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Minimal Rationalism

ANDY CLARK

Enquiries into the possible nature and scope of innate knowledge never proceed
in an empirical vacuum. Instead, such conjectures are informed by a theory (per-
haps only tacitly endorsed) concerning probable representational form. Classical
approaches to the nativism debate often assume a quasi-linguistic form of knowl-
edge representation and delineate a space of options (concerning the nature and
extent of innate knowledge) accordingly. Recent connectionist theorizing posits
a different kind of representational form, and thus determines a different picture
of the space of possible nativisms. The present paper displays this space and
focuses on an especially interesting sub-region labelled “Minimal Rationalism”.
The philosophical significance of the minimal rationalist option is explored. Two
consequences which emerge are, first, that the apparently clear distinction
between innately specified knowledge and innately specified structure is shown
to be unproductive; second, that there may exist tracts of innate knowledge whose
content is not propositionally specifiable.

1. Nativism: why worry?

Sometimes trivial, usually fruitless, the Nativism/non-Nativism debate generally
ends not with a conclusion but with a whimper. All parties agree that something
important is present in us without being the product of genuine individual learn-
ing. All that then remains is to determine what. And that, as has been vigorously
argued in the past (Fodor 1980), is in the end an empirical question whose
detailed answer is not to be determined by armchair philosophical speculation.
Most of the published debate thus consists in arguing about whether some of our
innate endowment is highly domain-specific (Chomsky 1986) or instead relates
to basic, general-purpose problem solving (Putnam 1981). A second major strand
of the published debate relates specifically to concepts and revolves around the
question whether anything genuinely worth calling concept learning actually
takes place, or whether all our conceptual repertoire must be in some non-trivial
sense innate (Fodor 1980 and papers in Piatelli-Palmarini 1980).

The present treatment maintains a safe distance from these types of question
(a few asides notwithstanding). Instead, the focus is on the way in which the pos-
sibility of innate knowledge is conceived. I shall argue that the received concep-
tion of the space of possible options is in fact a product of the (often tacit)
acceptance of a certain model of the probable form of internal knowledge repre-
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sentation: a form whose clearest expression is found in the hypothesis of an
innate language-like representational system (a Language of Thought). Change
the conception of the form of internal representation and you radically alter (or
so I shall argue) the picture of the space of possible options.

This potential alteration has not gone unnoticed in the recent literature. Impor-
tant treatments include Ramsey and Stich (1991), Narayanan (1992) and Karmi-
loff-Smith (1992a). Several of the themes I develop in §§2-4, where [ discuss the
impact of connectionism on the nativism debate, in the broadest terms, are rooted
in these exploratory forays. The remainder of the paper, however, tries to push the
new debate a little further. Thus §5 introduces (with some simulation results) a
largely unnoticed (but see Karmiloff-Smith 1992a, 1992b) yet potentially highly
significant possibility which I term “Minimal Rationalism”. A minimally ration-
alist innate endowment involves the (domain-specific) pre-setting of tiny but vital
information-processing parameters which, in a delicate co-operation with pre-
dictable environmental inputs, result in the acquisition of specific items of knowl-
edge. To understand the nature of such minimal endowments we need to use a
new set of tools. Instead of conceptualizing any genuine innate knowledge as con-
sisting in familiar kinds of conceptual or propositional content, we need to move
towards a more “geometric” understanding. In particular, we need to exploit the
idea of an error surface determined by the setting of numerical parameters in a
high-dimensional space. The specification of innate knowledge, I shall argue,
will often consist (necessarily!) in the fixation of a favourable position on such
an error surface. Once we thus expand our notion of innate information beyond
the realms of what is in principle propositionally specifiable, it becomes increas-
ingly difficult (§6) to separate questions conceming the innate structure (e.g. the
local architecture (of layers, modules etc.)) of a computational subsystem from
questions concerning innate knowledge. Classical treatments of the nativism
debate could support such a separation since they allowed a sharp distinction
between computational profile (algorithm and data) and implementation (the
underlying physical device). Connectionist approaches erode that distinction and
hence blur the difference between structure, algorithm and information.

