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Abstract
I argue that analogue mental representations possess
a canonical decomposition into privileged constituents
from which they compose. I motivate this suggestion,
and rebut arguments to the contrary, through reflection
on the approximate number system, whose representa-
tions are widely expected to have an analogue format. I
then argue that arguments for the compositionality and
constituent structure of these analogue representations
generalize to other analogue mental representations
posited in the humanmind, such as those in early vision
and visual imagery.

1 INTRODUCTION

A familiar view in philosophy and cognitive science is that (certain) mental representations
comprise compositionally structured constituents. Like sentences of natural language, they are
compositionally structured in that the meaning of a (complex) mental representation is a function
of the meaning of its parts plus their mode of combination. Moreover, such parts qualify as privi-
leged constituents, in the sense that they contribute to themeaning of the complex representations
they comprise and do so in a way that other representation parts do not. So, just as the sentence
‘John loves Mary’ (understood to mean, roughly, that John loves Mary, and parsed [((John)NP
((loves)V (Mary)NP) VP)]) has a canonical decomposition into privileged constituents from which
its meaning is built – i.e., ‘John’ and ‘loves Mary’, but not ‘John loves’ or ‘John. . .Mary’ – simi-
lar points are meant to apply to mental states, like my belief that John loves Mary (Fodor 2008).
For brevity, let’s call the view that complex mental states comprise compositionally structured
constituents Privileged Compositionality.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Philosophical Perspectives published by Wiley Periodicals LLC.

Philosophical Perspectives 2023;1–29. wileyonlinelibrary.com/journal/phpe 1

mailto:Sam.clarke@usc.edu
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/phpe
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fphpe.12182&domain=pdf&date_stamp=2023-10-27


2 CLARKE

How far does Privileged Compositionality extend? In the above example (my belief that John
loves Mary), proponents of Privileged Compositionality will typically hold that the representa-
tional vehicles involved bear arbitrary similarities and differences to the entities or properties
represented. Just as the word ‘John’ need not resemble John in any obvious or semantically
relevantway, the neuropsychological vehicle that realizesmy concept JOHN (and is tokened in the
above belief) need not resemble John, in anything like the way a picture of Johnmight (c.f. Green-
berg 2013). In this way, proponents of Privileged Compositionality typically hold that the mental
representations they describe are sentence-like in a further respect, comprising compositionally
structured digital constituents. Butwhat about themyriad non-digitalmental representations that
cognitive scientists find reason to posit? For instance, what about visual images (Shepard 1978;
Kosslyn 1980; Johnson-Laird 2001), early visual states (Neisser 1967; Treisman 1986; Clarke 2022a),
or the representations of ‘core cognition’ (Carey 2009; Beck 2015; Clarke 2022b) which are often
said to be analogue, iconic, or otherwise picture-like? Are these representations composed from
privileged constituents, or are they beyond the remit of Privileged Compositionality?
Many researchers seem to suggest the latter. For instance, Beck (2012) critiques the view that

analoguemagnitude representations can or could systematically recombine. This is striking, since
systematic recombinability is something that the compositionality of these representations could
seem to imply (Fodor & McLaughlin 1990). Meanwhile, Fodor (2007) follows Kosslyn (1980)
in holding that while the iconic, or analogue, representations involved in visual imagery and
early vision are compositional, they are characterized by their conformity to the picture principle.
Accordingly, these representations are considered analogous to photographs in that every part of
the vehicle represents some part of the scene depicted: just as you can (allegedly) “Take a picture of
a person, [and] cut it into parts however you like” yet never be left with a part which fails to picture
some part of the person or scene originally depicted, Fodor proposes that analogue or iconic men-
tal representations “have interpretable parts, but they don’t have constituents. Or, if you prefer,
all the parts [of some such representation] is among its constituents” (2007: 108). Indeed, Fodor
takes this to be the fundamental difference between analogue or iconic representations and the
digital, discursive, or linguiform representations he posits in conceptual thought. This is striking,
for while Fodor leaves “open that some kinds of representations are neither iconic nor discursive”,
he claims that he “cannot think of a good candidate” (107). He thus seems to suggest that all the
non-digital mental representations we have grounds to posit lack privileged constituents entirely.
In the present treatment, I’ll argue that these conclusions are mistaken; the human mind is,

in fact, rife with compositionally structured representations which comprise privileged analogue
constituents. To develop this point, I’ll consider a scientifically important case study: approximate
number representations. In Section 2, I’ll introduce this case study in some detail. But first, I wish
to note that my focus on approximate number representations is non-arbitrary. Researchers who
study these representations converge on the view that they have a non-digital analogue format
(e.g., Beck, 2015; Carey 2009; Condry & Spelke, 2008; Clarke 2022b; Dehaene, 2011; Feigenson,
Carey & Hauser, 2002; Feigenson, Dehaene & Spelke, 2004; Lipton & Spelke, 2003; Nieder &
Miller 2004; Slaughter, Kamppi & Paynter, 2006). So, unlike Arabic numerals, or constituents in
a language of thought (e.g., my concept JOHN), researchers who study approximate number rep-
resentations typically accept that these representations represent numbers via an isomorphism
between content-bearing properties of their vehicle and the numbers represented (a bit like how
an analogue thermometer represents the temperature by having its mercury-level mirror this).
This suggestion will be spelled out in Section 4. What’s important is that various proponents
of this suggestion have offered seductive (and connected) arguments for the view that analogue
number representations could not systematically recombine (which, as mentioned, could seem
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THE ANALOGUE MIND 3

F IGURE 1 It is easier to see that the middle box contains more dots that the left-hand box, than it is to see
that the right-hand box contains more dots than the middle box.

to undermine their compositionality), and for the view that their analogue format implies their
conformity to the abovementioned picture principle (which is typically taken to preclude their
privileged constituency). So, while it often seems to be tacitly assumed that analogue representa-
tions lack constituents and/or compositional structure, theorists studying approximate number
representations are interesting in that they offer arguments to this effect. This makes them an
ideal stalking horse in what follows.

2 A PHILOSOPHER’S GUIDE TO APPROXIMATE NUMBER
REPRESENTATION

Since itwill be helpful to have a basic grasp of the approximate number representations I’ll discuss,
I want to begin by introducing these representations in some detail. This will lay the groundwork
forme to then explain how andwhy they compose (Section 3); why they have an analogue format;
why this still involves them comprising privileged constituents (Section 4); and why these points
apply to other analogue representations that have been posited in the human mind (Section 5).

2.1 The Approximate Number System

The approximate number system (ANS) is a well-studied psychological system (or collection of
systems) which enables organisms to represent the approximate number of items in an observed
collection, quickly andwithout recourse to explicit counting (Clarke&Beck 2021a). There ismuch
that could be said about this system and the approximate number representations it produces.
What matters for our purposes is that while the ANS facilitates numerical discriminations among
relatively large numbers of items, these numerical discriminations are distinctive in their con-
formity to Weber’s Law. Thus, the reliability with which the ANS discriminates two numbers is
predicted by the ratio between these, rather than their absolute difference (the further from 1:1
the better).
To illustrate, consider the images below (Figure 1). Each image contains a different number

of dots. Yet you will probably find it easier to quickly identify – without counting and simply
by looking – that the middle image contains more dots than the left-hand image than you will
identifying that the right-hand image contains more dots than the middle image. Crudely, this
is because the ratio between the number of dots in the left-hand image and the central image
is further from 1:1. Thus, your ANS finds it easier to facilitate the former discrimination. (Your
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4 CLARKE

ability to discriminate the number of dots is not due to their total surface area or brightness since
these non-numerical properties are equated across all three images – but see Yousif & Keil [2021]
for some interesting complications.)

2.2 Evidence for an ANS

The preceding example is quick and dirty. However, the suggestion that humans quickly discrim-
inate large numbers of items, approximately, and in accord with Weber’s Law, is well-studied
and well-established. In one study, Barth and colleagues (2003) presented adult humans with
displays of dots similar to those in Figure 1. Despite short presentation times (too short for
participants to explicitly count the number of dots in the displays) participants could identify
a match in the number of items they contained, albeit imperfectly and with errors predicted
by Weber’s Law. Indeed, they did so in both intra- and inter-modal conditions, as when they
were asked to compare the number of dots on a screen with the number of heard tones in an
acoustic sequence. This is significant since inter-modal comparisons naturally eliminate non-
numerical confounds in these comparisons. For instance: While the examples in Figure 1 are
matched in total surface area and brightness, critics will sometimes argue that discriminations
could still be based on other non-numerical properties, such as the spatial density or convex hull
of the dots (Gebuis et al. 2016; Leibovich et al. 2017). The point to note is that heard tones do
not possess a surface area, brightness, convex hull, or spatial density. Thus, it is not plausible
that participants in Barth et al.’s study based their comparisons on these non-numerical prop-
erties. Instead, it seems they based their comparisons on the perceived number of items in each
collection.
Perhaps this falls short of establishing that participants were relying on a distinct psychologi-

cal system (or cluster of systems) for approximate number representation (an ANS). After all, the
adults tested in this studyhad endured a formalmath education. Thus, youmight suspect that they
still somehowmanaged to count the dots (albeit imprecisely) using the domain general cognitive
resources involved in their flexible thinking about numbers, despite the brief presentation times
employed. What’s important to note is that there are many reasons to doubt this. For one, per-
formance in these tasks is largely unaffected when participants perform a verbal shadowing task
designed to consume verbal working memory and tax domain general resources (e.g., repeating a
word, or poem, throughout the experiment) (Cordes et al. 2001).Meanwhile, performance is influ-
enced by myriad judgement-independent illusions. For instance, circles that are connected with
thin lines (effectively turning pairs of circles into single dumbbell-shaped objects) are irresistibly
perceived to be less numerous than otherwise identical arrays in which lines are free floating (He
et al. 2009) or inwhich the connecting lines contain small breaks (Franconerri et al. 2009). Indeed,
this persists evenwhen subjects try to ignore the lines completely and focus only on the circles (see
also: Kirjakovski & Matsumoto 2016). Conversely, collections of items which cohere in color (Qu
et al. 2022) and/or orientation (DeWind et al. 2020) are irresistibly perceived to bemore numerous
than collections which don’t, ceteris paribus. Critically, these illusions persist even when partic-
ipants know what’s happening, with the effects influencing the Weber fraction they can reliably
discriminate. Thus, displays continue to look more or less numerous, even when subjects know
that they are undergoing an illusion. This shows that explicit judgements about number dissociate
from the conclusions of the ANS, indicating that largely independent psychological processes and
representations are involved (for my preferred account of the architectural relationship between
these processes and representations, see Clarke 2021).
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THE ANALOGUE MIND 5

