark
observes, all the brain “knows” about, in any direct sense, are the
ways its own states (e.g., spike trains) flow and alter. However,
the enactive approach prefers to interpret this kind of autonomous
organization not as a black-box prison of the mind, but rather as a
self-organized perspectival reference point that serves to enact a set
of meaningful relations with its milieu (Di Paolo 2009). On this
view, mind and action are complex phenomena that emerge from
the nonlinear interactions of brain, body, and environment (Beer
2000). Such a dynamical perspective supports a relational, direct
realist account of perception (Noë 2004; 2009).

An enactive approach to neuroscience exhibits many of the
virtues of the HPM approach. Following the pioneering work of
Varela (1999), it is also formalizable (in dynamical systems
theory); it has explanatory power (including built-in context-sensi-
tivity); and it can be related to the fundamental structures of lived
experience (including multistable perceptions). Indeed, it
accounts for much of the same neuroscientific evidence, since
global self-organization of brain activity – for example, via neural
synchrony – requires extensive usage of what Clark refers to as
“backward connections” in order to impose top-down constraints
(Varela et al. 2001).

Advantageously, the enactive approach avoids the HPM’s
essential requirement of a clean functional separation between
“error units” and “representation units,” and it exhibits a different
kind of neural efficiency. Properties of the environment do not
need to be encoded and transmitted to higher cortical areas, but
not because they are already expected by an internal model of
the world, but rather because the world is its own best model.
The environment itself, as a constitutive part of the whole
brain-body-environment system, replaces the HPM’s essential
requirement of a multilevel generative modeling machinery (cf.
Note 16 in the target article).

The enactive approach also avoids absurd consequences of the
HPM, which follow its generalization into an all-encompassing
“free-energy principle” (FEP). The FEP states that “all the quan-
tities that can change; i.e. that are part of the system, will change
to minimize free-energy” (Friston & Stephan 2007, p. 427).
According to Clark, the central idea is that perception, cognition,
and action work closely together to minimize sensory prediction
errors by selectively sampling, and actively sculpting, the stimulus
array. But given that there are no constraints on this process
(according to the FEP, everything is enslaved as long as it is
part of the system), there are abnormal yet effective ways of redu-
cing prediction error, for example by stereotypic self-stimulation,
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catatonic withdrawal from the world, and autistic withdrawal from
others. The idea that the brain is an isolated black box, therefore,
forms not only the fundamental starting point for the HPM, but
also its ideal end point. Ironically, raising the HPM to the status
of a universal principle has the opposite effect: namely, making
it most suitable as an account of patently pathological mental
conditions.

Similar concerns about the overgeneralization of the FEP have
been raised by others (Gershman & Daw 2012), and are acknowl-
edged by Clark in his “desert landscape” and “dark room” scenarios.
The general worry is that an agent’s values need to be partially
decoupled from prediction optimization, since reducing surprise
for its own sake is not always in the organism’s best interest. In
this regard the enactive approach may be of help. Like Friston, it
rejects the need for specialized value systems, as values are
deemed to be inherent in autonomous dynamics (Di Paolo et al.
2010). But it avoids the FEP’s problems by grounding values in
the viability constraints of the organism. Arguably, it is the organ-
ism’s precarious existence as a thermodynamically open system in
non-equilibrium conditions which constitutes the meaning of its
interactions with the environment (Froese & Ziemke 2009).

However, this enactive account forces the HPM approach to
make more realistic assumptions about the conditions of the
agent. Notably, it is no longer acceptable that the FEP requires
a “system that is at equilibrium with its environment” (Friston
2010, p. 127). This assumption may appear plausible at a suffi-
ciently abstract level (Ashby 1940), but only at the cost of
obscuring crucial differences between living and non-living
systems (Froese & Stewart 2010). Organisms are essentially
non-equilibrium systems, and thermodynamic equilibration
with the environment is identical with disintegration and
death, rather than optimal adaptiveness. However, contra to
the motivations for the FEP (Friston 2009, p. 293), this does
not mean that organisms aim to ideally get rid of disorder
altogether, either. Living beings are precariously situated
between randomness and stasis by means of self-organized cri-
ticality, and this inherent chaos has implications for perception
(Ikegami 2007). Following Bateson, we propose that it is more
important to be open to perceiving differences that make a
difference, rather than to eliminate differences that could sur-
prise you.

Unraveling the mind
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Abstract: A radical interpretation of the predictive coding approach
suggests that the mind is “seamless” – that is, that cancellation of error
signals can propagate smoothly from highest to lowest levels of the
control hierarchy, dissolving a distinction between belief and perception.
Delusions of alien control provide a test case. Close examination
suggests that while they are evidence of predictive coding within the
cortex, they are not evidence for the seamless interpretation.

Andy Clark describes delusions as the dark side of the seamless
story for predictive coding in which, “In place of any real distinc-
tion between perception and belief we now get variable differ-
ences in the mixture of top-down and bottom-up influence, and
differences of temporal and spatial scale in the internal models
that are making the predictions” (sect. 2.3, para. 8).

Theorists who endorse the predictive coding model have
argued that in delusions of alien control, patients actually experi-
ence being controlled by an external agent. As Gallagher puts it,

“the attribution of agency to another is a genuine result of what
is truly experienced” (Gallagher 2004, p. 17, my italics). Some
experiments suggest that this experience is the result of a prior
belief about the external origin of movement. This would be a
nice vindication of the seamless story. I think, however, that the
mind is not quite so seamless and that there is another explanation
consistent with the predictive coding framework.
How could someone experience his or her own movements as

alienated actions? The short answer is that right inferior parietal
activation represents “surprisal” for intended movements. Surprisal
is minimised for intendedmovements because the motor command
from the supplementary motor area (SMA) attenuates activity in
the right interior parietal cortex. On the seamless story, unpre-
dicted/unattenuated parietal activation (surprisal) arising in the
context of action observation is experienced as alienation: “The
patients really had no cues (as inferred from the change in activity
in the parietal lobe) about whether they saw their own movements
or those of an alien agent” (Jeannerod 2006, my italics). Thus, they
experience their own movements as alienated.
In an important experiment Daprati and collaborators had sub-

jects trace a path from their body midline to a target directly in
front of them. The subjects’ view of their moving hands was
occluded until the final 30% of the movement. For the first
70%, patients saw a computer-generated trace of the movement
path. On some trials the experimenters introduced a deviation
of 15% into the movement path so that if uncorrected the trace
would veer off to the right. Both schizophrenic and neurotypical
subjects were able to compensate for the perturbation, during
the occluded section of the movement, with the result that
when the hand came into view, the hand was to the left of the
midline. Danckert et al. (2004) express the consensus in a large
literature when they say that such cases show that “on-line moni-
toring and adjustment of action is unaffected in patients with
schizophrenia” (p. 253).
In Daprati’s experiment, the last 30% of the movement is not

occluded. When the subject sees the hand it is 15 degrees to the
left of a straight line to the target. Neurotypical subjects attributed
this discrepancy to the computer, indicating that they were able to
become aware that they had intended a different movement than
the one they actually made. Schizophrenics with positive symp-
toms did not, leading to the conclusion that “online control can
coexist with a tendency to misattribute the source of error”
(Daprati et al. 1997, p. 253, emphasis theirs).
This tendency arises for schizophrenics when they visually

attend to the movement. In this case they seem lose access to
information about self-initiation. (Note: this is a problem of
degree not kind. The dominance of visual attention over proprio-
ceptive/motor information generates similar misattributions in
many conditions).
Blakemore et al. (2003) hypnotized subjects whose arms were

attached to a pulley apparatus and gave them two instructions.
In the first they were told to raise their arms and in the second
that the pulley would raise their arms. The pulley did not actually
exert any force. Highly hypnotizable subjects moved their arms in
response to both instructions but in the second case they reported
no feeling of agency, attributing the movement to the pulley. In
effect, hypnosis induced the experience of failed action monitor-
ing characteristic of delusions of alien control. The authors
explain: “The prediction made by the parietal cortex is concerned
more with high level prediction such as strategic planning
actions.” Furthermore, they suggest, “Perhaps the predictions
made by the parietal cortex can be made available to conscious-
ness” (Blakemore et al. 2003, p. 243, my italics). In other words
we can experience ourselves as authors of our actions in virtue
of attenuated parietal activity. Because schizophrenics cannot
attenuate this activity, they cannot become aware of themselves
as authors of their actions in some conditions.
Does it follow that unattenuated parietal activity represents that

someone else is the author of the action? From what we have seen
so far, the modulation of parietal activity only tells the subject

Commentary/Andy Clark: Predictive brains, situated agents, and the future of cognitive science

214 BEHAVIORAL AND BRAIN SCIENCES (2013) 36:3

mailto:philip.gerrans@adelaide.edu.au
http:&sol;&sol;philipgerrans.com


whether a movement is produced by the SMA. That is a very low
level of cognitive processing from which information about agency
is absent.

Evolution has not posed us with the problem of determining
which movements are ours rather than someone else’s. It has
posed us with the problem of determining which aspects of a
movement are consequences of motor intentions in order to
compute and resolve error. Therefore, there seems no reason to
think that we would need to use predictive coding to disambiguate
the agent of an action rather than to simply control our own action.
This is true both at the level of automatic and of controlled
processing.

In general, then, I conclude that parietal activation is not special-
ised for determiningwho intended the action. Rather, it determines
for any movement whether it is a consequence of a motor instruc-
tion. It evolved to control movement, not to identify the agent.
Because schizophrenics cannot attenuate this activity when visually
monitoring actions, they cannot experience themselves as authors
of those actions. In both experiments, however, the context pro-
vides a default interpretation of alienation.

If the fabric of the mind is stitched together seamlessly with
predictive coding threads we should be able to unravel it entirely
from the top down. But the fact that online control in schizo-
phrenia is intact suggests that the seam linking automatic and visu-
ally guided motor control, while flexible, has been robustly
tailored by evolution.

Bayesian animals sense ecological constraints
to predict fitness and organize individually
flexible reproductive decisions
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Abstract: A quantitative theory of reproductive decisions (Gowaty &
Hubbell 2009) says that individuals use updated priors from constantly
changing demographic circumstances to predict their futures to adjust
actions flexibly and adaptively. Our ecological/evolutionary models of
ultimate causes seem consistent with Clark’s ideas and thus suggest an
opportunity for a unified proximate and ultimate theory of Bayesian
animal brains, senses, and actions.

Reading Clark suggests possible connections between proximate
causes of animal – not just human – perception, mind, and action
and their ultimate causes. We suggest that it is worth considering
that nonhuman animals, not just humans, are Bayesian too, and
that the world also appears to them as a set of intertwined prob-
ability density distributions. We think of all animals as Bayesian
and we define (Gowaty & Hubbell 2005; 2009) animals as adap-
tively flexible individuals who “predict” (“visualize,” “imagine”)
alternatives and make choices among them “controlling plasticity”
to serve fitness. We have argued previously that animals predict
their futures and act as though they are indeed perceiving and
responding to “intertwined set[s] of probability density distri-
butions” (see target article, sect. 4.1, para. 3). We say explicitly
that animals behave as if playing the odds of fitness against the
odds of time. Thus, we argue that animals are flexible individuals
who act behaviorally and physiologically in real ecological time,
not just evolutionary time, to enhance their real-time fitness.
Could it be that the intertwined set of probability density distri-
butions associated with themain problems of individuals – surviving

and reproducing – are on a continuum of connected ultimate and
proximate causes and perhaps fuel the organization of perception
and action? Do Bayesian animals predict the future from a set of
constantly updated priors to produce predictions of most impor-
tance: finding a mate, finding a better mate, or dying?

Fitness is a relative concept and demography-dependent. Here,
we direct readers to a theoretical scenario (Figure 1) with its
mathematical analytical solutions for the evolution of human
and nonhuman Bayesian individuals who perceive their real
time alternatives, predict the fitness that would accrue or not
from those alternatives and modify their behavior accordingly.
One of our main assumptions is that individuals are able to
predict (unconsciously or consciously) their own demographic cir-
cumstances (how they are doing/will do relative to others). To
some of our readers, our assumptions have seemed otherworldly.
Clark’s article suggests that our assumptions are not so odd in the
human cognitive sciences and they signal new empirical research
about the meanings of animal behavior in the unified contexts of
linked proximate and ultimate causes.

From a Darwinian evolutionary perspective (Darwin 1871), who
among potential mates to accept and/or reject is one of the most
important of reproductive decisions. To be fitness enhancing in con-
temporary time, reproductive decisions must be flexible and made
against the unavoidable context of demography (Gowaty &
Hubbell 2005). Demography is not static: things change; stochastic
effects are inevitable. Potential mates enter and leave populations;
some individuals may die and never appear again; and predators,
parasites, and pathogens come and go, so that the survival likelihoods
of decision-makers also change. The minimal set of parameters con-
tributing to stochastic demography (Hubbell & Johnson 1987) are
those providing sensory information about the availability of poten-
tial mates (encounter probability, e), the likelihood of continued
life of decision-makers (survival probability, s), and the distribution
within the population of fitness that would be conferred from
mating with this or that potential mate (w-distribution). The
minimal set of information necessary for making real-time, fitness-
enhancing reproductive decisions is e, s and the w-distribution.

Gowaty and Hubbell (2005) hypothesized that individuals, not
sexes, are under selection to flexibly modify their reproductive
decisions moment-to-moment as their ecological and social cir-
cumstances change to enhance their instantaneous contributions
to lifetime mean fitness (Fig. 1). Stochastic variation in e, s, and l
(latency from the end of one mating, to onset, to receptivity, to
the next mating) results in mean lifetime number of mates
(MLNM). Variation in MLNM favors the evolution of sensitivity
to e, s, and l, while variation in the w-distribution favors assess-
ment of fitness that would be conferred through mating with
this or that potential mate. Once sensitivity and assessment
evolve, the stage is set for flexible individuals to modify their be-
havior in ways which their sensitivities and assessments predict
are fitness enhancing. The analytical solution to this model is
the Switch Point Theorem (SPT). An SPT graph shows the
rule for acceptance and rejection of each potential mate,
ranked from best at 1 to worst at n, by a single unique individual
in the population, given variation in e, s, l, n and the w-
distribution.

The assumptions of the analytical solution as to how many
potential mates in a population will be acceptable or not to a
given individual (Gowaty & Hubbell 2009) are as follows:

1. Before there was natural selection to accept or reject poten-
tial mates, there was stochastic variation in encounters with poten-
tial mates and with decision-makers’ likelihood of survival.

2. The encounter probability and survival probability deter-
mine the mean lifetime number of mates and the variance in life-
time number of mates.

3. Potential mates come in n-qualities, where n = the number
of potential mates in the population.

4. Mate assessment is self-referential and depends upon infor-
mation learned during development about self relative to others.
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5. Individuals update their information to predict adaptive
acceptance and rejection of potential mates thereby maximizing
instantaneous contributions to lifetime fitness.
The analytical solution of whom to accept and reject for mating is
the switch point theorem (SPT in Fig. 1).

Resistance to our assumptions from behavioral ecologists is
perhaps not surprising, for we begin with individuals, rather
than sexes, to predict sex differences. What surprises us,
however, is that there are critics who resist our assumption that
animals use probabilistic information as instantaneous clues to
predict their next move, which the SPT proved theoretically is
adaptive. The Bayesian updating that Clark describes as a funda-
mental aspect of neural processing of what the world is, suggests
to us that his and our ideas are conceptually linked. Our use of the
Bayesian metaphor suggests that there is something self-similar
linking proximate and ultimate causes. But, what if animals too
are Bayesians with linkages between how and why brains interpret
the world?

We agree with Clark. What is on offer is a unified science of
perception, attention, prediction, and flexibility of action. The
SPT suggests that fitness drives all.

Personal narratives as the highest level of
cognitive integration
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Abstract: We suggest that the hierarchical predictive processing account
detailed by Clark can be usefully integrated with narrative psychology by
situating personal narratives at the top of an individual’s knowledge
hierarchy. Narrative representations function as high-level generative
models that direct our attention and structure our expectations about
unfolding events. Implications for integrating scientific and humanistic
views of human experience are discussed.

Clark’s article presents the hierarchical predictive processing
account of human cognition as a unifying model for understanding
mind and action. He also highlights the importance of bridging
this perspective with our daily “folk” or “humanistic” conceptions
of self and world. We propose that such a bridge is provided by the
field of narrative psychology, with narrative models of the world
occupying the highest levels of an individual’s predictive
hierarchy.
A growing body of theory and research indicates that the broad-

est and most integrative levels of an individual’s knowledge system
can be characterized as narrative descriptions of reality (Bruner
1986; 1991; McAdams 1997; Peterson 1999; Ricoeur et al. 1990;
Sarbin 1986). Although narratives can take many different
forms, they are distinguished by their ability to compress and
encode a great deal of information about the world, including
the causal relations between events over time (Graesser et al.
1997), the planning and sequencing of goal-directed actions
(Schank & Abelson 1977), the emotional significance of an
event within a temporal context (Oatley 1992), the unfolding
nature of personal identity (McAdams 1997), and the dynamic
intentions of multiple social agents (Mar & Oatley 2008). It is
the integrative ability of narrative representations to coordinate
vast domains of knowledge and behavior that has led some theor-
ists to propose narrative as an organizing framework for under-
standing human psychology (Sarbin 1986). Narrative
representations thus appear to function as high-level generative
models of the sort that Clark describes, structuring our expec-
tations about daily experiences and providing an organizing frame-
work for interpreting incoming sensory information (Bruner 1986;
Mandler 1984). Such representations are particularly crucial for
anticipating the sequential unfolding of events over time, allowing
for the prediction of actions and outcomes within a chain of events
(Abelson 1981). Integrating narratives into predictive modeling

Figure 1 (Gowaty & Hubbell). The hypothesis for the evolution of adaptively flexible behavior (modified from figures in Gowaty &
Hubbell 2005; 2009).
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means that information consistent with an individual’s currently
active narrative schema will be “explained away” in the fashion
that Clark describes; events that were not predicted by the
schema, on the other hand, will require more detailed processing
and accommodation.

Incorporating narrative psychology into the hierarchical pre-
dictive processing account brings with it an important advan-
tage. In particular, narratives provide a point of contact
between the predictive processing account and the socio-cul-
tural context in which individual minds develop. Narrative rep-
resentations are fundamentally social in nature, as children are
socialized to adopt particular modes of narrative thought
during development (Nelson & Fivush 2004). An individual’s
personal narrative representations of the world are selectively
constructed from the many social and public narratives that
are available within the broader cultural context (Nelson
2003). In placing these narrative structures at the top of the pre-
dictive hierarchy, an individual’s cultural context is afforded a
powerful influence on the top-down regulation of domain-specific
knowledge structures and behavioral patterns (Kitayama &
Cohen 2010).

More broadly, this hybrid narrative predictive processing
account highlights the relevance of the humanities for the cogni-
tive sciences, suggesting a unified framework for their integration.
A primary function of the humanities is elaborating upon the
“manifest” image of the world as it is directly experienced by us,
in contrast to the “scientific” image that provides a depersonalized
view of the world (Sellars 1963). Narrative psychology acknowl-
edges the importance of these “manifest” images, as they guide
an individual’s expectations and shape the cascade of cognitive
operations that give rise to subjective experience. Within such a
framework, a full appreciation of an individual’s subjectivity is
thus crucial to adequately modeling her construal of and reactions
to the world.

Although higher-order narratives influence cognitive processes,
the coherence of these narrative representations varies from
person to person, with some having more clearly articulated
stories for situating their experiences than others (McAdams
2006). A crucial consequence of this variation is that those with
only vague narrative representations of the world will have more
difficulty selectively focusing attention on the most relevant
aspects of the environment. From a predictive processing per-
spective, a lack of narrative coherence will produce an inability
to generate an adequate predictive model of the world, hindering
the ability to “explain away” the majority of the sensory infor-
mation being received and producing a burdensome processing
load. When no high-level generative model is available to ade-
quately anticipate the ongoing unfolding of events, the cognitive
system can very easily be overwhelmed by the large volume of
“error” information being carried up the neural hierarchy (Hirsh
et al. 2012). This has downstream consequences for the individual,
as a lack of personal narrative integration is associated with
reduced well-being (Baerger & McAdams 1999). In contrast,
developing clearly articulated narrative accounts of one’s experi-
ences is associated with a number of positive health benefits (Pen-
nebaker & Seagal 1999).

Although the affective significance of prediction errors was not
highlighted in Clark’s article, the narrative account and its base of
subjectivity makes this clear, as prediction errors can reflect viola-
tions of basic life assumptions. Such errors are often experienced
as aversive and threatening (Hajcak & Foti 2008) and can trigger a
variety of attempts to minimize or suppress error information
(Proulx et al. 2012), some of which veer toward the pathological
(Peterson 1999). The emotional impact of expectancy violations
also appears to vary depending on the level of the neural hierarchy
at which they occur, such that relatively low-level errors are
experienced as fairly benign while violations of one’s core narra-
tives about the world are often associated with severe forms of
emotional trauma (Janoff-Bulman 1992). Within the narrative
framework, the ability to flexibly maintain the integrity of one’s

high-level generative models (instantiated as narrative represen-
tations) is thus one of the core requirements for mental health
and well-being. Insomuch as the humanities help to provide us
with narrative representations that capture the emotional vicissi-
tudes of daily life in a given cultural environment (Oatley 1999),
they help to orient and constrain our predictive modeling and
provide critical components of our adaptive functioning in the
world. Integrating narrative psychology with the predictive pro-
cessing account thus highlights the importance of humanistic
approaches for arriving at a complete understanding of human
cognitive science.

Whenever next: Hierarchical timing of
perception and action
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Abstract: The target article focuses on the predictive coding of “what” and
“where” something happened and the “where” and “what” response to
make. We extend that scope by addressing the “when” aspect of
perception and action. Successful interaction with the environment
requires predictions of everything from millisecond-accurate motor
timing to far future events. The hierarchical framework seems
appropriate for timing.

Timing intrinsically involves prediction. Determining when to act
upon a future event requires the ability to predict it. For instance,
ensemble music performance requires precise estimation of the
passage of time in order to synchronize and coordinate sounds
to re-produce the musical structure.

A central idea in the predictive coding account of cognition is
that prior knowledge is used to guide sensory interpretations
and action decisions. Identifying the periodicity of an event in
the world is typically an ill-posed problem: How does the
agent know beforehand what constitutes the signals that indi-
cate a period? To infer the beat in a complex musical piece,
or when a quail will reappear from behind a bush, are under-
specified problems in the sensory signal. In both cases, prior
experience appears necessary to play to the beat or to catch
the quail.