2. Nativism and representational form

It is no accident that much of the historical debate concerning the pros and cons
of nativism revolved around the notion of an innate idea. For talk of ideas, vague
though it was (and is) nonetheless reflected the best available theory of that in
which our mature knowledge might consist. And our conception of the potential
nature of any innate endowment was, by default, modelled on our conception of
the nature of the mature product.

In talking of innate ideas in the mind, we are not yet forced to consider ques-
tions concerning any possible physical vehicles for those ideas. In these more
rampantly physicalist times, however, questions concerning the possible contents
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of tracts of innate knowledge have been inspired not just by a vision of the con-
tents of the mature product but also by a vision of the form of their inner vehicles.
The clearest example of this line of influence is seen in the works of Jerry Fodor.

Fodor subscribes to what I shall call “Bipartite Nativism”. Such a nativism
ascribes two types of innate endowment to the human neonate. These are:

1. An innate (but peripheral) system of processing modules which are sig-
nificantly structured so as to promote the acquisition of specific skills
(e.g. grammar acquisition). (Fodor 1983)

2. An innate (and central) corpus of representational atoms (which in-
cludes atomic items corresponding to most lexical concepts and which
merely require triggering by exposure to appropriate environmental
stimuli). (see Fodor 1975, 1980, 1987)

Fodor thus subscribes both to a kind of “gross architectural” nativism (for the
modules) and to a “symbolic nativism” (for central processing).

In the following sections I shall try to articulate a very different picture. It ig a
picture in which the image of the form of representation of mature knowledge (of
the kind which Fodor would ascribe to “central processing”) is very different.
This difference, I shall argue, leads us to reconceive the notion of innate knowl-
edge in important ways and eventually blurs the architecture/representation dis-
tinction itself.

3. Connectionism: the bare essentials

The broad lines of the Connectionist Cognitive Paradigm are by now familiar to
most philosophers (for introductory treatments see Clark (1989), Bechtel and
Abrahamson (1991) and the essays collected in McClelland, Rumetlhart and the
PDP Research Group (1988) vols. I and II), and I shall risk only a summary intro-
duction here. It is the specific vision of the form of any innate endowment which
is going to do most of the work in what follows.

The connectionist approach, insofar as it presents itself as a genuine alterna-
tive to classical “rule and symbol” systems, relies on (i) an alternative form of
knowledge representation, (ii) an alternative type of basic processing operation
and (iii) a set of powerful learning algorithms.

To understand the form of knowledge representation and type of basic process-
ing operation, it helps first to recall the broad lines of a connectionist computa-
tional architecture. Such an architecture consists of a mass of idealized
“neurons”. These are simple processing units capable of receiving inputs from
their neighbours, taking on a resultant value (an “activity level” expressed as a
number, usually between 0 and 1), and passing on an output to other neighbouring
units (the ones on the output side). The relation between the overall inputs to a
unit and its output need not be linear (often, a sigmoid function is used). The units
are sometimes arranged into layers, in which case a unit in say, the second layer
of a three layer network will receive inputs from units in the first layer and send
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outputs to those in the third. The first (input) layer may e.g. correspond to sensory
inputs, the third (output) layer to motor commands, while the intervening (“hid-
den unit”) layer allows the system to develop internal representations capable of
subserving the desired overall input-output profile. Activity is propagated
through the network by weighted connections between individual units. The
weights modulate the effects of the signals produced by individual units. Weights
can be positive or negative, and act so as to amend signals passing along them by
a factor determined by the size and polarity of the weight.

Such systems can be used simply to implement familiar “classical” forms of
knowledge encoding. But the most interesting sub-class of such systems explore
highly distributed encoding schemes. At first glance, the notion of a distributed
encoding does not look especially exciting: imagine a system that used 78 units
to represent letters of the alphabet, and in which the letter “A” was coded for by
the joint activity of units 1,2, and 3, the letter “B” by that of units 4, 5, and 6, and
so on. In such a case, the fact that the representation of “A” was spread over 3
units buys us nothing. The encoding scheme is still effectively localist. The rep-
resentations are distributed in only a weak sense, for the system does not exploit
their extendedness in any semantically significant way (see Van Gelder (1991) for
further discussion).