2.3 Developmental Studies

One of themore exciting things about the ANS is that it is not simply found in adult humans – it is
also found in a wide range of non-human animals (Dehaene 2011, ch.1) and young human infants
(even newborns, under 5 days old – Izard et al. 2007). For instance, in amuch-celebrated study, Xu
and Spelke (2000) habituated six-month-old infants to visual arrays containing either 8 or 16 dots.
When infants were habituated to an 8-dot array, they recovered interest when presented with a
16- or 4-dot array, but not a 12-dot array. Meanwhile, infants who were habituated to a 16-dot array
dishabituated to a 32- or 8-dot array, but not a 12- or 24-dot array. Since confounding variables
such as brightness, density, and dot size were controlled for, these findings were interpreted as
showing that the six-month-old infants could represent and discriminate the approximate number
of items in the two collections provided they differ by a suitably large ratio (e.g., 1:2). Subse-
quent studies then showed that these discriminative capacities improve with age. For instance,
nine-month-olds were found to reliably discriminate collections that differ by a ratio of just 2:3
under comparable conditions (Lipton & Spelke 2003). In either case, the discriminations were
ratio sensitive, thereby implicating psychological mechanisms with the distinctive profile of an
ANS.
Of course, infants are a nightmare to study (often bursting into tears, or falling asleep, mid-

experiment). Moreover, they can’t talk, so their cognitive capacities can only be measured via
implicitmeasures like looking time. This leads some researchers to question the reliability of these
results (Leibovich et al. 2017). However, Libertus and Brannon (2010) replicated these findings
using a novel change-detection paradigm and even showed that individual differences in task
performance were reliable from one testing session to the next.
Indeed, similar results obtain in older children who can talk yet remain unable to count. In a

particularly elegant study, Barth and colleagues (2005) presented 5year-old children with a col-
lection of blue dots on a screen, before occluding these dots from view with an opaque block. At
this point, a second collection of (red) dots appeared on the screen. The children were then asked
a simple question: Are there more blue dots (behind the block) or red dots (on the screen)? The
children could answer this question correctly, despite remaining unable to count properly. How-
ever, their accuracy was predicted by the ratio among the collections. Thus, children were more
accurate in saying if there were more blue dots or red dots when there was a 4:7 ratio of blue to
red dots than when there was a 4:6 ratio, and they were more accurate when there was a 4:6 ratio
of blue to red dots than when there was a 4:5 ratio. In this way, their performance was (again)
predicted by Weber’s Law. In fact, these results persisted unaffected in an intermodal task with
the children performing as well when the second collection of dots was replaced with a sequence
of heard tones, and they were asked to report whether there were more blue dots in the original
collection or more heard tones in the sequence. For reasons noted, this is significant since inter-
modal comparisons naturally eliminate non-numerical confounds, indicating that performance
pertained to the number of items in the collections/sequences.

2.4 Rich computations

Finally, it is worth stressing that while the abovementioned experiments simply involved par-
ticipants making ordinal judgements, or same-different comparisons, the ANS facilitates more
sophisticated numerical computations also. For instance, in a further experiment from Barth
et al.’s (2005), five-year-old children saw a collection of blue dots appear and move behind an
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6 CLARKE

opaque block, at which point a second collection of blue dots appeared and did the same, such
that the children could no longer see either collection. A collection of red dots then appeared, and
the children were asked if there were more blue dots in total, behind the block, or more red dots
on the screen. They were significantly above chance in answering this question correctly, indicat-
ing that they could add the approximate numbers of blue dots in the first two collections together,
and then compare their total to that of the red dots (see also McCrink &Wynn 2004). A follow up
study showed that children could also use their ANS to perform subtraction operations, as when
dots were removed from the collection hidden behind the block and they were asked whether the
dots left behind the block were more or less numerous than dots in a separate collection (Barth
et al. 2006). Qu and colleagues (2021) recently went further, finding that children of a similar age
group can even use their ANS to perform approximatemultiplications (see alsoMcCrink& Spelke
2010), with Szkudlarek and colleagues (2022) also finding a related capacity for division (see also
McCrink & Spelke 2016).
What’s notable about these latter studies is that the computations involved cannot simply be

sensitive to the fact that one collection of dots containsmore items than another. After all, a bare
representation ofmore/less (or same/different) would not enable subjects to (e.g.,) add the quantity
of items in two collections together and then compare their total to that of some separate collec-
tion (is less number + less number supposed to be bigger or smaller thanmore number??). Rather,
they seem to require that participants’ ANSs were representing relatively determinate or specific
numerical quantities in the observed collections, such that these relatively determinate quanti-
ties could be added, subtracted, multiplied, or otherwise processed. Of course, this leaves open
the vexed issue of how these (relatively determinate) numerical quantities are being represented.
For everything that has been said here, participants could be representing precise quantities some-
what inaccurately (e.g., sometimes representing there to be precisely 5 dots when presented with
6) or representing these precise quantities imprecisely (e.g., representing there to be 6ish dots
when presentedwith 6 – Lyons 2021). Alternatively, they could involve subjects representing some
numerical range (e.g., 5–7 dots – Ball 2017) or (onmy preferred view) a numerical rangewith some
probability distribution or confidence level attached (Halberda 2016). All these possibilities can
accommodate the abovementioned results provided that (e.g.,) noise in the extraction of number
suffices to explain the ANS’s characteristic imprecision and conformity to Weber’s Law (Clarke &
Beck 2021b). It is simply for ease of explication, that I will proceed by talking as though the ANS
represents precise natural numbers (e.g., 6, 7, 8. . . ) except when explaining whymy arguments do
not turn on this assumption.1

3 COMPOSITIONALITY IN THE ANS

Having introduced the ANS, and the approximate number representations it produces, I’ll now
turn to my suggestion that approximate number representations exhibit Privileged Composition-
ality, featuring as, and comprising, privileged analogue constituents in compositionally structured
representations. I’ll begin by arguing that approximate number representations compose.
To remind readers, compositionality obtains when the meaning of a complex representation

is a function of what its parts mean plus the mode by which they are combined. Put differently:
parts of a compositionally structured representation make uniform semantic contributions to the
complex representations they comprise, such that themeaning of these complex representations is
determined by the (fixed) semantic contributions these partsmake, plus the structural or syntactic
relations that hold between them.
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THE ANALOGUE MIND 7

F IGURE 2 Assuming perfect veridicality, we might suppose that a glance at this Figure will result in my
ANS representing that the left-hand box contains 6 (or 6ish) dots, that the right-hand box contains 8 (or 8ish) and
that 8 (or 8ish) is bigger than 6 (or 6ish).

I offer three reasons to think approximate number representations compose in this way:

(i) They seem to
(ii) The most prominent challenge to this suggestion fails
(iii) The specific way in which this challenge fails is most straightforwardly explained by the

compositionality of these representations

3.1 Reason 1: Approximate number representations *seem* to
compose

An initial reason to think that approximate number representations feature in composition-
ally structured representations is simply that they seem to feature in compositionally structured
representations. Consider two examples.
First, approximate number representations seem to feature in compositionally structured rep-

resentations when they underlie our ordinal (or same/different) judgements about the number of
items in two collections. Take Figure 2. If one stops to count, they will find that there are 6 dots
in the left-hand box and 8 dots in the right. Thus, (in the good case/assuming perfect accuracy) a
glance at the figure might result in my ANS representing the left-hand collection of dots as 6 (or
6ish) in number and the right-hand collection as 8 (or 8ish) in number (after all, we have just seen
that approximate number representations represent relatively determinate numerical quantities,
and not justmore or less, etc.). In addition, it seems thatmyANSwill thereby come to represent the
left-hand collection as smaller in number than the right-hand collection. After all, children (who
lack the capacity to count precisely) use their ANS to correctly identify the bigger of two analogous
collections under analogous conditions (e.g., Barth et al. 2005). Thus, we might suppose that the
total content of the representation produced is something like the right-hand collection containing
8 is bigger in number than the left-hand collection containing 6.
The point to note is that prima facie, the semantic value of this complex state decomposes into