Another key idea in the predictive coding framework is infor-
mation compression. Representing music or other temporally
structured events as cycles reduces the entropy in the signal and
allows for more efficient storage. Action can serve to further boot-
strap timing. For instance, humans spontaneously tap along with
their hands or feet to music (Brown 2003) and entrain their move-
ments to other people’s movements (Demos et al. 2012; Merker
et al. 2009). Just like active interactions with an object improve
perception (Harman et al. 1999), timed activities have been
shown to improve the reliability of temporal perception (Grahn
& McAuley 2009; Phillips-Silver & Trainor 2007). A benefit of
having induced the rhythm is that violations of rhythm are
easier to detect (Ladinig et al. 2009).

Bayesian inference of timing requires temporal uncertainties to
be represented. The nature of the timing signal remains open to
debate. One candidate is trace strength that decays with time
(Buhusi & Meck 2005). A function of decay, trace strength
conveys information about the time since it occurred. Another
time signal candidate is populations of oscillating neurons.
Timing could then be established by coincidence detection in
the oscillating network (Matell & Meck 2004; Miall 1989).
Regardless of the signal format, its representation is noisy and
its uncertainty should reasonably increase with timing over long
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durations. Indeed, human temporal perception and production do
deteriorate monotonically with time scale (Buhusi & Meck 2005).
Exactly how the human system deals with temporal signal uncer-
tainty remains an open question.

A key notion in the target article is the hierarchical division of
labor from bottom sensory to top associative cortical control.
For timing, the scaling of time appears as a likely attribute to
stretch across such a hierarchical structure. Millisecond control
of motor timing cannot feasibly be carried out directly by the pre-
frontal cortical regions involved in working memory, due to trans-
fer speed, and the accumulated signal error that such an extensive
chain of transmission would involve. Instead, millisecond control
might be represented closer to the action output (e.g., cortical
effector representation and the cerebellum) and involve a more
direct pathway between sensory input and motor output. In con-
trast, when observation and action become more detached in
time, the window of opportunity for planning opens up, involving
more prefrontal processing.

Consistently, many studies support the view that there is a dis-
tinction in neural representation, for example, above and below
about one second (Gooch et al. 2001; Lewis & Miall 2003;
Madison 2001). Furthermore, time representation for sub-
second intervals appears at least to some extent to be sensory
specific (Morrone et al. 2005; Nagarajan et al. 1998), and under
some conditions even limited to spatial locations (Burr et al.
2007; Johnston 2006). Additionally, there appear to be break-
points in interval discrimination such that there are scalar proper-
ties in timing performance for intervals above about one second,
but nonlinear relationships between time and perception below
one second (Karmarkar & Buonomano 2007; Rammsayer
1999) – further supporting the notion that longer time intervals
are controlled by different brain regions from those involved in
sub-second timing. Also, with longer time periods under consider-
ation, a larger part of the prefrontal cortex gets activated (Lewis &
Miall 2006; Simons et al. 2006). This timing-related frontal lobe
network is also largely overlapping with those employed by
working memory and executive control processes (Jahanshahi
et al. 2000; Owen et al. 2005), suggesting that timing constitutes
a general cognitive control problem at longer time durations.
The hierarchical organization from accurate and dedicated
timing devices at sensory levels and less accurate but flexible
timing at longer time frames in the prefrontal cortex might be
accounted for by signal averaging in the time domain from
sensory to frontal cortical regions (Harrison et al. 2011). Harrison
and colleagues suggested that decay rate is faster close to the
sensory input level and slower at later stages in the visual hierar-
chy, thus allowing for a differentiation across time scale and
brain region. Taken together, there is abundant support for the
differentiation of brain regions involved in timing at different
time scales.

Communication of temporal information across the levels of
the outlined timing hierarchy is currently rather unclear. Intui-
tively, the more temporally extended control processes associated
with prefrontal working memory processes might still influence
control at shorter time frames without interfering in direct
control, such as in initiation of a drumming exercise, without
employing moment to moment volitional control of the individual
beats. Recent findings from our research group suggest that
executive functions are indirectly related to motor timing via,
for example, effector coordination (Holm et al., in press). Further-
more, there is a well-established yet poorly specified relationship
between intelligence and simple motor timing (Galton 1883;
Madison et al. 2009). More research is clearly needed to identify
how high-level temporal expectations might influence brief inter-
val timing. Another important question is how the brain identifies
the time scales from noisy input and learns how to treat those
signals. The predictive account of cognition seems like a useful
theoretical framework for understanding timing, and the Bayesian
formalism is a promising tool to investigate and explain its
operation.

Two kinds of theory-laden cognitive
processes: Distinguishing intransigence
from dogmatism
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Abstract: The brain is involved in theory-laden cognitive processes. But
there are two different theory-laden processes. In cases where the
theory is based on facts, more facts can either falsify or confirm a
theory. In cases where the theory is about the choice of a benchmark or
a standard, more facts can only make a theory either more or less
warranted.

Clark offers a review of a view of the brain where the brain pro-
cesses input information in a way that confirms its priors or its pre-
dictions. This does not mean that the brain creates its own reality.
The brain, rather, processes input data, but it does so in light of its
own priors. The brain is a bidirectional hierarchical structure.
While the top layers generate priors, the lower layers process
input data. The brain amounts to the dynamics of image-
making, where the top-down process generates unified images,
while the bottom-up process, which takes data, corrects the
images.
Such an iterative cognitive process is not simple. The top-layer

generated priors greatly determine the assimilated inputs. But the
input data are not fully manipulated by the priors. As such, it is
best to characterize the brain as a medium that tries to balance
between two competing needs: First, the brain needs to generate
a unified, that is, meaningful, image of the real world. The top
layers, which generate the priors or the predictions, function to
fulfill the need for unity. Second, the brain needs to accommodate
raw input data to stay as truthful as possible to the given real
world. If the brain performs only the first function, that is, preser-
ving the unity of the image, the brain would generate images that,
although unified, are disconnected from reality. On the other
hand, if the brain performs only the second function, that is,
preserving the details of the world, the brain would generate
images that, although detailed, are tremendously messy and
meaningless.
As a result of trying to meet these two competing needs, the

images that cognitive processes generate are theory-laden. This
has long been understood by the emerging new philosophy of
science, most epitomized by the contribution of Thomas Kuhn,
and can even be traced to Immanuel Kant. This is not the place
to review the history of philosophy of science, characterized ulti-
mately as a conflict between rationalism (demanding unity of
image) and empiricism (demanding detailed images) (see Khalil
1989). What is germane here is that Clark fails to note two differ-
ent kinds of theory-laden cognitive processes: the first, which can
be called “perception-laden” processes, where one’s theory can be
ultimately corrected by sensory input; the second, which can be
called “conception-laden” processes, where one’s theory cannot
be ultimately corrected by sensory input.
Perception-laden beliefs, for example, let one predict stormy

weather or that the Earth is flat. In light of sensory input, and
using Bayes’ rule, one may adjust such a prediction and reach
the conclusion that the weather will be stable and the Earth is
round. Many people may not adjust quickly and insist on “explain-
ing away” the data to justify their priors. But such manipulation
can be delineated from the normal course of belief adjustment.
When perception-laden processes are at issue, priors must ulti-
mately adjust to correspond to the mounting evidence. The
legal system, and everyday science, cannot function without the
adherence to the possibility of belief-free grounds that can allow
sensory data, in the final analysis, to dominate top-down priors.
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Conception-laden beliefs, for example, let one view a picture
such as the famous Rubin Vase, where the brain switches
between perceiving the vase and perceiving the two profiles.
The image depends on what the brain judges to be the back-
ground. If the background is judged to be white, the brain sees
the two profiles. If the background is judged to be black, the
brain sees the vase. No amount of data can compel the top level
hierarchy of the brain to abandon its prior. The prior here
cannot be confirmed or refuted by evidence because it is not
based on evidence as with perception-laden processes. The
choice of background, the basis of conception, is similar to the
choice of a benchmark, where one can judge a glass to be either
half-full or half-empty. Likewise, one judges one’s income as sat-
isfactory or non-satisfactory depending on one’s benchmark. Hap-
piness seems to depend, at least partially, on the choice of an
arbitrary income as the benchmark income.

The conflation of the perception- and conception-laden pro-
cesses leads to the commitment of a Bayesian fallacy. The
fallacy arises from the supposition that all beliefs are percep-
tion-laden and, hence, can be corrected by further empirical
investigation (Khalil 2010). It is imperative to distinguish con-
ceptions from perceptions. Aside from allowing us to understand
happiness, the distinction sheds light on two kinds of stubborn-
ness: intransigence, related to perception-laden beliefs, and dog-
matism, related to conception-laden beliefs. Belief in a flat
Earth and in conspiracy theories illustrates intransigence. In con-
trast, to insist on a background, despite the rising evidence to the
contrary, illustrates dogmatism. To use the Rubin Vase example, if
a person chooses the black as the background and, hence, the
image is the vase, but continues to choose the black despite con-
trary added evidence – such as added eyes and moustache – the
person would be dogmatic. While the dogmatic belief cannot be
judged as true or false, it can be judged as warranted or unwar-
ranted given the details of the profiles. The choice of background,
to remind ourselves, is non-empirical and, hence, cannot be
characterized as true or false.

Predictions in the light of your own action
repertoire as a general computational principle

doi:10.1017/S0140525X12002294

Peter König,a,b Niklas Wilming,a Kai Kaspar,a

Saskia K. Nagel,a and Selim Onatc
aInstitute of Cognitive Science, University Osnabrück, 49076 Osnabrück,
Germany; bDepartment of Neurophysiology and Pathophysiology, University
Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
cDepartment of Systems Neuroscience, University Medical Center Hamburg-
Eppendorf, 20251 Hamburg, Germany.

koenig@uni-osnabrueck.de nwilming@uni-osnabrueck.de
kkaspar@uni-osnabrueck.de snagel@uni-osnabrueck.de
sonat@uos.de
http://cogsci.uni-osnabrueck.de/∼NBP/
http://cogsci.uni-osnabrueck.de/∼nwilming/
http://kai-kaspar.jimdo.com/
http://cogsci.uni-osnabrueck.de/en/changingbrains/people/saskia
www.selimonat.com

Abstract: We argue that brains generate predictions only within the
constraints of the action repertoire. This makes the computational
complexity tractable and fosters a step-by-step parallel development of
sensory and motor systems. Hence, it is more of a benefit than a literal
constraint and may serve as a universal normative principle to
understand sensorimotor coupling and interactions with the world.

Present cognitive science is characterized by a dichotomy separ-
ating sensory and motor domains. This results in a perceived
gap between perception and action and is mirrored in leading

theories of cognition. For illustration we consider the visual
neurosciences, a paradigmatic field for the investigation of
sensory processes. A discourse given by standard textbooks
depicts a world external to the agent, with a set of pre-established
attributes and objects. Sensory processing starts with transmitting
these attributes by low-level neurons to subsequent stages. There,
more elaborate computations extract patterns of stimulus features
and objects. Up to this point, processing focuses on a veridical rep-
resentation of the external world, serving for later decisions and
actions. We argue in favor of a radical change of this view, assign-
ing a central role to predictions of sensory consequences of one’s
own actions and thereby eliminating the strict separation of
sensory and motor processing.

In the target article, Andy Clark beautifully describes the
central role of predictions in sensory processing. We endorse
this view – yet two complementary aspects are needed. First, pre-
dictability of sensory signals serves as a normative principle
guiding sensory processing and as a boundary constraint in the
selection of information to process. Second, predictions are per-
formed only in the context of the agents’ action repertoire
(König & Krüger 2006). These two specifications have crucial
implications.

The information content of the primary sensory signal is enor-
mous, and extraction of information without further constraint is
an ill-posed problem. However, it is not the task of the sensory
systems to process all possible details, and a reduction of infor-
mation is paramount. Even in simple model systems, taking into
account a limited behavioral repertoire converts demanding
sensory processing into a tractable problem (Wyss et al. 2004).
Applying the normative principle of predictability generalizes
this idea and serves as a selection criterion for features to
process and variability to ignore. Indeed, within the hierarchy of
the visual system, neuronal response properties are invariant to
more and more parametric changes of the sensory input
(Tanaka 1996). Even category learning at higher levels of the
visual system can be interpreted within this framework. The com-
monalities between different instances of the same category relate
to similar sensorimotor patterns generated by the interaction with
these “objects.” Finally, actions are directly related to the agent’s
survival and thereby processing features that change predictably,
given chosen actions, are more relevant than those that do not.
Hence, processing of sensory signals is guided by the relevance
for behavior, and relevance is expressed by the ability to predict
sensory changes contingent on the own action repertoire.

A paradigm is based on the active interpretation of incoming
sensory information such that it makes sense for the agent.
Hence, it is intended to replace a passive representationalist
view. In such a paradigm, the predicted future state of the
world is important insofar as it interacts with own actions and vari-
ables of importance are co-determined by the action repertoire. A
demonstration of the integration of new sensory information
(magnetic north) that is co-determined by own movements
(yaw-turns) is given by the feelSpace project (Kärcher et al.
2012; Nagel et al. 2005). Comparing different species, for
example, cat and human, with similar visual input (Betsch et al.
2004; Einhäuser et al. 2009), the remarkable differences in the
sensory hierarchy appear to be at odds with a passive representa-
tionalist view and await an explanation. Here, differences in be-
havioral repertoire offer themselves. Pointedly, we speculate
that the huge action repertoire of humans, due to, for example,
opposable thumbs, might foster the illusion of a veridical percep-
tion of the world. It has been emphasized early on that cognitive
and motor capabilities develop in parallel and mutual dependence
(Piaget 1952). To grow up means to harden specific action rou-
tines, on the one hand, but to lose the bulk of alternative action
capabilities and cognitive flexibility, on the other hand. Further-
more, a large variability of perceptual interpretation of identical
physical stimuli is found between humans of the same culture
area as well as between different cultures (Segall et al. 1963). A
critical view of our own culture reveals many aspects that serve
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to increase the reliability of predictions. In summary, agents with
identical sensory organs but different action repertoires might
have very different views of the world.

Is the concept of normative principles plausible in view of our
knowledge of cortical networks? Neuronal computations are con-
strained by properties of the brain in the form of number of
neurons and synapses, and space and energy consumption. The
latter has served as an argument for sparse coding – that is, low
mean activity at constant variance of activity (Barlow 1961). The
insight that receptive fields of simple cells in primary visual
cortex form such an optimally sparse representation of natural
images drastically increased interest in normative models (Olshau-
sen & Field 1996; Simoncelli & Olshausen 2001). Properties of
the second major neuron type in primary visual cortex, complex
cells, can be understood along similar lines as optimizing stable
representations (Berkes & Wiskott 2005; Körding et al. 2004).
Importantly, both optimization principles can be easily
implemented by recurrent connectivity within a cortical area (Ein-
häuser et al. 2002). Hence, existing normative models of the early
visual system are plausible in view of anatomical and physiological
data.

A critical test of the concept will be the application well beyond
processing in the primary visual cortex. The step from sparseness
and stability to predictability as an optimization principle requires
critical extensions. Phillips et al. (1995) put forward a very prom-
ising proposal: Coherent infomax selects and coordinates activities
as a function of their predictive relationships and current rel-
evance. The relation of this approach (see Phillips’ commentary
in this issue) to the free energy principle (Friston 2010) and
optimal predictability (König & Krüger 2006) has to be investi-
gated. These developments hold the promise to apply to
“higher” cognitive functions as well as giving rise to a true
theory of cognitive science.

Maximal mutual information, not minimal
entropy, for escaping the “Dark Room”
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Abstract: A behavioral drive directed solely at minimizing prediction error
would cause an agent to seek out states of unchanging, and thus easily
predictable, sensory inputs (such as a dark room). The default to an
evolutionarily encoded prior to avoid such untenable behaviors is
unsatisfying. We suggest an alternate information theoretic
interpretation to address this dilemma.

We would like to compliment Clark for his comprehensive and
insightful review of the strengths and limitations of hierarchical
predictive processing and its application to modeling actions as
well as perception. We agree that the search for fundamental
theoretical principles will be key in explaining and uniting the
myriad functions of the brain. Here, we hope to contribute to
the discussion by reconsidering a particular challenge to the
minimum prediction error (MPE) principle identified by Clark,
which we dub the “Dark Room Dilemma,” and by offering an
alternate solution that captures both the drive to reduce errors
and the drive to seek out complex and interesting situations.

As described by Clark, a common challenge to extending the
principle of minimum prediction error (MPE) to action selection
is that it would drive an animal to seek out a dark room where

predicting sensory inputs becomes trivial and precise. In
response, Clark suggests that “animals like us live and forage
in a changing and challenging world, and hence ‘expect’ to
deploy quite complex ‘itinerant’ strategies” (sect. 3.2, para. 2).
At first, this response seems tautological: We act so that we
can predict the outcome of our actions; we predict that our
actions will be complex and interesting; and therefore we act
in complex and interesting ways. The tautology is broken by
invoking a prior expectation on action, one presumably hard-
wired and selected for by evolutionary pressures. But, such an
assumption would seem to remove the explanatory power of
the MPE principle in describing complex behaviors. Further-
more, it goes against the common view that the evolutionary
advantage of the brain lies in the ability to be adaptive and alle-
viate much of the need for hardwired pre-programming (pre-
expectations) of behavior. A more satisfying solution to the
“Dark Room Dilemma” may potentially be found in a different
information theoretic interpretation of the interaction between
action and perception.
Clark turns to the free-energy formulation for an information

theoretic interpretation of the MPE principle (Friston &
Stephan 2007). Within this framework, average prediction error
is captured by the information theoretic measure entropy,
which quantifies an agent’s informational cost for representing
the sensory input by its internal model. An alternative quantifi-
cation of the predictive accuracy of an internal model would be
to consider its mutual information (MI) with the sensory inputs.
MI quantifies the information shared between two distributions –
in this case, the informational content the internal states of the
brain hold regarding its future sensory inputs. MI and entropy
are in a sense converses of one another. Entropy is the informa-
tional cost of a (bad) internal model, while MI is the informational
gains of a (good) internal model. When selecting a model, mini-
mizing entropy and maximizing MI both yield minimal prediction
error. When selecting actions, however, these two principles yield
very different results.
Actions allow an agent, through the sensor-motor loop, to

change the statistics of its sensory inputs. It is in response to
such changes that the principles of maximizingMI and minimizing
entropy differ. This difference can be highlighted by a hypotheti-
cal extreme, in which an agent acts to remove all variation in its
sensory inputs – that is, it dwells in a “Dark Room.” Here, a
trivial model can perfectly predict sensory inputs without any
information cost. Entropy thus goes to zero satisfying the principle
of minimal entropy. Similarly, MI also goes to zero in a Dark
Room. Without variation in sensory inputs there is no information
for the internal model to try to capture. This violates the maximal
MI principle. Instead, of entering a “Dark Room,” an agent fol-
lowing a principle of maximal MI would seek out conditions in
which its sensory inputs vary in a complex, but still predictable,
fashion. This is because MI is bounded below by the variability
in sensory input and bounded above by its ability to predict.
Thus, MI balances predictability with complexity. Passively, max-
imizing MI accomplishes the same objective as minimizing
entropy, namely the reduction of prediction error, but actively it
encourages an escape from the Dark Room.
The prediction–complexity duality of MI and its importance to

learning has been a recurring finding in computational methods.
Important early implementations of a maximal MI principle in
modeling passive learning include the Computational Mechanics
approach for dynamical systems of Crutchfield and Young
(1989) and the Information Bottleneck Method of Tishby et al.
(1999) for analyzing time series. Recently, the Information Bottle-
neck method has been extended to action selection by Still (2009).
Further, the Predictive Information Model of Ay et al. (2008) has
shown that complex behaviors can emerge from simple manipula-
tions of action controllers towards maximizing the mutual infor-
mation between states. And our own work utilizes MI to drive
exploratory behaviors (Little & Sommer 2011).
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The principle of minimum prediction error and the related
hierarchical prediction models offer important insights that
should not be discounted. Our aim is not to suggest otherwise.
Indeed, we favor the view that hierarchical prediction models
could explain the motor implementation of intended actions.
But we also believe its explanatory value is limited. Specifically,
it would be desirable for a theoretical principle of the brain
to address and not spare the intriguing question of what
makes animals, even the simplest ones, venture out of their dark
rooms.

Backwards is the way forward: Feedback in
the cortical hierarchy predicts the expected
future
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Abstract: Clark offers a powerful description of the brain as a prediction
machine, which offers progress on two distinct levels. First, on an abstract
conceptual level, it provides a unifying framework for perception, action,
and cognition (including subdivisions such as attention, expectation, and
imagination). Second, hierarchical prediction offers progress on a
concrete descriptive level for testing and constraining conceptual
elements and mechanisms of predictive coding models (estimation of
predictions, prediction errors, and internal models).

Abstract level description. Understanding the brain as a predic-
tion machine offers a compelling framework for perception,
action, and cognition. Irrespective of the neuronal implemen-
tation, the framework ascribes a function to internal models and
neuronal processes to best prepare for the anticipated future. At
an abstract level, the predictive coding framework also draws
attention to two blind spots in neuroscience: (1) internal cortical
communication (i.e., maintaining internal models) and (2) the
brain processes prior to stimulation onset (i.e., predictive
processing).

