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Expecting the World: Perception, Prediction, and the Origins of Human 
Knowledge* 
 
 
 
Perception, I shall argue, is the successful prediction of the current sensory 
signal using stored knowledge about the world. This model of perception is 
increasingly common in cognitive scientific discourse1. But it has so far made 
little impact on philosophical theorizing2. Nonetheless, the model has intuitive 
appeal, is backed by increasing neuroscientific evidence, and has been shown to 
be computationally effective. It depicts the perceptual process as involving the 
Bayesian estimation of distal properties and features. If correct, it explains why 
perception, although carried out by the brain, cannot help but reach out to a 
distal world; it shows why that ‘reaching out’ reveals a world that is already 

                                                      
* Thanks to Miguel Eckstein, Mike Gazzaniga, Michael Rescorla, and the faculty and 
students at the Sage Center for the Study of Mind, University of California, Santa Barbara, where, 
as a Visiting Fellow in September 2011, I was privileged to road-test some of this material. 
Thanks too to Markus Werning and the organizers and participants of the 2010 meeting of 
the European Society for Philosophy and Psychology, held at Ruhr-Universität Bochum, August 
2010; to Nihat Ay, Ray Guillery, Bruno Olshausen, Murray Sherman, Fritz Sommer, and the 
participants at the Perception & Action Workshop, Santa Fe Institute, New Mexico, September 
2010; and to Karl Friston, Daniel Dennett, Peter König, Suzanna Siegel, Mark Sprevak, 
Matteo Colombo, Matthew Nudds, and Bill Phillips. 
 
1 Classic treatments include David Mumford “On the computational architecture of the 
neocortex II: The role of cortico-cortical loop”, Biological Cybernetics 66, (1992): 241-251; 
Rajesh Rao and Dana Ballard “Predictive coding in the visual cortex: A functional 
interpretation of some extra-classical receptive-field effects”, Nature Neuroscience 2 (1999): 79- 
87, Tai-Sing Lee and David Mumford “Hierarchical Bayesian inference in the visual cortex”,  
Journal of Optical Society of America A, 20:7, (2003): 1434-1448, and Karl Friston, “A theory of 
cortical responses”, Philosophical Transactions of the Royal Society of London B Biological Sciences 29, 
360,1456 (2005): 815-36.  For a fairly accessible recent treatment, see Karl Friston’s “The 
free-energy principle: a unified brain theory?” Nature Reviews: Neuroscience 11: 2, (2010): 127-
38. 
 
2 Notable exceptions include work by Jakob Hohwy  including “Functional Integration and 
the mind” Synthese 159:3, (2007): 315-328, and “Attention and conscious perception in the 
hypothesis testing brain” Frontiers in Consciousness Research, (in press), as well as work by Rick 
Grush and by Chris Eliasmith (see e.g. R. Grush “The emulation theory of representation: 
Motor control, imagery, and perception”. Behavioral and Brain Sciences 27:2004: p. 377–442; 
Chris Eliasmith “How to build a brain: From function to implementation”. Synthese 
153(3):2007: p. 373–88). 
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structured and to that extent (weakly) ‘conceptualized’; and it offers a new and 
powerful tool for thinking about debates concerning the origins and 
development of abstract knowledge.  
 
Section 1 outlines the broad shape of the prediction-based model, and 
illustrates the operation of a key component: the use of generative models to 
construct the sensory signal ‘from the top down’.  Section 2 discusses the 
crucial role of learning, with a special emphasis on the way prediction-based 
learning uncovers the deep structuring causes (or ‘latent variables’) that best 
explain the shape of the current sensory signal. It is these deep structuring 
causes that we come to recognize as the external world, populated by familiar 
objects, features, and properties. Section 3 argues that the resulting model 
should fundamentally reconfigure debates concerning innate knowledge, 
revealing more of the hidden richness of statistical learning. Section 4 raises 
and attempts to resolve some puzzles arising from this general picture of 
prediction-based perceptual contact with the world. Section 5 then asks what 
kind of perceptual relation to the world (direct, indirect, neither?) this account 
implies, and suggests that it may best be captured as ‘not-indirect perception’. 
There is a short conclusion. 
 
 
1. Predicting the Present 
 
What happens when, after a brief chat with a colleague, I re-enter my office and 
visually perceive the hot, steaming, red cup of coffee that I left waiting on my 
desk? One possibility is that my brain receives a swathe of visual signals 
(imagine, for simplicity, an array of activated pixels) that specify a number of 
elementary features such as lines, edges, and color patches. Those elementary 
features are then progressively accumulated and (where appropriate) bound 
together, yielding shapes and specifying relations. At some point, these 
complex shapes and relations activate bodies of stored knowledge, turning the 
flow of sensation into world-revealing perception: the seeing of coffee, steam, 
and cup, with the steaming bound to the coffee, the color red to the cup, and 
so on. Call this the ‘passive accumulation’ model of the perceptual process. 
Such a model, though here simplistically expressed, corresponds quite 
accurately to traditional cognitive scientific approaches (for example, by David 
Hubel and Torsten Wiesel, David Marr, and Irving Biederman3) that depict 
perception as a cumulative process of ‘bottom-up’ feature detection. 
                                                      
3 David H. Hubel & Torsten N. Wiesel, “Receptive fields and functional architecture in two 
nonstriate visual areas (18 and 19) of the cat”, Journal of Neurophysiology 28, (1965): 229–289, 
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Here’s an alternative scenario. As I re-enter my office my brain already 
commands a complex set of coffee-involving expectations. Glancing at my 
desk sets off a chain of visual processing in which current bottom-up signals 
are met by a stream of downwards predictions concerning the anticipated states 
of various neuronal groups along the appropriate visual pathway. In essence, a 
multi-layer downwards cascade is attempting to “guess” the present states of all 
the key neuronal populations responding to the present state of the visual 
world. There ensues a rapid exchange (a dance between multiple top-down and 
bottom-up signals) in which incorrect guesses yield error signals which 
propagate forward, and are used to extract better guesses. When top-down 
guessing adequately accounts for the incoming signal, the visual scene is 
perceived. As this process unfolds, top-down processing is trying to generate 
the incoming sensory signal for itself. When and only when this succeeds, and a 
match is established, do we get to experience (veridically or otherwise4) a 
meaningful visual scene5.  

                                                                                                                                                              
David Marr, Vision, Freeman, San Francisco, 1982, Irving Biederman “Recognition-by-
components: a theory of human image understanding”, Psychological Review 94, (1987): 115–
147. 
 
 
 
4 Thus consider expert observers of, say, sports or chess. Such observers benefit from much 
richer structures of knowledge supporting their top-down predictions. But their brains may, 
as a result, sometimes over-weight acquired expectations (‘priors’) relative to the driving 
sensory signal. Daily life, where we are all expert observers to some degree, provides many 
examples of such over-weighting, for example when we constantly seem to see our familiar 
but temporarily absent pet in the subtle play of light and shadow. 
 
5 This alternative scenario has its roots in the work of Hermann Ludwig Ferdinand von 
Helmholtz’  vision of perception as a process of unconscious inference [Hermann von 
Helmholtz, Handbuch der physiologischen optic, in J. P. C. Southall, (Ed.), (English trans.),Vol. 3., 
(New York: Dover, 1860/1962)]. The idea, recast in contemporary terms, is that what we 
experience is the most probable worldly state, given what we already know about the world 
(our priors) and the current sensory stimulation (the evidence, or ‘likelihood’). Helmholz’ 
vision made its way into cognitive psychology as the paradigm known as ‘analysis-by-
synthesis’ (Ulric Neisser, Cognitive Psychology, (Appleton-Century-Crofts, New York, 1967), 
and, for a recent review, Daniel Kersten and Alan L. Yuille, “Vision as Bayesian inference: 
analysis by synthesis?” Trends in Cognitive Science 10: 7, (2006): 301-308)).  In the last two 
decades these broad visions were given effective computational flesh. Key publications 
include Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, & Radford M. Neal, “The wake-
sleep algorithm for unsupervised neural networks”, Science 268, (1995): 1158-1160 and Rajesh 
P.N. Rao and Dana Ballard, “Predictive coding in the visual cortex: A functional 
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This does not mean, of course, that perceptual experience occurs only after all 
forward-flowing error is eliminated.  Percepts here take shape only when 
downwards predictions match the incoming sensory signal, but this matching is 
itself a multi-level, piecemeal matter in which rapid perception of the general 
nature or ‘gist’ of a scene is performed on the basis of first-pass matches 
established using general expectations and simple (e.g. low spatial frequency) 
cues, perhaps in the manner recently described by Kveraga, Ghuman and Bar6. 
Richer detail then emerges concurrently with the progressive reduction of 
residual error signals: a process that may also be mediated by attention, as 
argued by Harriet Feldman and Karl Friston7.  Perception, if such models are 
correct, is a matter of the brain using stored knowledge to predict, in a 
progressively more refined manner, the patterns of multi-layer neuronal 
response elicited by the current sensory stimulation. Thus described, the 
process of perception is one in which the brain is highly pro-active, busily 
attempting to predict (at multiple levels) its own current internal states. Call this 
the ‘active self-prediction’ model of the perceptual process. 
 