(at least) two distinct approximate number representations (meaning that collection is 8 in number
and that collection is 6 in number respectively). In either case, these representations concern inde-
pendent collections and seem to represent them independently of the other. For instance, if the
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8 CLARKE

right-hand box came to contain 10 dots because two additional dots were added to the collection,
my ANS might come to represent that the right-hand collection containing 10 is bigger in number
than the left-hand collection containing 6. But, in this scenario, we would expect the part of the
representation responsible for representing the left-hand collection as 6 in number, to continue
making the same semantic contribution to the complex state in which it features.
Second, similar points apply to individual approximate number representations when they rep-

resent some specific collection as 6 (or 6ish, etc.) in number. When they do, these representations
seem to comprise a demonstrative element (compare Pylyshyn 2007) or representation that picks
out the collection (compare Echeverri 2017) and a syntactically independent numerical element
which attributes some numerical value to this. This allows these distinct elements to then com-
pose in the manner of an object file, such that the total content of the representation produced is
something like [that collection]subject [is 6 (or 6ish) in number]predicate (see: Feigenson 2011; Green
& Quilty-Dunn 2020).2
One reason to say this is that the identification of a collection, apt for enumeration, flexibly

supports various non-numeric computations also. For instance, Odic and Halberda (2015) found
that when subjects were asked to identify which of two collections had a larger total surface area
this would affect their looking behavior (prompting fewer and longer saccades between targets)
as compared with a condition in which they were asked to identify the more numerous of the
collections. This suggests that the collection was picked out prior to and independently of the
(numerical and/or non-numerical) magnitudes attributed to it, such that it could be scanned and
processed in a task relevant manner (see also Odic 2018). Conversely, we have considered cases
in which a collection of dots a1 is added to an existing collection A, and the resulting number of
items in collection A is then compared to that of a separate collection B (Barth et al. 2005). Here,
the numerical quantity of collection a1 seems to be added to collection A, such that our ANS
updates its description of A (enabling it to then be compared to B). However, it is unlikely that
this involves us retaining reference to collection a1 as a subset of A, not least because the number
of numerical ensembles that can be retained in working memory is extremely limited (Halberda
et al. 2006; Zosh et al. 2007). Thus, when the ANS represents a collection as 6 in number, it seems
likely that the collection identifying element of the representation functions independently of its
numerical attribute and vice versa. Yet when these elements are combined – and we thereby come
to represent, e.g., that ([that collection]subject [is 6 in number]predicate) – themeaning of this complex
representation would seem to be a function of what these elements mean plus the mode by which
they are combined (i.e., with the numerical element predicated of a specific collection).

3.2 Reason 2: Arguments to the contrary fail

Despite enjoying prima facie plausibility, the claim that approximate number representations fea-
ture in compositionally structured representations of the above sort has not gone unchallenged. To
see why, notice that (given the compositionality of the complex representations described above)
approximate number representations should systematically recombine. Thus, the competence to
represent that 8>6, and the ability to represent that 7>5, should imply the competence to repre-
sent that 8>7. For if approximate number representations (of e.g., 5, 6, 7, 8. . . ) make fixed semantic
contributions to the complex states in which they feature, such that the meaning of these com-
plex states is a function of what these (and any other relevant) representation parts mean plus
the mode by which they are combined, then the competence to deploy an approximate number
representation of (e.g.,) 7 in one context should imply the competence to deploy it in another,
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THE ANALOGUE MIND 9

at least when the structural relations among the relevant representation parts remain the same.
Indeed, systematic competences of this sort could be seen to follow from these representations’
compositionality as a matter of “nomological necessity” (Fodor & McLaughlin 1990: 188).
The trouble is: Approximate number representations have been argued not to systematically

recombine. In particular, Beck (2012) rejects their systematic recombinability on the grounds that
the discriminability of two approximate number representations is a function of the ratio between
the numerical values represented (the further from 1:1, the better).3
To illustrate, consider the 6month-old infants tested by Xu and Spelke (2000). As discussed

in Section 2, these infants were habituated to collections, containing either 8 or 16 items. When
habituated to 8 items, the infants were found to reliably dishabituate and look longer at collections
containing 4 or 16 items. Meanwhile, those infants who were habituated to 16 items were found to
reliably dishabituate to collections containing 8 or 32 items. Since the infants in both conditions
were found not to reliably dishabituate to collections containing (e.g.,) 12 items, these results were
interpreted as showing that 6month-old infants can discriminate numbers, provided they differ by
a ratio of 1:2 or better. But, on these grounds, Beck holds that their approximate number represen-
tations were not systematically recombining. For while the 6month-olds might have been capable
of representing that 8 is less than (or different from) 16 and that 12 is less than (or different from) 24,
they were not able to represent that 12 is less than (or different from) 16, since 12:16 is closer to 1:1
than 1:2.
To be clear, Beck’s argument is not specific to the 6month-olds tested in Xu and Spelke’s study.

He formulates his argument in relation to approximate number representations posited in pigeons
(Rilling & McDiarmid 1965) and his point is expected to apply no matter the acuity of the ANS in
question. For instance, it would apply equally well to 9month-olds who have been said to reliably
discriminate 2:3 ratios among numerical quantities (Lipton & Spelke 2003): here, a 9month-old
who can represent 8 as smaller than 12 and 10 as smaller than 15would (by hypothesis) not be capa-
ble of representing 10 as smaller than 12, pace systematicity. Additionally, Beck’s argument does
not turn on the precise numerical values represented. To simplify matters, I have been describing
infants’ approximate number representations as though they represent precise natural numbers
(e.g., 8 or 8>6). However, the same point would apply if infants were representing approximate
numbers, like 8ish, or precise numbers with a confidence estimation attached (Halberda 2016), “a
blur on the number line” (Spelke & Tsivikn 2001) or some numerical range (like 7 to 9, or 7ish to
9ish – Ball 2017), etc. This is because systematicity would imply that the competence to represent
7–9 (or 8ish) is smaller than 14–18 (or 15ish), and the competence to represent 10–12 (or 11ish) is
smaller than 20–24 (or 22ish), would imply the competence to represent 7–9 (or 8ish) is smaller
than 10–12 (or 11ish) (at least insofar as ‘7-9’ and ‘10-12’, etc. feature as syntactically distinct ele-
ments in these representations, the structural relations among these elements remains constant,
and the representations are composed from these elements).
So, does Beck’s argument succeed in undermining the systematic recombinability, and by

extension the compositionality, of these complex representations? It does not, and the failure of
his critique should increase our confidence that approximate number representations genuinely
compose.
The problem with Beck’s argument is that it assumes a problematic interpretation of Weber’s

Law (a point noted by Halberda [2016] and acknowledged in Beck [forthcoming]). Specifically,
it assumes what we might call a cliff-edge-model of Weber discriminability: namely that beyond
some specific ratio, or threshold, discrimination becomes impossible. Thus, the argument, as it
relates to Xu and Spelke’s study (described above), assumes that when two numerical quantities
differ by a ratio that is closer to 1:1 than some threshold (e.g., 1:2), subjects are no longer able to
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10 CLARKE

discriminate the quantities in question at all let alone represent one quantity as larger than the
other. Performance simply falls off a cliff.
Admittedly, Xu and Spelke do suggest this, concluding from their study that number discrim-

inations “require a 1:2 difference ratio” in the 6month-olds tested (Xu & Spelke 2000: B9 – my
emphasis). Similar points apply to the specific studies on which Beck draws. Moreover, they are
evident in seminal discussions of the ANS, as whenCarey claims that (since adult humans require
a 7:8 ratio or better to perform reliable discriminations) “The difference between eight and nine is
not experienced at all, since eight and nine, like any higher successive numerical values, cannot
be discriminated” (2009: 295). The point to stress is that, despite the prominence of these claims,
the cliff-edge model is inaccurate.
For a start, the cliff-edge model conflicts with foundational work in psychophysics, where

theories like Signal Detection Theory, jettison the idea of a just noticeable perceptual difference
entirely (e.g., Lamming 1973). So, rather than performance falling off a cliff as some ratio threshold
is exceeded, sophisticated and well-supported psychophysical theories predict that the discrim-
inations facilitated by the ANS simply decrease smoothly in accuracy or reliability as ratios
approximate 1:1. They, thus, predict no simple cut-off after which differences are not discrim-
inated. With enough trials, one’s ANS should (by hypothesis) be significantly above chance at
discriminating 299 dots from 300 (or worse) provided the system can represent these quantities
in the first place – e.g., when representing 299>149 and 300>150 (a made forcefully by Halberda
and Odic [2014] and Halberda [2016]).
This sounds like a bold suggestion. But all available evidence supports it. In Barth et al.’s

(2005) study (described in Section 2) we saw that 5year-olds discriminated 4:7 ratios more reli-
ably than 4:6 ratios, and 4:6 ratios more reliably than 4:5 ratios. But at no (obvious) point did
performance fall off a cliff. Similarly, while it is true that (e.g.,) Xu and Spelke (2000) report that
6month-old infants “require” a 1:2 difference for number discrimination to be possible, it has been
noted that these researchers did not run enough trials for above chance discriminations of harder
ratios to reveal themselves (Halberda 2016). The results, thus, fail to evince the cliff-edge model.
Indeed, Libertus andBrannon (2010) replicatedXu and Spelke’s findings and showed that as ratios
became more favorable (than 1:2) performance increased smoothly, just as the abovementioned
psychophysical models would predict.
Of course, these observations do not establish that there is no ratio threshold beyond which

discriminations become impossible. However, a recent paper by Sanford and Halberda (forthcom-
ing) speaks to this issue directly. They found that adult participants could perform statistically
significant, above chance discriminations of 50:51 ratios, when sufficiently many trials were run.
This is striking, not just because 50:51 is an extremely hard ratio (see Figure 3) –much harder than
any ratio previously tested or described in studies of the ANS – but also because it was the hard-
est ratio these researchers examined, suggesting that harder ratios still would be discriminable
also.
More importantly, Sanford and Halberda proceeded to compare participants’ results against

the predictions of two models: an idealized Signal Detection Theory model (which jettisons any
notion of a just noticeable difference beyond some given ratio threshold) and a ‘Give up model’
“devised. . . in an attempt to capture the intuition that comparisons eventually become so difficult
as to be imperceptible – i.e., that they give rise to random guessing” (9). For 398 of 410 participants
tested, the former model accurately predicted their behavioral responses, and did so significantly
better than the Give up model. So, while this empirical work is ongoing, a picture has emerged
that is independently predicted by our best psychophysical modelling: rather than there being
some just noticeable difference, or ratio threshold, after which ANS discriminations fall off a cliff,
performance simply deteriorates gradually as ratios approximate 1:1. When ratios get difficult,
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THE ANALOGUE MIND 11