A starting point to explore internal communication is by inves-
tigating cortical feedback (Van Essen 2005; Muckli & Petro 2013).
Conventional paradigms struggle, however, to isolate cortical
feedback during sensory processing (which includes both feedfor-
ward and feedback information). We have demonstrated such
separation by blocking feedforward stimulation using visual occlu-
sion and reading out rich information content (multivariate pat-
terns) from within non-stimulated regions of the retinotopic
cortex (which receive cortical feedback activation; Muckli &
Petro 2013; Smith &Muckli 2010). By decoding cortical feedback,
we begin to shed light on internal processing. With regard to
investigating brain processes prior to stimulation onset, we have
shown that motion predictions are carried over to new retinal pos-
itions after saccadic eye-movements (Vetter et al. 2012), which
confirms that saccadic updating incorporates predictions gener-
ated during pre-saccadic perception. This is an important proof
of concept of predictive coding in saccadic viewing conditions.
Moreover, Hesselmann et al. (2010), have shown that variations
in baseline activity influence subsequent perception, and a
causal role of V5 in generating predictions sent to V1 can be
demonstrated using transcranial magnetic stimulation (TMS).
Pilot data show that TMS interferes with predictive codes
during the baseline prior to stimulation onset (Vetter et al.,
under revision). If the brain would be seen as a “representation
machine” instead of a “prediction machine,” one would not look

for predictive brain processing before stimulus onset and impor-
tant information about cortico-cortical communication would
remain concealed. Motivating the search for predictive signals in
the system is therefore another important contribution of the con-
ceptual framework.
Concrete level description. On the concrete conceptual level,

hierarchical cortical prediction provides a scaffold on which we
can constrain variants of predictive coding models. Predictions
are proposed to explain away the incoming signal or filter away
the unexpected noise (Grossberg 2013). Rao and Ballard (1999)
proposed a model in which forward connections convey predic-
tion errors only, and internal models are updated on the basis of
the prediction error (Rao & Ballard 1999). Grossberg on the
other hand proposes Adaptive Resonance Theory (ART) models
that update internal models based on recognition error. It
remains an empirical question which combination of these
models suffices to explain the rich and diverse cortical response
properties. A recent brain imaging study shows that under con-
ditions of face repetition, some voxels show repetition suppression
consistent with the concept that the prediction error is reduced
with every repetition of the identical image, while others (30%)
show repetition enhancement (De Gardelle et al. 2012). Rep-
etition enhancement in a subpopulation of fusiform face area
(FFA) voxels could reinforce the internal model of the face iden-
tity and be used to stabilize the prediction. The claim that the
brain is a prediction machine might be true regardless of the
precise implementation of predictive coding mechanism. Internal
models might update on error, stabilize on confirmation or scruti-
nize on attention (Hohwy 2012). A recent brain imaging study
investigated whether expectation induced signal suppression
coincides with sharpening of the underlying neuronal code (Kok
et al. 2012). Consistent with the predictive coding framework,
auditory-cued stimuli led to reduced V1 fMRI activity. Although
the overall activity was reduced, the activation profile was more
distinct, “sharpened,” for the expected conditions as measured
using multivariate decoding analysis. The study concludes that
expectation helps to explain away the signal while attention ampli-
fies the remaining prediction error (Hohwy 2012; Spratling
2008b).

Another concrete level aspect of predictive coding relates to
the question of spatial precision. Are the back-projected predic-
tions at the precision level of the “sending” brain area (i.e.,
coarse), or at the precision level of the “receiving” brain area
(i.e., spatially precise)? We have evidence in favor of both; V5
feedback signals spread out to a large region in primary visual
cortex (de-Wit et al. 2012; Muckli et al. 2005) but spatio-tem-
poral predictions in V1 which have been relayed by V5 can
also be spatially precise (Alink et al. 2010). The optimal way to
account for this discrepancy is by assuming an architecture that
combines coarse feedback with the lateral spread of feedforward
signals (Erlhagen 2003). If this principle holds true, it helps to
explain why the architecture of cortical feedback as described
by Angelucci et al. (2002) contributes to precise predictions
even though it is divergent.

The examples above show that on an abstract level important
new research is motivated by the hierarchical predictive coding
framework and on a concrete conceptual level, the many inter-
actions of cortical feedback of predictions, processing of predic-
tion errors, and different accounts of feedforward connections
(some stabilizing the internal model, others explaining away
signal discrepancies) await further empirical scrutiny. However,
the developing narrative of predictive coding becomes increas-
ingly compelling with attention from sophisticated human neuroi-
maging and animal neurophysiological studies (Muckli & Petro
2013). Not only is extending our knowledge of cortical feedback
and its encapsulated predictions essential for understanding corti-
cal function, but important opportunities will arise to investigate
deviations of predictive coding in aging and neuropsychiatric dis-
eases such as schizophrenia (Sanders et al. 2012).
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Abstract: Clark acknowledges but resists the indirect mind–world relation
inherent in prediction error minimization (PEM). But directness should also
be resisted. This creates a puzzle, which calls for reconceptualization of the
relation. We suggest that a causal conception captures both aspects. With
this conception, aspects of situated cognition, social interaction and
culture can be understood as emerging through precision optimization.

AndyClark acknowledges the “challenging vision” of prediction error
minimization (PEM), according to which representation is inner and
skull-bound such that perception is a fantasy that coincides with
reality (Frith 2007). This view does not require homunculi and
sense-data but does convey a somehow indirectmind–world relation.

Clark resists indirectness. He states that PEM “makes structur-
ing our worlds genuinely continuous with structuring our brains
and sculpting our actions” (sect. 3.4, para. 1), and that “what we
perceive is not some internal representation or hypothesis but
(precisely) the world” (sect. 4.4, para. 3, emphasis Clark’s).

The sentiment is right, but caution about directness is needed.
Without indirectness we ignore how themind is always precariously
hostage to the urge to rid itself of prediction error. This urge forces
very improbable and fantastical perceptions upon us when theworld
does not collaborate in its usual, uniform way. For example, in the
contemporary swathe of rubber-hand and full-body illusions, we
easily and compellingly experience having a rubber hand (or two),
occupying another’s body or a little doll’s body, or having magnetic
forces or spectral guns operating on our skin (Hohwy & Paton
2010; Lenggenhager et al. 2007; Petkova & Ehrsson 2008). More-
over, more stable and fundamental aspects of mind, such as our
sense of agency, privileged access to self, and mentalizing, all seem
to make sense only in terms of perceptual fantasizing (Frith 2007).

This leaves a puzzle. On PEM, the perceptual relation cannot be
direct. But neither is it wholly indirect. The challenge is then to
reconceive the mind–world relation to encompass both aspects.
We suggest a causal conception, and use its internal aspect to lever-
age an understanding of situated and social cognition.

The implicit inversion of a generativemodel happenswhenpredic-
tion error is minimized between the model maintained in the brain
and the sensory input (how the world impinges on the senses). This
yields causal inference on the hidden causes (the states of affairs in
the world) of the sensory input. This is a distinctly causal conception
of how the brain recapitulates – provides amultilayeredmirror image
of – the causal structure of theworld. This representational relation is
direct in the sense that causation is direct: There is an invariant
relation between the model and world, such that, given how the
model is, it changes in certain ways when the world changes in
certain ways. But, seen from the inside, there is indirectness in the
sense that causal relata are distinct existences, giving rise to a need
for causal inference on hidden, environmental causes.

Though the brain can optimize precisions on its prediction
error, it is hostage to the causal link from environmental causes
to sensory input. If the variance in the signal from the world to
the senses is large, then there is only so much the brain can do

there and then to ensure optimal encoding. Precisely because
the mind is destined to be behind the veil of sensory input,
it then makes sense for it to devise ways of optimizing the infor-
mation channel from the world to the senses. Thus, through
active inference prediction error is minimized, not only by selec-
tive sampling, but also by optimizing its precision: removing
sources of noise in the environment and amplifying sensory input.
Many of the technical, social and cultural ways we interact with

the world can be characterized as attempts to make the link
between sensory input and environmental causes less volatile. We
see this in the benefits of the built environment (letting us
engage in activities unperturbed by wind and weather), in technical
and electronic devices (radio lets us hear things directly rather than
through hearsay), and in language (communicating propositional
content). This picture relies on the internal nature of the neural
mechanism that minimizes prediction error, relative to which all
our cultural and technological trappings are external. Culture and
technology situate the mind closer to the world through improving
the reliability of its sensory input. But perception remains an
inferred fantasy about what lies behind the veil of input.
By maintaining focus on the internal nature of perceptual pro-

cesses, in this causal setting, we can appreciate another perspec-
tive on social interaction and culture than the “mutual
prediction error reduction” that Clark rightly points to.
As Locke insisted, communication is the sharing of each other’s

hidden ideas. Ideas are well-hidden causes, so PEM is the tool for
inferring them through a mix of prediction (“after saying A, he
tends to say B”) and active inference (asking something to elicit a
predicted answer). An overlooked aspect here is how this is facili-
tated not just by representing the other’s mental states but also by
aligning our mental states with each other in a process of neural her-
meneutics – a fusion of expectation horizons. We do this, not to
change the sensory input itself, but to enhance the precision with
which we can probe each other’s current mental states, perhaps to
such an extent that the receiver in a social interaction ends up
having more precise information about the sender’s mental states
than the sender him- or herself (Frith & Wentzer, in press).
Perhaps culture too, in a very wide sense, can be seen as, at least

partly, a tool for precision optimization through shared context.
Ritual, convention, and shared practices enhance mutual predict-
ability between people’s hidden mental states. This would make
sense of cultural diversity because this process is concerned
with signal reliability rather than with what the signals are
about, and there are many different ways of using cultural tools
to align our mental states. Furthermore, when precision has
been optimized, alignment enables simple, information rich sig-
naling and thereby communication efficiency.
If alignment of mental states is an integral part of how culture

optimizes precision and communication efficiency, then culture
should be seen as providing a set of frameworks for interpretation,
rather than merely for scaffolding interpretation. If the brain is a
hierarchical Bayesian network providing a perceptual fantasy of
the world, then culture determines and constrains the hyperpriors
needed by such a neural system.

Neuronal inference must be local, selective,
and coordinated
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Abstract: Life is preserved and enhanced by coordinated selectivity in
local neural circuits. Narrow receptive-field selectivity is necessary to
avoid the curse-of-dimensionality, but local activities can be made
coherent and relevant by guiding learning and processing using broad
coordinating contextual gain-controlling interactions. Better
understanding of the functions and mechanisms of those interactions is
therefore crucial to the issues Clark examines.

Much in Clark’s review is of fundamental importance. Probabilistic
inference is crucial to life in general andneural systems in particular,
but does it have a single coherent logic? Jaynes (2003) argued that it
does, but for that logic to be relevant to brain theory, it must be
shown how systems built from local neural processors can
performessential functions that are assumed tobe the responsibility
of the scientist in Jaynes’ theory (Fiorillo 2012; Phillips 2012).

Most crucial of those functions are selection of the information
relevant to the role of each local cell or microcircuit and coordi-
nation of their multiple concurrent activities. The information
available to neural systems is so rich that it cannot be used for
inference if taken as a single, multi-dimensional whole because
the number of locations in multi-dimensional space increases
exponentially with dimensionality. Most events that actually
occur in high-dimensional spaces are therefore novel and distant
from previous events, precluding learning based on sample prob-
abilities. This constraint, well-known to the machine-learning
community as the curse-of-dimensionality, has major conse-
quences for psychology and neuroscience. It implies that for
learning and inference to be possible large data-bases must be
divided into small subsets, as amply confirmed by the clear selec-
tivity observed within and between brain regions at all hierarchical
levels. Creation of the subsets involves both prespecified mechan-
isms, as in receptive field selectivity, and dynamic grouping as pro-
posed by Gestalt psychology (Phillips et al. 2010). The criteria for
selection must be use-dependent because information crucial to
one use would be fatal to another, as in the contrast between
dorsal and ventral visual pathways. Contextual modulation is
also crucial because interpretations with low probability overall
may have high probability in certain contexts. Therefore, the
activity of local processors must be guided by the broader
context, and their multiple concurrent decisions must be coordi-
nated if they are to create coherent percepts, thoughts, and
actions.

Most models of predictive coding (PC) and Bayesian inference
(BI) assume that the information to be coded and used for infer-
ence is a given. In those models, it is – by the modelers. Modelers
may assume that in the real world this information is given by the
external input, but that provides more information than could be
used for inference if taken as a whole. Self-organized selection of
the information relevant to particular uses is therefore crucial.
Efficient coding strategies, such as PC, are concerned with ways
of transmitting information through a hierarchy, not with deciding
what information to transmit. They assume lossless transmission
of all input information to be the goal, and so provide no way of
extracting different information for different uses. Models using
BI show how to combine information from different sources
when computing a single posterior decision; but they do not
show how local neural processors can select the relevant infor-
mation, nor do they show how multiple streams of processing
can coordinate their activities. Thus, local selectivity, dynamic-
grouping, contextual-disambiguation, and coordinating inter-
actions are all necessary within cognitive systems, but are not
adequately explained by the essential principles of either PC or BI.

Clark’s review, however, does contain the essence of an idea
that could help resolve the mysteries of selectivity and coordi-
nation, that is, context-sensitive gain-control, for which there are
several widely-distributed neural mechanisms. A crucial strength
of the free-energy theory is that it uses gain-controlling inter-
actions to implement attention (Feldman & Friston 2010), but
such mechanisms can do far more than that. For example, they
can select and coordinate activities by amplifying or suppressing
them as a function of their predictive relationships and current

relevance. This is emphasized by the theory of Coherent
Infomax (Kay et al. 1998; Kay & Phillips 2010; Phillips et al.
1995), which synthesizes evidence from neuroanatomy, neuro-
physiology, macroscopic neuroimaging, and psychophysics (Phil-
lips & Singer 1997; von der Malsburg et al. 2010). That theory
is further strengthened by evidence from psychopathology as
reviewed by Phillips and Silverstein (2003), and extended by
many subsequent studies. Körding and König (2000) argue for a
closely related theory.

Free-energy theory (Friston 2010) and Coherent Infomax
assume that good predictions are vital, and formalize that assump-
tion as an information theoretic objective. Though these theories
have superficial differences, with Coherent Infomax being formu-
lated at the neuronal rather than the system level, it may be poss-
ible to unify their objectives as that of maximizing prediction
success, which, under plausible assumptions, is equivalent to mini-
mizing prediction error (Phillips & Friston, in preparation). For-
mulating the objective as maximizing the amount of information
correctly predicted directly solves the “dark-room” problem dis-
cussed by Clark. That objective, however, does not necessarily
imply that prediction errors are the fundamental currency of feed-
forward communication. Inferences could be computed by redu-
cing prediction errors locally, and communicating inferences
more widely (Spratling 2008a). That version of PC is supported
by much neurobiological evidence, though it remains possible
that neural systems use both versions.

Another important issue concerns the obvious diversity of brains
and cognition. How could any unifying theory cast light on that?
Though possible in principle, detailed answers to this question
are largely a hope for the future. Coherent Infomax hypothesizes
a local building-block from which endlessly many architectures
could be built, but use of that to enlighten the obvious diversity
is a task hardly yet begun. Similarly, though major transitions in
the evolution of inferential capabilities seem plausible, study of
what they may be remains a task for the future (Phillips 2012).
By deriving algorithms for learning, Coherent Infomax shows in
principle how endless diversity can arise from diverse lives, and it
has been shown that the effectiveness of contextual-coordination
varies greatly across people of different ages (Doherty et al.
2010), sex (Phillips et al. 2004), and culture (Doherty et al.
2008). Use of this possible source of variability to enlighten diver-
sity across and within species still has far to go, however.

Overall, I expect theories such as those examined by Clark to
have far-reaching consequences for philosophy, and human
thought in general, so I fully endorse the journey on which he
has embarked.

God, the devil, and the details: Fleshing out the
predictive processing framework
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Abstract: The predictive processing framework lacks many of the
architectural and implementational details needed to fully investigate or
evaluate the ideas it presents. One way to begin to fill in these details is
by turning to standard control-theoretic descriptions of these types of
systems (e.g., Kalman filters), and by building complex, unified
computational models in biologically realistic neural simulations.

God is in the details
— Mies van der Rohe

The devil is in the details
— Anonymous
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Despite their theologically contradictory nature, both of these
statements are true: the first is noting that details are important,
and the second that getting the details right is difficult. It is for
exactly this pair of reasons that we believe the predictive proces-
sing framework is limited in its ability to contribute, in a deep way,
to our understanding of brain function.

This is not to deny that the brain does prediction. This is a
view that has been beautifully articulated by Clark, and lies in
a great tradition. For instance, in his 1943 book, Kenneth
Craik devotes several chapters to his central hypothesis that:
“One of the most fundamental properties of thought is its
power of predicting events” (Craik 1943, p. 50). The evidence
for prediction-related signals is strong, and the high-level
models are often tantalizing. However, we (and, in our experi-
ence, most neuroscientists) want more: We want specific
neural mechanisms that are employed in specific circumstances,
and we want to know how such models can be arranged to
explain complex behavior (i.e., we want an architectural
specification).

Unfortunately, as Clark himself points out, the predictive pro-
cessing framework “fail[s] to specify the overall form of a cogni-
tive architecture” and “leaves unanswered a wide range of
genuine questions concerning the representational formats
used by different brain areas” (sect. 3.3, para. 4). The extent of
the predictive processing framework’s architectural claims is
that the brain is organized in a hierarchical manner, with error
signals passing up the hierarchy and predictions of world state
passing down. However, this description seems to miss all the
interesting details: What is the specific form and function of
the connections between levels of this hierarchy? In the
human brain, along what neuroanatomical pathways should we
expect to see this information flowing? And, more generally,
how do different hierarchies interact? How does information
pass between them? Is there a unifying representational
format? The predictive processing framework leaves all of
these details unspecified, but it strikes us that the filling-in of
these details is where the framework would gain deep, empirical
content.

It may seem as if some of these questions are answered. For
instance, the primary method of representation in the brain is sup-
posed to be through probability density functions across the poss-
ible states/concepts. However, as Clark mentions, these
representations could be implemented with a “wide variety of
different schemes and surface forms” (sect. 3.2, para. 4). For
example, a probability density p(x) could be represented as a his-
togram (which explicitly stores how many times each state x has
occurred) or as a summary model (e.g., storing just the mean
and variance of a normal distribution). These different schemes
have enormously different resource implications for a physical
implementation. As long as the characterization of representation
is left at the level of specifying a general, abstract form, it is diffi-
cult to empirically evaluate.

Even what seems to be the most specific claim of the predictive
processing framework – that there exist functionally distinct
“error” and “representation” units in the brain – is ambiguous.
Given multidimensional neuron tuning (Townsend et al. 2006;
Tudusciuc & Nieder 2009), units could be simultaneously sensi-
tive to both error and representation, and still perform the rel-
evant computations (Eliasmith & Anderson 2003). This would
be compatible with the neurophysiological evidence showing
neurons responsive to prediction error, without requiring that
there be a sharp division in the brain into these two different
sub-populations. Again, the details matter.

One way to begin to fill in the missing details in the predictive
processing framework is by being more specific as to what func-
tions are computed. For example, Kalman filters1 (Kalman
1960) are standard control-theoretic structures that maintain an
internal representation of the state of the world, and then use
the difference between the predictions of that internal state and
incoming data to update the internal model (as the predictive

processing framework uses the prediction error signal to update
its representations). Clark claims that the predictive processing
framework differs from these structures in that it contains a
richer error signal (see Note 9 in the target article). However,
the Kalman filter is often employed in a multidimensional form
(Villalon-Turrubiates et al. 2004; Wu 1985), allowing the error
signal to encode rich and complex information about the world.
Making use of these parallels provides many potential advantages.
For example, Clark describes the need to adjust the relative
weight of the model’s predictions versus the incoming infor-
mation, but he does not indicate how that balance is to be
achieved. This is a well-studied problem in Kalman filters,
where there are specific mechanisms to adjust these weights
depending on the measurement or estimate error (Brown &
Hwang 1992). Thus, it may be possible to replace the poorly speci-
fied notion of “attention” used to control these weights in the pre-
dictive processing framework (sect. 2.3) with well-defined
mechanisms, providing a more grounded and concrete
description.
This is a way of providing computational details to the approach,

but we advocate going further – providing implementational
details as well. For instance, there is more than one way to
implement a Kalman filter in a spiking neural network (Eliasmith
& Anderson 2003, Ch. 9), each of which has different implications
for the neurophysiological behavior of those networks. Once a
neural implementation has been specified, detailed comparisons
between computational models and empirical data can be made.
More critically, for the grander suggestion that the predictive pro-
cessing framework is unifying, the implementation of some small
set of mechanisms should explain a wide swath of empirical data
(see, e.g., Eliasmith et al. [2012] or Eliasmith [in press] for one
such attempt).
The ideas presented by Clark are compelling, compatible with

empirical data, and attempt to unify several interesting aspects of
cognition. However, given the current lack of implementational
detail or firm architectural commitments, it is impossible to deter-
mine whether the predictive processing framework is largely
correct or empirically vacuous. The real test of these ideas will
come when they are used to build a model that unifies perception,
cognition, and action in a single system. Such an effort will require
a deeper investigation of the details, and either fill them in with
answers, or if answers are not to be found, require a reworking
of the theory. Either way, the predictive processing framework
will benefit enormously from the exercise.

NOTE
1. We have in mind here all the varieties of Kalman filters (e.g.,

extended, unscented, etc.).

Interactively human: Sharing time,
constructing materiality
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Abstract: Predictive processing models of cognition are promising an
elegant way to unite action, perception, and learning. However, in the
current formulations, they are species-unspecific and have very little
particularly human about them. I propose to examine how, in this
framework, humans can be able to massively interact and to build
shared worlds that are both material and symbolic.

Andy Clark has written an impressive piece. Predictive processing
ideas have been the hype in the neurocognitive community for
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some years, for all the reasons that the target article’s review
identifies. They propose to unify models of perception, action,
and learning within a framework –which is elegant, aligned with
neuroanatomical and functional findings, computationally plaus-
ible, and able to generate empirical research with relatively
clear hypotheses.

So far the ideas have been a well-kept secret within the commu-
nity. This BBS article is likely to change that. As one of the first,
Clark brings the predictive processing framework in touch with
more general views in cognition and philosophy of mind in a
format available to a wider audience. Stripping it of the mathemat-
ical formality without losing out on the conceptual stringency,
opens for a wider discussion of potential implications for how
we think of the brain and of ourselves. Key terms like anticipation,
expectancy, models of reality, attention, agency, and surprise
appear to move seamlessly between the neuronal, the mathemat-
ical, the phenomenological, and the behavioral. The ambition to
extend this to a general model of human cognition is impressive,
but this is also where the proposal becomes very open-ended. For,
ultimately, how human-specific is this predictive framework? In
the current formulation, hardly at all. The underlying neural
models are basically species-unspecific, and the empirical cases
move back and forth between many different model systems.
This is not a weakness of the framework; on the contrary, the
ambition is to lay out a general theory of brain function, cortical
responses, predictive coding, free energy, and so forth.
However, it leaves a lot of work open when gauging how this
relates to a specific understanding of human action and cognition.

To begin this, one may need to ask what is characteristic of
humans as a life form? We don’t know for sure, but there are a
few candidates. One is an unusual ability for interaction –
people coordinate, couple, take turns – at many different levels
(Levinson 2006). Through interactions, they come to share a
structuring of activities in time, and, perhaps, bring brain internal
processes in sync too. Another, probably not unrelated, is an
amazing ability to co-construct artefacts and build shared worlds
that are at the same time material and symbolic (Clark 2006b;
Roepstorff 2008): worlds that exist outside the individual, and in
time-windows, which extends beyond the here-and-now of inter-
action; worlds that, somehow, get internalized. Are these two prin-
ciples uniquely human? Probably not: Other species also
coordinate actions, and other species also modify their surround-
ings, building niches that are both material and cognitive, but the
degree to which people do it is amazing, and we still need to figure
out how this can come about, also at a cognitive level.