Distributed encoding becomes interesting only when it is conjoined with the
use of a semantic metric on the representational space. Thus consider next a rep-
resentational scheme in which individual units stand for fragments of letterforms
(in a given case and font). Thus one unit may code for a high horizontal bar as on
a capital E, another for a vertical upstroke as on a capital | etc. The distributed
representation of a letter is then just the joint activity of the appropriate letterform
fragments (“microfeatures” if you will). This encoding scheme exhibits an attrac-
tive property: the fact that a given letterform “F” shares more features with e.g.
“E” than it does with “C” will be reflected in the system’s use of encoding
resources. The “E” representation will involve an overall state of unit activation
which overlaps considerably with the “F” representation, while the “C” represen-
tation will remain largely orthogonal. It is in this sense that we can speak of some
connectionist systems as embodying a semantic metric. The similarity between

representational contents is echoed by a similarity between representational vehi-
cles. Within the scheme, the representation of a new item (say “Z”) is non-arbi-
trary. Classical systems exhibit such non-arbitrariness at the level of propositions:
whole structures describing states of affairs. Connectionists encourage the non-
arbitrariness to percolate deeper, so as to characterize individual referring terms.
The key to this is their use of a single resource (set of units and weights) to super-
positionally encode several contents in a systematic manner. (For extended dis-
cussions of this idea see Van Gelder (1991) and Clark (forthcoming a, Ch. 2)).
Regarding knowledge representation, then, the radical connectionist eschews
representations which consist of symbolic atoms concatenatively combined to
form symbolic expressions. (For a good discussion, see Van Gelder (1990)).
Instead, connectionism exploits activation patterns among large numbers of ide-
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alised “neurons” to encode specific contents. The resulting scheme turns out to
resemble prototype based encoding insofar as similar <fontent§ tepd to be repre-
sented by similar patterns of activation. All the semantically significant items 1n
such an encoding can thus have significant internal structure. In a very real sense,
there are no symbolic atoms here i.e. no items which are both clearly representa-
tional and lack semantically significant inner structure. Moreover, cor'nplex con-
tents are not represented by concatenations of more basic represe‘r‘ltatnons but b?'
new activation patterns (ones which need not literal.ly embed the compfments )
created by processes involving mathematical operations upon the numerical vec-
tors which constitute the “activation patterns”. Once again, the departure from the
classical paradigm is quite marked (see Smolensky (1909), Fodor and McLaugh-
in (1991)).
lml(n zuc;)systems, the basic processing operations are defined over such numer-
ical vectors. Information retrieval consists in a process of vector comp};tnon
given a partial vector as a cue. Generalization is achieved by thg superpqsntxonal
storage of activation patterns in a single set of long term weights. It is thc'ase
weights which allow the system, given a partial vector (patte.m (?f activation
across a set of input units) as a cue, to complete the vector (by activating, courtesy
of the connection weights, a specific pattern of units). If se'veral con.tents are
stored superpositionally in a single network of l.mit.s and welght§, an input cue
which is appropriate to several such patterns will induce an acm{atlon pattern
which in a sense averages the patterns of the individual contents which fit the cue.
Hence so-called “free generalization™ (see Churchland (1989), Ch. 9)..