F IGURE 3 Illustration of ratio discriminations tested by Sanford and Halberda (forthcoming).

more trials must be run for above chance discrimination to reveal itself in the data. But genuinely
just noticeable differences, of the sort assumed by the cliff-edge model, are little more than an
intuitive fiction.
How does this bear on Beck’s argument? It undermines it, because it suggests that approxi-

mate number representations do systematically recombine after all – just as the compositionality
of these representations implies. Once we jettison the idea that there is some fixed ratio, beyond
which numbers become indiscriminable, we seem forced to acknowledge that any time an ANS
can represent two distinct quantities, or numbers, it possesses the competence and representa-
tional resources needed to (e.g.,) represent these as different and to represent one as larger than
the other. So, if the ANS can represent 300 and 299 under any conditions (e.g., when representing
300>150 and 299>149), it possesses the representational resources needed to represent these as
different (i.e., that 300≠299) and the former value as greater than the latter (i.e., that 300>299).
What the system’s conformity to Weber’s Law means is simply that such discriminations will be
highly error prone given 299:300’s proximity to 1:1. As such, many trials will need to be run for
significantly above chance performance to emerge in the data. But emerge it will, suggesting that
errors ultimately pertain to performance limitations (for instance, noise in the encoding process),
rather than speaking against an underlying competence to represent the differences and ordinal
relationships in question – i.e., rather than speaking against that which the compositionality of
these representations implies.

3.3 Reason 3: Systematicity is best explained by a compositional
structure

The fact that approximate number representations seem to feature in complex representations
with a compositional structure coupled with the fact that the single most prominent argument
against this suggestion fails, lends considerable support to the idea that approximate number rep-
resentations do feature in compositionally structured representations. As a final remark, I wish
to add that, in addition to making room for their compositionality, the systematic recombinability
of these representations is positive evidence in favour of a compositional structure.
The reasons for this are familiar from seminal disputes in cognitive science, waged between

classicists (who posit compositionally structured mental representations – e.g., Fodor & Pylyshyn
1988; Fodor&McLaughlin 1990) and connectionists (who deny this, positing non-compositionally
structured representations with a distributed, context sensitive semantics – e.g., Smolensky 1988;
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12 CLARKE

Chalmers 1990; Pollack 1990). Here, classicists point out that compositionally structured rep-
resentations imply systematic competences in a system’s operations, while non-compositional
architectures do not. Hence, the empirical observation (Fodor 1994) that cognition exhibits sys-
tematic competences is said to be best explained by a classical architecture, or so the classicist
contends.4
This is relevant to our discussion becausewehave now seen that approximate number represen-

tations systematically recombine. Somewhat surprisingly, an organism who can use their ANS to
represent 50>25 and 51<100 possesses the competence to represent 50<51. Echoing the classicist,
this is precisely what we would expect if these representations were compositionally structured.
If representing 50>25 and 51<100 is (in either case) a function of representing the distinct ele-
ments these complex states comprise (e.g., 25, 50, 51 and 100 respectively), and the meaning of
these complex states is determined by the meanings of these elements plus the way in which they
are combined, then any creature with the competence and representational resources to represent
50>25 and 51<100will possess the competence and representational resources needed to represent
50<51. This follows as a matter of “nomological necessity” (Fodor & McLaughlin 1990: 188).
By contrast, suppose that the elements in these representations have a context sensitive seman-

tics, such that elements representing 50 and 51 in 50>25 and 51<100 have their semantics fixed
by both their intrinsic properties and the contexts in which they are tokened (or perhaps just the
latter). Here, it would not follow that the competence and representational resources needed to
represent 50>25 and 51<100 implies the competence and representational resources needed to
represent 50<51. Thus, something further would be needed to explain why systematicity obtains
in the system, if and when it does, at which point the proponent of a compositional architecture
can legitimately claim the upper hand. In much the way Darwin argued his evolutionary theory
was to be favoured over creationism on account of its predicting and explaining observed similar-
ities among cave forms in Europe and America, where creationism merely accommodated these
(via ad hoc auxiliary posits), the proponent of compositionality can claim that their architecture
is to be favoured over a non-compositional alternative (this example is borrowed from Aizawa
1997) on account of its predicting and explaining the observed systematicity under consideration
(e.g., among approximate number representations) and not merely accommodating this via ad
hoc auxiliary posits.
None of this is to deny that, in principle, performance limitations could still prevent a sys-

tem employing compositionally structured representations from producing certain systematic
recombinations of its representable elements (c.f. Aizawa 1997). Nor is it to deny that a non-
compositional system could be wired up such that it exhibits the competences of a systematic
cognizer (c.f. Chalmers 1990). The point is simply that compositional architectures straightfor-
wardly predict, imply, and explain systematic competences, while non-compositional architectures
do not. So, while these considerations may be non-decisive, the empirical fact that approximate
number representations do systematically recombine is yet another mark in favour of thinking
that they feature in compositionally structured complex representations.

4 CONSTITUENCY AND ANALOGUE FORMAT IN THE ANS

The preceding discussion suggests that approximate number representations feature in complex
compositionally structured states: they seem to, the most prominent argument to the contrary
fails, and the empirical observation that these representations systematically recombine is most
straightforwardly explained by the compositionality of the representations they comprise.
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THE ANALOGUE MIND 13

With these points in view, I’ll now turn to the second (perhaps more controversial) aspect
of their Privileged Compositionality: the suggestion that these compositionally structured rep-
resentations possess a “canonical decomposition” into privileged constituents, despite possessing
an analogue format.
To remind readers: Representations comprise privileged constituents when the semantics of a

complex state depends on its decomposition into specific, semantically relevant, chunks or parts
(rather than others). Linguistic sentences are the exemplars. As Fodor (2007) explains, the sen-
tence ‘John loves Mary’ (understood to mean that John loves Mary) must be parsed [((John)NP
((loves)V (Mary)NP) VP)]. In so doing, chunks like ‘John’ and ‘loves Mary’ (and in turn, ‘loves’ and
‘Mary’) feature in its syntactic and semantic disambiguation and thus function as constituents of
the sentence (they mean things which contribute to the sentence’s overall meaning). Meanwhile,
other sentence parts do not. For instance, ‘John loves’ and ‘John. . . Mary’ do not mean things
which feature in the sentence’s syntactic or semantic disambiguation and, thus, do not feature
among the privileged constituents fromwhich it is composed. Fodor andmany others expect sim-
ilar points to apply to the digital/linguiform representations posited in conceptual thought. I’m
sympathetic to all the above.
What’s critical is that theorists who embrace this conclusion often deny that privileged con-

stituency obtains in complex analogue or iconic mental representations. For instance, Fodor
(2007; 2008), Kosslyn (1980), Quilty-Dunn (2020), and Johnson-Laird (2001) all hold that these
representations are akin to pictures in their conformity to the picture principle: just as you can
(allegedly) “Take a picture of a person, [and] cut it into parts however you like” yet never be
left with a part which fails to picture some part of the person or scene originally depicted,
these researchers conclude that analogue mental representations “have interpretable parts, but
they don’t have constituents. Or, if you prefer, all the parts [of some such representation] is
among its constituents” (Fodor: 2007: 108). So, while allowing that these representations are com-
positional, they deny that they are composed from privileged constituents in the above sense.
Indeed, Carey (2009) seems to argue that this much applies to the approximate number repre-
sentations we’ve been considering. For while she does not mention privileged constituency, she
argues that these representations conform to the picture principle (135), holds that this much
is implied (or perhaps entailed) by their non-digital, analogue format (ibid.), and claims that
this is to be understood in precisely the same way as the abovementioned theorists (458) for
whom a denial of privileged constituency looms large. I’ll now argue that this is a mistake –
approximate number representations do possess a canonical decomposition into privileged con-
stituents despite possessing an analogue format, and the reasons for this help us to see that Fodor
and Kosslyn were wrong to suggest otherwise in the case of visual imagery and early vision
also.

4.1 Why think approximate number representations analogue?

Characterizations of analogue representation vary in the literature. Analogue representations are
often said to be ‘continuous’ in a way that digital representations are not (Goodman 1976), and we
have just seen that some claim they are demarcated by their conformity to the picture principle,
or an associated failure to canonically decompose into privileged constituents. However, another
way of characterising analoguemental representations (which is not incompatible with these sug-
gestions but is, inmy view,more fruitful) appeals to an isomorphism, or homomorphism, between
content-bearing properties of the vehicle and themagnitudes/intensities being represented (Lewis