In sociology and anthropology, one influential attempt to relate
interactions and the co-constructed shared worlds has been a
focus on human practices (Bourdieu 1977; Roepstorff et al.
2010) as particular unfoldings of temporality set within specific
materialities. Translated into predictive coding lingo, these prac-
tices may help establish priors or even hyperpriors, sets of expec-
tations that shape perception and guide action (Roepstoff & Frith
2012). Following from this, human priors may not only be driven
by statistical properties in the environment, picked up by individ-
ual experience, or hardwired into the developing cognitive system.
They are also a result of shared expectations that are communi-
cated in interactions, mediated by representations, solidified
through materiality, and extended into an action space, going
way beyond the physical body and into proximal and distal
forms of technology.

This means that both the “predictive” and the “situated” in
Clark’s title may get a radical twist. It is not so much a matter
of living inside a “socio-cultural cocoon,” as Clark puts it (sect.
5.2, para. 4). This metaphor suggest that we will at some point
grow up and come out of the cocoon into the real world. It is
also not just a matter of “man” as “an animal suspended in webs
of significance he himself has spun,” as Clifford Geertz (1966), fol-
lowing Max Weber, famously suggested. This formulation over-
emphasizes the symbolic and the individualistic, and it fails to
see that the webs “we” have spun are indeed also very material,

and that the dimensions of materiality “we” can spin ourselves
into seem to be constantly changing. Humans appear to live
lives where both priors and possibilities for action – and perhaps
also, increasingly, the world – are shaped by actions of others
and constrained, stabilised, and afforded by those structures
built in the process. But if “being human” in general is about
living in unfolded practices, what, then, is it about our cognition
that allows us to do that? We don’t know. But something about
how humans can bridge the material and the symbolic, and some-
thing about how they in and through interactions can share both
external and internal time, may be critical.

The predictive framework, in “linking action, perception, and
learning,” is highly relevant also to researchers outside of the
neurosciences. But at this stage, there is much to fill in for it to
function as a general model of human cognition and action. Cer-
tainly, the free energy principle, the predictive hierarchical stuff,
the putative links between action, perception, and learning seem
to be good candidates for the new “rough guide” to brain function.
However, these guiding principles appear to work equally well in
rats, in macaques, and in humans. For those of us who are particu-
larly interested in what humans do to themselves, to each other,
and to their world, there seem to be a lot of lacunae to be
explored, and a lot of gaps to be filled. Getting these right may
perhaps also teach something about what humans, as interactive
agents, embedded in sociocultural worlds, may do to their
brains. Will this throw new light on neuroscience too? Perhaps.
There is certainly much work to be done by researchers from
many disciplines.

Action-oriented predictive processing and the
neuroeconomics of sub-cognitive reward
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Abstract: Clark expresses reservations about Friston’s reductive
interpretation of action-oriented predictive processing (AOPP) models
of cognition, but he doesn’t link these reservations to specific
alternatives. Neuroeconomic models of sub-cognitive reward valuation,
which, like AOPP, integrate attention with action based on prediction
error, are such an alternative. They interpret reward valuation as an
input to neocortical processing instead of reducing it.

Clark impressively surveys the prospects, based on current evi-
dence and speculations tethered to clearly specified models,
that action-oriented predictive processing (AOPP) accounts of
cortical activity offer the basis for a deeply unified account of
perception, cognition, and action. It is indeed clear that such
accounts provide, at the very least, a fresh and stimulating frame-
work for explaining the apparently expectation-driven nature of
perception. And once one gets this far, it would be a strangely
timid modeler who did not see value in exploring the hypothesis
that such perception was closely linked to preparation of action
and to monitoring of its consequences. However, Clark struc-
tures his critical discussion around the most ambitious efforts
to use AOPP as the basis for a reductive unification of “all
elements of systemic organization” in the brain (sect. 1.6, para.
3), efforts mainly associated with the work of Karl Friston and
his co-authors. Clark expresses some reservations about this
strong, over-arching hypothesis. My commentary amplifies
some of these reservations, based on neglect of the role of
specialized subsystems that may integrate valuation, attention,
and motor preparation semi-independently of general cortical
processing.
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Clark’s survey is notable for the absence of any discussion of
relative reward-value computation. Studies of such valuation
based on single-cell recordings in rat striatum were the original
locus of models of neural learning as adjustment of synaptic
weights and connections through prediction-error correction
(Schultz et al. 1997). The temporal difference (TD) learning
that has been progressively generalized in descendents of
Schultz et al.’s model is a form of Rescorla-Wagner conditioning,
not Bayesian equilibration, and so could not plausibly be expected
to provide a general account of mammalian cognition. However,
neuroeconomists have subsequently embedded TD learning in
models of wider scope that exploit drift diffusion and meta-con-
ditioning to track such complex targets as stochastic dominance
of strategies in games with shifting mixed-strategy equilibria
(Glimcher 2010; Lee & Wang 2009). Such models can effectively
approximate Bayesian learning. However, as Clark reports, Fris-
ton’s most recent work “looks to involve a strong commitment
… to the wholesale replacement of value functions, considered
as determinants of action, with expectations … about action”
(see Note 12 in the target article).

One theorist’s elimination is frequently another theorist’s con-
struct implementation. Neuroeconomic models of the striatal
dopamine circuit do away with the need to posit learned or
innate reward value hierarchies that provide targets for the learn-
ing of action and the training of attention. Like AOPP theory, such
models effectively fuse attentional capture and entrenchment
with reward, explaining both as functional products of the predic-
tion error learning encoded by dopamine signals. Extensions of
neuroeconomic models to account for pathologies of attention
and valuation, such as addiction, have incorporated evidence for
direct dopaminergic/striatal signaling to motor preparation
areas. For example, Everitt et al. (2001) suggest that direct
signals to motor systems to prepare to consume addictive
targets when attention is drawn to predictors of their availability
are the basis for the visceral cravings that, in turn, cause addictive
preoccupation. More basically, Glimcher’s (2003) proposal to
model some neural response using economics was originally
motivated by observations of activity in cells that control eye sac-
cades when monkeys implement incentivized choices through
gaze direction (Platt & Glimcher 1999).

This integration of attention and neural learning with action is
crucial in the present context, because, like the prediction
errors modeled in AOPP, this allows them to “carry information
not just about the quantity of error but … about the mismatched
content itself,” as Clark says (Note 9 of the target article).

So far, we might seem to have only a semantic difference
between neuroeconomics and Friston’s radical interpretation of
AOPP: Neuroeconomists take themselves to be furnishing a
theory of neural value functions, while Friston proposes to elimin-
ate them. But this in fact represents substantive divergences, all of
which reflect worries that Clark notes but doesn’t connect with
particular alternative accounts.

First, consider the problem of why, if AOPP is the general
account of cognitive dynamics, animals do not just sit still in
dark rooms to maintain error-minimizing equilibria. Clark cites
Friston’s suggestion in response that “some species are equipped
with prior expectations that they will engage in exploratory or
social play” (Friston 2011a; see sect. 3.2, para. 2, in the target
article). However, good biological methodology recommends
against positing speculative innate knowledge as inferences to
best explanations conditional on one’s hypothesis. The neuroeco-
nomic model of striatal valuation makes this posit unnecessary –
or, on another philosophical interpretation, replaces the dubious
IBE by evidence for a mechanism – by suggesting that discovery
of mismatches between expectations and consequences of
action is the basis of phasic dopamine release, and such release
is the foundation of reward, attention, and further action.

Second, allowing for a relatively encapsulated and cognitively
impenetrable pre-frontal mechanism in striatum that integrates
attention and action in a way that is partly independent of

general cognition, allows us to straightforwardly model the discon-
nect Clark identifies between surprise to the brain (“surprisal”)
and surprise to the agent. Clark’s example is of a surprise-minimiz-
ing perceptual inference that surprises the agent. But disconnects
in the other direction are also important. Gambling addiction may
result from the fact that the midbrain reward circuit is incapable
of learning that there is nothing to learn from repeatedly
playing a slot machine, even after the mechanism’s victim/owner
has become sadly aware of this truth (Ross et al. 2008).
The suggestion here is that neuroeconomics is one resource – of

course we should expect there to be others – for addressing
Clark’s concern that “even taken together, the mathematical
model (the Bayesian brain) and the hierarchical, action-oriented,
predictive processing implementation fail to specify the overall
form of a cognitive architecture. They fail to specify, for
example, how the brain … divides its cognitive labors between
multiple cortical and subcortical areas” (sect. 3.3, para. 4). But
in that case it seems most natural to join the neuroeconomists
in understanding sub-cognitive valuation as an input to cognition,
rather than as something that a model of cognitive activity should
reduce away.

Affect and non-uniform characteristics of
predictive processing in musical behaviour
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Abstract: The important roles of prediction and prior experience are well
established in music research and fit well with Clark’s concept of unified
perception, cognition, and action arising from hierarchical, bidirectional
predictive processing. However, in order to fully account for human
musical intelligence, Clark needs to further consider the powerful and
variable role of affect in relation to prediction error.

The roles of prediction, expectation, and prior experience in
musical processing are well established (Huron 2006; Large
et al. 2002; Meyer 1956; Narmour 1990; Phillips-Silver &
Trainor 2008; Vuust & Frith 2008), and indeed have led to the
proposal that music has the capacity to create an environment
of minimized prediction error within individuals and within
groups (e.g., via a steady pulse) (Overy & Molnar-Szakacs 2009).
Bayesian models have been shown to account for a range of
phenomena in music perception (Temperley 2007) and have
been used to bring together apparently diverging datasets from
rhythm perception and production tasks (Sadakata et al. 2006).
Moreover, it has been shown that the motor system is engaged
during auditory rhythm perception (e.g., Grahn & Brett 2007),
and that musical imagery evokes similar neural responses as per-
ception (Schaefer et al. 2011a; 2011b). Clark’s unified framework
of perception, action, and cognition is thus well supported by
recent music research.
However, the current account does not attempt to deal with the

range of ways in which prediction error induces arousal and affect.
The extent to which our predictions are met or violated, histori-
cally theorized to lead to an arousal response (Berlyne 1970),
can make a piece of music more or less coherent, interesting,
and satisfying. Aesthetically, this leads to the concept of an
optimal level of surprisal, which (although initially formulated to
describe liking or hedonic value for differing levels of musical
complexity; e.g., North & Hargreaves 1995) can be described as
an inverted U-shaped function in which, on the x-axis of
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prediction error, there is a preferred level of surprisal that leads to
a maximally affective response, plotted on the y-axis. However,
this optimal surprisal level is not uniform over musical features
(e.g., expressive timing, harmonic structure), but rather is
closely coupled to the specific characteristics of that musical
feature or behaviour. As Clark states, context sensitivity is funda-
mental, and in the case of music, different levels of constraint will
exist simultaneously across different systems of pitch space and
time. For example: Singing often has high constraints in terms
of pitch, tuning, and scale, while timing constraints may be
more flexible; but drumming usually involves strict timing con-
straints, with more flexibility in terms of pitch. Our perceptual
systems are finely attuned to these constraints, to the point that
rhythmic deviations that fit with certain aspects of perceived
musical structure are less well detected (Repp 1999), and
humanly produced deviations from a steady rhythm are preferred
over randomly added noise (Hennig et al. 2011).

This tuning of our perceptual system to specific deviations
from an internal model is seen not only in performance aspects
of music (such as expressive microtiming), but also in compo-
sitional aspects found in the score (such as syncopation). Most
musical styles require and indeed “play” with levels of surprisal
in the temporal domain, from the musical rubato of Romantic
piano performance, to the syncopated off-beat rhythms of jazz,
to the complex polyrhythms of African percussion. Proficient
musicians and composers are implicitly aware of these effects,
and tailor their efforts to interact with the surprisal responses
of the listener. This leads to what has been coined “communica-
tive pressure” in creating music (Temperley 2004): an implicit
knowledge of the musical dimension in which prediction can be
manipulated stylistically, without leading to a lack of clarity of
the musical ideas. While this complexity corresponds closely to
what Clark refers to as a designed environment, it is important
to note that different musical environments have different
rules, that different listeners (due to their different exposure
backgrounds, such as culture and training) seek different environ-
ments, and that the desired outcome is a complex affective
response. Indeed, exposure has been shown to influence liking
for a completely new musical system after only 30 minutes of
exposure (Loui et al. 2010). This finding supports the idea of a
strong personalized configuration of one’s own preference for
unpredictability, reflected in musical likes and dislikes, as well
as one’s own prediction abilities, shown to be quite stable over
time per individual, affecting interpersonal coordination
(Pecenka & Keller 2011). An individual personality might be
thrill-seeking and seek out highly unpredictable new musical
experiences, or, more commonly, might seek out highly predict-
able familiar, favorite musical experiences.

Thus, different kinds of musical experience, different musical
styles, and personal musical preferences lead to different predic-
tions, error responses, arousal, and affect responses across a range
of musical dimensions and hierarchical levels. The upshot is that
the surprisal response is non-uniform for music: The positioning
of a curve describing “optimal surprisal” for affective or aesthetic
reward will be determined by culture, training, or musical style,
and its precise shape (e.g., kurtosis) may be specific to the type
and level of the prediction or mental model. And while the charac-
teristics of the optimal surprisal for each aspect of music differs,
the commonality remains affect, which, we propose, plays a
major part in what makes prediction error in music (large or
small) meaningful, and indeed determines its value.

To the extent that prediction is established as a powerful mech-
anism in conveying musical meaning, it seems clear then that it is
the affective response to the prediction error that gives the initial
prediction such power. We thus propose that the valence of the
prediction error, leading to a range of affective responses, is a
necessary component of the description of how predictive proces-
sing can explain musical behaviour. The function of such affective
predictability will require discussion elsewhere, but we postulate
that this will include deep connections with social understanding

and communication, from simple group clapping, a uniquely
human behaviour requiring constant automatic adjustments of
probabilistic representation (Molnar-Szakacs & Overy 2006;
Overy & Molnar-Szakacs 2009), to more sophisticated rhythmic
organization and self-expression (Nelson 2012) with an emphasis
on “error” as positive, meaningful information.

Extending predictive processing to the body:
Emotion as interoceptive inference
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Abstract: The Bayesian brain hypothesis provides an attractive unifying
framework for perception, cognition, and action. We argue that the
framework can also usefully integrate interoception, the sense of
the internal physiological condition of the body. Our model of
“interoceptive predictive coding” entails a new view of emotion as
interoceptive inference and may account for a range of psychiatric
disorders of selfhood.

In his compelling survey, Clark powerfully motivates predictive
processing as a framework for neuroscience by considering the
“view from inside the black box,” the notion that the brain must
discover information about the world without any direct access
to its source. The ensuing discussion, and the large majority of
the literature surveyed, is focused on just these relations
between brain and (external) world. Perhaps underemphasized
in this view is the question of how perceptions of the body and
self arise. However, the brain’s access to the facts of its embodi-
ment and of its physiological milieu is arguably just as indirect
as its access to the surrounding world. Here, we extend Clark’s
integrative analysis by proposing that interoception – the sense
of the physiological condition of the body (see Craig 2003) – can
also be usefully considered from the perspective of predictive pro-
cessing. Our model of “interoceptive predictive coding” (Critchley
& Seth 2012; Seth et al. 2011) suggests a new view of emotional
feelings as interoceptive inference, and sheds new light on disso-
ciative disorders of self-consciousness.

Interoceptive concepts of emotion were crystallized by James
(1890) and Lange (1885/1912), who argued that emotions arise
from perception of changes in the body. This basic idea remains
influential more than a century later, underpinning frameworks
for understanding emotion and its neural substrates, such as the
“somatic marker hypothesis” (Damasio 2000) and the “sentient
self” model (Craig 2009), both linked to the notion of “interocep-
tive awareness” or “interoceptive sensitivity” (Critchley et al.
2004). Despite the neurobiological insights emerging from these
frameworks, interoception has remained generally understood
along “feedforward” lines, similar to classical feature-detection
or evidence-accumulation theories of visual perception as sum-
marized by Clark. However, it has long been recognised that expli-
cit cognitions and beliefs about the causes of physiological changes
influence subjective feeling states and emotional behaviour. Fifty
years ago, Schachter and Singer (1962) famously demonstrated
that injections of adrenaline, proximally causing a state of physio-
logical arousal, would give rise to either anger or elation depend-
ing on the concurrent context (an irritated or elated confederate).
This observation was formalized in their “two factor” theory, in
which emotional experience is determined by the combination
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of physiological change and cognitive appraisal, that is, emotion as
interpreted bodily arousal.

Though they involve expectations, two-factor theories fall con-
siderably short of a full predictive processing model of emotion.
By analogy with corresponding models of visual perception, pre-
dictive interoception involves hierarchically cascading top-down
interoceptive predictions that counterflow with bottom-up intero-
ceptive prediction errors. Subjective feeling states are then
determined by the integrated content of these predictive rep-
resentations across multiple levels (Seth et al. 2011). In other
words, the model argues that emotional content is determined
by a suite of hierarchically organized generative models that
predict interoceptive responses to both external stimuli and the
internal signals controlling bodily physiology (Fig. 1).

It is important to distinguish interoceptive predictive coding or
processing from more generic interactions between prediction
and emotion (e.g., Gilbert & Wilson 2009; Ploghaus et al. 1999).
Crucially, predictive coding involves prediction at synchronic,
fast time-scales, such that predictions (and prediction errors) are
constitutive of content. For example, while Paulus and Stein
(2006) hypothesize the existence of interoceptive prediction
errors within insular cortex in the generation of anxiety, they do
not contend, in the full predictive coding sense, that interoceptive
predictions are the constitutive basis of emotions. Similarly,
although Barrett and Bar (2009) propose that affective (interocep-
tive) predictions within orbitofrontal cortex shape visual object
recognition at fast time-scales, they again do not describe intero-
ceptive predictive coding per se.

Several strands of evidence lend support to our model and point
to its implications for dissociative psychiatric symptoms such as
depersonalization and chronic anxiety (Seth et al. 2011). Anterior
insular cortex (AIC) in particular provides a natural locus for com-
parator mechanisms underlying interoceptive predictive coding,
through its demonstrated importance for interoceptive represen-
tation (Craig, 2009; Critchley et al. 2004) and by the expression
within AIC of prediction error signals across a variety of affect-
laden contexts (Paulus & Stein 2006; Singer et al. 2009; Palaniyap-
pan & Liddle 2011). Human AIC is also rich in Von Economo
neurons (VENs), large projection neurons which are circumstan-
tially associated with self-consciousness and complex social
emotions (Craig 2009). In our model, fast VEN-mediated connec-
tions may enable the rapid registration of visceromotor and viscer-
osensory signals needed for efficient updating of generative
models underlying interoceptive predictive coding. The recent
discovery of VENs in the macaque monkey (Evrard et al. 2012)
opens important new avenues for experimental tests of the

potential role of VENs in this process and in conscious awareness
more generally (Critchley & Seth 2012).
Disrupted interoceptive predictive coding may causally account

for a range of psychiatric disorders. Chronic anxiety has been
suggested to result from heightened interoceptive prediction
error signals (Paulus & Stein 2006). By analogy with comparator
models of schizophrenia (Frith 2012; Synofzik et al. 2010), we
also suggest that dissociative symptoms, notably depersonalization
and derealization arise from imprecise (as opposed to inaccurate)
interoceptive prediction error signals. By the same token, the sub-
jective sense of reality characteristic of normal conscious experi-
ence (i.e., “conscious presence”) may depend on the successful
suppression by top-down predictions of informative interoceptive
signals (Seth et al. 2011).
In summary, subjective emotions and even conscious presence

may be usefully conceptualized in terms of interoceptive predic-
tive coding. A key test of our model will be to identify specific
interoceptive prediction error responses in the AIC or elsewhere.
This challenge is also yet to be met for predictive processing
models of perception in general, and the relevant evidence
would go a long way towards experimentally validating the Baye-
sian brain hypothesis.

Perception versus action: The computations
may be the same but the direction of fit differs
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Abstract: Although predictive coding may offer a computational principle
that unifies perception and action, states with different directions of fit are
involved (with indicative and imperative contents, respectively). Predictive
states are adjusted to fit the world in the course of perception, but in the
case of action, the corresponding states act as a fixed target towards which
the agent adjusts the world. This well-recognised distinction helps side-
step some problems discussed in the target article.

One of the central insights motivating Clark’s interest in the
potential for predictive coding to provide a unifying

Figure 1 (Seth & Crichley). A model of interoceptive predictive coding according to which subjective feeling states are constituted by
continually updated predictions of the causes of interoceptive input. Predictions are shaped by generative models informed by “efference
copies” of visceral, autonomic, and motor control signals. These are generated, compared, and updated within a salience network
anchored on the anterior insular and anterior cingulate cortices that engage brainstem regions as targets for visceromotor control and
relays of afferent interoceptive signals. Adapted from Seth et al. (2011).
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computational principle is the finding that it can be the basis of
effective algorithms in both the perceptual and motor domains
(Eliasmith 2007, p. 380). That is surprising because perceptual
inference in natural settings is based on a rich series of sensory
inputs at all times, whereas a natural motor control task only spe-
cifies a final outcome. Many variations in the trajectory are irrele-
vant to achieving the final goal (Todorov & Jordan 2002), a
redundancy that is absent from the perceptual inference
problem. Despite this disanalogy, the two tasks are instances of
the same general mathematical problem (Todorov 2006).

Clark emphasises the “deep unity” between the two tasks,
which is justified but might serve to obscure an important differ-
ence. In the perceptual task, a prediction error is used to change
expectations so as to match the input, whereas, as Clark notes, in
the motor task the prediction error is used to drive motor behav-
iour that changes the input. In perception, prediction error is
minimised by changing something internal (expectations),
whereas in action prediction error is minimised by changing some-
thing external (acting on the world so as to alter sensory input).
Although it is true in one sense that there is a common compu-
tational principle that does not distinguish between perceptual
and motor tasks (sect. 1.5), we should not overlook the fact that
those computations are deployed quite differently in the two
cases. In the two cases state representations have what philoso-
phers have called different “directions of fit.” A motor task takes
as input a goal state, which is held fixed; a motor program to
attain that goal state is then calculated (Todorov 2004). These
goal states have a world-to-mind direction of fit and imperative
content. By contrast, the state descriptions in the perceptual
task (expectations fed back from higher levels in the processing
hierarchy) are continually adjusted so as to match the current
sensory input more closely. They display a world-to-mind direc-
tion of fit and have indicative content. The difference is apparent
in its consequences for the behaviour of the organism: Prediction
errors in respect of indicative representations can be fully can-
celled without the agent having to perform any action, whereas
prediction errors in respect of imperative representations
cannot be cancelled unless the agent moves in some way.