To see how this works, it helps briefly to consider a somewhat different, but 
better specified, problem: that of recognizing spoken words in some natural 
language. Here too there is a traditional ‘passive accumulation’ model according 
to which: 
 

                                                                                                                                                              
interpretation of some extra-classical receptive-field effects”, Nature Neuroscience  2:1, (1999):  
p79-87. For a useful review, see Geoffrey E. Hinton “Learning Multiple Layers of 
Representation” Trends in Cognitive Sciences, 11: 2007: 428-434. Work by David Mumford (“On 
the computational architecture of the neocortex II: The role of cortico-cortical loop”, 
Biological Cybernetics, 66: (1992): 241-251) and by Karl J. Friston (“A theory of cortical 
responses”, Philos Trans R Soc Lond B Biol Sci. 29; 360(1456), (2005): 815-36) makes suggestive 
contact with neurobiology, and is consistent with compelling bodies of work in 
psychophysics and cognitive psychology showing that perception often conforms to 
Bayesian principles of optimal reasoning under uncertainty (for a review, see David C. Knill 
and Alexandre Pouget, “The Bayesian brain: the role of uncertainty in neural coding and 
computation”, Trends in Neuroscience  27:12, (2004): 712-9). 
 
6 Kestas Kveraga, Avnil Singh Ghuman, and Moshe Bar, “Top-down predictions in the 
cognitive brain”, Brain and Cognition 65, (2007): 145-168 
 
7 Harriet Feldman and Karl Friston, “Attention, Uncertainty, and Free Energy”, Frontiers in 
Human Neuroscience 4: 215, (2010): 1-23. 
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Representations constructed at earlier stages of processing feed 
immediately higher levels in a feedforward manner…this process 
proceeds incrementally until access to a ‘‘lexical conceptual’’ 
representation has been achieved. In speech recognition…this involves a 
conversion from acoustic features onto phonetic representations, 
phonetic representations onto phonological representations, and finally 
access of the lexical item based on its phonological structure.8  

 
The alternative, once again, is to use whatever stored knowledge is available to 
guide a set of guesses about the shape of the present sound stream, and then to 
compare those guesses to the incoming signal, using residual errors to decide 
between competing guesses and (where necessary) to reject one set of guesses 
and replace it with another. This is ‘analysis-by-synthesis’9 which David 
Poeppel and Philip Monahan summarize as a three-step process involving: 
 

(1) the extraction of (necessarily brief and coarse) cues in the input signal 
to elicit hypotheses, that while coarse, are sufficient to generate plausible 
guesses about classes of sounds (for example, plosives, fricatives, nasals, 
and approximants), and that permit subsequent refinement; (2) the actual 
synthesis of potential sequences consistent with the cues; and (3) a 
comparison operation between synthesized targets and the input signal 
delivered from the auditory analysis of the speech10. 

 
Once we know enough about the (language-specific) structure of the sound 
stream and plausible flows of semantic content, we can use that knowledge 
actively to predict the incoming signal, thus anticipating the current sensory 
input. The process is kick-started by a few simple, rapidly processed sensory 
cues, but these immediately recruit a cascade of downwards-sweeping 
predictions. There ensues a complex dance between top-down predictions and 

                                                      
8 This description of the standard model is from David Poeppel and Philip J. Monahan 
“Feedforward and feedback in speech perception: Revisiting analysis by synthesis”, Language 
and Cognitive Processes 26:7, (2011): 935-95. The quoted passage is from p. 936. Poeppel & 
Monahan do not, however, endorse that traditional model, and instead argue for the 
alternative approach described here. 
 
9 See Kenneth N. Stevens, & Morris Halle, “Remarks on analysis by synthesis and distinctive 
features”, In W. Wathen-Dunn (Ed.), Models for the perception of speech and visual form, 
(Cambridge, MA: MIT Press, 1967): pp88 -102 
 
10 Poeppel & Monahan (op cit) p. 939 
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increasingly detailed bottom-up signaling. The goal of the dance is to find the 
linked set of predictions, spanning multiple temporal and spatial scales, that 
best account for the signal. This is the ‘winning hypothesis’. Along the way, 
further processing of the incoming signal is itself conditioned by competing 
hypotheses at many levels. Thus we sample and search the scene in ways 
determined by the brain’s competing guesses. The extensive use of existing 
knowledge (driving the guessing) has many advantages, enabling us to hear 
what is said despite noisy surroundings, to adjudicate between alternate 
possibilities each consistent with the bare sound stream, and so on11.  
 
Perceptual content, as delivered by such a process of active self-prediction, is 
inherently organized and outward-looking. By this I mean that it reveals – and 
cannot help but reveal – a structured (hence in some weak sense 
‘conceptualized’12) external world. In this (admittedly restricted) sense, the 
world thus revealed is inherently meaningful. It is an external arena populated 
not by proximal stimulations but by distal, causally interacting items and forces 
whose joint action best explains the current suite of sensory stimulation. This is 

                                                      
11 A common (but fortunately misplaced) worry goes like this. Suppose you suddenly and 
unexpectedly awake in a brand new environment. None of your brain’s first shots at 
predicting the sensory input would work.  What then? In such cases the driving sensory 
signal will generate very specific error messages (specific mismatches with your first attempts 
to predict it) that rapidly lead to the activation of multiple other models you already 
command (‘gothic table to your left, ornate dragon sculpture to your right’) so as to quash 
the error by ‘explaining away’ the signal. In a very real sense forward-flowing prediction 
error here plays the role more traditionally assigned to the sensory input itself (see Harriet 
Feldman and Karl Friston “Attention, Uncertainty, and Free Energy”, Frontiers in Human 
Neuroscience 4: 215: (2010): 1-23). It can do this because the ‘error signal’ in a trained-up 
predictive coding scheme is highly informative and carries detailed information about the 
mismatched content itself.  For further discussion, see Clark (In Press).  
 
12 It is a weak sense because there is no guarantee that the potential thinking of beings 
deploying this strategy will form the kind of closed set (encompassing all possible 
combinations of the component grasps) required by the so-called Generality Constraint 
(Gareth Evans, The Varieties of Reference. (Oxford: Oxford University Press 1982).  I am 
persuaded by Peter Carruther’s argument (“Invertebrate Concepts Confront the Generality 
Constraint (and Win)” in Robert W. Lurz (Ed.), The Philosophy of Animal Minds (Cambridge 
University Press 2009)) rejecting the Generality Constraint as either a necessary condition for 
the having of thoughts or the possession of concepts. But those persuaded by the constraint 
may safely recast my claim as the putatively weaker assertion that beings deploying the 
prediction-based perceptual strategy are thereby placed in some form of cognitive contact 
with a structured external realm represented as populated by distinct, causally interacting, 
items and entities.  
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just the kind of grip on the world that an intelligent agent must possess if she is 
to act knowingly. When such an agent sees the world, they see a structure of 
distal, interacting causes. That, I suggest, is why we perceive an external world 
and not ‘sense data’: we must meet the transduced pixels with a top-down 
cascade of represented interacting distal causes. The so-called ‘transparency’ of 
perceptual experience13 - the fact that, in normal daily perception, we seem to 
simply see tables, chairs, and bananas rather than to experience the more 
proximal innervations of our sensory surfaces – falls quite naturally out of such 
models.  
 
To make good these claims, we will shortly need to consider a vital further 
ingredient. That ingredient is learning, and it will occupy us in the next section. 
Before doing so, it will be useful to develop one last illustration of the central 
notion of meaningful, structured, prediction-based perception. The illustration, 
suggested to me by Daniel Dennett14, involves a device imagined (and 
subsequently built by the software engineer Steve Barney) as a means of 
preventing geology students from cheating at their assignments. The cheating 
involved the students simply copying, from public sources, stratigraphic images 
that the assignment really required them to understand. A stratigraphy drawing 
– literally, the drawing of layers - is a kind of cross-sectional depiction of rock 
formations and layerings that aims to reveal the way complex geological 
structures result from temporally sequenced combinations of interacting causes. 
Successful copying or tracing of such a drawing is, however, a poor indicator of 
a student’s true geological grasp. To combat the problem, Dennett imagined a 
device that was later prototyped and dubbed SLICE.   
 
SLICE ran on an original IBM PC and was essentially a drawing program 
whose action was not unlike that of the Etch-a-Sketch device many of us 
played with as children.  Except that this device controlled the drawing in a 
much more complex and interesting fashion. SLICE was equipped with a 
number of 'virtual' knobs, and each knob controlled the unfolding of a 
representation of a basic geological process- for example, one knob would 
deposit layers of sediment, another would erode, another would intrude lava, 
another would control fracture, another fold, and so on. The form of the 
                                                      
13 See, for example, George Edward Moore’s ‘‘The Refutation of Idealism’’, Reprinted in 
Moore, G.E., Philosophical Studies (London: Routledge & Kegan Paul, 1903/1922), and 
Gilbert Harman’s 1990 paper, ‘‘The Intrinsic Quality of Experience,’’ in James Tomberlin  
(Ed.), Philosophical Perspectives 4 (Atascadero, Calif.: Ridgeview Press, 1990).  
  