 15208583, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/phpe.12182, W

iley O
nline L

ibrary on [27/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 CLARKE

1971; Maley 2011, forthcoming). As Von Neumann put it: “In an analogue machine each number
is represented by a suitable physical quantity, whose values, measured in some pre-assigned unit,
is equal to the number in question” (1958: 3). Thus, a mercury-in-glass thermometer is analogue,
on this view, not because its mercury level varies continuously within the tube, but because it
varies as a linear or (Von Neumann notwithstanding) a more broadly monotonic function of the
temperature represented. This contrasts with the symbols of a digital thermometer which bear
arbitrary similarities and differences to the numbers/temperatures they represent, like symbols
in a language of thought.
While researchers studying the ANS are not always clear on this point, it is in this sense that

their arguments support the claim that approximate number representations are analogue. These
representations seem to represent numerical quantities by having some neuropsychological mag-
nitude in the head vary as a monotonic function of these (Beck 2015; Carey 2009; Clarke 2022b).
Thus, one magnitude (in the brain) is used to represent another magnitude (Peacocke 2019), by
mirroring this (Beck 2015), and bearing some natural isomorphism (Burge 2018), or homomor-
phism (Maley forthcoming) towards it, irrespective of whether the vehicle is continuous (c.f.
Gallistel & Gelman 2000) and irrespective of whether it conforms to the picture principle (c.f.
Carey 2009).
Perhaps the most prominent argument in favour of this suggestion concerns the fact that an

analogue format of this sort features in a simple and elegant explanation for the ANS’s conformity
toWeber’s Law (Beck, 2015; 2019; Carey 2009; Condry& Spelke, 2008; Clarke 2022b; Dehaene 2011;
Feigenson, Carey & Hauser, 2002; Feigenson, Dehaene & Spelke, 2004; Lipton & Spelke, 2003;
Nieder & Miller 2004; Slaughter, Kamppi & Paynter, 2006). Consider a toy example:
Suppose that we’ve been tasked with keeping count of the goals scored at a local Scottish foot-

ball match and decide to perform this task in an unorthodox manner. We take two identically
proportioned buckets, assign one to each of the competing teams, and commit ourselves to pour-
ing one glassful of water into the relevant bucket each time its corresponding team scores a goal.
Proceeding in this way, we might reason that the bucket containing more water at the end of the
match will belong to the winning team. Indeed, we might reason that the total volume of water
that is in these buckets carries content about the number of goals each team has scored. This is
because the number of goals scored by each team will be equal to the total volume of water in
their corresponding bucket divided by the volume of a single glassful. Thus, if there is 1500ml of
water in a bucket at the end of the game, and a single glassful contains 250ml, we might conclude
that the corresponding team scored 6 goals. In this way, we can take the total volume of water to
represent the number of goals scored by having the content-bearing magnitude (water volume)
vary as a monotonic (or, more specifically, linear) function of the number of goals scored. That is,
by serving as an analogue of the number represented, and representing it in an analogue format
of the sort articulated above.
So far so good. But how does this relate to the ANS and its conformity to Weber’s Law? The

point to note is that the above example is idealized in at least one respect. It assumes that the
amount of water in each glass is literally identical – e.g., that each glassful contains exactly 250ml
of water. This is unlikely to be true of real-world systems. For instance, a glass used to fill one
bucket is likely to be slightly bigger than a separate glass used to fill the other. Given the pace of
local Scottish football matches, there may then be no time to ensure that each glassful contains
exactly 250ml. But once this is acknowledged, noise could be expected to naturally accumulate
in the buckets as more goals are counted. As a result, the accuracy or reliability with which the
buckets’ relative water volumes accurately track the winning team will end up a function of the
ratio between the numbers of goals that each team scores. In otherwords, the accuracywithwhich
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THE ANALOGUE MIND 15

these bucket representations pick out the winning teamwill be predicted byWeber’s Law, just like
the ANS’s numerical discriminations.
To illustrate, suppose that while an average glassful contains 250ml of water, glassfuls vary in

volume, such that one glass has a volume of 200-280ml and the other glass has a volume of 220-
300ml. Here, we would still be able to tell who has won the match if the winner wins by two goals
to one. After all, this would involve the winner’s bucket containing somewhere between 400 and
600ml of water and, thus, more than the loser’s bucket, which would only contain between 200
and 300ml of water. Indeed, wewould be able to tell this much just as reliably any time thewinner
wins by scoring twice asmany goals as their opponent. But, alas, matters will become less clearcut
as the ratio in the number of goals scored by the winning and losing teams approximates 1:1. For
instance, if the winning team wins by 4 goals to 3, there could be anywhere between 800 and
1200ml of water in their bucket and anywhere between 600 and 900ml in the loser’s. Thus, there
would be a range of possible scenarios in which the loser’s bucket would contain more water than
the winner’s, with “errors” of this sort becoming ever more likely as the ratio in the number of
goals scored approximates 1:1.
Of course, no one thinks that there are buckets of water inside our heads. What the example

highlights is just that if the ANS represents numbers by having (functional or physical) magni-
tudes in the brain vary as a monotonic function of these, and we further acknowledge that noise
could naturally accumulate in the abovementioned way, we can see why the ANS’s numerical
discriminations would conform to Weber’s Law. In other words, the idea that analogue vehicles
mirror the numbers they represent by varying in size as a monotonic function of these, features in
a simple and elegant explanation for why the ANS might display its characteristic limitation. (As
far as I can tell, this oft-repeated suggestion can be traced to Meck and Church’s [1983] mode con-
trol model of counting and temporal representation in Norway rats.) None of the above turns on
the continuity of the representations, however. Water volume is a (relatively?) continuous mag-
nitude. But, for the purposes of the above example, we might as well pour cupfuls of discrete
marbles into the buckets (Beck 2015). For if noise still accumulates as per above (and one cupful
can contain anywhere between, e.g., 20 and 28 marbles, while the other can contain anywhere
between 22 and 30 marbles) precisely the same points will apply: noise will accumulate such that
the reliability withwhich the total number ofmarbles in each bucket picks out thewinning/losing
team ends up a function of the ratio of goals scored. Weber’s Law still emerges in the system’s
discriminations.5

4.2 From Analogue Format to the Picture Principle?

The preceding subsection introduces a widely endorsed reason for thinking that approximate
number representations have an analogue format; for thinking that the vehicles of these represen-
tations represent the numerical quantities they do by varying as a monotonic function of these,
and by thereby bearing some natural (and computationally efficacious) isomorphism towards
these. Of course, moving from this to the conclusion that approximate number representations
do, in fact, have an analogue format of this sort requires that there be no better proposals in
the vicinity (for a sustained defence, see Beck 2019). But since the assumption that they do is
commonplace in the literature and finds support from our best neuroscience (Nieder 2016), I’ll
assume it in what follows. The issue I would like to focus on is, instead, whether this threatens
the idea that approximate number representations comprise privileged constituents in ways that
Privileged Compositionality demands.
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16 CLARKE

One reason why it might seem to threaten this, is that the above stated analogue format has
been taken to imply (or perhaps entail) that approximate number representations conform to
the picture principle, outlined at the start of this section. For instance, Carey (2009) endorses
the abovementioned argument for their analogue format (although she uses line lengths, rather
than volumes of water, to illustrate the suggestion) and takes this to imply that they are akin to
realistic pictures in that parts of the representational vehicles represent parts of that which is
represented by the representation as a whole. Since Carey is explicit that she intends this sug-
gestion to be understood in the way that Kosslyn and others do when they characterise visual
imagery (458), where a proposed rejection of privileged constituency looms large – i.e., where
theorists claim that image parts can be “arbitrarily” defined (e.g., Kosslyn 1980: 30–33) with
“every” part of the representation featuring in its compositional analysis (Fodor 2007: 107–8) –
she is naturally read as suggesting that approximate number representations lack a canonical
decomposition also: i.e., as claiming that there is no privileged constituency in these representa-
tions. In any case, seeing why this is (or would be) a mistake, enables us to see why it has
been a mistake to characterize analogue mental representations in this way more generally –
e.g., in the specific cases that Kosslyn and Fodor emphasise when framing the picture princi-
ple and explicitly rejecting the suggestion that analogue mental states decompose into privileged
constituents.
To see why Carey thinks that approximate number representations conform to the picture prin-

ciple, consider the buckets of water discussed in the previous section. These buckets were seen to
represent numbers (of goals) by having content bearing properties of the vehicle (water volume)
increase as a monotonic (linear) function of numbers represented. In particular: A bucket con-
taining 2cupfuls represented 2 or 2 goals, while a bucket containing 3cupfuls of water represented
3 (or 3 goals), and so on. On these grounds, Carey notes that “the symbol for 3. . . contains the
symbol for 2” as one of its proper parts (Carey 2009: 135), since 3cupfuls of water (representing
3) is composed of 2cupfuls of water (which represents 2 in and of itself) plus an additional third
cupful of water (representing 1 in and of itself) (458). Since there is a natural sense in which 2
and 1 are parts of 3 (in a way that, e.g., 4 and 5 are not), Carey concludes that these analogue rep-
resentations conform to the picture principle: parts of the representation represent parts of the
numbers represented, in much the same way that parts of a photograph depict parts of the scene
being pictured. Just “as a realistic picture of a dog representing a dog [has] parts of the symbol
represent parts of the represented entity. . . Analogmagnitude number representations are analog
in this very sense” (ibid.).
Is Carey right to think this? An initial problem with her argument is that it turns on several

dubious assumptions (for a full discussion, see Clarke 2022b). For one: Carey’s argument seems
to be founded on the (unargued) assumption that the content-bearing vehicle must increase in
size with the number being represented. This was true in the bucket example described above.
However, Weber’s Law would emerge in the system’s discriminations, and would emerge for pre-
cisely the same reasons, if the magnitude decreased in size as more goals were counted (ibid.; Beck
2015). For if we started with two full buckets of water and removed a cupful of water from the
relevant bucket each time its corresponding team scored a goal, noise could now accumulate as
more cupfuls are removed. As a result, Weber’s Law could still emerge in the bucket system’s
discriminations (owing to the fact that the vehicles still mirror the numbers represented, in an
analogue format). However, in this case, it would plainly be wrong to hold on to the sugges-
tion that any parts of the vehicles (the bodies of water) are representing parts of the numbers
being represented by these representations as a whole. If anything, a body of water representing
3goals, might contain parts which represent 4, 5, and 6, but not parts which represent 1 or 2 – i.e.,
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THE ANALOGUE MIND 17

numerical quantities that are not parts of 3, rather than those that are, since water volume is
inversely proportional to the numbers represented.
Of course, this merely highlights a possibility – it shows that (for all Carey has said) it is possible