If these accounts are right, then the deep unity consists in the fact
that both perception and action involve the reduction of prediction
error. However, since they do so by quite different means, a deep
difference between perception and action remains. Some sensori-
motor accounts of our interactions with the world do indeed serve
to dissolve the boundary between perception and action (Hurley
1998), but the predictive coding framework on its own does not.
(It does, however, undermine a clear boundary between perception
and cognition.) This gives rise to an important question for the pre-
dictive coding programme: What determines whether a given pre-
diction/expectation is given a mind-to-world functional role,
allowing it to be adjusted in the light of prediction errors, and
what gives other expectations a world-to-mind functional role,
such that prediction errors cause bodily movements/action? As
the evidence for a common computational principle in perception
and action mounts, the need becomes pressing to specify how this
fundamental difference between its two modes of operation arises.

Clark goes on to consider whether an austere “desert land-
scape” description of the computational processing is possible
that does away with goals and reward entirely (sect. 5.1), in the
sense that neither are represented in the model. If action gui-
dance requires states with a world-to-mind direction of fit, then
states which function as goals have not been eliminated. Even if
the difference is a matter of degree, with many cases in the
middle, we are still operating with a continuum marked by the
extent to which a state operates as a goal state at one end or as
an indicative state at the other.

The distinction between indicative and imperative contents also
throws light on the darkened room problem: Why don’t agents
minimise prediction error by just sitting still in a darkened
room? If some subsystems are constrained to minimise prediction
error not by changing expectations but by acting, then sitting still

in a darkened room will be entirely ineffective in reducing such
error signals. For example, if there is one of these goal state rep-
resentations for the level of sugar in the blood, when sensory feed-
back fails to match the target the agent does not have the option of
reducing the error signal by changing its expectation; instead, the
agent must act so as to change the sensory feedback (i.e., to
increase the level of sugar in the blood). This answer is comp-
lementary to Clark’s observation that some forms of prior expec-
tation could lead agents to engage in exploratory actions or social
play. It is orthogonal to the distinction between exploratory and
exploitative actions (which can, in any event, only be drawn rela-
tive to some set of goal states).

A final observation concerns the question of whether the expec-
tations involved in predictive coding calculations refer to the
external world. It is sometimes suggested that predictions and pre-
diction errors only concern the states of other computational
elements in the system. Goal states are perhaps the most
obvious candidate for representations that refer to the external
world. Since the feedback to which they are compared is
changed by action on the world, it is plausible that they come to
represent the external world affairs that must be changed if the
prediction error is to be cancelled.

To conclude, Clark’s persuasive case for the importance of pre-
dictive coding as a unifying computational principle, like any fruit-
ful research agenda, brings new issues into focus. An important
one is the question of what makes that computational principle
operate in indicative (perceptual) mode in some subsystems and
in imperative (action) mode in others.

Schizophrenia-related phenomena that
challenge prediction error as the basis of
cognitive functioning
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Abstract: There are aspects of schizophrenia that pose challenges for
Clark’s model. These include: (1) evidence for excitatory activity
underlying self-organizing neural ensembles that support coordinating
functions, and their impairment in schizophrenia; (2) evidence regarding
hallucinations that suggest they are not due to excessive prediction
error; and (3) the critical role of emotional factors as setting conditions
for delusion formation.

Clark’s model emphasizes the processing of prediction error, and,
in section 4.2, this is applied to an understanding of hallucinations,
delusions, and schizophrenia. This commentary emphasizes three
points related to these themes, with the overall goal of demon-
strating that Clark’s view, at present, does not provide a fully ade-
quate heuristic for understanding psychotic phenomena.

Clark’s theory emphasizes anti-Hebbian feedforward proces-
sing, in which correlated activity across neurons is suppressed,
presumably because no deviation from what is expected is
present, therefore allowing any signals related to deviation from
what is expected (i.e., prediction error) to become relatively
more salient. While this would appear to be a useful data-com-
pression strategy for coding invariant background information, it
does not account for cases in which it is precisely the correlation
between stimulus elements that codes their object properties,
thereby signaling stimulus significance. Numerous demon-
strations exist (e.g., Kinoshita et al. 2009; Silverstein et al. 2009;
Singer 1995) wherein increasing the correlation between an
aspect of elements (e.g., stimulus orientation in contour
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integration paradigms) leads to increased signal strength. Of
course, it is possible to argue, as Clark does, that this is due to a
cancellation of the activity in error units and subsequent enhance-
ment of the signal coding the contour or shape. However, it is not
clear how these competing hypotheses could be pitted against
each other in a definitive study.

Consistent with Clark’s view, evidence exists that, for example,
as random orientational jitter is applied to disconnected contour
elements, increases in fMRI BOLD signal are observed (Silver-
stein et al. 2009). Clark’s view is also consistent with Weber’s
(2002) view that much of our direct understanding of visual
forms results from perception of “metamorphoses of geometry”
or topological (isotopic) alterations of basic forms, a view consist-
ent with evidence that topological invariants are the primitives to
which our visual system responds most strongly (Chen 2005).
However, it is also the case that compared to a non-informative
background of randomly oriented Gabors, perception of a
contour is associated with increased activity (Silverstein et al.
2009). Clarifying the extent to which these two forms of signal
increase represent functioning of different circuits is an important
task for future research. Until this is clarified, Clark’s view appears
to be most appropriate for understanding signaling of objects in
the environment, as opposed to brain activity involved in creating
representations of those objects. This is relevant for schizo-
phrenia, as it is characterized by a breakdown in coordinating pro-
cesses in perception and cognition (Phillips & Silverstein 2003;
Silverstein & Keane 2011). A challenge for Clark’s view is to
account for these phenomena, which have been previously under-
stood as reflecting a breakdown in Hebbian processing, and
reduced self-organization at the local circuit level, involving
reduced lateral (and re-entrant) excitation.

Clark notes that while perceptual anomalies alone will not typi-
cally lead to delusions, the perceptual and doxastic components
should not be seen as independent. However, there are several
syndromes (e.g., Charles Bonnet Syndrome, Dementia with
Lewy Bodies, Parkinson’s Disease Dementia) where visual hallu-
cinations are prominent and delusions are typically absent (Sant-
house et al. 2000). Moreover, it would appear to be difficult to
explain the well-formed hallucinations characteristic of these syn-
dromes as being due to prediction error, given their sometimes
improbable content (e.g., very small people dressed in Victorian
era attire), and apparent errors in size constancy (ffytche &
Howard 1999; Geldmacher 2003) that argue against Bayes-
optimal perception in these cases. There are also many cases of
schizophrenia where delusions are present without hallucinations.
Finally, while evidence of reduced binocular depth inversion illu-
sions in schizophrenia (Keane et al., in press; Koethe et al. 2009)
provides evidence, on the one hand, for a weakened influence of
priors (or of the likelihood function) (Phillips 2012) on perception,
this evidence also indicates more veridical perception of the
environment. Therefore, these data suggest that, rather than pre-
diction error signals being falsely generated and highly weighted
(as Clark suggests), such signals appear not to be generated to a
sufficient degree, resulting in a lack of top-down modulation,
and bottom-up (but not error) signals being strengthened.
Indeed, this is exactly what was demonstrated in recent studies
using dynamic causal modeling of ERP and fMRI data from a
hollow-mask perception task in people with schizophrenia
(Dima et al. 2009; 2010). A developing impairment such as this
would lead to subjective changes in the meaning of objects and
the environment as a whole, and of the self –which, in turn, can
spawn delusions (Mattusek 1987; Sass 1992; Uhlhaas & Mishara
2007), even though the delusional thoughts are unrelated to the
likelihood functions and beliefs that existed prior to the onset of
the delusion.

Finally, Clark’s view of hallucinations is similar to many models
of schizophrenia, in that it is based on computational consider-
ations only. But, as noted, delusions often grow out of phenomen-
ological changes and emotional reactions to these (see also Conrad
1958), and this cascade is typically ignored in computational

models. It also must be noted that the delusions that patients
develop are not about random events, but typically are framed
in reference to the self, with appreciation of the statistical struc-
ture of the rest of the world being intact. Similarly, auditory hal-
lucinations often involve negative comments about the self, and
it has been suggested, due to the high prevalence of histories of
childhood physical and sexual abuse in people with schizophrenia
(Read et al. 2005), that voices are aspects of memory traces associ-
ated with the abuse experience that have been separated from
other aspects of the memory trace due to hippocampal impair-
ment secondary to chronic cortisol production (Read et al.
2001) (as opposed to being due to top-down expectancy driven
processing). A purely computational theory of hallucinations
and/or delusions is like a mathematical theory of music – it can
explain aspects of it, but not why one piece of music creates a
strong emotional response in one person yet not in another. Psy-
chotic symptom formation must be understood within the context
of personal vulnerability and emotional factors, and these are not
well accounted for by a Bayesian view at present.

What else can brains do?

doi:10.1017/S0140525X12002439

Aaron Sloman
School of Computer Science, University of Birmingham, Birmingham B15 2TT
United Kingdom.
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Abstract: The approach Clark labels “action-oriented predictive
processing” treats all cognition as part of a system of on-line control.
This ignores other important aspects of animal, human, and robot
intelligence. He contrasts it with an alleged “mainstream” approach that
also ignores the depth and variety of AI/Robotic research. I don’t think
the theory presented is worth taking seriously as a complete model, even
if there is much that it explains.

Clark’s paper deserves far more than 1,000 words, but I have to
be brief and dogmatic. Characterizing brains as predicting
machines ignores many abilities produced by evolution and devel-
opment,1 including mathematical discovery and reasoning, using
evolved mechanisms (perhaps) shared by several species
capable of the “representational redescription” postulated in Kar-
miloff-Smith (1992) and the meta-configured competences
suggested in Chappell & Sloman (2007), including (largely unstu-
died) discoveries of “toddler theorems” (Sloman 2010). The
“action-oriented predictive processing” approach treats every-
thing as on-line control (Powers 1973), like “enactivist” theorists
who usually ignore competences required to make predictions
true and processes generating and choosing (sometimes uncon-
sciously) between goals, plans, designs (for houses, machines,
etc.), preferences, explanations, theories, arguments, story plots,
forms of representation, ontologies, grammars, and proofs. Predic-
tive processing doesn’t explain termite cathedral building.
(Compare Chittka & Skorupski 2011).
Simultaneous localisation and mapping (SLAM) robotic tech-

niques, partly inspired by things animals do, create useful (topolo-
gical, metrical, and possibly logical) representations of enduring
extended environments. That’s not learning about mappings
between inputs and outputs. It’s a special case of using actions,
percepts, and implicit theories to derive useful information
about the environment. Another is producing a theory of chemical
valency.
Systematically varying how things are squeezed, stroked,

sucked, lifted, rotated, and so forth, supports learning about
kinds of matter, and different spatial configurations and pro-
cesses involving matter (Gibson 1966). Predicting sensory
signals is only one application. Others include creating future
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structures and processes in the environment, and understanding
processes. Choosing future actions often ignores sensory and
motor details, since a different ontology is used (e.g., choosing
between a holiday spent practising French and a music-
making holiday, or choosing insulation for a new house). For
more on “off-line” aspects of intelligence ignored by many
“enactivist” and “embodied cognition” enthusiasts, see Sloman
(1996; 2006; 2009). Even for on-line control, the use of servo-
control with qualitative modifications of behavior responding
to changing percepts reduces the need for probabilistic predic-
tion: Head for the center of the gap, then as you get close
use vision or touch to control your heading. Choosing a
heading may, but need not, involve prediction: it could be a
reflex action.

Predicting environmental changes need not use Bayesian infer-
ence, for example when you predict that two more chairs will
ensure seats for everyone, or that the gear wheel rotating clock-
wise will make the one meshed with it rotate counter-clockwise.
And some predictions refer to what cannot be sensed, for
example most deep scientific predictions, or a prediction that a
particular way of trying to prove Fermat’s last theorem will fail.

Many things humans use brains for do not involve on-line intel-
ligence, for example mulling over a conversation you had a week
ago, lying supine with eyes shut composing a piano piece, trying to
understand the flaw in a philosophical argument, or just day-
dreaming about an inter-planetary journey.

I don’t deny that many cognitive processes involve mixtures of
top-down, bottom-up, middle-out (etc.) influence: I helped
produce a simple model of such visual processing decades ago,
Popeye (Sloman 1978, Ch. 9), and criticized over-simple theories
of vision that ignored requirements for process perception and on-
line control (Sloman 1982; 1989). David Hogg, then my student,
used 3-D prediction to reduce visual search in tracking a human
walker (Hogg 1983). Sloman (2008) suggests that rapid perception
of complex visual scenes requires rapid activation and instantiation
of many normally dormant, previously learnt model fragment
types and relationships, using constraint propagation to rapidly
assemble and instantiate multi-layered percepts of structures
and processes: a process of interpretation, not prediction
(compare parsing). Building working models to test the ideas
will be difficult, but not impossible. Constraint propagation
need not use Bayesian inference.

“Thus consider a black box taking inputs from a complex exter-
nal world. The box has input and output channels along which
signals flow. But all it ‘knows’ about, in any direct sense, are the
ways its own states (e.g., spike trains) flow and alter….The brain
is one such black box” (sect. 1.2). This sounds like a variant of
concept empiricism, defeated long ago by Kant (1781) and
buried by philosophers of science.

Many things brains and minds do, including constructing
interpretations and extending their own meta-cognitive mechan-
isms, are not concerned merely with predicting and controlling
sensory and motor signals.

Evolutionary “trails”, from very simple to much more complex
systems, may provide clues for a deep theory of animal cognition
explaining the many layers of mechanism in more complex organ-
isms. We need to distinguish diverse requirements for information
processing of various sorts, and also the different behaviors and
mechanisms. A notable contribution is Karmiloff-Smith (1992).
Other relevant work includes McCarthy (2008) and Trehub
(1991), and research by biologists on the diversity of cognition,
even in very simple organisms. I have been trying to do this this
sort of exploration of “design space” and “niche space” for many
years (Sloman 1971; 1978; 1979; 1987; 1993; 1996; 2002; 2011a;
2011b).

Where no intermediate evolutionary steps have been found, it
may be possible to learn from alternative designs on branches
derived from those missing cases. We can adopt the designer
stance (McCarthy 2008) to speculate about testable mechanisms.
(It is a mistake to disparage “just so” stories based on deep

experience of struggling to build working systems, when used to
guide research rather than replace it.) This project requires study-
ing many types of environment, including not only environments
with increasingly complex and varied physical challenges and
opportunities, but also increasingly rich and varied interactions
with other information processing systems: predators, prey, and
conspecifics (young and old). Generalizing Turing (1952), I call
this the “Meta-morphogenesis project” (Sloman 2013).

Clark compares the prediction “story” with “mainstream com-
putational accounts that posit a cascade of increasingly complex
feature detection (perhaps with some top-down biasing)” (sect.
5.1). This fits some AI research, but labelling it as “mainstream”
and treating it as the only alternative, ignores the diversity of
approaches and techniques including constraint-processing,
SLAM, theorem proving, planning, case-based reasoning,
natural language processing, and many more. Much humanmotiv-
ation, especially in young children, seems to be concerned with
extensions of competences, as opposed to predicting and acting,
and similar learning by exploration and experiment is being inves-
tigated in robotics.

A minor point: Binocular rivalry doesn’t always lead to alternat-
ing percepts. For example look at an object with one eye, with
something moving slowly up and down blocking the view from
the other eye. The remote object can appear as if behind a tex-
tured window moving up and down.

Clark claims (in his abstract) that the “hierarchical prediction
machine” approach “offers the best clue yet to the shape of a
unified science of mind and action”. But it unifies only the
phenomena its proponents attend to.

NOTE
1. For more details, see http://www.cs.bham.ac.uk/research/projects/

cogaff/12.html#1203.

Distinguishing theory from implementation in
predictive coding accounts of brain function
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Abstract: It is often helpful to distinguish between a theory (Marr’s
computational level) and a specific implementation of that theory
(Marr’s physical level). However, in the target article, a single
implementation of predictive coding is presented as if this were the
theory of predictive coding itself. Other implementations of predictive
coding have been formulated which can explain additional
neurobiological phenomena.

Predictive coding (PC) is typically implemented using a hierarchy
of neural populations, alternating between populations of error-
detecting neurons and populations of prediction neurons. In the
standard implementation of PC (Friston 2005; Rao & Ballard
1999), each population of prediction neurons sends excitatory
connections forward to the subsequent population of error-
detecting neurons, and also sends inhibitory connections back-
wards to the preceding population of error-detecting neurons.
Similarly, each population of error-detecting neurons also sends
information in both directions; via excitatory connection to the fol-
lowing population of prediction neurons, and via inhibitory con-
nections to the preceding population of prediction neurons.
(See, for example, Figure 2 in Friston [2005], or Figure 2b in
Spratling [2008b]). It is therefore inaccurate for Clark to state
(see sects. 1.1 and 2.1) that in PC the feedforward flow of infor-
mation solely conveys prediction error, while feedback only
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conveys predictions. Presumably what Clark really means to say
is that the standard implementation of PC proposes that
inter-regional feedforward connections carry error, whereas
inter-regional feedback connections carry predictions (while infor-
mation flow in the reverse directions takes place within each cor-
tical area). However, this is simply one hypothesis about how PC
should be implemented in cortical circuitry. It is also possible to
group neural populations differently so that inter-regional feed-
forward connections carry predictions, not errors (Spratling
2008b).

As alternative implementations of the same computational
theory, these two ways of grouping neural populations are compa-
tible with the same psychophysical, brain imaging, and neurophy-
siological data reviewed in section 3.1 of the target article.
However, they do suggest that different cortical circuitry may
underlie these outward behaviours. This means that claims
(repeated by Clark in sect. 2.1) that prediction neurons corre-
spond to pyramidal cells in the deep layers of the cortex, while
error-detecting neurons correspond to pyramidal cells in super-
ficial cortical layers, are not predictions of PC in general, but pre-
dictions of one specific implementation of PC. These claims,
therefore, do not constitute falsifiable predictions of PC (if they
did then the idea that PC operates in the retina – as discussed in
sect. 1.3 – could be rejected, due to the lack of cortical pyramidal
cells in retinal circuitry!). Indeed, it is highly doubtful that these
claims even constitute falsifiable predictions of the standard
implementation of PC. The standard implementation is defined
at a level of abstraction above that of cortical biophysics: it con-
tains many biologically implausible features, like neurons that
can generate both positive and negative firing rates. The
mapping between elements of the standard implementation of
PC and elements of cortical circuitry may, therefore, be far less
direct than is suggested by the claim about deep and superficial
layer pyramidal cells. For example, the role of prediction
neurons and/or error-detecting neurons in the model might be
performed by more complex cortical circuitry made up of
diverse populations of neurons, none of which behave like the
model neurons but whose combined action results in the same
computation being performed.

The fact that PC is typically implemented at a level of abstrac-
tion that is intermediate between that of low-level, biophysical,
circuits and that of high-level, psychological, behaviours is a
virtue. Such intermediate-level models can identify common com-
putational principles that operate across different structures of the
nervous system and across different species (Carandini 2012; Phil-
lips & Singer 1997); they seek integrative explanations that are
consistent between levels of description (Bechtel 2006; Mareschal
et al. 2007), and they provide functional explanations of the
empirical data that are arguably the most relevant to neuroscience
(Carandini et al. 2005; Olshausen & Field 2005). For PC, the
pursuit of consistency across levels may prove to be a particularly
important contribution to the modelling of Bayesian inference.
Bayes’ theorem states that the posterior is proportional to the
product of the likelihood and the prior. However, it places no con-
straints on how these probabilities are calculated. Hence, any
model that involves multiplying two numbers together, where
those numbers can be plausibly claimed to represent the likeli-
hood and posterior, can be passed off as a Bayesian model. This
has led to numerous computational models which lay claim to
probabilistic respectability while employing mechanisms to
derive “probabilities” that are as ad-hoc and unprincipled as the
non-Bayesian models they claim superiority over. It can be
hoped that PC will provide a framework with sufficient constraints
to allow principled models of hierarchical Bayesian inference to
be derived.

A final point about different implementations is that they are
not necessarily all equal. As well as implementing the PC theory
using different ways of grouping neural populations, we can also
implement the theory using different mathematical operations.
Compared to the standard implementation of PC, one alternative

implementation (PC/BC) is mathematically simpler while explain-
ing more of the neurophysiological data: Compare the range of V1
response properties accounted for by PC/BC (Spratling 2010;
2011; 2012a; 2012b) with that simulated by the standard
implementation of PC (Rao & Ballard 1999); or the range of atten-
tional data accounted for by the PC/BC implementation (Spratling
2008a) compared to the standard implementation (Feldman &
Friston 2010). Compared to the standard implementation, PC/
BC is also more biologically plausible; for example, it does not
employ negative firing rates. However, PC/BC is still defined at
an intermediate-level of abstraction, and therefore, like the stan-
dard implementation, provides integrative and functional expla-
nations of empirical data (Spratling 2011). It can also be
interpreted as a form of hierarchical Bayesian inference (Loch-
mann & Deneve 2011). However, it goes beyond the standard
implementation of PC by identifying computational principles
that are shared with algorithms used in machine learning, such
as generative models, matrix factorization methods, and deep
learning architectures (Spratling 2012b), as well as linking to
alternative theories of brain function, such as divisive normalisa-
tion and biased competition (Spratling 2008a; 2008b). Other
implementations of PC may in future prove to be even better
models of brain function, which is even more reason not to
confuse one particular implementation of a theory with the
theory itself.

Sparse coding and challenges for Bayesian
models of the brain

doi:10.1017/S0140525X12002300

Thomas Trappenberg and Paul Hollensen
Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2,
Canada.

tt@cs.dal.ca paulhollensen@gmail.com
www.cs.dal.ca/∼tt

Abstract: While the target article provides a glowing account for the
excitement in the field, we stress that hierarchical predictive learning in
the brain requires sparseness of the representation. We also question
the relation between Bayesian cognitive processes and hierarchical
generative models as discussed by the target article.