14 The illustration is used with Dennett’s kind permission.  
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assignment is then as follows: the student is given a stratigraphic drawing and is 
tasked with recreating the picture using the device. The only way to achieve this 
is by matching the drawing - by twiddling the right knobs, in the right order. 
Tracing or simple copying are not options on the device. Instead, the student 
must find the correct knobs, and deploy them with the right intensities (each 
works like a kind of volume control) and in the appropriate sequence for 
yielding the designated outcome. If a student could do that, Dennett reasoned, 
then she really did understand quite a lot about how hidden geological causes 
(like sedimentation, erosion, lava flow, and fracture) conspire to generate 
physical outcomes as captured by different stratigraphy drawings. The 
successful student would have to command a ‘generative model’, enabling her 
to construct various geological outcomes from their component parts, as they 
interact in space and time. 
 
We can take this further by requiring the student to command a probabilistic 
generative model. For a single presented picture there will often be a number 
of different ways of combining the various knob-twiddlings to yield it. Some of 
these will represent far more likely events and event-combinations than others. 
To get full marks, then, the student should deploy the device so as to unearth 
the set of events (the set of ‘hidden geological causes’) that are the most likely to 
have brought about the observed outcome. More advanced tests might involve 
explicitly ruling out the most common sets of causes, thus forcing the student 
to find an alternative way of bringing about that state (forcing her to find the 
next most likely set of causes, and so on). SLICE thus allows the user to deploy 
what she knows about geological causes (sedimentation, erosion, etc) and how 
they interact to self-generate a stratigraphic image: one that, taking prior 
knowledge and any additional constraints into account, best accounts for the 
image given in the homework.  
 
To complete the picture, we need to remove the student user from the loop. 
SLICE* is just like SLICE, except that SLICE* incorporates its own internal 
model of how hidden geological causes combine to bring about the outcomes 
depicted by the stratigraphic images. When SLICE* is shown such an image, it 
automatically seeks to match that sensory input using a top-down generative 
cascade that puts together the most likely set of causes whose interaction would 
yield (hence explains) the present input.  
 
This is exactly the trick that the brain uses, if the models I am considering are 
on track, to make sense of the sensory signal received from the world.  We 
perceive the world by activating (using a knowledge-driven top-down cascade) 
representations of the set of interacting external causes that make most likely 
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the sensory data. The process settles when the interaction of a (now? 
Previously?) linked set of hypothesized causes delivers, from the top-down, 
patterns of neural activation that match (and thus ‘explain away’) those 
resulting from the driving (‘bottom-up’) sensory signal. Otherwise put, the 
brain’s job is to account for the sensory signal by finding a way to generate, in a 
kind of rolling present, that incoming signal for itself.  To do this, the brain 
must find the structure in the signal. But the structure in the sensory signal is 
mostly determined by the structure in the world (making sure that’s the case is 
pretty much the job description if you are a sensory transducer). So the best 
way to anticipate/match the incoming signal is to discover and deploy internal 
resources that amount to a kind of ‘virtual reality generator’ that models the 
distal elements and their typical modes of interaction (simplistically, if it 
generates ‘car’ and ‘sudden braking’ it might also generate ‘smoke from tires’). 
An agent perceives when the virtual reality generator can use its resources to 
capture (match, cancel out) the structure of the incoming signal. That implies 
putting together the right set of interacting distal causes, just as in the SLICE* 
example. 
 
This process has an immediate, and compelling, Bayesian gloss. The system 
settles on the hypothesis (or better, the consistent linked set of hypotheses) that 
maximizes the posterior probability of the observed sensory data. It is this 
winning hypothesis that determines what we perceive. We see the scene, and 
not (for example) our retinal or neural activations, because perception just is a 
process of explaining away the sensory signal by finding the most likely set of 
interacting distal causes: the ones that, given prior probabilities and present 
evidence, best predict the incoming signal.  
 
Notice, finally, that the real-world perceptual matching task targets not a single 
static outcome (as in SLICE*) but rather an evolving real-world scene. 
Matching the dynamic incoming signal here requires knowing how the elements 
of the scene will evolve and interact across multiple spatial and temporal scales. 
To actively recreate the incoming signal from the external scene with that kind 
of temporal and spatial acuity is immediately, I suggest, to understand a lot 
about the world. To perceive the world in this way is to deploy knowledge not 
just about how the sensory signal should be right now, but about how it will 
probably change and evolve over time. It is only by means of such longer-term 
and larger-scale knowledge that we can robustly match the incoming signal, 
moment to moment, with apt expectations (predictions). But to know that (to 
know how the present sensory signal is likely to change and evolve over time) 
just is to understand a lot about how the world is, and the kinds of entity and 
events that populate it. Creatures deploying this strategy, when they see the 
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grass twitch in just that certain way, are already expecting to see the tasty prey 
emerge, and already expecting to feel the sensations of their own muscles 
tensing to pounce. An animal, or machine, that has that kind of grip on its world 
is already deep into the business of understanding that world.  
 
 
 
2. Inheriting (the dynamics of) the Earth 
 
To complete this picture we need to address an obvious and important 
question. Where does all that knowledge (the knowledge that powers the active 
self-predictions that underlie perception) come from in the first place? It is an 
attractive feature of the story on offer that it is the very same process (that of 
attempting to predict the current sensory input) that underlies both experience-
driven learning15 and online response. Moreover, it is a natural consequence of 
this process that the learner uncovers (when all is working correctly) the weave 
of interacting distal causes that characterizes the environment in which learning 
occurs. In this way (more on which in section 3) prediction-based learning 
brings into view a structured external world, built of persisting (though often 
temporally evolving) objects, properties, and complex nested causal relations.  
The upshot, according to neuroscientists Stefan Kiebel, Jean Daunizeau, and 
Karl Friston, is that “the recognition system ‘inherits’ the dynamics of the 
environment and can predict its sensory products accurately” 16.  
 
How might such learning occur? One possibility, of course, is that it simply 
doesn’t, and that the bulk of the required knowledge is innate, gradually 
installed in the shape and functioning of our neural circuits over many 
millennia. For some time, it seemed as if this was the only plausible explanation 
of our ability to know the world on the basis of what seemed like slim and 
underdetermining sensory pickings17. Connectionist models of learning raised 
important doubts about such arguments, showing that it was actually possible 

                                                      
15 In this context, ‘experience-driven’ just means driven by the incoming streams of sensory 
information. Such incoming information need not (though it may) be consciously 
experienced 
 
16  Stefan J. Kiebel, Jean Daunizeau, and Karl J. Friston , “Perception and hierarchical 
dynamics”,  Front Neuroinform  3:20, (2009): p.7 
 
17 For a review, see Steven Pinker’s How the Mind Works (London, Allen Lane: The Penguin 
Press, 1997). 
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to learn quite a lot from the statistically-rich bodies of sensory data that we 
actually encountered18. But standard connectionist approaches were hampered 
in two ways. The first was the need to provide sufficient amounts of pre-
categorized training data to drive the most powerful forms of learning, viz, 
those relying upon the so-called “back-propagation of error”19. This is learning 
in which the current output (typically, some kind of categorization of the input) 
is compared to the correct output, and connection weights slowly adjusted to 
bring future response more and more into line. The second problem was the 
difficulty of training such networks in multi-layer20 forms, since this required 
distributing the response to the error signal in hard-to-determine ways across 
all the layers. Yet such multi-layer forms, as we shall see in more detail in 
section 3, are the key to learning about our kind of world: a world that is highly 
structured, displaying regularity and pattern at many spatial and temporal scales, 
and populated by a wide variety of interacting and complexly nested causes. 
 
It is here that active self-prediction and hierarchical learning marks a real 
advance over previous work.  This work builds upon crucial advances in 
machine learning that began with work on the aptly-named ‘Helmholz 
Machine’21 which was an early example of a multi-layer architecture trainable 
without reliance upon pre-classified examples. Instead, the Helmholz Machine 
‘self-organized’ by attempting to generate the training data for itself using top-
                                                      
18 See e.g. Jeff L. Elman, “Connectionist models of cognitive development: Where next?”,  
Trends in Cognitive Science 9, (2005): 111-117. 
 
19 See David E. Rumelhart, Geoffrey E. Hinton, and Robert J. Williams, “Learning internal 
representations by error propagation” in D. E Rumelhart & J. L McClelland and the PDP 
Research Group, (Editors), Paralled Distributed Processing. Explorations in the Microstructure of 
Cognition. Volume 1: Foundations, (The MIT Press, Cambridge, MA, 1986), pp318-362. 
 
20 By this I mean, in forms that multiplied the layers of so-called ‘hidden units’ intervening 
between input and output. For a nice discussion of these difficulties, see Geoffrey E. Hinton 
“Learning Multiple Layers of Representation”, Trends in Cognitive Sciences 11, (2007): 428-434. 
For an application, see Hinton “To recognize shapes, first learn to generate images”, In P. 
Cisek, T. Drew and J. Kalaska (Eds.), Computational Neuroscience: Theoretical Insights into Brain 
Function, Elsevier, (2007). 
 