that parts of the analogue vehicles in question might fail to represent any parts of their content
whatsoever. Nevertheless, this possibility is pertinent for our purposes insofar as conformity to the
picture principle is meant to imply a lack of privileged constituency in analogue representations
(Fodor 2007; Kosslyn 1980; Quilty-Dunn 2020). For in cases of the sort just outlined, our semantic
analysismust depend on themagnitudes being parsed in privileged ways. Boldly stated: our inter-
pretation of a given bucket representationwill now require that thewhole body ofwater (contained
therein) be treated as the single semantically relevant representation of number. Thus, when the
bucket representation represents that its corresponding team have scored 6 goals and, thus, less
than another team, whose bucket indicates that they have scored 8 goals, mere portions of this
body of water are not taken to mean things which feature in the semantic analysis of the com-
plex state. As such, our semantic analysis of the representation depends on the content-bearing
magnitude(s) having a canonical decomposition into one or more privileged constituents.6
Similar points also apply if we grant to Carey that parts of the neuropsychological magnitudes

increase in sizewith the numbers being represented and, thus, possess parts which represent parts
of the numerical quantities being represented by the representation as a whole. To see why, con-
sider the original bucket system whose analogue vehicles increased in size when larger numbers
were represented. Here, it may seem reasonable to follow Carey in supposing that the symbol for
3 contains a symbol for 2 and a symbol for 1 as its proper parts. However, the analogue represen-
tations of the bucket system still only represent whole natural numbers of goals. Hence, a slight
increase/decrease in the volume of water in a bucket should not be taken to imply that (e.g.,)
Tranent Juniors have scored 3.2 goals, let alone some irrational number of goals (e.g., π goals)
– this is because, non-natural rational and irrational numbers (of goals) are not something the
system functions to represent. So, what is happening when a bucket’s water volume is taken to
represent 7 goals? Presumably, it is being treated as though it comprises 7 distinct and privileged
chunks, out of which its meaning is comprised. Meanwhile finer grained chunks of the water are
not being taken to represent anything at all (e.g., a half chunk is not taken to represent 0.5 goals
in and of itself). Perhaps these finer grained chunks could represent something under other cir-
cumstances (perhaps 9/10 of a chunk would be interpreted as a whole chunk had the water been
parsed differently – i.e., had it possessed a different syntactic disambiguation); the point is just
that, here, they are not, and they are thus failing to feature as constituents of the representation
in this consumer’s interpretation. Which is tantamount to saying that our interpretation of the
bucket system’s representations still involves a canonical decomposition of these representations
into privileged constituents.
This latter point is worth considering since it is reasonable to suppose that the ANS primar-

ily functions to represent whole or natural numbers, like the bucket system just described. For
instance, in each of the studies described in Section 2, subjects were seen to compare and discrim-
inate numbers ofwhole items (e.g., the numbers ofwhole dots in two displays). Indeed,well-known
number illusions suggest that this much is not just typical, but integral to the functioning of
the system. For instance, in the connectedness illusion, described previously, dots that are con-
nectedwith thin lines (effectively turning pairs of dots into single dumbbell-shaped objects) cause
collections in which they feature to appear significantly less numerous than otherwise identical
arrays in which lines contain small breaks (Franconeri et al 2009) or in which the lines are free-
floating (He et al. 2009). The reason for this seems to be that the ANS functions to enumerate
whole bounded items (Dehaene & Changeux 1993; Franconeri et al. 2009; Spelke 1990; c.f., Green
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18 CLARKE

2018), whose numerical quantities are most straightforwardly specified in terms of whole natural
numbers (Clarke & Beck 2021a), raising the possibility that non-natural numbers lie beyond its
expressive capacities.
Against this, it might be noted that there is provisional evidence that the ANS goes beyond rep-

resenting natural numbers by representing fractions or ratios among these (ibid.). For instance,
children are able to quickly identify the more favourable of two non-symbolic ratios (e.g., which
of two arrays contains a more favourable ratio of blue to red gumballs), albeit imprecisely and
in accord with Weber’s Law – i.e., with the ratio among the ratios predicting the reliability with
which subjects pick the more favourable of two collections (Szkudlarek & Brannon 2021). Hence,
these ratio comparisons display a key signature limit of ANS processing. What’s crucial to note
is that, even here, the primacy of natural number representation is apparent. For instance, in
a study that I have recently run with Chuyan Qu and Elizabeth Brannon (Qu et al. 2023), we’ve
found that ratio comparisons are influenced by connectedness in the abovementioned way. In our
study, subjects were (again) instructed to select the more favourable of two ratios (which of two
gumball machines is most likely to produce a preferred gumball type), ignoring task irrelevant
lines that populate the arrays. Despite these instructions, when preferred gumballs were visu-
ally connected with thin lines this reduced their perceived number and made the ratio in which
they featured appear less favourable; conversely, connecting non-preferred gumballs reduced their
perceived number and made the ratio in which they featured appear more favourable. This sug-
gests that ratio (or rational number) extraction is still based on the prior processing of whole or
natural numbers of preferred and unpreferred gumballs and that ratios are merely extracted and
compared by subsequent mechanisms of approximate number representation. So, while future
findings might upend these suggestions, extant evidence indicates that an initial stage of ANS
processing produces approximate number representations of natural number akin to those of the
bucket systems outlined above.When the system represents some relatively determinate quantity,
like 7 or 6–8, a neuropsychological magnitude varies as a monotonic function of this value. But
even if the neuropsychological magnitude is, itself, continuous and increases in size in propor-
tion to the numbers represented (points which, as we have seen, are themselves questionable), it
is unlikely that every arbitrary part of themagnitudewill represent some real number that is a part
of that which gets represented by the magnitude as a whole. Rather, the magnitude will probably
remain functionally chunky, breaking down into privileged chunks that represent whole natural
numbers (i.e., function as constituents of the representation) leaving finer-grained parts of the
magnitude semantically void and unable to feature in the ANS’s syntactic decomposition.

4.3 Why approximate number representations *must* comprise
privileged constituents

The preceding discussion calls into question Carey’s suggestion that approximate number rep-
resentations conform to the picture principle. Moreover, it provides provisional reason to think
that the individual representations of number that the ANS produces and manipulates possess a
canonical decomposition into privileged constituents, irrespective of whether the analogue vehi-
cles increase or decrease in size with the numbers being represented. As a final point, I wish to
note that even if we put all this to one side (and grant that parts of the neuropsychological magni-
tudes implementing our approximate number representations simply possess arbitrarily defined
parts which, themselves, always represent parts of the numbers represented by the vehicle as
a whole) it still seems inescapable that these representations possess a canonical decomposition
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THE ANALOGUE MIND 19

into privileged constituents whenwe consider the complex states they compose. So, while Carey’s
attempt to characterise approximate number representations in terms of the picture principle is
best understood as an attempt to characterise individual numerical elements in these representa-
tions, an implied lack of canonical decomposition looks particularly untenable when we consider
the complex representations they comprise.
To illustrate, recall that, in paradigm cases, approximate number representations do not sim-

ply represent things like 6!. Rather, they seem to represent complex propositions, comprising
syntactically distinct elements that pick out a collection and its numerical attribute respectively
(Section 3). Thus, when I see a collection as 6 in number, my ANS might be more accurately said
to represent the complex proposition:

([that collection]subject [is 6 in number]predicate).

To compoundmatters, we saw that two (ormore) numerical attributes can feature in a complex
representation (and thus be compared) as when I consider two collections and come to represent
these as containing 6 and 8 respectively and that 6<8 (i.e., by virtue of the two neuropsychological
magnitudes implementing these numerical representations differing in size). Putting these claims
together, we can then expect that in this example we would end up with a complex representation
of something like the following sort:

([that collection]subject 1 [is 6 in number]predicate 1) < ([that collection]subject 2 [is 8 in
number]predicate 2)

This is depicted below.

The point to note is that, here, theremust be a canonical decomposition of the representation.
For a start, it seems vital to the content of this representation that predicate1 is predicated of

subject1, and that predicate2 is predicated of subject2. After all, these attributions are reflected
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20 CLARKE

in the content of the complex state. In this way, ([that collection]subject 1 [is 6 in number]predicate 1)
and ([that collection]subject 2 [is 8 in number]predicate 2) mean things which contribute to the content
of the complex state, suggesting that they might function as its constituents. And, indeed, these
representation parts do seem to pass standard linguistic tests for constituency (e.g., tests listed by
Sportiche et al. 2014: 48–57). For instance, we have already seen that these chunks can be system-
atically recombined with other chunks of the same (relevant) sort. Moreover, (when we bracket
performance limitations) these chunks can be productively recombined, as in:

([that collection]subject 1 [is 6 in number]predicate 1)< ([that collection]subject 2 [is 8 in
number]predicate 2) < ([that collection]subject 3 [is 10 in number]predicate 3). . .

When they do, these complex chunks are treated like single primitive units in the representa-
tions inwhich they feature. For instance, they can be substituted for a single unstructured element
without this changing the sentence’s accuracy (andwith this only causing a “little perturbation” in
its meaning [ibid.: 50]). Thus, ([that collection]subject 1 [is 6 in number]predicate 1) might be replaced
with a bare demonstrative ‘that’ in the complex representation ([that collection]subject 1 [is 6 in
number]predicate 1) < ([that collection]subject 2 [is 8 in number]predicate 2) to produce (that) < ([that
collection]subject 2 [is 8 in number]predicate 2). For provided that the referent of the demonstrative is
the relevant collection, this will not affect the accuracy of the representation.
For these reasons, complex chunks of this sort seem to function like constituents, despite com-

prising analogue elements. Yet when they do, other chunks or parts of the representation do
not. In precisely the same way that ‘John. . . Mary’ is not a constituent of the sentence John
loves Mary (while ‘loves Mary’ is), ([that collection]subject 1 . . . [is 8 in number]predicate 2) is not a
semantically relevant part of the complex state described above. It does not mean anything (it
has no accuracy conditions), and does not feature in our semantic analysis of the complex state
described. For instance, there seems to be no sense in which this complex representation part can
be manipulated, recombined, or analyzed as a single chunk (e.g., replaced with a single word or
primitive element). And indeed, similar points even apply to the numerical elements themselves.
For instance, when the system represents 6<8, the values 6 and 8 feature as semantically relevant
parts of the representation. But it is not true that the conjunction of any arbitrary part of themagni-
tude representing 6 and any arbitrary part of the magnitude representing 8 will mean something
which features in the content of the representation (as a whole) even if we grant that arbitrary
parts of the individual magnitudes would always represent real numbers in and of themselves.
Thus, in each of these examples, it is simply not true that every arbitrary part of the representation
represents a part of its represented content. Rather, these complex approximate number repre-
sentations, comprising analogue parts, possess a canonical decomposition into certain privileged
constituents from which their content is composed.