Clark’s target article captures well our excitement about predic-
tive coding and the ability of humans to include uncertainty in
making cognitive decisions. One additional factor for represen-
tational learning to match biological findings that has not been
stressed much in the target article is the importance of sparseness
constraints. We discuss this here, together with some critical
remarks on Bayesian models and some remaining challenges
quantifying the general approach.
There are many unsupervised generative models that can be

used to learn representations to reconstruct input data. Consider,
for example, photographs of natural images. A common method
for dimensionality reduction is principle component analysis
that represents data along orthogonal feature vectors of decreas-
ing variance. However, as nicely pointed out by Olshausen and
Field (1996), the corresponding filters do not resemble receptive
fields in the brain. In contrast, if a generative model has the
additional constraint to minimize not only the reconstruction
error but also the number of basis functions that are used for
any specific image, then filters emerge that resemble receptive
fields of simple cells in the primary visual cortex.
Sparse representation in the neuroscientific context actually has

a long and important history. Horace Barlow pointed out for years
that the visual system seems to be remarkably set up for sparse
representations (Barlow 1961), and probably the first systematic
model in this direction was proposed by his student Peter
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Földiák (1990). It seems that nearly every generative model with a
sparseness constraint can reproduce receptive fields resembling
simple cells (Saxe et al. 2011), and Ng and colleagues have
shown that sparse hierarchical Restricted Boltzmann Machines
(RBMs) resembles features of receptive fields in V1 and V2
(Lee et al. 2008). In our own work, we have shown how lateral
inhibition can implement sparseness constrains in a biological
way while also promoting topographic representations (Hollensen
& Trappenberg 2011).

Sparse representation has great advantages. By definition, it
means that only a small number of cells have to be active to repro-
duce inputs in great detail. This not only has advantages energeti-
cally, it also represents a large compression of the data. Of course,
the extreme case of maximal sparseness corresponding to grand-
mother cells is not desirable, as this would hinder any generaliz-
ation ability of a model. Experimental evidence of sparse coding
has been found in V1 (Vinje & Gallant 2000) and hippocampus
(Waydo et al. 2006).

The relation of the efficient coding principle to free energy is
discussed by Friston (2010), who provides a derivation of free
energy as the difference between complexity and accuracy. That
is, minimizing free energy maximizes the probability of the data
(accuracy), while also minimizing the difference (cross-entropy)
between the causes we infer from the data and our prior on
causes. The fact that the latter is termed complexity reflects our
intuition that causes in the world lie in a smaller space than
their sensory projections. Thus, our internal representation
should mirror the sparse structure of the world.

While Friston shows the equivalence of Infomax and free
energy minimization given a sparse prior, a fully Bayesian
implementation would treat the prior itself as a random variable
to be optimized through learning. Indeed, Friston goes on to
say that the criticism of where these priors come from “dissolves
with hierarchical generative models, in which the priors them-
selves are optimized” (Friston 2010, p. 129). This is precisely
what has not yet been achieved: a model which learns a sparse rep-
resentation of sensory messages due to the world’s sparseness,
rather than due to its architecture or static priors. Of course, we
are likely endowed with a range of priors built-in to our evolved
cortical architecture in order to bootstrap or guide development.
What these native priors are and the form they take is an interest-
ing and open question.

There are two alternatives to innate priors for explaining the
receptive fields we observe. First, there has been a strong ten-
dency to learn hierarchical models layer-by-layer, with each layer
learning to reconstruct the output of the previous without being
influenced by top-down expectations. Such top-down modulation
is the prime candidate for expressing empirical priors and influen-
cing learning to incorporate high-level tendencies. Implementing
a model that balances conforming to both its input and top-down
expectations while offering efficient inference and robustness is a
largely open question (Jaeger 2011). Second, the data typically
used to train our models on differs substantially from what we
are exposed to. The visual cortex experiences a stream of images
with substantial temporal coherence and correlation with internal
signals such as eye movements, limiting the conclusions we can
draw from comparing its representation to models trained on
static images (see, e.g., Rust et al. 2005).

The final comment we would like to make here concerns the
discussion of Bayesian processes. Bayesian models such as the
ideal observer have received considerable attention in neuro-
science since they seem to nicely capture human abilities to
combine new evidence with prior knowledge in the “correct”
probabilistic sense. However, it is important to realize that
these Bayesian models are very specific to limited experimental
tasks, often with only a few possible relevant states, and such
models do not generalize well to changing experimental con-
ditions. In contrast, the Bayesian model of a Boltzmann
machine represents general mechanistic implementations of
information processing in the brain that we believe can

implement a general learning machine. While all these models
are Bayesian in the sense that they represent causal models
with probabilistic nodes, the nature of the models are very differ-
ent. It is fascinating to think about how such specific Bayesian
models as the ideal observer can emerge from general learning
machines such as the RBM. Indeed, such a demonstration
would be necessary to underpin the story that hierarchical gen-
erative models support the Bayesian cognitive processing as dis-
cussed in the target article.

Authors’ Response

Are we predictive engines? Perils, prospects,
and the puzzle of the porous perceiver
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Abstract: The target article sketched and explored a mechanism
(action-oriented predictive processing) most plausibly associated
with core forms of cortical processing. In assessing the
attractions and pitfalls of the proposal we should keep that
element distinct from larger, though interlocking, issues
concerning the nature of adaptive organization in general.

R1. Introduction: Combining challenge and delight

The target article (“Whatever next? Predictive brains, situ-
ated agents, and the future of cognitive science” – hence-
forth WN for short) drew a large and varied set of
responses from commentators. This has been a source of
both challenge and delight. Challenge, because the variety
and depth of the commentaries really demands (at least) a
book-length reply, not to mention far more expertise than
I possess. Delight, because the wonderfully constructive
and expansive nature of those responses already paints a
far richer picture of both the perils and the prospects of
the emerging approach to cortical computation that I
dubbed “action-oriented predictive processing” (henceforth
PP for short). Inwhat follows I respond, at least in outline, to
three main types of challenge (the “perils” referred to in the
title) that the commentaries have raised. I then offer some
remarks on themany exciting suggestions concerning comp-
lementary perspectives and further applications (the pro-
spects). I end by addressing a kind of conceptual puzzle (I
call it “the puzzle of the porous perceiver”) that surfaced
in different ways and that helps focus some fundamental
questions concerning the nature (and plausibility) of the
implied relation between thought, agent, and world.

R2. Perils of prediction

The key perils highlighted by the commentaries concern
(1) the proper “pitch” of the target proposal (is it about
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implementation, algorithm, or something more abstract?);
(2) the relation between PP and various other strategies
and mechanisms plausibly implicated in human cognitive
success; and (3) the nature and adequacy of the treatment
of attention as a mechanism for “precision-weighting” pre-
diction error.

R2.1 Questioning pitch

Rasmussen & Eliasmith raise some important worries
concerning content and pitch. They agree with the target
article on the importance and potency of action-oriented
predictive processing (PP), and describe the ideas as com-
pelling, compatible with the empirical data, and potentially
unifying as well. But the compatibility, they fear, comes at a
price. For, the architectural commitments of PP as I
defined it are, they argue, too skimpy as yet to deliver a tes-
table model unifying perception, action, and cognition. I
agree. Indeed (as they themselves note) much of the
target article argues that PP does not serve to specify the
detailed form of a cognitive architecture. I cannot agree
with them, however, that the commitments PP does
make therefore run the risk of being “empirically
vacuous.” Those commitments include the top-down use
of a hierarchical probabilistic generative model for both
perception and action, the presence of functionally distinct
neural populations coding for representation (prediction)
and for prediction-error, and the suggestion that predic-
tions flow backwards through the neural hierarchy while
only information concerning prediction error flows for-
wards. The first of these (the widespread, top-down use
of probabilistic generative models for perception and
action) constitutes a very substantial, but admittedly quite
abstract, proposal: namely, that perception and (by a
clever variant – see WN, sect. 1.5) action both depend
upon a form of “analysis by synthesis” in which observed
sensory data is explained by finding the set of hidden
causes that are the best candidates for having generated
that sensory data in the first place.
Mechanistically, PP depicts the top-down use of (hier-

archical) probabilistic generative models as the fundamen-
tal form of cortical processing, accommodating central
cases of both perception and action, and makes a further
suggestion concerning the way this is achieved. That sug-
gestion brings on board the data compression strategy
known as “predictive coding” (WN, sect. 1.1) from which
it inherits – or so I argued, but see below – a distinctive
image of the flow of information: one in which predictions
(from the generative model) flow downwards (between
regions of the neural hierarchy) and only deviations from
what is predicted (in the form of residual errors) flow for-
wards between such regions. The general form of this pro-
posal (as Bridgeman properly stresses) is not new. It has a
long history in mainstream work in neuroscience and psy-
chology that depicts cortex as coding not for properties of
the stimulus but for the differences (hence the “news”)
between the incoming signal and the expected signal.
PP goes further, however, by positing a specific proces-

sing regime that seems to require functionally distinct
encodings for prediction and prediction error. Spratling
notes, helpfully, that the two key elements of this
complex (the use of a hierarchical probabilistic generative
model, and the predictive coding data compression
device) constitute what he describes as an “intermediate-

level model”: one that still leaves unspecified a great
many important details concerning implementation.
Unlike Rasmussen & Eliasmith, however, Spratling
notes that: “Such intermediate-level models can identify
common computational principles that operate across
different structures of the nervous system … and they
provide functional explanations of the empirical data that
are arguably the most relevant to neuroscience” (emphasis
Spratling’s). WN aimed to present just such an intermedi-
ate-level model. In so doing, it necessarily fell short of pro-
viding a detailed architectural specification of the kind
Rasmussen & Eliasmith seek. It does, however, aim to
pick out a space of models that share some deep assump-
tions: assumptions that already have (or so I argued – see
WN, sect. 2) many distinctive conceptual and empirical
consequences.
Spratling then worries (in a kind of inversion of the

doubts raised by Rasmussen & Eliasmith) that in one
respect, at least, the presentation in WN is rather too
specific, too close to one possible (but not compulsory)
implementation. The issue here concerns the depiction of
error as flowing forwards (i.e., between regions in the hier-
archy) and predictions as flowing backwards. WN depicts
this as a direct consequence of the predictive coding com-
pression technique. But it is better seen, Spratling convin-
cingly argues, as a feature of one (albeit, as he himself
accepts, the standard) implementation of predictive
coding. Spratling is right to insist upon the distinction
between theory and implementation. It is only by consider-
ing the space of alternative implementations that we can
start to ask truly pointed experimental questions, (of the
kind highlighted by Rasmussen & Eliasmith) of the brain:
questions that may one day favour one implementation of
the key principles, or even none at all. One problem, I
suspect, will be that resolving the “what actually flows
forward?” issue looks crucial to adjudicating between
various close alternatives. But that depends (as Spratling’s
work shows) upon how we carved the system into levels
in the first place, since that determines what counts as
flow within a level versus flow between levels. This is not
going to be as easy as it sounds, since it is not gross cortical
layers but something much more functional (cortical
columns, something else?) that is at issue. Experimenters
and theorists will thus need to work together to build
detailed, testable models whose assumptions (especially
concerning what counts as a region or level) are agreed in
advance.
Egner & Summerfield describe a number of empirical

studies that support the existence both of (visual) surprise
signals and of the hierarchical interplay between expec-
tation and surprise. Some of this evidence (e.g., the work
by Egner et al. 2010 and by Murray et al. 2002) is discussed
in the text, but new evidence (see, e.g., Wyart et al. 2011)
continues to emerge. In their commentary Egner & Sum-
merfield stress, however, that complex questions remain
concerning the origins of such surprise. Is it locally com-
puted or due to predictions issuing from elsewhere in the
brain? My own guess is that both kinds of computation
occur, and that complex routing strategies (see Phillips
et al. 2010 and essays in von der Marlsberg et al. 2010)
determine, on a moment-to-moment basis, the bodies of
knowledge and evidence relative to which salient (i.e.,
precise, highly weighted) prediction error is calculated. It
is even possible that these routing effects are themselves
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driven by prediction errors of various kinds, perhaps in the
manner sketched by den Ouden et al. (2010). Egner &
Summerfield go on to note (see WN, sect. 3.1) the contin-
ued absence of firm cellular-level evidence for the exist-
ence of functionally distinct neural encodings for
expectation and surprise. More positively, they highlight
some recent studies (Eliades & Wang 2008; Keller et al.
2012; Meyer & Olson 2011) that offer tantalizing hints of
such evidence. Especially striking here is the work by
Keller et al. (2012) offering early evidence for the existence
of prediction-error neurons in supra-granular layers 2/3,
which fits nicely with the classic proposals (implicating
superficial pyramidal cells) by Friston (2005), Mumford
(1992), and others. Such work represents some early
steps along the long and complex journey that cognitive
science must undertake if it is deliver evidence of the
kind demanded by Rasmussen & Eliasmith.

Muckli, Petro, & Smith (Muckli et al.) continue this
positive trend, describing a range of intriguing and impor-
tant experimental results that address PP at both abstract
and more concrete levels of description. At the abstract
level, they present ongoing experiments that aim to
isolate the contributions of cortical feedback (downward-
flowing prediction) from other processing effects. Such
experiments lend considerable support to the most basic
tenets of the PP model. Moving on to the more concrete
level they suggest, however, that the standard implemen-
tation of predictive coding may not do justice to the full
swathe of emerging empirical data, some of which (Kok
et al. 2012) shows both sharpening of some elements of
the neuronal signal, as well as the kind of dampening man-
dated by successful “explaining away” of sensory data.
However, as mentioned in WN sect. 2.1 (see also com-
ments on Bowman, Filetti, Wyble, & Olivers
[Bowman et al.] below), this combination is actually
fully compatible with the standard model (see, e.g.,
remarks in Friston 2005), since explaining away releases
intra-level inhibition, resulting in the correlative sharpen-
ing of some parts of the activation profile. I agree,
however, that more needs to be done to disambiguate
and test various nearby empirical possibilities, including
the important questions about spatial precision mentioned
later in Muckli et al’s interesting commentary. Such exper-
iments would go some way towards addressing the related
issues raised by Silverstein, who worries that PP (by sup-
pressing well-predicted signal elements) might not grace-
fully accommodate cases in which correlations between
stimulus elements are crucial (e.g., when coding for
objects) and need to be highlighted by increasing (rather
than suppressing) activity. It is worth noting, however,
that such correlations form the very heart of the generative
models that are used to predict the incoming sensory pat-
terns. This fact, combined with the co-emergence of both
sharpening and dampening, makes the PP class of models
well-suited to capturing the full gamut of observed effects.

I turn now to the relation between key elements of PP
and the depiction of the brain as performing Bayesian
inference. Trappenberg & Hollensen note that the
space of Bayesian models is large, and they distinguish
between demonstrations of Bayesian response profiles in
limited experimental tasks and the much grander claim
that that such specifics flow from something much more
general and fundamental. The latter position is most
strongly associated with the work of Karl Friston, and is

further defended in his revealing commentary. PP is,
however, deliberately pitched between these two
extremes. It is committed to a general cortical processing
strategy that minimizes surprisal using sensorimotor loops
that sample the environment while deploying multilevel
generative models to predict the ongoing flow of
sensation.
Friston’s focus is on a presumed biological imperative to

reduce surprisal: an imperative obeyed by reducing the
organism-computable quantity free energy. Both predictive
coding and the Bayesian brain are, Friston argues, results of
this surprise minimization mandate. The kinds of proces-
sing regime PP describes are thus, Friston claims, the
results of surprisal minimization rather than its cause.
Friston may be right to stress that, assuming the free
energy story as he describes it is correct, predictive
coding and the Bayesian brain emerge as direct conse-
quences of that story. But I do not think the target article
displays confusion on this matter. Instead, the issue turns
on where we want to place our immediate bets, and
perhaps on the Aristotelian distinction between proximate
and ultimate causation. Thus, the proximal cause (the
mechanism) of large amounts of surprisal reduction may
well be the operation of a cortical predictive processing
regime, even if the ultimate cause (the explanation of the
presence of that very mechanism) is a larger biological
imperative for surprisal minimization itself. This seems no
stranger than saying that the reproductive advantages of
distal sensing (an ultimate cause) explain the presence of
various specific mechanisms (proximal causes) for distal
sensing, such as vision and audition. WN, however, deliber-
ately took no firm position on the full free energy story
itself.
Friston also notes, importantly, that other ideas that fit

within this general framework include ideas about efficient
coding. This is correct, and I regard it as a shortfall of my
treatment that space precluded discussion of this issue.
For, as Trappenberg & Hollensen nicely point out,
dimensionality reduction using generative models will
only yield neurally plausible encodings (filters that
resemble actual receptive fields in the brain) if there is
pressure to minimize both prediction error and the com-
plexity of the encoding itself. The upshot of this is
pressure towards various forms of “sparse coding”
running alongside the need to reduce prediction error at
multiple spatial and temporal scales, and in some accepta-
bly generalizable fashion. Trappenberg & Hollensen
suggest that we still lack any concrete model capable of
learning to form such sparse representations “due to the
world’s sparseness” rather than due to the pre-installation
of some form of pressure (e.g., an innate hyperprior)
towards sparse encodings. But this may be asking too
much, given the quite general utility of complexity
reduction. Reflecting on the sheer metabolic costs of
creating and maintaining internal representations, such a
bias seems like a very acceptable ingredient of any
“minimal nativism” (Clark 1993).

R2.2. Other mechanisms

I move now to a second set of perils, or challenges. These
challenges concern the relation between PP and various
other strategies and mechanisms plausibly implicated in
human cognitive success. Ross draws our attention to a
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large and important body of work on “neuroeconomic
models of sub-cognitive reward valuation.” Such models
(e.g., Lee & Wang 2009; Glimcher 2010) posit pre-com-
puted reward valuations (outputs from specialized subsys-
tems performing “striatal valuation”) as the inputs to
more flexible forms of cortical processing. But despite my
intended emphasis on cortical processing, nothing in the
PP story was meant to stand in the way of such modes of
influence. To be sure, Friston’s own (“desert landscape” –
see WN, sects. 1.5 and 5.1) attempt to replace reward and
value signals with multilevel expectations may at first sight
seem inimical to such approaches. But Friston’s account
ends up accommodating such modes of influence (see, e.
g., Friston 2011b), albeit with an importantly different
functional and terminological spin. Here (see WN, sect.
3.2, and the commentary by Friston), it is important to
recognize that predictions and expectations, in Friston’s
large-scale free energy treatments, are determined by the
shape and nature of the whole agent (morphology, reflexes,
and subcortical organization included) and are not merely
the products of probabilistic models commanded by
sensory and motor cortex. Insights concerning the impor-
tance of the mid-brain circuitry are compatible both with
PP and with the full “desert landscape” version of Friston’s
own account. This means, incidentally, that the kind of non-
cortical route to a (partial) resolution of the Darkened
Room problem suggested by Ross (and hinted at also by
Shea) is in fact equally available to Friston. It is also con-
sistent with (though it is not implied by) the more restricted
perspective offered by PP, understood as an account of cor-
tical processing.
Ross’s concern that PP may be losing sight of the crucial

role played by non-cortical (e.g., environmental, morpho-
logical, and subcortical) organization is amplified by
Anderson & Chemero, who fear that PP puts us on a slip-
pery slope back to full-blown epistemic internalism of the
kind I am supposed to have roundly and convincingly
(Clark 1997; 2008) rejected. That slope is greased, Ander-
son & Chemero suggest, by the conflation of two very
different senses of prediction. In the first sense, prediction
amounts to nothing more than correlation (as in “height
predicts weight”), so we might find “predictive processing”
wherever we find processing that extracts and exploits cor-
relations. This sense Anderson & Chemero regard as inno-
cent because (involving merely “simple relationships
between numbers”) it can be deployed without reliance
upon inner models, in what they call a model-free or
even “knowledge-free” (I would prefer to say “knowl-
edge-sparse”) fashion so as to make the most of, for
example, reliable cross-modal relationships among sensed
information. The second sense is more loaded and “allied
with abductive inference and hypothesis testing.” It
involves the generation of predictions using internal
models that posit hidden variables tracking complex
causal structure in the body and world. Prediction thus con-
strued is, let us agree, knowledge-rich. Evidence for the
utility and ubiquity of prediction in the knowledge-free
(or knowledge-sparse) sense provides, just as Anderson &
Chemero insist, no evidence for the ubiquity and operation
(nor even for the biological possibility) of predictive proces-
sing in the second (knowledge-rich) sense.
This is undeniably true and important. But nowhere in

the target article did I make or mean to imply such a
claim. In displaying the origins of this kind of use of

generative models in cognitive science (e.g., Dayan
et al.’s [1995] work on the Helmholz machine, leading to
all the work on “deep learning” – see Bengio 2009) I was
careful to highlight their role in dealing with cases where
successful learning required deriving new representations
tracking hidden variables. As the story progressed, the
role of complex multilevel models learnt and deployed
using bidirectional hierarchies (as most clearly
implemented by the cortex) was constantly center stage.
The larger free energy story, to be sure, covers both the
knowledge-rich and knowledge-sparse cases. From the
free energy minimization perspective we might even
choose to consider (as does Friston) the whole embodied,
embedded agent as “the model” relative to which surprise
is (long-term) minimized. But that story, in turn, does not
conflate the two senses of prediction either, since it
fluidly covers both. Anderson & Chemero suggest that
I somehow rely on the (very speculative) model of binocu-
lar rivalry to make an illegitimate move from a knowledge-
free to a knowledge-rich understanding of prediction.
Here, the exposition in WN must be at fault. It may be
that they think the account of rivalry plays this role
because I preceded it with some remarks on dynamic pre-
dictive coding by the retina. But the retinal case, which may
indeed be understood as essentially knowledge-sparse and
internal-model-free prediction, was meant to illustrate only
the predictive coding data compression technique, and not
the full PP apparatus. Nor did I intend anything much to
turn on the binocular rivalry story itself, which was meant
merely as a helpful illustration of how the hypothesis-
testing brain might deploy a multi-layered model. It is
clear that much more needs to be done to defend and
flesh out that account of binocular rivalry (as also pointed
out by Sloman).
Anderson & Chemero believe that an account might

be given that delivers the rivalry response by appealing
solely to “low-level, knowledge-free, redundancy-reducing
interactions between the eyes.” This might turn out to be
true, thus revealing the case as closer to that of the
retinal ganglion cells than to any case involving hierarchical
predictive processing as I defined it. There are, however,
very many cases that simply cry out for an inner model–
invoking approach. Thus, consider the case of handwritten
digit recognition. This is a benchmark task in machine
learning, and one that Hinton and Nair (2006) convincingly
treat using a complex acquired generative model that per-
forms recognition using acquired knowledge about pro-
duction. The solution is knowledge-rich because the
domain itself is highly structured, exhibiting (like the exter-
nal world in general) many stacked and nested regularities
that are best tracked by learning that unearths multiple
interacting hidden variables. I do not think that such
cases can be dealt with (at least in any remotely neurally
plausible fashion) using resources that remain knowledge-
free in the sense that Anderson & Chemero suggest.
What seems true (Clark 1989; 1997; 2008) is that to what-
ever extent a system can avoid the effort and expense of
learning about such hidden causes, and rely instead on
surface statistics and clever tricks, it will most likely do
so. Much of the structure we impose (this relates also to
the comments by Sloman) upon the designed world is, I
suspect, a device for thus reducing elements of the pro-
blems we confront to simpler forms (Clark & Thornton
1997). Thus, I fully agree that not all human cognition
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depends upon the deployment of what Anderson &
Chemero call “high-level, knowledge-rich predictive
coding.”