21 Peter Dayan, Geoffrey E. Hinton,  & Radford M. Neal, “The Helmholtz machine” Neural 
Computation 7, (1995): 889–904; and P. Dayan and G.E. Hinton, “Varieties of Helmholtz 
machine”, Neural Networks  9, (1996): 1385-1403 – see also Geoffrey E Hinton and Richard 
S. Zemel, “Autoencoders, minimum description length and Helmholtz free energy” in Jack 
D. Cowan, Gerald Tesauro, and J. Alspector,  (Eds.),  Advances in Neural Information Processing 
Systems 6, (San Mateo, CA: Morgan Kaufmann, 1994). 
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down connections. That is to say, instead of starting with the task of classifying 
the data, it had first to learn how to generate the incoming data for itself. (This 
corresponds to the imaginary version of SLICE (SLICE*) in which the 
machine itself must learn, from the incoming pixel-patterns, the set of 
combinable geological causes that would give rise to those very patterns).  
 
This can seem an impossible task, since performing the generation requires the 
very knowledge (about how the training items might be systematically 
generated by complex interacting causes) that the system is hoping to acquire. 
For example, to generate the phonetic structures proper to some public 
language you would need already to know a lot about the various speech 
sounds and how they are (in that language) articulated and combined22. In other 
words, a system could learn to perform the classification task (taking sound 
streams as input and delivering a phonetic parse as output) if it already 
commanded a generative model of phonetically-structured speech in the 
language. Conversely, it could learn to perform the generation task if a 
recognition model (one supporting the classification task) was already in place. 
The problem was solved, in principle at least, by the development of algorithms 
(such as the so-called ‘wake-sleep algorithm’23) that, starting with random 
weight assignments, used each task to bootstrap the other (Hinton et al 
(1995)24.  
 
The Helmholz Machine was an early version of what is now known as a ‘deep 
architecture’25, where these are multi-layer networks capable of powerful forms 

                                                      
22 For a nice account, defending the prediction-based model described in the text, see 
Poeppel & Monahan (op cit).  
 
23 This was a computationally tractable approximation to ‘maximum likelihood learning’ as 
used in the expectation-maximization (EM) algorithm (Arthur P. Dempster, Nan M.  Laird, 
and Donald B. Rubin “Maximum likelihood from incomplete data via the EM algorithm”, 
Journal of the Royal Statistical Society series B: 39, (1977): 1-38). It allowed the system to learn 
both the recognition and the generation models by training both sets of weights (starting 
from small random assignments) in an alternating fashion. 
 
24 Radford M. Neal, and Geoffrey Hinton, “A view of the EM algorithm that justifies 
incremental, sparse, and other variants”, In Jordan, M.I. (Ed.), Learning in Graphical Models, 
(Dordrecht: Kluwer, 1998): pp355-368; G.E Hinton, Peter Dayan, Brendan J. Frey, and 
Radford  M. Neal, “The wake-sleep algorithm for unsupervised neural networks”, Science 268, 
(1995): 1158-1161. 
 
25 For a review of learning using these deep architectures, see Yoshua Bengio “Learning deep 
architectures for AI” published in Foundations and Trends in Machine Learning 2(1), (2009): 1–
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of data-driven learning. Recent advances in learning using such deep 
architectures lead Hinton to assert that: 

 
The limitations of backpropagation learning can now be overcome by 
using multilayer neural networks that contain top-down connections and 
training them to generate sensory data rather than to classify it26. 

 
In hierarchical predictive coding schemes27 this kind of process is implemented 
by the ongoing attempt to use top-down connections to predict the incoming 
signal. The sensory signal is met by a top-down ‘guess’ constructed using 
multiple layers of downward influence, and any mismatch passed forwards as 
an error signal. There are several worked examples of this in the literature, and 
I discuss some of them in more detail elsewhere28. An early paper by Rajesh 
Rao and Dana Ballard provides the classic proof-of-concept, in which 
prediction-based learning targets image patches drawn from natural scenes29. In 
this work a multi-layer artificial neural network, with no pre-set task apart from 
that of using the downwards flow to match inputs with successful predictions, 
developed a nested structure of units with simple-cell-like receptive fields, while 
capturing a variety of important, empirically observed receptive field effects30. 

                                                                                                                                                              
127. 
 
26 Geoffrey E. Hinton, “Learning Multiple Layers of Representation”, Trends in Cognitive 
Sciences 11, (2007): 428-434. The quoted passage is from p.428 
 
27 See note 1 for some of the classic treatments. In addition, and with a broader and perhaps 
more philosophical slant, Karl Friston & Klaas Stephan “Free energy and the brain” Synthese 
159(3), (2007): 417–458. See also Janneke F.M. Jehee and Dana H. Ballard “Predictive 
Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus”, PLoS 
Computational Biology  5(5), (2009): e1000373.  For a review, see Yanping Huang & Rajesh 
P.N. Rao, “Predictive coding”, Wiley Interdisciplinary Reviews: Cognitive Science 2, (2011). 
 
28 Andy Clark “ Whatever Next: Predictive Brains, Situated Agents, and the Future of 
Cognitive Science” Behavioral and Brain Sciences, In Press 
 
29 Rajesh P.N. Rao and Dana Ballard, “Predictive coding in the visual cortex: A functional 
interpretation of some extra-classical receptive-field effects”, Nature Neuroscience 2(1), (1999): 
p79. 
 
30 Especially, so called ‘non-classical receptive field’ effects – see also Rajesh P.N. Rao and 
Terrence Sejnowksi “Predictive Coding, Cortical Feedback, and Spike-Timing Dependent 
Cortical Plasticity” in R. Rao, B. Olshausen, and M. Lewicki (Eds.), Probabilistic Models of the 
Brain (MIT Press: Cambridge, MA, 2002). 
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The system learnt to use units in one layer to track simple features such as 
oriented bars and edges, while units in the next layer tracked more complex 
patterns involving the spatial combination of such features (repeating bars, or 
stripes, for example).  
 
These were early, limited, and relatively low-level results, but the learning 
model itself has proven rich and widely applicable31. It assumes only that the 
environment generates sensory signals by means of nested interacting causes 
and that the task of the perceptual system is to invert this structure by learning 
and applying a hierarchical generative model so as to predict the unfolding 
sensory stream. Learning routines of this kind have recently been successfully 
applied in many domains, including speech perception, reading, and 
recognizing the actions of oneself and of other agents32. This is not surprising, 
since the underlying rationale is also quite general. If you want to predict the 
way some set of sensory signals will change and evolve over time, a good thing 
to do is to learn how those sensory signals are determined by interacting 
external causes. For the flow of sensation is predictable just to the extent that 
there is spatial and temporal pattern in that flow. But such pattern is a function 
of the properties and features of external objects, and of their interactions with 
each other and with the agent33. Thus the pattern of sensory stimulation 

                                                      
31 Recent applications include Jakob Hohwy, Andreas Roepstorff, and Karl Friston’s  model 
of binocular rivalry: “Predictive coding explains binocular rivalry: an epistemological 
review”, Cognition 108 (3), (2008): 687-701, and Tobias Egner, James Michael Monti, and 
Christopher Summerfield’s compelling experimental exploration of predictive coding as a 
model of ventral stream responses to faces and to non-face stimuli: Tobias Egner, James M. 
Monti, & Christopher Summerfield, “Expectation and surprise determine neural population 
responses in the ventral visual stream”, Journal of Neuroscience 30(49), (2010): 16601-16608. 
Related, though in some important ways computationally distinct, demonstrations include 
the benchmark work in machine learning due to Geoffrey Hinton and colleagues – see G. E. 
Hinton, “Learning to represent visual input”, Philosophical Transactions of the Royal Society B: Vol 
365, (2010): 177-184. 
 
32 For these examples see (respectively) David Poeppel & Philip Monahan, “Feedforward 
and feedback in speech perception: Revisiting analysis by synthesis”, Language and Cognitive 
Processes. 26(7): (2011): 935-95; Cathy Price and Joe Devlin, “The Interactive Account of 
ventral occipitotemporal contributions to reading”, Trends in Cognitive Sciences 15: 6, (2011): 
246-253;   Karl Friston, Jérémie Mattout & James M. Kilner on “Action understanding and 
active inference”, Biological  Cybernetics 104, (2011): 137–160. 
 
33 For simplicity, I shall not here pursue the important contribution made by the active 
embodied agent. But this contribution may be treated in just the same way. A creature’s body 
and self-generated motions are additional hidden causes of sensory variation, and their 
nature and properties may be unearthed using the same learning routines. See Karl J. Friston, 
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reaching the eye from, say, an observed football game is a function of the 
lighting conditions, the players, the observer, and their respective motions. It is 
also a function of a variety of more abstract interacting features and forces, 
including the patterns of offense and defense characteristic of each team, the 
current state of play (there are strategic alterations when one team is far behind, 
for example) and so on. The beauty of the various waves of work in 
computational neuroscience and machine learning just described is that they 
begin to show how to learn about such complex stacks of interacting causes 
without requiring extensive prior knowledge. This should fundamentally 
reconfigure our thinking about both the debate between nativism and 
empiricism, and about the nature and possibility of a view of perception as 
‘carving nature at the joints’, as we shall now see. 
 