5 PRIVILEGED COMPOSITIONALITY, GENERALIZED

I began this essay by asking whether analogue mental representations exhibit Privileged Compo-
sitionality, comprising compositionally structured analogue constituents. Focusing on the case of
approximate number representation, I recommend an affirmative answer. These states compose
into complex representations (they seem to, arguments to the contrary fail, and the systematic
recombinability of these representations is best explained by their compositionality). And when
they do, these representations are composed out of privileged constituents (this applies to both the
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THE ANALOGUE MIND 21

complex representations in which they feature and the individual numerical magnitudes these
comprise). Moreover, all of this obtains despite the fact that approximate number representations
have an analogue format that distinguishes them from the digital representations emphasised in
familiar formulations of Privileged Compositionality (e.g., the language of thought hypothesis).
To my mind, these points suggest that researchers tend to underestimate the syntactic

complexity of analogue mental representations, as reflected in claims that analogue mental rep-
resentations lack any notion of ‘ill-formedness’ (Haugeland 1981) or ‘don’t seem to have a syntax’
(Kosslyn 1980). Nevertheless, it might be questioned whether these conclusions are in some
way unique to the approximate number representations I have been discussing. After all, Fodor
and Kosslyn’s introduction of the Picture principle pertained to other analogue representations
entirely – namely, “pre-attentive” perceptual representations and visual images, which might be
thought more closely analogous to realistic pictures than the representations I’ve discussed. To
close this essay, I wish to note that that all the above arguments apply equally well to these ana-
logue representations also. The upshot is that Privileged Compositionality should probably be
deemed a pervasive feature of analogue mental representation.
A full discussion of Fodor and Kosslyn’s motivations for characterising early visual represen-

tation and visual imagery in terms of the Picture principle is beyond the scope of this article (see
Clarke 2022a for more). But very briefly: Fodor thinks this much is motivated by the characteristi-
cally high storage capacity these states exhibit. For instance, while working memory only allows
storage and processing of up to around four items at once (e.g., around four objects in the visual
field – but see Fougnie & Alvarez 2011) early vision often seems to encode many items in parallel
(e.g., Sperling 1960; Julesz 1961). According to Fodor this is best explained by the idea that these
high-capacity early visual representations do not possess a canonical decomposition into privi-
leged constituents representing individuals and their features respectively (Fodor 2007; 2008; see
also: Quilty-Dunn 2020). Rather, they function more like uninterpreted photographs.7 Arbitrar-
ily defined parts of the representations simply depict corresponding regions of the visual scene,
irrespective of whether those regions contain one item or many. So, when early vision represents
a brown triangle, the brownness and triangularity of the representation gloop together “holisti-
cally”, such that there is no decomposition into separate constituents or representational vehicles
independently corresponding to the shape and color respectively (Quilty-Dunn 2020; see also:
Dretske 1981; Davies 2021).
A challenge to this suggestion comes from decades of work on visual feature integration. In

cases of disjunctive visual search, an ‘oddball’ will pop-out from a sea of distractor items when it
is suitably distinguished along a single feature dimension. Thus, a single red circle will pop-out
from a collection of green circles or red squares, and thus be identified as the odd one out, more or
less as quickly when it is surrounded by 3 green circles/red squares or 30 (Treisman 1982). Indeed,
similar points apply with many low-level visual properties (Wolfe & Horrowitz 2017) indicating
that early (“pre-attentive”) vision processes large portions of the visual field, efficiently and in
parallel, to a sufficient level of granularity that items can be distinguished by any one of these
features. But while this seems to be the kind of high-capacity visual process which motivates
Fodor to suggest that every part of the early visual percept represents some portion of the seen
scene, like a photograph, and in a syntactically homogenous manner (without breaking down into
discrete constituents), other forms of visual search paint a more complex picture.
Most famously, in conjunctive search tasks, when a target item is defined by two features (e.g.,

by being the only red square, but not the only red item nor the only square item in the array)
search times increase steadily with the number of distractors. Hence, it will (on average) take
longer to find a target item in a sea of 30 distractors than in a sea of 29, and longer to find a target
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22 CLARKE

in a sea of 29 than 28. The traditional explanation for this has been that different feature types are
represented in distinct ‘featuremaps’, each of whichmakes salient oddballs that are defined by the
specific feature typewithwhich it is concerned;meanwhile, conjunctive search is slow because no
single featuremap picks out a conjunctively defined target – rather participantsmust engage in an
effortful process, wherein overlapping locations on multiple maps are considered in series until
oddballs are identified. Hence, the traditional explanation for the temporal asymmetry between
disjunctive and conjunctive search tasks has involved the suggestion that distinct features enjoy
an “independent psychological existence” in early vision (Treisman 1986).
What are we to make of this observation? An initial point to note is that this conflicts with

the claims of those sympathetic to the Picture principle who maintain that early visual repre-
sentations do not decompose into distinct parts or constituents that stand for distinct features,
independently, and instead hold that these distinct features gloop together ‘holistically’ (Quilty-
Dunn 2020; Davies 2021 – see: Clarke 2022a for discussion). That being said, it remains possible
to hold onto the claim that these representations lack a canonical decomposition into privileged
constituents. For while Fodor holds that every part of these representations represents some part
of the visual field, he allows that this will only hold until the parts in question constitute some
kind of representational primitive (like pixels) which no longer comprise semantically relevant
parts (Fodor 2008: 173; Quilty-Dunn 2020: fn.8). Thus, he might respond that even if these psy-
chological primitives (or concatenations thereof) do not encode multiple properties (like colour
and shape) holistically, there remains a sense in which any given primitive element or collection of
primitive elements represents some part of the visual scene. So, while ‘John. . . Mary’ is not a con-
stituent of ‘John loves Mary’, a Fodorian might maintain that Frankensteinian percept parts, e.g.,
comprising a primitive representation of blue in the bottom left of my visual field and primitive
representation of vertically-oriented-edgeness in the top-right, will always represent some part of
what I see, holding that this is true for any arbitrary collection of primitives such that no complex
part is privileged over any other portion of the early visual representation.
This is where our discussion of the ANS becomes relevant: To see why this won’t do, consider

the fact that while the high-capacity representations of early vision encode distinct feature types
independently, early vision is capable of integrating features across large portions of the visual
field, and not simply at the locus of focal attention. Indeed, this much was evident in the connect-
edness illusion, described several times previously in connection to the ANS. Here, the visual
system seems to enumerate (and thus process) whole bounded objects across the visual field
– hence why connecting items with thin dots (and turning them into single dumbbell shaped
ovjects) reduces their perceived number, even when subjects try to ignore the lines completely
(Franconerri et al. 2009; He et al. 2009; Kirjakovski & Matsumoto 2016). But notice: once it is
acknowledged that the visual system integrates distinct features into bounded objects across large
portions of the visual field (and outside of focal attention) it seems that these complex represen-
tationsmust possess a canonical decomposition into privileged constituents, and for precisely the
same reasons as the complex approximate number representations I focussed on in this essay.
In precisely that same way that ‘John. . . Mary’ is not a constituent of the sentence John loves
Mary (while ‘loves Mary’ is), and ([that collection]subject 1 . . . [is 8 in number]predicate 2) is not a
semantically relevant part of the complex ANS representation ([that collection]subject 1 [is 6 in
number]predicate 1)< ([that collection]subject 2 [is 8 in number]predicate 2), ([brown]. . . [splodge]) is not
a constituent of a complex visual state which attributes brown to triangle in the bottom left of the
visual field and grey to splodge in the top right. Thus, it seems that – like approximate number rep-
resentations – these complex states possess a canonical decomposition into privileged constituents
from which they compose. They are not simply syntactically unstructured concatenations of
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THE ANALOGUE MIND 23

primitive elements (pace Kosslyn 1980: 30–33; pace Kosslyn et al. 2006: 13; pace Fodor 2007; 2008;
pace Quilty-Dunn 2020). (For a fantastic discussion of related issues, see: Lande 2020).
If these observations suggest that high-capacity early visual representations comprise privileged

constituents, and do not conform to the Picture principle as Fodor andKosslyn frame it, why think
them analogue? Once again, our discussion of the ANS is instructive. These early visual states
appear to be analogue in much the same way as approximate number representations – they rep-
resent magnitudes and intensities by having some content-bearing magnitude in the head vary as
a monotonic function of the values represented. One reason to say this is that the discriminability
of early visual representations (of the sort under consideration) also conforms toWeber’s Law. For
instance, in cases of disjunctive visual search, a long line will pop out from an array of short lines.
However, the strength or reliability with which the long line pops out is predicted by the relative
ratio of the lines’ lengths – thus the line will pop out more reliably if it differs from distractor
lines by a ratio of 4:3 than 8:7 (Treisman 1986). Crucially, we have seen that while this does not
threaten the compositionality and systematic recombinability of these representations (c.f. Beck
2012), it is evidence that analogue constituents are involved (Beck 2019). Indeed, converging evi-
dence for the postulation of analogue feature representations in early vision is not hard to come
by. For one thing, this explains various (otherwise puzzling) asymmetries in disjunctive visual
search – for instance, why it is that a long line will pop out from an array of short lines, but a
short line is significantly less likely to pop out from an array of long-lines (Treisman 1986). On
the account recommended here, this is explained by the analogue format of the representations
involved – it is the visuo-computational equivalent of finding the longest spaghetti in the pack
by banging the butt of the packet on the table and seeing which piece sticks out furthest (Clarke
2022a). In any case, the postulation of these analogue states is fully consistent with the Privileged
Compositionality these analogue representations seem to possess.