What kind of overall cognitive organization, it might be
asked, does the embodied, embedded agent then display?
Is that organization multiply and impenetrably fractured
and firewalled, comprising a motley within which a few
principled, knowledge-rich responses bed down with
unwashed legions of just-good-enough ploys and strata-
gems? Surely such a motley is incompatible with the
hope for any kind of unifying treatment? This issue (let’s
call it the Motley Challenge) is among the deepest unre-
solved questions in cognitive science. Buckingham &
Goodale join Ross and Anderson & Chemero, and (as
I discuss later) Sloman and Froese & Ikegami, in press-
ing the case for the cognitive motley. Following a crisp
description of the many successes of Bayesian (i.e.,
optimal cue integration, given prior probabilities) models
in the field of motor control and psychophysics, Bucking-
ham & Goodale turn to some problem cases – cases
where Bayesian style optimal integration seems to fail –
using these to argue for a fractured and firewalled cognitive
economy displaying “independent sets of priors for motor
control and perceptual/cognitive judgments, which ulti-
mately serve quite different functions.” Poster-child for
this dislocation is the size-weight illusion in which similar-
looking objects appear weight-adjusted so that we judge
the smaller one to feel heavier than the larger despite
their identical objective weights (a pound of lead feels
heavier, indeed, than a pound of feathers). Buckingham
& Goodale survey some intriguing recent work on the
size-weight illusion, noting that although Bayesian treat-
ments do manage to get a grip on lifting behavior itself,
they fail to explain the subjective comparison effect
which some describe as “anti-Bayesian” since prior expec-
tancies and sensory information there seem contrasted
rather than integrated (Brayanov & Smith 2010).

Is this a case of multiple, independently operating priors
governing various forms of response under various con-
ditions? Perhaps. The first point I would make in response
is that nothing either in PP or in the full free-energy formu-
lation rules this out. For the underlying architecture, by
dint of evolution, lifetime learning, or both, may come to
include “soft modules” partially insulating some response
systems from others. To the extent that this is so, that
may be traceable, as Friston suggests, to the relative stat-
istical independence of various key tracked variables. Infor-
mation about what an object is, for example, tells us little
about where it is, and vice versa, a fact that might explain
the emergence of distinct (though not fully mutually insu-
lated – see Schenk & McIntosh 2010) “what” and “where”
pathways in the visual brain. Returning to the size-weight
illusion itself, Zhu and Bingham (2011) show that the per-
ception of relative heaviness marches delicately in step with
the affordance of maximum-distance throwability. Perhaps,
then, what we have simply labeled as the experience of
“heaviness” is, in some deeper ecological sense, the experi-
ence of optimal weight-for-size to afford long-distance
throwability? If that were true, then the experiences that
Buckingham & Goodale describe re-emerge as optimal
percepts for throwability, albeit ones that we routinely mis-
conceive as simple but erroneous perceptions of relative
object weight. The Zhu and Bingham account is intriguing
but remains quite speculative. It reminds us, however, that

what looks from one perspective to be a multiple, fragmen-
ted, and disconnected cognitive economy may, on deeper
examination, turn out to be a well-integrated (though by
no means homogeneous) mechanism responding to organ-
ism-relevant statistical structure in the environment.
Gerrans continues the theme of fragmentation, resist-

ing the claim that prediction error minimization proceeds
seamlessly throughout the cortical hierarchy. His test
cases are delusions of alien control. I agree with Gerrans
that nothing in the simple story about prediction error
minimization explains why it seems that someone else is
in control, rather than simply (as in the other cases he men-
tions) that the action is not under our own control. It is not
clear to me, however, why that shortfall should be thought
to cast doubt on the more general (“seamlessness”) claim
that perception phases gently into cognition, and that the
differences concern scale and content rather than under-
lying mechanism.
Silverstein raises some important challenges both to the

suggestion that PP provides an adequately general account
of the emergence of delusions and hallucinations in schizo-
phrenia, and (especially) to any attempt to extend that
account to cover other cases (such as Charles Bonnet syn-
drome) in which hallucinations regularly emerge without
delusions. Importantly, however, I did not mean to
suggest that the integrated perceptuo-doxastic account
that helps explain the co-emergence of the two positive
symptoms in schizophrenia will apply across the board.
What might very reasonably be expected, however, is that
other syndromes and patterns (as highlighted by
Gerrans) should be explicable using the same broad appar-
atus, that is, as a result of different forms of compromise to
the very same kind of prediction-error–sensitive cognitive
economy. In Charles Bonnet syndrome (CBS), gross
damage to the visual system input stream (e.g., by lesions
to the pathway connecting the eye to the visual cortex, or
by macular degeneration) leads to complex hallucinations
without delusion. But this pattern begins to makes sense
if we reflect that the gross damage yields what are effec-
tively localized random inputs that are then subjected to
the full apparatus of learnt top-down expectation (see
Stephan et al. 2009, p. 515). Recent computational work
by Reichert et al. (2010) displays a fully implemented
model in which hallucinations emerge in just this broad
fashion, reflecting the operation of a hierarchical generative
(predictive) model of sensory inputs in which inputs are
compared with expectations and mismatches drive further
processing. The detailed architecture used by Reichert
et al. was, however, a so-called Deep Boltzmann Machine
architecture (Salakhutdinov & Hinton 2009), a key com-
ponent of which was a form of homeostatic regulation in
which processing elements learn a preferred activation level
to which they tend, unless further constrained, to return.
Phillips draws attention to the important question of

how a PP-style system selects the right sub-sets of infor-
mation upon which to base some current response. Infor-
mation that is critical for one task may be uninformative
or counter-productive for another. Appeals to predictive
coding or Bayesian inference alone, he argues, cannot
provide this. One way in which we might cast this issue, I
suggest, is by considering how to select what, at any given
moment, to try to predict. Thus, suppose we have an
incoming sensory signal and an associated set of prediction
errors. For almost any given purpose, it will be best not to
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bother about some elements of the sensory signal (in effect,
to treat prediction failures there as noise rather than signal).
Other aspects, however, ones crucial to the task at hand,
will have to be got exactly right (think of trying to spot
the four-leaf clover among all the others in a field). To do
this, the system must treat even small prediction errors,
in respect of such crucial features, as signal and use them
to select and nuance the winning top-down model.
Within the PP framework, the primary tool for this is, Phil-
lips notes, the use of context-sensitive gain control. This
amplifies the effects of specific prediction error signals
while allowing other prediction errors to self-cancel (e.g.,
by having that error unit self-inhibit). The same mechanism
allows estimates of the relative reliability of different
aspects of the sensory signal to be factored in, and it may
underpin the recruitment of problem-specific temporary
ensembles of neural resources, effectively gating infor-
mation flow between areas of the brain (see den Ouden
et al. [2009] and essays in von der Marlsburg et al.
[2010]). On-the-hoof information selection and infor-
mation coordination of these kinds is, Phillips then
argues, a primary achievement of the neurocomputational
theory known as “Coherent Infomax” (Kay & Phillips
2010; Phillips et al. 1995). Both Coherent Infomax and
PP emphasize the role of prediction in learning and
response, and it remains to be determined whether Coher-
ent Infomax is best seen as an alternative or (more likely) a
complement to the PP model, amounting perhaps to a more
detailed description of a cortical microcircuit able to act as a
repeated component in the construction of a PP
architecture.

R2.3. Attention and precision

This brings us to our third set of perils: perils relating to the
treatment of attention as a device for upping the gain on
(hence the estimated “precision” of) selected prediction
errors. Bowman et al. raise several important issues con-
cerning the scope and adequacy of this proposal. Some
ERP (event-related potential) components (such as P1
and N1), Bowman et al. note, are increased when a target
appears repeatedly in the same location. Moreover, there
are visual search experiments in which visual distractors,
despite their rarity, yield little evoked response, yet pre-
described, frequently appearing, targets deliver large
ones. Can such effects be explained directly by the atten-
tion-modulated precision weighting of residual error? A
recent fMRI study by Kok et al. (2012) lends elegant
support to the PP model of such effects by showing that
these are just the kinds of interaction between prediction
and attention that the model of precision-weighted predic-
tion error suggests. In particular, Kok et al. show that pre-
dicted stimuli that are unattended and task-irrelevant result
in reduced activity in early visual cortex (the “silencing” of
the predicted, as mandated by simple predictive coding)
but that “this pattern reversed when the stimuli were
attended and task-relevant” (Kok et al. 2012, p. 2198).
The study manipulated spatial attention and prediction by
using independent prediction and spatial cues (for the
details, see the original paper by Kok et al.) and found
that attention reversed the silencing effect of prediction
upon the sensory signal, in just the way the precision-
weighting account would specify. In addition, Feldman
and Friston (2010) present a detailed, simulation-based

model in which precision-modulated prediction error is
used to optimize perceptual inference in a way that repro-
duces the ERP and psychophysical responses elicited by
the Posner spatial cueing paradigm (see Posner 1980).
Bowman et al. go on to press an important further ques-

tion concerning feature-based attention. For, feature-
based attention seems to allow us to enhance response to
a given feature even when it appears at an unpredicted
location. In their example, the command to find an instance
of bold type may result in attention being captured by a
nearby spatial location. If the result of that is to increase
the precision-weighting upon prediction error from that
spatial location (as PP suggests) that seems to depict the
precision weighting as a consequence of attending rather
than a cause or implementation of attending. The resolution
of this puzzle lies, I suggest, in the potential assignment of
precision-weighting at many different levels of the proces-
sing hierarchy. Feature-based attention corresponds, intui-
tively, to increasing the gain on the prediction error units
associated with the identity or configuration of a stimulus
(e.g., increasing the gain on units responding to the distinc-
tive geometric pattern of a four-leaf clover). Boosting that
response (by giving added weight to the relevant kind of
sensory prediction error) should enhance detection of
that featural cue. Once the cue is provisionally detected,
the subject can fixate the right spatial region, now under
conditions of “four-leaf-clover-there” expectation. Residual
error is then amplified for that feature at that location, and
high confidence in the presence of the four-leaf clover can
(if you are lucky!) be obtained. Note that attending to the
wrong spatial region (e.g., due to incongruent spatial
cueing) will actually be counter-productive in such cases.
Precision-weighted prediction error, as I understand it, is
thus able to encompass both mere-spatial and feature-
based signal enhancement.
Block & Siegel claim that predictive processing (they

speak simply of predictive coding, but they mean to
target the full hierarchical, precision-modulated, genera-
tive-model based account) is unable to offer any plausible
or distinctive account of very basic results such as the atten-
tional enhancement of perceived contrast (Carrasco et al.
2004). In particular, they claim that the PP model fails to
capture changes due to attending that precede the calcu-
lation of error, and that it falsely predicts a magnification
of the changes that follow from attending (consequent
upon upping the gain on some of the prediction error).
However, I find Block & Siegel’s attempted reconstruction
of the PP treatment of such cases unclear or else impor-
tantly incomplete. In the cases they cite, subjects fixate a
central spot with contrast gratings to the left and right.
The gratings differ in absolute (actual) contrast. But
when subjects are cued to attend (even covertly) to the
lower contrast grating, their perception of the contrast
there is increased, yielding the (false) judgment that, for
example, an attended 70% (actual value) contrast grating
is the same as an unattended 82% grating. Block & Siegel
suggest that the PP account cannot explain the initial
effect here (the false perception of an 82% contrast for
the covertly attended 70% contrast grating) as the only
error signal – but this is where they misconstrue the
story – is the difference between the stable pre-attentive
70% registration and the post-attentive 82% one. But this
difference, they worry, wasn’t available until after attention
had done its work! Worse still, once that difference is
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available, shouldn’t it be amplified once more, as the PP
account says that gain on the relevant error units is now
increased?

This is an ingenious challenge, but it is based on a mis-
construal of the precision-weighting proposal. It is not the
case that PP posits an error signal calculated on the basis
of a difference between the unattended contrast (regis-
tered as 70%) and the subsequently attended contrast
(now apparently of 82%). Rather, what attention alters is
the expectation of precise sensory information from the
attended spatial location. Precision is the inverse of the
variance, and it is our “precision expectations” that atten-
tion here alters. What seems to be happening, in the case
at hand, is that the very fact that we covertly attend to the
grating on the left (say) increases our expectations of a
precise sensory signal. Under such conditions, the expec-
tation of precise information induces an inflated weighting
for sensory error and our subjective estimate of the con-
trast is distorted as a result. The important point is that
the error is not computed, as Block & Siegel seem to
suggest, as a difference between some prior (in this case
unattended) percept and some current (in this case
attended) one. Instead, it is computed directly for the
present sensory signal itself, but weighted in the light of
our expectation of precise sensory information from that
location. Expectations of precision are what, according to
PP, is being manipulated by the contrast grating exper-
iment, and PP thus offers a satisfying and distinctive
account of the effect itself. This same mechanism explains
the general effect of attention on spatial acuity, especially
in cases where we alter fixation and where more precise
information is indeed then available. Block & Siegel are
right to demand that the PP framework confront the full
spectrum of established empirical results in this area.
But they underestimate the range of apparatus (and the
distinctiveness of the accounts) that PP can bring to
bear. This is not surprising, since these are early days
and much further work is needed. For an excellent
taste, however, of the kind of detailed, probing treatment
of classic experimental results that is already possible, see
Hohwy’s (2012) exploration of conscious perception,
attention, change blindness, and inattentional blindness
from the perspective of precision-modulated predictive
processing.

R3. Prospects

I have chosen to devote the bulk of this Response to
addressing the various perils and pitfalls described above
and to some even grander ones to be addressed in
section 4 further on. A reassuringly large number of com-
mentators, however, have offered illuminating and wonder-
fully constructive suggestions concerning ways in which to
improve, augment, and extend the general picture. I’m
extremely grateful for these suggestions, and plan to
pursue several of them at greater length in future work.
For present purposes, we can divide the suggestions into
two main (though non-exclusive) camps: those which add
detail or further dimensions to the core PP account,
extending it to embrace additional mental phenomena,
such as timing, emotion, language, personal narrative,
and high-level forms of “self-expectation”; and those

which reach out to the larger organizational forms of
music, culture, and group behaviors.

R3.1. New dimensions

Shea usefully points out that perception and action, even
assuming they indeed share deep computational common-
alities, would still differ in respect of their “direction of fit.”
In (rich, world-revealing) perception, we reduce prediction
error by selecting a model that explains away the sensory
signal. In world-engaging action, we reduce prediction
error by altering body and world to conform to our expec-
tations. This is correct, and it helps show how the PP frame-
work, despite offering a single fundamental model of
cortical processing, comports with the evident multiplicity
and variety of forms of cognitive contact with the world.
Farmer, Brown, & Tanenhaus (Farmer et al.)

suggest (this was music to my ears) that the hierarchical
prediction machine perspective provides a framework
that might one day “unify the literature on prediction in
language processing.” They describe, in compelling detail,
the many applications of prediction-and-generative-
model-based accounts to linguistic phenomena. Language,
indeed, is a paradigm case of an environmental cause that
exhibits a complex, multilevel structure apt for engagement
using hierarchical, generative models. Farmer et al. stress
several aspects of language comprehension that are hard
to explain using traditional models. All these aspects
revolve (it seems to me) around the fact that language com-
prehension involves not “throwing away” information as
processing proceeds, so much as using all the information
available (in the signal, in the generative model, and in
the context) to get a multi-scale, multi-dimensional grip
on the evolving acoustic and semantic content. All manner
of probabilistic expectation (including speaker-specific
lexical expectations formed “on-the-hoof” as conversation
proceeds) are thus brought to bear, and impact not just rec-
ognition but production (e.g., your own choice of words),
too. Context effects, rampant on-the-hoof probability
updating, and cross-cueing are all grist to the PP mill.
The PP framework, Holm & Madison convincingly

argue, also lends itself extremely naturally to the treatment
of timing and of temporal phenomena. In this regard,
Holm &Madison draw our attention to large and important
bodies of work that display the complex distribution of tem-
poral control within the brain, and that suggest a tendency
of later processing stages and higher areas to specialize in
more flexible and longer time-scale (but correlatively less
dedicated, and less accurate) forms of time-sensitive
control. Such distributions, as they suggest, emerge natu-
rally within the PP framework. They emerge from both
the hierarchical form of the generative model and the dyna-
mical and multi-scale nature of key phenomena. More
specifically, the brain must learn a generative model of
coupled dynamical processes spanning multiple temporal
scales (a nice example is Friston and Kiebel’s [2009] simu-
lation of birdsong recognition). Holm & Madison (and see
comments by Schaefer, Overy, & Nelson [Schaefer
et al.]) also make the excellent point that action (e.g.,
tapping with hands and feet) can be used to bootstrap
timing, and to increase the reliability of temporal percep-
tion. This provides an interesting instance of the so-called
“self-structuring of information” (Pfeifer et al. 2007), a
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key cognitive mechanism discussed in Clark (2008) and in
the target article (see WN, sect. 3.4).
Gowaty & Hubbell suggest that all animals are Baye-

sians engaged in predicting the future on the basis of flex-
ibly updated priors, and that they “imagine” (the scare
quotes are theirs) alternatives and make choices among
them. This is an intriguing hypothesis, but it is one that
remains poised (thanks in part to those scare quotes)
between two alternative interpretations. On the one
hand, there is the (plausible) claim that elements in the sys-
temic organization of all animals respond sensitively, at
various timescales, to environmental contingencies so as
to minimize free energy and allow the animals to remain
within their envelope of viability. On the other hand,
there is the (to me less plausible) claim that all animals
ground flexible behavioral response in the top-down
deployment of rich, internally represented generative
models developed and tuned using prediction-driven learn-
ing routines of the kind described by PP. I return to this
issue in section 4.
Seth & Critchley sketch a powerful and potentially very

important bridge between PP-style work and new cognitive
scientific treatments of emotion and affect. The proposed
bridge to emotion relies on the idea that interoception
(the “sense of the physiological condition of the body”) pro-
vides a source of signals equally apt for prediction using the
kinds of hierarchical generative models described in the
target article The step to emotion is then accomplished
(according to their “interoceptive predictive coding”
account – see Seth et al. 2011) by treating emotional feel-
ings as determined by a complex exchange between
driving sensory (especially interoceptive) signals and multi-
level downwards predictions. Of special interest here are
signals and predictions concerning visceral, autonomic,
and motor states. Attention to predictions (and pathologies
of prediction) concerning these states provides, Seth &
Critchley plausibly suggest, a major clue to the nature
and genesis of many psychiatric syndromes. Dissociative
syndromes, for example, may arise from mistaken assign-
ments of precision (too little, in these cases) to key intero-
ceptive signals. But are emotional feelings here constructed
by successful predictions (by analogy to the exteroceptive
case)? Or are feelings of emotion more closely tied (see
also the comments by Schaefer et al. regarding prediction
error in music) to the prediction errors themselves, pre-
senting a world that is an essentially moving target,
defined more by what it is not than by what it is? Or
might (this is my own favorite) the division between
emotional and non-emotional components itself prove illu-
sory, at least in the context of a multi-dimensional, genera-
tive model – nearly every aspect of which can be permeated
(Barrett & Bar 2009) by goal and affect-laden expectations
that are constantly checked against the full interoceptive
and exteroceptive array?
Dennett’s fascinating and challenging contribution fits

naturally, it seems to me, with the suggestions concerning
interoceptive self-monitoring by Seth & Critchley. Just
how could some story about neural prediction illuminate,
in a deep manner, our ability to experience the baby as
cute, the sky as blue, the honey as sweet, or the joke as
funny? How, in these cases, does the way things seem to
us (the daily “manifest image”) hook up with the way
things actually work? The key, Dennett suggests, may lie
in our expectations about our own expectations. The

cuteness of the baby, if I read Dennett correctly, is
nothing over and above our expectations concerning our
probable reactions (themselves rooted, if the PP story is
correct, in a bunch of probabilistic expectations) to immi-
nent baby-exposure. We expect to feel like cooing and nur-
turing, and when those expectations (which can, in the
manner of action-oriented predictive processing, be par-
tially self-fulfilling) are met, we deem the baby itself cute.
This is what Dennett (2009) describes as a “strange inver-
sion,” in which we seem to project our own reactive com-
plexes outward, populating our world with cuteness,
sweetness, blueness, and more. I think there is something
exactly right, and something that remains unclear, in Den-
nett’s sketch. What seems exactly right is that we ourselves
turn up as one crucial item among the many items that we
humans model when we model our world. For, we our-
selves (not just as organisms but as individuals with
unique histories, tendencies, and features) are among the
many things we need to get a grip upon if we are to navigate
the complex social world, predicting our own and others’
responses to new situations, threats, and opportunities.
To that extent (see also Friston 2011a), Dennett is

surely right: We must develop a grip (what Dennett
describes as a set of “Bayesian expectations”) upon how
we ourselves are likely to react, and upon how others
model us. Our Umwelt, as Dennett says, is thus populated
not just with simple affordances but with complex expec-
tations concerning our own nature and reactions. What
remains unclear, I think, is just how this complex of ideas
hooks up the question with which Dennett precedes it,
namely, “what makes our manifest image manifest (to
us)?” For this, on the face of it, is a question about the
origins of consciously perceived properties: the origins of
awareness, or of something like it – something special that
we have and that the elevator (in Dennett’s example)
rather plausibly lacks. It does not strike me as impossible
that there might be a link here, perhaps even a close one.
But how does it go? Is the thought that any system that
models itself and has expectations about its own reactive
dispositions, belongs to the class of the consciously
aware? That condition seems both too weak (too easily sat-
isfied by a simple artificial system) and too strong (as there
may be conscious agents who fail to meet it). Is it that any
system that models itself in that way will at least judge
(perhaps self-fulfillingly) that it is consciously aware of
certain things, such as the cuteness of babies? That’s tempt-
ing, but we need to hear more. Or is this really just a story –
albeit a neat and important one – about how, assuming a
system is somehow conscious of some of the things in its
world, those things might (if you are a sufficiently bright
and complex social organism under pressure to include
yourself in your own generative model) come to include
such otherwise elusive items as cuteness, sweetness, funni-
ness, and so on?
Hirsh, Mar, & Peterson (Hirsh et al.) suggest that an

important feature of the predictive mosaic, when account-
ing for distinctively human forms of understanding, might
be provided by the incorporation of personal narratives as
high-level generative models that structure our predictions
in a goal- and affect-laden way. This proposal sits well with
the complex of ideas sketched by Dennett and by Seth &
Critchley, and it provides, as they note, a hook into the
important larger sociocultural circuits (see also comments
by Roepstorff, and section 4 further on) that also sculpt
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and inform human behavior. Personal narratives are often
co-constructed with others, and can feed the structures
and expectations of society back in as elements of the gen-
erative model that an individual uses to make sense of their
own acts and choices. Hirsh et al., like Dennett, are thus
concerned with bridging the apparent gap between the
manifest and scientific image, and accounts that integrate
culturally inflected personal narratives into the general
picture of prediction-and generative-model based cogni-
tion seem ideally placed to play this important role. Narra-
tive structures, if they are correct, lie towards the very top
of the predictive hierarchy, and they influence and can help
coordinate processing at every level beneath. It is not
obvious to me, however, that personal narrative needs to
be the concern of a clearly demarcated higher level.
Instead, a narrative may be defined across many levels of
the processing hierarchy, and supported (in a graded
rather than all-or-none fashion) by multiple interacting
bodies of self-expectation.