 
3. Layers Upon Layers: Learning from the Top Down 
 
The prediction task (which we may gloss as “guess the sensory input”) allows a 
system to learn without the provision of pre-classified training data. This 
strategy is most potent, however, when it is applied in multi-layer, hierarchical 
settings. Recent advances in machine learning, as described above, provide an 
existence proof of the possibility of successful learning in such multi-layer 
settings34. In addition, work in computational and cognitive neuroscience 
makes plausible proposals concerning the neural implementation of multi-layer, 
prediction-driven learning35. Taken together, these results have the potential 
fundamentally to alter the landscape of debates concerning innate knowledge 
and the possibility of strong, rational, and world-revealing forms of learning. 
 
The central plank of this reconfiguration is the capacity of these forms of 
learning to underwrite the development of so-called Hierarchical Bayesian 
                                                                                                                                                              
Jean Daunizeau, James Kilner and Stefan J. Kiebel, “Action and behavior: a free-energy 
formulation”, Biol Cybern. 102(3), (2010): 227-60. 
 
34 Important computational differences separate the various bodies of work appealed to in 
section 2. These differences mostly concern the precise ways in which top-down 
expectations and bottom-up sensory signals are combined, both in learning and during 
online response. Although significant, these differences may safely be ignored for present 
purposes.  
 
35 See the review by Huang and Rao (op cit), and the important body of work by Karl 
Friston and collaborators, usefully summarized in Friston’s “The free-energy principle: a 
rough guide to the brain?”,  Trends in Cognitive Sciences 13, (2009): 293–301. 
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Models (HBMs)36.  An Hierarchical Bayesian Model is one in which multiple 
layers of processing are interanimated in an especially potent way, with each 
layer attempting to account for the patterns of activation (encoding some 
probability distribution of variables) at the level below. This, of course, is 
precisely the architecture mandated, at the so-called ‘process’ level’37, by 
hierarchical predictive coding. When such a system is up and running, mini-
hypotheses at all these multiple levels settle into the mutually consistent set that 
best accounts for the incoming sensory signal, taking into account what the 
system has learnt and the present sensory evidence (including the system’s best 
estimation of the reliability of that evidence38). During prediction-driven 
learning, this implements a powerful multi-layer form of Bayesian inference in 
which each layer is trying to build knowledge structures that will enable it to 
generate the patterns of activity occurring at the level below. In Bayesian terms, 
each layer is learning ‘priors’39 on the level below. This whole multi-layer 
process is driven by the incoming sensory signals, and implements the strategy 

                                                      
36 See Joshua B. Tenenbaum, Charles Kemp, Tom L. Griffiths, and Noah D. Goodman 
“How to Grow a Mind: Statistics, Structure, and Abstraction” Science 331 (6022), (2011): 
1279-1285, and Charles Kemp, Amy Perfors, and Joshua B. Tenenbaum “Learning 
overhypotheses with hierarchical Bayesian models” Developmental Science 10(3), (2007): 307-
321. 

37 The process level here corresponds to what David Marr, in Vision (Freeman: San 
Francisco, 1982) described as the level of the algorithm. 
 
38 Such assessments of reliability, sometimes referred to as the computed ‘precision’ of the 
sensory signal, are plausible processing correlates for at least some (and perhaps all) varieties 
of attention – for discussion, see Harriet Feldman and Karl Friston “Attention, Uncertainty, 
and Free Energy” Frontiers in Human Neuroscience 4:215:2010:p.1-23, and Jakob Hohwy, 
“Attention and conscious perception in the hypothesis testing brain”  Frontiers in Consciousness 
Research, (in press). 
 
39 Priors are just prior probabilities, and they can take many forms. In the works cited, they 
mostly take the form of ‘probability density functions’ or PDFs. Such a function assigns a 
distribution of probabilities across an uncountably large population, relative to which the 
observed data are treated as a random sample. In systems that learn hierarchical generative 
models to explain sensory inputs, probability density functions encode each level’s 
knowledge about the level below. Considered in the most general terms, the role of such 
PDFs is to enable the system to compute the posterior density, where this names the 
likelihood of some candidate cause, given the stored knowledge and the current input. For 
an accessible introduction, written with philosophers in mind, see Michael Rescorla, 
“Bayesian Perceptual Psychology”, to appear in M. Matthen (Ed), The Oxford Handbook of the 
Philosophy of Perception (Oxford University Press, NY, (In Press). 
 

http://web.mit.edu/cocosci/Papers/devsci07_kempetal.pdf
http://web.mit.edu/cocosci/Papers/devsci07_kempetal.pdf
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known as ‘empirical Bayes’40 in which a system acquires its own priors from the 
data, as learning proceeds. It does this by using its best current model - at one 
level - as the source of the priors for the level below, engaging in a bootstrap-y 
process of ‘iterative estimation’41 that allows priors and models to co-evolve 
across the multiple linked layers of processing.  
 
Such multi-layer learning has an additional benefit, in that it lends itself very 
naturally to the combination of data-driven statistical learning with the kinds of 
systematically productive knowledge representation long insisted upon by the 
opponents of early work in connectionism and artificial neural networks42. To 
see this in microcosm, we need only reflect that SLICE* (as described in 
section 1 above) effectively embodies a productive and systematic body of 
knowledge concerning geological causes. For it can produce the full set of 
geological outcomes allowed by the possible combinations and recombinations 
of hidden causes represented in its generative model. By combining the use of 
multi-layer generative models with powerful forms of statistical learning 
(indeed, using that learning to induce those very models) we secure many of the 
benefits of both early connectionist (‘associationist’) and more classical (‘rule-
based’) approaches. Moreover, there is no need to fix on any single form of 
knowledge representation.  Instead, each layer is free to use whatever form of 
representation best enables it to predict and (thus) account for the activity at 
                                                      
40 See Herbert E. Robbins, “An Empirical Bayes Approach to Statistics”, Proceedings of the 
Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the 
Theory of Statistics, (1956): p. 157–163. 
 
41 See Arthur P. Dempster, Nan M.  Laird, and Donald B. Rubin “Maximum likelihood from 
incomplete data via the EM algorithm”, Journal of the Royal Statistical Society series B, 39: (1977): 
1-38) and Radford M. Neal and Geoffrey Hinton,” A view of the EM algorithm that justifies 
incremental, sparse, and other variants”, in M.I. Jordan, (Ed.), Learning in Graphical Models 9, 
(Dordrecht: Kluwer, 1998): p 355-368. 
 
42 The classic critique is that of Jerry A. Fodor and Zenon Pylyshyn (“Connectionism and 
cognitive architecture: A critical analysis”, Cognition  28, (1988): 3-71), but related points were 
made by more ecumenical theorists, such as Paul Smolensky,  (“On the proper treatment of 
connectionism”, The Behavioral and Brain Sciences 11, (1988): 1–23),  whose later work on 
optimality theory and harmonic grammar (Paul Smolensky & Géraldine Legendre, “The 
Harmonic Mind: From Neural Computation To Optimality-Theoretic Grammar”, Cognitive 
Architecture Vol. 1, Linguistic and Philosophical Implications, Cognitive Architecture  Vol. 2 
(MIT Press, 2006)) likewise accommodates both generative structure and statistical learning.  
For further discussion of this important issue, see Morten H. Christiansen & Nick Chater, 
“Constituency and recursion in language”, in M. A. Arbib (Ed.) The handbook of brain theory 
and neural networks, (Cambridge, MA: MIT Press, 2003): pp267-271.  
 

http://mitpress.mit.edu/catalog/item/default.asp?sid=1CE49EE9-0D29-49CB-AC91-9E4F8063D1D8&ttype=2&tid=10705
http://mitpress.mit.edu/catalog/item/default.asp?sid=1CE49EE9-0D29-49CB-AC91-9E4F8063D1D8&ttype=2&tid=10705
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the level below. In many cases, what seems to emerge are structured, 
productive, bodies of knowledge that are nonetheless acquired on the basis of 
multi-stage learning driven by the statistical regularities visible in the raw 
training data43. Early learning here induces overarching expectations (for 
example, very broad expectations concerning what kinds of things matter most 
for successful categorization within a given domain). Such broad expectations 
then constrain later learning, reducing the hypothesis space and enabling 
effective learning of specific cases. 
 
Using such routines HBMs have recently been shown capable of learning the 
deep organizing principles for many domains, on the basis of essentially raw 
data. Such systems have learnt, for example, about the so-called ‘shape bias’ 
according to which items that fall into the same object-category (like cranes, 
balls, and toasters) tend to have the same shape: a bias that does not apply to 
substance categories such as gold, chocolate, or jelly44. They have also learnt 
about the kind of grammar (context-free or regular) that will best account for 
the patterns in a corpus of child-directed speech45, about the correct parsing 
into words of an unsegmented speech stream46 and generally about the shape 
of causal relations in many different domains (e.g. diseases cause symptoms, 
and not vice versa 47. Recent work has also shown how brand new categories, 
defined by new causal schemas, can be spawned when assimilation to an 
existing category would require an overly complex - hence effectively ‘ad hoc’ - 

                                                      
43 For an excellent discussion of this attractive feature of hierarchical Bayesian approaches, 
see  Joshua  B. Tenenbaum, C Kemp, T.L. Griffiths, and N.D. Goodman, “How to Grow a 
Mind: Statistics, Structure, and Abstraction”, Science 331 (6022), (2011): 1279-1285. Caution is 
still required, however, since the mere fact that multiple forms of knowledge representation 
can co-exist within such models does not show us, in any detail, how such various forms may 
effectively be combined in unified problem-solving episodes.  
44 Charles Kemp, Amy Perfors, and Joshua B. Tenenbaum, “Learning overhypotheses with 
hierarchical Bayesian models” Developmental Science 10(3), (2007): 307-321. 
 