6 CONCLUSION

Analog mental representations are often treated as syntactically unstructured representations,
lacking in PrivilegedCompositionality – as representationswhich fail to systematically recombine
(Beck 2012), lack a canonical decomposition into privileged constituents (Fodor 2007; Kosslyn
1980) and/or defy any notion of ‘ill-formedness’ (Haugeland 1981; Kosslyn 1980). The present
treatment has argued that all of this is a mistake. Focussing on the ANS, I proposed that its rep-
resentations feature in complex and compositionally structured representations, which comprise
privileged constituents, despite possessing a distinctively non-linguistic analogue format wherein
neuropsychological magnitudes represent numbers by varying as a monotonic function of these.
In addition, I have suggested that these states provide a model for understanding other puta-
tively analogue representations in the humanmind. For instance, I have suggested that while the
states of early vision do not conform to the picture principle in the way that Fodor and others
maintain, there is considerable reason to think them analogue in much the way our approximate
number representations are, with neuropsychological vehicles representing visual magnitudes
and intensities by varying a monotonic function of these (as with the ANS, this explains why
their discriminability would conform to Weber’s Law; in addition, it can explain the presence of
various asymmetries in visual search – e.g., why large/bright/oblique items pop-out from a sea
of small/dull/vertical items but not vice versa). And since these distinct analogue elements are
structured and bound together in highly specific ways across the visual field (e.g., as illustrated in
the connectedness illusion), it is not plausible to deny these states a canonical decomposition into
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24 CLARKE

privileged constituents from which they comprise. Rather, analogue features are bound together
in syntactically complex and specific ways across the visual field. A complete understanding of
these analogue, iconic, or otherwise picture-like states will, thus, require an appreciation for their
constituent structure and grammatical principles by which they compose.
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ENDSNOTES
1A further complication concerns whether the abovementioned results are better understood to involve a repre-
sentation of cardinality as opposed to number, per se (Opfer et al. 2021; but see Clarke & Beck 2021b). This is an
interesting possibility, deserving of discussion. However, nothing I’ll say here turns on this issue.

2Beck (2015) makes a related point. But in addition to maintaining some syntactic independence among a rep-
resentation of the collection and its numerical attribute, he holds that there is a further independence in the
representation of themagnitude and themagnitude type being represented. Thus, he suggests that there is a com-
ponent of the representation which says this big and an independent component which tags this magnitude as a
number as opposed to (say) a distance. Beck endorsed this suggestion because he was impressed by evidence for a
generalized magnitude system, according to which magnitude representations (quite generally) enjoy some kind
of neuropsychological overlap. I’m impressed by evidence against the existence of a generalized magnitude sys-
tem (Odic 2018; Cassanato & Pitt 2019). But nothing I say here hangs on this. If I’m wrong to deny the existence of
generalized magnitudes, processed by a generalized magnitude system, then I would suggest that there is simply
more compositional complexity to these representations than that which is described here.

3 Interestingly, Beck does not take this breakdown of systematicity to refute the compositionality of approximate
number representations. Indeed, Beckmaintains that these representations can “be conceptualized as an ordered
triplet”, composing from an element which represents the size of the magnitude, a separate element which spec-
ifies the magnitude type (e.g., number as opposed to distance), and a third element which specifies the object
or collection to which the magnitude is attributed (2012: 592). Intuitively, however, this is because these ele-
ments are (by hypothesis) capable of systematic recombination. Thus, if one can represent collection1 as 6 in
number and collection2 as 8 in number, Beck should maintain that one possesses the competence and repre-
sentational resources to represent collection2 as 6 in number, owing to the compositionality of these states. The
trouble is, this seems to be in tension with the claim that distinct numerical attributes fail to systematically
recombine (at least insofar as distinct approximate number representations are supposed to feature as seman-
tically relevant parts of complex compositional states, as Beck seems to maintain). For if the ability to represent
one collection as X in number (as such) is dependent on the number of elements attributed to other collections,
then it is not true that individual numerical elements make fixed semantic contributions to every (complex)
approximate number representation in which they feature, and the complex states seem not to be genuinely
compositional.

4Clark (1990) objects to this suggestion on behalf of the connectionist. He maintains that the systematicity of
thought is not an empirical fact at all, in need of some deep mechanistic explanation (pace Fodor). It is, instead,
a conceptual fact that when we encounter a creature who (otherwise) seems able to represent aRb, the discovery
that they are fundamentally incapable of representing bRa undermines the grounds we had for crediting them
with genuine aRb representation to begin with. The fact that Beck (2012) questions the systematic recombinabil-
ity of representable elements in approximate number representation, without taking this to undermine the ANS’s
capacity to represent (somewhat determinate) numerical quantities (in certain contexts) suggests to me that this
is a mistake – it is not true that we are unwilling to credit creatures with aRb thoughts unless we are also willing
to credit themwith bRa thoughts. Moreover, the fact that Beck’s argument turned onmistaken empirical assump-
tions, suggests that the systematic recombinability of these representations really is an empirical discovery – it is a
fact that cries out for some form of mechanistic explanation.
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THE ANALOGUE MIND 25

5 In both examples, water volume/number of marbles increases as a linear function of number, and noise accu-
mulates by some (relatively) stable amount with each goal counted. Weber’s Law could also emerge if these
magnitudes varied as a logarithmic function of represented number, with differences in water volume/number of
marbles becoming evermore compressed asmore goals are counted, provided that noise levels do not accumulate
in the above way but vary from an ideal level across some standard deviation. Indeed, researchers characterising
approximate number representation often state that content-bearing properties of the neuropsychological vehi-
cles vary as a logarithmic function of represented numbers in this way. My own view is that the linear model
is better placed to capture the ANS’s computations. For instance, the linear model offers a simple explanation
for how the ANS might perform the addition operations described in Section 2. On this view, the ANS might
add two quantities together by simply adding together the vehicles used to represent either collections’ quan-
tity – this is analogous to the way that, at the end of the football match, we might pour one bucket of water
into the other and take the total volume of water in the latter bucket to carry content about the total num-
ber of goals scored by both teams. This wouldn’t work if the mapping was logarithmic, rendering the addition
operation more complex. While it might be replied (as Jake Beck did, in comments on an earlier draft) that a
logarithmic model could simplify other arithmetic operations, like multiplication or division of one approximate
number representation by another by reducing these to addition/subtraction operations (e.g., Log[a] x Log[b] =
Log[a+b]; Log[a]/Log[b]= Log[a-b]), it is questionable whether the ANS facilitates such operations. For instance,
while ANS multiplication has been observed, a recent study by Pickeringet al. (2022) tested subjects’ abilities to
multiply ANS representations by numbers between 2 and 8 and found that while subjects were above chance
in multiplying approximate quantities by 2-4 (i.e., by numbers within the subitizing range) performance fell to
chance with numbers 5-8 (outside of the subitizing range and [by hypothesis] in need of representation by the
ANS). This led the authors to conclude that “two ANS representations cannot be multiplied together” (1). In any
case, nothing I say turns on this. Whether the mapping is linear or logarithmic, the vehicles involved represent
numbers by varying as a monotonic function of these: they thereby qualify as analogue in the way I am using the
term.

6Some theorists might have expected otherwise because they deem the system’s conformity to Weber’s Law evi-
dence that the vehicles employed are continuous (e.g., Dehaene 2011; Gallistel & Gelman 2000). After all, they
seem to be in the bucket example (between any two values or water volumes there could always seem to be a
third). This is suggestive because when theorists claim of analogue representations that

“Variations are smooth or continuous, without “gaps””,
they are prone to suggesting that
unlike switches, abacuses, or alphanumeric inscriptions, every (relevant) setting or shape is allowed – nothing

is ill-formed (Haugeland 1981: 220)
and that
These representations don’t seem to have a syntax: (Kosslyn 1980: 30).
But even bracketing the point (noted above) that the ANS’s conformity toWeber’s Law does not imply continu-

ous vehicles, the present example highlights the need to distinguish two issues: even if we grant to Haugeland that
any given volume of water in the analogue bucket representation would count as a well-formed representation
for the system (and there really is no notion of ill-formedness here – which I doubt, for reasons that will become
clear), it does not follow that every part of a continuous analogue vehicle features as a constituent of the repre-
sentation it comprises (i.e., meaning something which features in its compositional analysis – c.f. Kosslyn 1980;
Fodor 2007). In the current example, the body of water (taken as a whole) features as a constituent of the repre-
sentation, but portions of that body of water do not. Thus, privileged constituency is compatible with analogue
vehicles, even when they are fully continuous.

7Fodor actually seems to oscillate on this point. While the idea that these representations are left (largely) uninter-
preted is central to his oft-repeated claim that analogue states fail to represent as, he occasionally seems to hold
that the high-capacity representations of early vision drive high-capacity visual computations (e.g., binocular
integration in random-dot stereograms – Julesz 1971; see: Fodor 2008), with others appealing to the high-capacity
representations of early vision to explain (e.g.,) how ensemble percepts are extracted efficiently from large collec-
tions (Quilty-Dunn 2020). In either case, this suggests that the high-capacity representations of early vision have
relatively determinate contents (i.e., they are not uninterpreted and wildly ambiguous), such that they can inform
high-capacity, parallel computations.
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