R3.2. Larger organizational forms

This brings us to some comments that directly target the
larger organizational forms of music, culture, and group
behaviors. Many aspects of our self-constructed sociocul-
tural world, Paton, Skewes, Frith, & Hohwy (Paton
et al.) argue, can be usefully conceptualized as devices
that increase the reliability of the sensory input, yielding
a better signal for learning and for online response. A
simple example might be the use of windscreen wipers in
the rain. But especially illuminating, in this regard, are
their comments on conversation, ritual, convention, and
shared practices. In conversation, speakers and listeners
often align their uses (e.g., lexical and grammatical
choices – see Pickering & Garrod 2007). This makes good
sense under a regime of mutual prediction error reduction.
But conversants may also, as Paton et al. intriguingly add,
align their mental states in a kind of “fusion of expectation
horizons.” When such alignment is achieved, the otherwise
blunt and imprecise tools of natural language (see Church-
land 1989; 2012) can be better trusted to provide reliable
information about another’s ideas and mental states. Such
a perspective (“neural hermeneutics”; Frith & Wentzer,
in press) extends naturally to larger cultural forms, such
as ritual and shared practice, which (by virtue of being
shared) enhance and ensure the underlying alignment
that improves interpersonal precision. Culture, in this
sense, emerges as a prime source of shared hyperpriors
(high-level shared expectations that condition the lower-
level expectations that each agent brings to bear) that
help make interpersonal exchange both possible and fruit-
ful. Under such conditions (also highlighted by Roep-
storff) we reliably discern each other’s mental states,
inferring them as further hidden causes in the interpersonal
world. Natural hermeneutics may thus contribute to the
growing alignment between the humanities and the
sciences of mind (Hirsh et al.). At the very least, this
offers an encompassing vision that adds significant dimen-
sions to the simple idea of mutual prediction error
reduction.

Schaefer et al. combine the themes of mutual predic-
tion error reduction, culture, and affect. Their starting
point is the idea that music (both in perception and pro-
duction) creates a context within which prediction error –

mutual prediction error, in the group case – is reduced.
But this simple idea, they argue, needs augmenting with
considerations of arousal, affect, and the scaffolding
effects of cultural, training, and musical style. There is,
Schaefer et al. suggest, an optimal or preferred level of sur-
prisal at which musical experience leads to maximal (posi-
tive) affective response. That level is not uniform across
musical types, musical features, or even individuals, some
of whom may be more “thrill-seeking” than others. The
commentary provides many promising tools for thinking
about these variations, but makes one claim that I want
to question (or at any rate probe a little), namely, that
affect is what “makes prediction error in music…meaning-
ful, and indeed determines its value.” This is tricky ground,
but I suspect it is misleading (see also comments on Seth &
Critchley) to depict prediction error as, if you like, some-
thing that is given in experience, and that itself generates an
affective response, rather than as that which (sub-person-
ally) determines the (thoroughly affect-laden) experience
itself. I am not convinced, that is to say, that I experience
my own prediction errors (though I do, of course, some-
times experience surprise).

R4. Darkened rooms and the puzzle of the porous
perceiver

R4.1. Darkened rooms

Several commentators (Anderson & Chemero, Froese &
Ikegami, Sloman, and to a lesser extent Little &
Sommer) have questioned the idea of surprisal minimiz-
ation as the underlying imperative driving all forms of cog-
nition and adaptive response. A recurrent thread here is the
worry that surprisal minimization alone would incline the
error-minimizing agent to find a nice “darkened room”
and just stay there until they are dead. Despite explicitly
bracketing the full free-energy story, WN did attempt (in
sects. 3.2–3.4) to address this worry, with apparently
mixed results. Little & Sommer argue that the solution
proffered depends unwholesomely upon innate knowledge,
or at least upon pre-programmed expectations concerning
the shape (itinerant, exploratory) of our own behavior.
Froese & Ikegami contend (contrary to the picture briefly
explored in WN, sect. 3.2) that good ways of minimizing
surprisal will include “stereotypic self-stimulation, catatonic
withdrawal from the world, and autistic withdrawal from
others.”
Hints of a similar worry can be found in the comments by

Schaefer et al., who suggest that musical appreciation
involves not the simple quashing of prediction error
(perhaps that might be achieved by a repeated pulse?)
but attraction towards a kind of sweet spot between pre-
dictability and surprise: an “optimal level of surprisal,”
albeit one that varies from case to case and between indi-
viduals and musical traditions. As a positive suggestion,
Little & Sommer then suggest we shift our attention
from the minimization of prediction error to the maximiza-
tion of mutual information. That is to say, why not depict
the goal as maximizing the mutual information (on this,
see also Phillips) between an internal model of estimated
causes and the sensory inputs? Minimizing entropy (predic-
tion error) and maximizing mutual information (hence pre-
diction success), Little & Sommer argue, each deliver
minimal prediction error but differ in how they select
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actions. A system that seeks to maximize mutual infor-
mation won’t, they suggest, fall into the dark room trap.
For, it is driven instead towards a sweet spot between pre-
dictability and complexity and will “seek out conditions in
which its sensory inputs vary in a complex, but still predict-
able, fashion.”
Many interesting issues arise at this point. For example,

we might also want tominimizemutual information (redun-
dancy) among outputs (as opposed to between inputs and
model) so as to achieve sparse, efficient coding (Olshausen
& Field 1996). But for present purposes, the main point to
make is that any improvement afforded by the move to
mutual information is, as far as I can determine, merely
cosmetic. Thus, consider a random system driven towards
some sweet spot between predictability and complexity.
For that system, there will be some complex set of inputs
(imagine, to be concrete, a delicate, constantly changing
stream of music) such that the set of inputs affords, for
that agent, the perfect balance between predictability and
complexity. The musical stream can be as complex as you
like. Perhaps it must be so complex as never quite to
repeat itself. Surely the agent must now enter the
“musical room” and stay there until it is dead? The
musical room, I contend, is as real (and, more important,
as unreal) a danger as the darkened room. Notice that
you can ramp up the complexity at will. Perhaps the
sweet spot involves complex shifts between musical types.
Perhaps the location of the sweet spot varies systematically
with the different types. Make the scenario as complex as
you wish. For that complexity, there is some musical
room that now looks set to act as a death trap for that agent.
There is, of course, a perfectly good way out of this. It is

to notice, with Friston, that all the key information-theor-
etic quantities are defined and computed relative to a type
of agent – a specific kind of creature whose morphology,
nervous system, and neural economy already render it
(but only in the specific sense stressed by Friston; more
on this shortly) a complex model of its own adaptive
niche. As such, the creature, simply because it is the crea-
ture that it is, already embodies a complex set of “expec-
tations” concerning moving, eating, playing, exploring,
and so forth. It is because surprisal at the very largest
scale is minimized against the backdrop of this complex
set of creature-defining “expectations” that we need fear
neither darkened nor musical (nor meta-musical, nor
meta-meta-musical) rooms. The free-energy principle
thus subsumes the mutual information approach (for a
nice worked example, see Friston et al. 2012). The essential
creature-defining backdrop then sets the scene for the
deployment (sometimes, in some animals) of PP-style strat-
egies of cortical learning in which hierarchical message
passing, by implementing a version of “empirical Bayes,”
allows effective learning that is barely, if at all, hostage to
initial priors. That learning requires ongoing exposure to
rich input streams. It is the backdrop “expectations,”
deeply built-in to the structure of the organism (manifest-
ing as, for example, play, curiosity, hunger, and thirst)
that keep the organism alive and the input stream rich,
and that promote various beneficial forms of “self-structur-
ing” of the information flow – see Pfeifer et al. (2007).
This means that the general solution to the darkened

room worry that was briefly scouted in WN, section 3.2,
is mandatory, and that we must embrace it whatever our
cosmetic preferences concerning entropy versus mutual

information. This also means that the suggestion (Froese
& Ikegami) that enactivism offers an alternative approach,
with a distinctive resolution of the dark room issue, is mis-
guided. Indeed, the “two” approaches are, with respect to
the darkened room issue at least, essentially identical.
Each stresses the autonomous dynamics of the agent.
Each depicts agents as moving through space and time in
ways determined by “the viability constraints of the organ-
ism.” Each grounds value, ultimately, in those viability con-
straints (which are the essential backdrop to any richer
forms of lifetime learning).
Froese & Ikegami also take PP (though they dub it

HPM: the “Hierarchical Prediction Machine” story) to
task for its commitment to some form of representational-
ism. This commitment leads, they fear, to an unacceptable
internalism (recall also the comments from Anderson &
Chemero) and to the unwelcome erection of a veil
between mind and world. This issue arises also (although
from essentially the opposite direction) in the commentary
by Paton et al. Thus, Froese & Ikegami fear that the
depiction of the cerebral cortex as commanding probabilis-
tic internal models of the world puts the world “off-limits,”
while Paton et al. suggest that my preferred interpretation
of the PP model makes the mind–world relation too direct
and obscures the genuine sense in which “perception
remains an inferred fantasy about what lies behind the
veil of input.” I find this strangely cheering, as these diame-
trically opposed reactions suggest that the account is, as
intended, walking a delicate but important line. On the
one hand, I want to say that perception – rich, world-reveal-
ing perception of the kind that we humans enjoy – involves
the top-down deployment of generative models that have
come, courtesy of prediction-driven learning within the
bidirectional cortical hierarchy, to embody rich, probabilis-
tic knowledge concerning the hidden causes of our sensory
inputs. On the other hand, I want to stress that those same
learning routines make us extremely porous to the statisti-
cal structure of the actual environment, and put us percep-
tually in touch, in as direct a fashion as is mechanistically
possible, with the complex, multilayered, world around us.

R4.2. The puzzle of the porous perceiver

This, then, is the promised “puzzle of the porous percei-
ver”: Can we both experience the world via a top-down
generative-model based cascade and be in touch not with
a realm of internal fantasy but, precisely, with the world?
One superficially tempting way to try to secure a more
direct mind–world relation is to follow Froese &
Ikegami in rejecting the appeal to internally represented
models altogether (we saw hints of this in the comments
by Anderson & Chemero too). Thus, they argue that
“Properties of the environment do not need to be
encoded and transmitted to higher cortical areas, but not
because they are already expected by an internal model
of the world, but rather because the world is its own best
model.” But I do not believe (nor have I ever believed:
see, e.g., Clark 1997, Ch. 8) that this strategy can cover
all the cases, or that, working alone, it can deliver rich,
world-revealing perception of the kind we humans
enjoy – conscious perception of a world populated by
(among other things) elections, annual rainfall statistics,
prayers, paradoxes, and poker hands. To experience a
world rich in such multifarious hidden causes we must do
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some pretty fancy things, at various time-scales, with the
incoming energetic flux: things at the heart of which lie, I
claim, the prediction-driven acquisition and top-down
deployment of probabilistic generative models. I do not
believe that prayers, paradoxes, or even poker hands can
be their own best model, if that means they can be
known without the use of internal representations or
inner models of external hidden causes. Worse still, in
the cases where we might indeed allow the world, and
directly elicited actions upon the world, to do most of the
heavy lifting (the termite mound-building strategies men-
tioned by Sloman are a case in point) it is not obvious
that there will – simply by virtue of deploying such strat-
egies alone – be any world-presenting experience at all.
What seems exactly right, however, is that brains like
ours are masters of what I once heard Sloman describe as
“productive laziness.” Hence, we will probably not rely on
a rich internal model when the canny use of body or
world will serve as well, and many of the internal models
that we do use will be partial at best, building in all kinds
of calls (see Clark 2008) to embodied, problem-simplifying
action. The upshot is that I did not intend (despite the fears
of Anderson & Chemero) to depict all of cognition and
adaptive response as grounded in the top-down deploy-
ment of knowledge-rich internal models. But I do think
such models are among the most crucial achievements of
cortical processing, and that they condition both online
and offline forms of human experience.

Nor did I intend, as Sloman in a kind of reversal of the
worry raised by Anderson & Chemero fears, to reduce all
cognition to something like online control. Where Ander-
son & Chemero subtly mislocate the PP account as an
attempt to depict all cognition as rooted in procedures
apt only for high-level knowledge-rich response, Sloman
subtly mislocates it as an over-ambitious attempt to
depict all cognition as rooted in procedures apt only for
low-level sensorimotor processing. Sloman thus contrasts
prediction with interpretation, and stresses the importance
to human (and animal) reasoning of multiple meta-cogni-
tive mechanisms that (he argues) go far beyond the predic-
tion and control of gross sensory and motor signals. In a
related vein, Khalil interestingly notes that human cogni-
tion includes many “conception-laden processes” (such as
choosing our own benchmark for a satisfactory income)
that cannot be corrected simply by adjustments that
better track gross sensory input.

Fortunately, there are no deep conflicts here. PP aims
only to describe a core cortical processing strategy: a strat-
egy that can deliver probabilistic generative models apt
both for basic sensorimotor control and for more advanced
tasks. The same core strategy can drive the development of
generativemodels that track structure within highly abstract
domains, and assertions concerning such domains can
indeed resist simple perceptual correction. To say that the
mechanisms of (rich, world-presenting) perception are con-
tinuous with the mechanisms of (rich, world-presenting)
cognition is not to deny this. It may be, however, that learn-
ing about some highly abstract domains requires delivering
structured symbolic inputs; for example, using the formal-
isms of language, science and mathematics. Understanding
how prediction-driven learning interacts with the active
production and uptake of external symbolic representations
and with various forms of designer learning environments is
thus a crucial challenge, as Roepstorff also notes.

PP thus functions primarily as an intermediate-level
(see Spratling) description of the underlying form of cor-
tical processing. This is the case even though the larger
story about free energy minimization (a story I briefly
sketched in WN, sect. 1.6, but tried to bracket as
raising issues far beyond the scope of the article) aims
to encompass far more. As a theory of cortical processing,
PP suggests we learn to represent linked sets of prob-
ability density distributions, and that they provide the
form of hierarchical generative models underlying both
perception (of the rich, world-presenting variety) and
many forms of world-engaging action. Importantly, this
leaves plenty of space for other ploys and strategies to
coexist with the core PP mechanism. I tried to celebrate
that space by making a virtue (WN, sects. 3.2–3.4) out
of the free-energy story’s failure to specify the full form
of a cognitive architecture, envisaging a cooperative
project requiring many further insights from evolutionary,
situated, embodied, and distributed approaches to under-
standing mind and adaptive response. Was it then false
advertising to offer PP itself as a unifying account? Not,
I fondly hope, if PP reveals common computational prin-
ciples governing knowledge-rich forms of cortical proces-
sing (in both the sensory and motor realms), delivers a
novel account of attention (as optimizing precision), and
reveals prediction error minimization as the common
goal of many forms of action, social engagement, and
environmental structuring.
There is thus an important difference of emphasis

between my treatment and the many seminal treatments
by Karl Friston. For as the comments by Friston made
clear, he himself sets little store by the difference
between what I (like Anderson & Chemero) might
describe as knowledge- and inner-model-rich versus
knowledge-sparse ways of minimizing free energy and
reducing surprisal. Viewed from the loftier perspective
of free-energy minimization, the effect is indeed the
same. Free-energy reduction can be promoted by the
“fit” between morphology and niche, by quick-and-dirty
internal-representation-sparse ploys, and by the costlier
(but potent) use of prediction-driven learning to infer
internally represented probabilistic generative models.
But it is, I suspect, only that costlier class of approaches,
capable of on-the-hoof learning about complex interani-
mated webs of hidden causes, that delivers a certain “cog-
nitive package deal.” The package deal bundles together
what I have been calling “rich, world-presenting percep-
tion,” offline imagination, and understanding (not just
apt response) and has a natural extension to intentional,
world-directed action (see Clark, forthcoming). Such a
package may well be operative, as Gowaty & Hubbell
suggested, in the generation of many instances of animal
response. It need not implicate solely the neocortex
(though that seems to be its natural home). But potent
though the package is, it is not the only strategy at work,
even in humans, and there may be some animals that do
not deploy the strategy at all.
Thus, consider the humble earthworm. The worm is

doubtless a wonderful minimizer of free energy, and we
might even describe the whole worm (as the comments
by Friston suggest) as a kind of free-energy minimizing
model of its world. But does the worm command a
model of its world parsed into distal causes courtesy of
top-down expectations applied in a multilevel manner?
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This is far from obvious. The worm is capable of sensing,
but perhaps it does not thereby experience a perceptual
world. If that is right, then not all ways of minimizing
free energy are equal, and only some put you in perceptual
touch (as opposed to mere causal contact) with a distal
world characterized by multiple interacting hidden causes.
This brings us back, finally, to the vexed question of the

mind–world relation itself. Where Froese & Ikegami fear
that the PP strategy cuts us off from the world, inserting an
internal model between us and the distal environment, I
believe that it is only courtesy of such models that we
(perhaps unlike the earthworm) can experience a distal
environment at all! Does that mean that perception pre-
sents us (as Paton et al. suggest) with only a fantasy
about the world? I continue to resist this way of casting
things. Consider (recall the comments by Farmer et al.)
the perception of sentence structure during speech proces-
sing. It is plausibly only due to the deployment of a rich
generative model that a hearer can recover semantic and
syntactic constituents from the impinging sound stream.
Does that mean that the perception of sentence structure
is “an inferred fantasy about what lies behind the veil of
input”? Surely it does not. In recovering the right set of
interacting distal causes (subjects, objects, meanings,
verb-clauses, etc.) we see through the sound stream to
the multilayered structure and complex purposes of the lin-
guistic environment itself. This is possible because brains
like ours are sensitive statistical sponges open to deep
restructuring by the barrage of inputs coming from the
world. Moreover, even apparently low-level structural fea-
tures of cortex (receptive field orientations and spatial fre-
quencies), as Bridgeman very eloquently reminds us,
come to reflect the actual statistical profile of the environ-
ment, and do so in ways that are surprisingly open to vari-
ation by early experience.
Does this commit me to the implausible idea that per-

ception presents us with the world “as it is in itself”?
Here, the helpful commentary by König, Wilming,
Kaspar, Nagel, & Onat (König et al.) seems to me to
get the issue exactly right. Predictions are made, they
stress (see also the comments by Bridgeman), in the
light of our own action repertoire. This simple (but pro-
found) fact results in reductions of computational complex-
ity by helping to select what features to process, and what
things to try to predict. From the huge space of possible
ways of parsing the world, given the impinging energetic
flux, we select the ways that serve our needs by fitting
our action repertoires. Such selection will extend, as
Paton et al. have noted (see also Dennett), to ways of
parsing and understanding our own bodies and minds.
Such parsing enables us to act on the world, imposing
further structure on the flow of information, and eventually
reshaping the environment itself to suit our needs.
Roepstorff’s engaging commentary brings several of

these issues into clearer focus by asking in what ways, if
any, the PP framework illuminates specifically human
forms of cognition. This is a crucial question. The larger
free-energy story targets nothing that is specifically
human, though (of course) it aims to encompass human
cognition. The PP framework seeks to highlight a cortical
processing strategy that, though not uniquely human, is
plausibly essential to human intelligence and that provides,
as mentioned above, a compelling “cognitive package deal.”
That package deal delivers, at a single stroke, understanding

of complex, interacting distal causes and the ability to gen-
erate perception-like states from the top down. It delivers
understanding because to perceive the world of distal
causes in this way is not just to react appropriately to it. It
is to know how that world will evolve and alter across mul-
tiple timescales. This, in turn, involves learning to generate
perception-like states from the top-down. This double-inno-
vation, carefully modulated by the precision-weighting of
attention, lies (PP claims) at the very heart of many distinc-
tively human forms of cognition. To be sure (recallGowaty
&Hubbell) the same strategy is at work in many nonhuman
animals, delivering there too a quite deep understanding of
a world of distal causes. What, then, is special about the
human case?
Roepstorff points to a potent complex of features of

human life, especially our abilities of temporally co-coordi-
nated social interaction (see also commentaries byHolm&
Madison, Paton et al., and Schaefer et al.) and our
(surely deeply related) abilities to construct artifacts and
designer environments. Versions of all of this occur in
other species. But in the human case, the mosaic comes
together under the influence of flexible structured symbolic
language and an almost obsessive drive to engage in shared
cultural practices. We are thus enabled repeatedly to rede-
ploy our core cognitive skills in the transformative context
of exposure to patterned sociocultural practices, including
the use of symbolic codes (encountered as “material
symbols”; Clark 2006a) and complex social routines
(Hutchins 1995; Roepstorff et al. 2010). If, as PP claims,
one of the most potent inner tools available is deep, predic-
tion-driven learning that locks on to interacting distal
hidden causes, we may dimly imagine (WN, sect. 3.4;
Clark 2006; 2008) a virtuous spiral in which our achieved
understandings are given concrete and communicable
form, and then shared and fed back using structured prac-
tices that present us with new patterns.
Such pattern-presenting practices should, as Roepstorff

suggests, enable us to develop hierarchical generative
models that track ever more rarefied causes spanning the
brute and the manufactured environment. By tracking such
causes they may also, in innocent ways, help create and pro-
pagate them (think of patterned practices such as marriage
and music). It is this potentially rich and multilayered inter-
action between knowledge-rich prediction-driven learning
and enculturated, situated cognition that most attracts me
to the core PP proposal. These are early days, but I believe
PP has the potential to help bridge the gap between
simpler forms of embodied and situated response, the self-
structuring of information flows, and the full spectrum of
socially and technologically inflected human understanding.
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