45 Amy Perfors, Josh Tenenbaum,, & Terry Regier, “ Poverty of the stimulus? A rational 
approach”, In Proceedings of the 28th Annual Conference of the Cognitive Science Society, (Mahwah, NJ: 
Lawrence Erlbaum Associates, 2006). 
 
46 Sharon Goldwater., Thomas L. Griffiths & Mark Johnson, “A Bayesian framework for 
word segmentation: Exploring the effects of context”,  Cognition 112, (2009): 21-54 
 
47 Vivek K. Mansinghka, C.harles Kemp,  Joshua B.  Tenenbaum  & Thomas  L. Griffiths, 
“Structured priors for structure learning” In Proceedings of the 22nd Conference on Uncertainty in 
Artificial Intelligence (UAI,. Arlington, VA: AUAI Press , 2006). 
 

http://web.mit.edu/cocosci/Papers/devsci07_kempetal.pdf
http://web.mit.edu/cocosci/Papers/devsci07_kempetal.pdf
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mapping48. More recently still, such approaches have been shown to be capable 
of learning highly abstract domain-general principles (such as a general 
understanding of causality) rapidly by pooling evidence obtained across a wide 
range of cases49. Taken together, this work demonstrates the unexpected power 
of learning using HBMs50. Such approaches allow systems to infer the high-
level structure specific to a domain, and even the high-level structures 
governing multiple domains, by exposing a multi-level learning system to raw 
data. 
 
An important point to notice is that HBM’s here allow the learner to acquire 
the schematic relations characteristic of a domain before ‘filling in’ the details 
concerning individual exemplars. For example, as noted by Kemp, Perfors and 
Tenenbaum (op cit p.318)): 
 

 a hierarchical Bayesian model of grammar induction may be able to 
explain how a child becomes confident about some property of a 
grammar even though most of the individual sentences that support this 
conclusion are poorly understood.  

 
Similarly, the shape bias for objects may be learnt before learning the names of 
any of the individual objects. The bias emerges early as the best high-level 
schema, and once in place it enables rapid learning about specific exemplars 
falling into that group. This is possible in cases where “a child has access to a 
large number of…noisy observations [such that] any individual observation 
may be difficult to interpret but taken together they may provide strong 
support for a general conclusion” (op cit p.318). Thus, the authors continue, 
one might have sufficient evidence to suggest that visual objects tend to be 

                                                      
48 Thomas L. Griffiths, Adam N. Sanborn, Kevin R., Canini, & Daniel J. Navarro, 
“Categorization as nonparametric Bayesian density estimation”, In Mike Oaksford and Nick 
Chater (Eds.), The probabilistic mind: Prospects for rational models of cognition, (Oxford: Oxford 
University Press, 2008). 
 
49 Noah Goodman, Tomer D. Ullman and  Joshua B. Tenenbaum, “Learning a theory of 
causality”,  Psychological Review,  (forthcoming). 
. 
50 For a thorough review, see Joshua B Tenenbaum,  Charles Kemp, Thomas L. Griffiths, 
and Noah D. Goodman, “How to Grow a Mind: Statistics, Structure, and Abstraction” 
Science 331(6022), (2011): 1279-1285. 
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“cohesive, bounded, and rigid”51 before forming any ideas about individual 
concrete objects such as balls, discs, stuffed toys, etc. 
 
This is, of course, precisely the kind of ‘top down’ early-acting learning pattern 
that is easily mistaken as evidence of the influence of innate knowledge about 
the world. The mistake is natural since the high-level knowledge is tailored to 
the domain and allows subsequent learning to proceed much more easily and 
fluently than might otherwise be expected. But instead of thus relying on rich 
bodies of innate knowledge, HBM-style learners induce such abstract 
structuring knowledge from the data. The central trick, as we just saw, is to use 
the data itself in a kind of multi-stage manner. First the data is used to learn 
priors that encode expectations concerning the large-scale shape of the domain 
(what Tenenbaum et al. (op cit) call the ‘form of structure’ within the domain). 
Suitably scaffolded by this structure of large-scale (relatively abstract) 
expectations, learning about more detailed regularities becomes possible. In this 
way, HBMs actively unearth the abstract structural expectations that enable 
them to use raw data to learn finer and finer grained models (supporting finer 
grained sets of expectations).  
 
Such systems are able to induce their own so-called ‘hyperpriors’ from the data. 
Hyperpriors (here used interchangeably with the ‘overhypotheses’ of Kemp et 
al (op cit)) are essentially ‘priors upon priors’ embodying systemic expectations 
concerning very abstract (at times almost Kantian) features of the world. For 
example, one highly abstract hyperprior might demand that each set of multi-
modal sensory inputs has a single best explanation. This would enforce a single 
peak for the probabilistic distributions consequent upon sensory stimulation, so 
that we always saw the world as being in one determinate state or another, 
rather than (say) as a superposition of equiprobable states. Such a hugely 
abstract hyperprior might be a good candidate for innate specification. But it 
might equally well be left to early learning, since the need to use sensory input 
to drive actions, and the physical impossibility of acting in two very different 
ways at once, could conceivably (as Karl Friston (personal communication) has 
suggested to me) drive an HBM to extract even this as a general principle 
governing inference. 
 
HBMs (and the various process models, including hierarchical predictive 
coding, that might implement them) thus absolve the Bayesian theorist of the 
apparent sin of needing to set the right priors in advance of successful learning. 
                                                      
51 Elizabethe S. Spelke, “Principles of object perception”, Cognitive Science 14, (1990):  29–56. 
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Instead, in the manner of empirical Bayes, a multi-layer system can learn its 
own priors from the data. This also delivers maximal flexibility. For although it 
is now easy to build abstract domain-structure reflecting knowledge (in the 
form of various hyperpriors) into the system, it is also possible for the system 
to acquire such knowledge, and to acquire it in advance of the more detailed 
learning that it both streamlines and makes possible. Innate knowledge thus 
conceived remains ‘developmentally open’ in that it can be smoothed and 
refined, or even completely undone, by data-driven learning using the same 
multi-layer process52. 
 
Of course, as King Lear famously commented, “nothing will come of nothing”, 
and, as hinted above, even the most slim-line learning system must start with 
some set of biases53. Nonetheless, these multi-layer Bayesian systems have 
proven capable of acquiring abstract, domain-specific principles without 
building in the kinds of knowledge (e.g. about the importance of shape for 
learning about material objects) that subsequently account for the ease and 
efficacy of learning in different domains. Such systems acquire, from the raw 
data, knowledge of the kinds of abstract organizing principle that then allow 
them to make systematic sense of that very data. This is a very neat trick 
indeed, and a suitable antidote to fears of losing the world behind a ‘veil of 
perception’.  
 
 
4. Puzzles for HBMs and the Predictive Mind 
 
The hierachical Bayesian story, as it might be implemented using the distinctive 
resources of the active self-prediction approach to perception and learning, 
offers a novel account of our perceptual contact with the world. It makes 
perceiving dependent upon use of structured internal models capable of 
generating the sensory signal ‘from the top down’, and it shows (arguably for 
the first time) how to combine statistical learning with the kinds of 

                                                      
52 For some nice discussion, see Brian J. Scholl, “Innateness and (Bayesian) Visual 
Perception: Reconciling Nativism and Development”, In Peter Carruthers, Stephen 
Laurence & Stephen Stich (Eds.), The Innate Mind: Structure and Contents ( New York: Oxford 
University Press, New York, 2005). 
 
53 For example, a system might start with a set of so-called ‘perceptual input anaylzers’ 
(Susan Carey, The origin of concepts (Oxford University Press, 2009)) whose effect is to make a 
few input features more salient for learning. For discussion of the combined effects of HBM 
learning and such simple biases, see Goodman, Ullman, and Tenenbaum (op cit). 
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systematically productive knowledge representation long insisted upon by the 
opponents of earlier work in connectionism and artificial neural networks.  
 
Despite these attractions, both the appeal to HBMs and the active self-
prediction account of learning and perceptual inference leave many questions 
unanswered, and they each raise further puzzles in their own right. Some of 
these are addressed in other treatments54. I shall restrict my comments to two 
key issues arising directly from the overarching picture of perception as the 
top-down deployment of a multi-layer generative model. The first issue 
concerns what might be termed ‘agentive perceptual content’. The question 
here is how to bridge the apparent gap between the sub-personal accounts on 
offer and the kinds of perceptual content that seem to characterize the mental 
life of a human agent. The second issue comes into focus once we have made 
some prima facie progress with the first, and concerns the fundamental nature 
of our implied perceptual contact with the world.  
 
Concerning agentive perceptual content, consider the following case. Geoffrey 
Hinton and Vinod Nair describe a benchmark machine learning system for 
handwritten digit recognition55. The system’s task is to classify handwritten 
digits (1s, 2s, 3s etc). That is to say, the system aims to take highly variable 
handwritten digits as inputs, and output the correct numerical classification. 
This is a difficult task. Considered at the pixel level, a badly written 2 will often 
have more in common (pixel-by-pixel) with a 3 than with the other 2’s. Yet we 

                                                      
54 For example, the predictive processing model seems to imply the co-emergence of the 
faculties of perception, understanding, and imagination. Questions therefore arise 
concerning the correct way to reconstruct the phenomenal and epistemological differences 
between those faculties. Further questions concern the relation between these approaches 
and work that stresses instead the fragmentary, ‘quick-and-dirty’ nature of much evolved 
problem-solving (see some discussion, see my “ Whatever Next: Predictive Brains, Situated 
Agents, and the Future of Cognitive Science” Behavioral and Brain Sciences, In Press). Finally, 
there are a variety of questions that arise from recent attempts to extend the predictive 
coding story so as to encompass action and the observation of action – see e.g. Karl Friston, 
Jérémie Mattout & James M. Kilner on “Action understanding and active inference”, 
Biological  Cybernetics 104, (2011): 137–160]. 
 
55 Geoffrey Hinton and Vinod Nair, “Inferring motor programs from images of handwritten 
digits”Advances in Neural Information Processing Systems 18, (MIT Press: Cambridge, MA, 2005). 
See also Geoffrey Hinton “To recognize shapes, first learn to generate images”, In P. Cisek, 
T. Drew and J. Kalaska (Eds.), Computational Neuroscience: Theoretical Insights into Brain Function  
( Elsevier, 2007). 
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humans manage the task surprisingly well. The reason we do so may be because 
our visual systems deploy a powerful generative model based not on raw pixel 
patterns but on the motor programs that would generate those patterns.  
Hinton and Nair constructed an artificial neural network that first learns to 
generate different handwritten digits using a (simplified) simulated motor 
routine, and that then uses that knowledge (knowledge about the way different 
digits are constructed by the simplified motor routine) for the classification 
task. The system thus classifies the handwritten digits (including many that 
were never shown in training) by in effect asking itself which of a set of known 
‘canonical’ motor routines (one for 1s, one for 2s, one for 3s etc) would have 
been most likely, under mild deformations, to yield a target scribble. In a large 
proportion of the difficult cases, this solves the problem, showing that the 
surface (pixel-level) similarity between a badly written 2 and a 3 is merely skin-
deep. From the pixel-level input, the motor routine that would have been 
needed to generate the deviant 2 can be inferred. When that motor routine is a 
degraded version of the one associated with 2-production, and not the one 
associated with 3-production, correct classification is achieved. It seems 
plausible that humans perform this task using just this kind of knowledge. Such 
a procedure would explain why we are so often able to succeed despite large 
surface differences in fonts, handwriting, size of strokes, etc. 
 
It might be suspected (as it was by Mark Sprevak (personal communication)) 
that the motor routines required to produce these different styles of 2’s will 
themselves be so different as to raise similar puzzles concerning how they are 
grouped together. Fortunately, this is not the case. From the training data the 
net infers a single canonical motor program as the ‘hidden variable’ underlying 
all the handwritten 2’s. It is then able to self-generate digit forms and can 
recognize novel variations (new ways of writing recognizable 2’s) by exploring 
the effects of small variations to the outputs of that program. Digits are then 
classified according to which canonical motor program yields some observed 
deviant form with least alteration.  
 
But a puzzle now arises. For the internal states that explain the successful 
classification behavior here concern motor programs for writing digits, yet the 
content of the percept itself, at least as I have described it, is not motoric at all. 
What perception here delivers to the agent is a world parsed into differently 
scribbled versions of the various digits. Notice that we should not see this as 
(‘merely’) a question about conscious content versus the contents of sub-
personal enabling states. The worry is deeper and more general than that. How, 
given the apparatus on offer, are we to render intelligible the fact that such an 
agent represents a world populated not by retinal stimulations or by motor 
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programs but by specific distal entities (in this case, various handwritten digits)? 
This problem, as Tyler Burge rightly insists, would remain even were the 
creature in question unable to enjoy conscious perceptual experience at all56. 
What is required is a compelling reason to describe this sensory routine as 
representing handwritten digits (rather than something more proximal). 
 
Recall that the net, in classifying the handwritten digits, deployed knowledge of 
motoric hidden causes (acting as the ‘latent variables’ in a generative model). 
The very fact that the system needed to unearth such latent variables to perform 
the visual classification task provides the solution to the puzzle. For the need 
for latent variables arises only when proximal stimulations are not directly 
groupable in the right way. Working directly with the pixel-level stimulations an 
agent would, we saw, be forced to misclassify many perfectly recognizable 2’s 
as 3's, etc.  It is only in virtue of the processing ‘detour’ that infers motoric 
hidden causes that the net can parse its visual inputs into the correct digit 
classes, tracking handwritten one-ness, two-ness, and three-ness through the 
obscuring fog of handwriting variation.  A good explanation of what the system 
is doing thus cannot depict the system as responding merely to the proximal 
(pixel-level) visual stimulations that impinge on its surfaces.  
 
The moral here is a perfectly general one. Whenever systems use generative 
models and latent variables to enable them to parse the environment in the 
ways demanded by their needs to act and classify (or in this case, in the ways 
artificially imposed by the theorist who set up the task) we must explain their 
responses in part by reference to the distal entities or attributes that are being 
tracked, rather than by reference to more proximal sensory stimulations (such 
as the pixel-level patternings) alone. The cases we have described thus satisfy 
the key requirement (Burge (op cit)  p.422) that perception, properly so-called, 
occurs only when there is “explanatory need to attribute representation of distal 
attributes, as distinct from registration of proximal stimulation”. Finally, the 
conscious cognizer’s personal-level perspective on her own behavior should 
surely follow suit. For the agent, what matters are the action-salient states of 
the distal environment (including her own body and other agents). In this case, 
the action-salient environment is one populated by various visually presented 
handwritten digits. The agent knows that environment in ways served and 
made possible (in this case) by an unexpectedly motoric generative model.  But 
it is an environment parsed according to her agent-level needs and purposes. 
 
 
                                                      
56 Tyler Burge, Origins of Objectivity  (Oxford University Press, NY., 2010). 
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5. ‘Not-Indirect’ Perception. 
 
How should we categorize the model of perception just sketched? The model, 
as we saw, invokes a top-down cascade of processing to predict (hence ‘explain 
away’) the current sensory input. Such a conception, it has sometimes been 
suggested, depicts perception as a process of ‘controlled hallucination’57 in 
which the brain tries to guess what is out there, using stored knowledge 
recruited and then nuanced by the prediction error signals reporting residual 
mismatches between best-guesses and sensory input. Thus described, the 
process may seem to invite easy classification among so-called ‘indirect realist’ 
views of perception such as that of Frank Jackson58.  To be sure, the accounts 
on offer unequivocally depict perception as an inferential process in the 
manner of Helmholz59 and it is presumably with that dimension in mind that 
Jakob Hohwy (op cit) recently comments that: 
 

One important and, probably, unfashionable thing that this theory tells 
us about the mind is that perception is indirect […] What we perceive is 
the brain’s best hypothesis, as embodied in a high-level generative 
model, about the causes in the outer world”.   

 
As it stands, however, this cannot be quite the right way to capture (or at least 
to express) the indirectness at issue here. There is no sense, even assuming the 
prediction-driven account is accepted, in which what we perceive is the brain’s 
best hypothesis. Instead, what we perceive is the world, as (hopefully) revealed 
by the best hypothesis. Nor is there any sense in which the objects of 
perception are here being treated as anything like Moorian ‘sense data’ 60, where 
these are conceived as proxies intervening between the perceiver and the world. 
                                                      
57 The phrase “perception as controlled hallucination” is variously attributed to the 
neuroscientist Ramesh Jain and to the machine learning theorist Max B. Clowes (see his “On 
seeing things”, Artificial Intelligence 2, (1971):  79-116). I think I may have first heard it from 
Rodolfo Llinas.  
 
58 Frank Jackson, Perception: A Representative Theory. (Cambridge: Cambridge University Press, 
1977). 
 
59 Helmholtz (op cit). See also Irving Rock, Indirect Perception, (Cambridge, MA:  MIT Press, 
1997). 
 
60 George E. Moore, “The Status of Sense-data,” Proceedings of the Aristotelian Society, (1913) 
reprinted in Moore, G. E., Philosophical Studies (London: Routledge & Kegan Paul, 
1913/1922). 
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The internal representations at issue function within us, and are not encountered 
by us. Instead, they make it possible for us to encounter the world. Moreover, 
they enable us to do so under the ecologically common conditions of noise, 
uncertainty, and ambiguity. Brains that work like this are statistical wizards able 
to lock on to many of the causal chains (some of them, as we saw, highly 
abstract in nature) that actually give rise to the sensory data. The result, as one 
leading theorist puts it, is that: 
 

The hierarchical structure of the real world literally comes to be 
‘reflected’ by the hierarchical architectures trying to minimize prediction 
error, not just at the level of sensory input but at all levels of the 
hierarchy61. 

 
The ‘real world’ here is, of course, not (at least in the first instance) the world 
of atoms or of quantum physics but the more agent-salient world of tables, 
chairs, football games, dogs, cats and (as Jane Austin famously quipped) 
‘medium-sized dry goods’. This is a world (as we saw in section 4) parsed for 
human action and choice, and revealed by the top-down deployment of a 
hierarchical generative model. Seen in this light, the account on offer shares as 
much (or so it seems to me) with direct as with indirect views of perception. 
For it delivers a genuine form – perhaps the only genuine form that is naturally 
possible - of ‘openness to the world’62. Against this, however, it must be 
conceded that extensive reliance on the top-down cascade makes veridical 
perception sub-personally inferential and highly dependent upon prior 
knowledge. I shall not attempt further to adjudicate this delicate issue here63. If 
a label is required, it has been suggested (Michael Rescorla, personal 

                                                      
61 Karl Friston, "Beyond Phrenology: What Can Neuroimaging Tell Us About Distributed 
Circuitry?" Annual Review of Neuroscience 25(1), (2002): 221-250. The quoted passage is from p. 
238. 

62 Considered as delineating a sub-personal mechanism that thus delivers ‘openness to the 
world’, the present view might even (strange as this may sound) be cast as a 
representationalist version of ‘direct perception’ Such a representationalist version of direct 
perception would be fundamentally different from those championed by Gibson and the 
ecological psychologists (see James J. Gibson, The Ecological Approach To Visual Perception  
(Boston, MA: Houghton-Mifflin, 1979)) precisely insofar as those accounts seem to reject 
the explanatory need to appeal to complex internal representational cascades. 
 
63 For some resources, see Tim Crane, “What is the Problem of Perception?” Synthesis 
Philosophica 40:2, (2005): p 237-264. 
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communication) that the implied metaphysical perspective may most safely be 
dubbed ‘not-indirect perception’. 
 
It is revealing, finally, to notice that content fixation in these accounts is 
arguably externalist in nature. Perceptual states function to estimate properties 
and features of the distal environment (including, for these purposes, states of 
our own bodies and the mental states of other agents). Such states are 
individuated by reference to the world actually sampled. Thus Michael Rescorla 
notes that Bayesian approaches to perceptual psychology do not “type-identify 
twins that differ in their representational capacities” 64. To see this, consider the 
case, described by Geoffrey Hinton65, of a trained-up neural network whose 
high-level internal states are ‘clamped’ i.e. forced by the experimenter into 
some specific configuration. Activity then flows downwards in a generative 
cascade, resulting in a state of experimenter-induced hallucination. But what is 
the content of that state? What is represented, Hinton argues, is best captured 
by asking how the world would have to be were such a cascade to constitute veridical 
perception. A perceptual state, as here depicted, is thus nothing but “the state of a 
hypothetical world in which a high-level internal representation would 
constitute veridical perception” (op cit, p.1765). Importantly, the only way for 
the theorist to populate such a world is by invoking the very world from which 
the training samples were originally drawn. It is this world, and not the world 
of any neurologically identical twin, that thus provides the resources that enable 
us to raise and then answer the question Hinton poses. 
 
These considerations suggest a twist upon the notion of perception as 
‘controlled hallucination’. For it would be much better, I suggest, to describe 
hallucination as a kind of uncontrolled (hence mock) perception. In 
hallucination, all the machinery of perception is brought to bear, but either 
without the guidance of sensory prediction error at all, or with malfunctioning 
prediction error circuitry66. In such cases the agent really does enter a state of 

                                                      
64 Michael Rescorla, “Bayesian Perceptual Psychology”, To appear in M. Matthen (Ed.) The 
Oxford Handbook of the Philosophy of Perception, (Oxford University Press, NY)   
 
65 G. E Hinton, “What kind of a graphical model is the brain?”,  IJCAI'05 Proceedings of the 
19th international joint conference on Artificial intelligence,  (Morgan Kaufmann Publishers Inc.: San 
Francisco, CA., 2005): p1765 
 
66 For a detailed account of how this might occur, see Paul Fletcher and Chris Frith, 
“Perceiving is believing: a Bayesian approach to explaining the positive symptoms of 
schizophrenia”, Nature Reviews: Neuroscience 10, (2009): 48-58. 
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what David Smith calls “mock sensory awareness” 67. Smith claims, however, 
that, this is an elusive and inadequate notion, since an agent may attend to 
various aspects of a hallucinated scene, a feat that (he claims) strongly suggests 
some kind of virtual (he calls it an ‘intentional’) object of awareness. But this, 
we can now see, is not strictly required68. Instead of positing a mock (virtual) 
object for the mock sensing, we can cash out the content (and any attention-
modulated shifts of content) using Hinton’s strategy: namely, by asking how 
the world (this very world) would have to be for that flow of systemic states to 
constitute veridical perception. The mere possibility of attention-based shifts 
does nothing to undermine this. That such mock sensory states might evolve in 
ways consistent with (but not here caused by) shifts of attention to some real-
world object is unsurprising, since the malfunctioning internal states are indeed 
the states of generative models. Such models embody rich sets of expectations 
concerning how visual input should vary with (for example) movements of eyes 
and body, and even with covert shifts of attention. Given such resources, mock 
sensory awareness (non-veridical sensory awareness without a mock object) is 
no more surprising than mock tango-ing.  An experienced dancer knows and 
can reproduce the moves, even those apparently responsive to a partner, 
without requiring some surrogate source of push, pull, and resistance. An 
experienced perceiver, likewise, can enter into sequences of mental states that 
would be veridical perceptions were the world to contain such and such 
objects, and were those objects subject to such and such actions (including the 
act of shifting attention). 
 
6. Conclusions. 
 
I have presented an account of perception as generative-model-based 
prediction, and shown that such an account satisfies reasonable constraints 
upon perception (distinguishing it from mere sensor-based response). Systems 
that operate in this manner realize powerful forms of hierarchical Bayesian 
inference, and are able to learn their own priors from the data. Moreover, they 

                                                      
 
67 A. David Smith, The Problem of Perception (Cambridge, Mass.: Harvard University Press, 
2002) p.224 
 
68 For some critical discussion of this aspect of Smith’s view, see Susanna Siegel, “Direct 
Realism and Perceptual Consciousness” Philosophy and Phenomenological Research 73:2: 2006) p. 
379-409. 
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simultaneously learn at multiple levels of abstraction, enabling them to induce 
abstract domain-specific (and perhaps even domain-general) knowledge in 
advance of ‘filling in’ the details. Detailed learning then proceeds just as if it 
had been constrained by apt bodies of innate knowledge.  
 
Nothing in the account I have presented rules out the presence of rich bodies 
of innate knowledge. But it demonstrates that the potent, accelerated, domain-
specific learning profiles often associated with such knowledge may also be 
displayed by systems that begin from much more minimal bases. The precise 
balance between innate and learnt expectations remains a matter for empirical 
research. But the HBM accounts on offer share the singular virtue of 
accommodating many empiricist intuitions (for example, those concerning 
flexibility in the face of new environmental inputs) while leaving room for as 
much innate knowledge as well-controlled experimental studies may (or may 
not) eventually mandate. Such knowledge need not, and in all probability will 
not, take the form of encoded propositions or rules. Instead, it is likely to 
consist in a set of probabilistically-couched expectations governing the general 
shape of some of the basic hypothesis-spaces that we explore during early 
learning. Expectations, whether learnt or innate, concerning the shape of these 
emerging hypothesis spaces plausibly (as we saw in section 3 above) explain our 
abilities to learn rapidly from statistically limited samples. 
 
Prediction-based hierarchical Bayesian regimes learn to construct the sensory 
signal by combining probabilistic representations of hidden causes operating at 
many different spatial and temporal scales. Like SLICE*, they must match the 
incoming sensory signal by constructing that signal from combinations of 
hidden causes (latent variables). The so-called ‘transparency’ of perception 
emerges as a natural consequence of such a process when it is conditioned by 
an embodied agent’s lifestyle-specific capacities to act and to choose.  We seem 
to see dogs, cats, chasings, pursuits, captures, and (for that matter) handwritten 
digits, because these feature among the interacting, nested, structures of distal 
causes that matter for human choice and action. Prediction-driven learning is 
what allows us to lock on to such distal structures (using knowledge that may, 
as we saw, remain hidden from the agent). Raw sensor perturbations, on the 
other hand, cannot be perceived. Instead, they form the baseline that needs to be 
matched from the top down using these inherently world-revealing resources.  
 
How, assuming these accounts are on track, should we characterize the relation 
between perceiver and world? Perception was here revealed as an active 
process involving the (sub-personal) prediction of our own evolving neural 
states. Such a thoroughly inward-looking process of self-prediction may seem 
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unpromising as a model of how perception reaches out to the world. On the 
contrary, however, it is the pressure actively to account, across multiple time-
scales, for our changing inner states that itself brings into focus the structured 
and intelligible world that we then encounter as an arena for action and choice. 
Somewhat paradoxically, it may thus be processes of inward-looking prediction 
that enable us (both in learning and in online response) to be perceptually open 
to an external world. The perceiver-world relationship that results is perhaps 
most reasonably glossed as one of ‘not-indirect perception’. For these regimes 
provide a mechanistic account of how brains like ours allow agents like us to 
encounter our world. More importantly, they show how this can be possible 
despite the continual presence of ambiguity, uncertainty, and noise. This is 
perceptual openness for real agents, confronting real worlds.  
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