Probably the greatest achievement of connectionism, however, 15 .to have
described and implemented learning rules which cause networ!cs automatically t.o
discover such superpositional storage schemes and hence to impose a semantic
metric as a natural side-effect of the process of learning a target input-output
function. Thus starting with random weights on the connef:tions a network can
automatically alter the weights in a way which should le'f\d itto encodc? a desired
input-output mapping. This kind of leaing is usually driven by exposing the net
to a set of inputs alongside a set of desired outputs. The net uses th? (}nltlally ran-
dom) weights to yield an (initially hopeless) output. If the output is 1r1-corr<f,ct, an
automatic procedure slightly amends those weights _most hc;avnly.nmphcated
(along the path of activation between input and output) in th.e mistake in vx_/hatc.ver
direction (increase or decrease specific weights) will yield a reduction in a
numerical error measure calculated by comparing the actual output to a target
output. Such a process (of “gradient descent learning”—see e.g. P.S. C.hurc.hland
and T. Sejnowski (1992), pp. 106-7) gently leads the n.etwork in the dlrecfuon of
an assignment of weights which will support the target input-output mappmg.and
(usually) will generalize to deal with new cases of the same type (e.g. a net trained
to map coding for written text to coding for phonemes will the:n perfqrm the map-
ping for text on which it was not specifically trained—see Sejnowski and Rosen-
berg (1986), (1987)).
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Even such a summary sketch succeeds (I hope) in displaying the genuine dis-
tance which separates these connectionist models from their classical cousins.
Where classicists were tempted (maybe even forced—see Fodor (1975)) to posit
a system of innate symbolic atoms and significant innate architectural structures
(the modules of Fodor (1982)) the connectionist may appear ready to reject both:
to insist on a single network of units and weights and to begin with random
weights and hence no ready-made set of symbolic atoms. But this, as other com-
mentators have rightly pointed out (see Churchland (1989), Karmiloff-Smith
(1992a), Narayanan (1992)) would be too hasty. The connectionist (like everyone
else from behaviourists upwards (see e.g. Quine (1969), p. 96) must often be a
nativist too. But the empirical details of the connectionist approach determine a
space of nativist options which is importantly different to the classical space. |
shall sketch that space, and then proceed to a closer investigation of my favoured
corner of it: a subspace I term “minimal rationalism”.

4. The space of connectionist nativisms

\

The space of possible connectionist nativisms is bounded by two extremes. One
extreme is the Connectionist Tabula Rasa: a single, big undifferentiated network
which begins with a random assignment of weights. The other extreme is the
Connectionist Classical Device: a units-and-weights style implementation of the
full bipartite classical story, with innately specified modules and a central system
which uses connectionist resources to implement a full classical symbol system.
(For a sketch, see Touretsky and Hinton (1985), Touretsky (1989).) The Connec-
tionist Classical device we put aside. It is of little philosophical interest in the
present context. The Connectionist Tabula Rasa, although it is shortly to be
rejected (on empirical grounds) merits a few initial comments.

First, and most obviously, the connectionist Tabula Rasa (like its associationist
ancestors) is not a totally blank system after all. For it comes equipped with both
a structure (a specific number of units and weights, and a specific configuration
into input layers, output layers and intervening layers) and a leaming rule. This
is unsurprising. As Samet comments “Even tabulas have some innate structure”
(1986, p. 575). The Connectionist Tabula Rasa is not, anyway, to be taken seri-
ously as a model of the human neonate’s cognitive state. A wealth of results in
psychology and neuroscience attest to the significant amounts of additional
innate structure upon which human cognition relies (see e.g. Churchland and
Sejnowski (1992)). Working connectionists have come to appreciate more and
more the need to pre-structure networks to perform complex tasks—see e.g.
Plunkett and Sinha (1992), McClelland (1989}, Le Cun et al. (1989). All that said,
there is still an important existence proof embodied in the Connectionist Tabula
Rasa viz that something at least closely akin to rational/causal cohcept learning
is, pace Fodor (1975, 1980), quite definitely possible without the aid of a ready-
made set of symbolic atoms with which to formulate explicit hypotheses.
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It is easy to see why this is so. Fodor’s image of cogr.litive <‘:hang<l:1 dtls'tm]il::::;
sharply between true learning (a rationa.l process in which w Z ltsher el
depends systematically on the contents of mputs- to t!1e system) an o.t‘ve nde
of change. A Latin pill, or a bang on the head, might induce new cfolgm i e
in us: but the process is not a rational one, hence t}Ot a true case 0 eamlt a%-onal
e.g. Fodor (1980), p. 275). Famously, Fodor depl.cts the bflSlC represen.ﬁ i el
resources of a system as a set of symbolic atoms—ltf:ms which Pear specificc ]
tents and need only to be triggered by a minimal envxrom:nental input. Thus a spel
cific stimulus, like a red dot on a beak, can trigge.r an er.mre complex behavioura
pattern in an animal—the pattern is not plausibly viewed as learnt by fome
rational means involving reflection on the stimulus: an extreme case olf the ptc‘);’/r-1
erty of the stimulus argument”! Real learning for Fodor, occurs only :ter, l\;eﬁs
a system can use existing representational resourf:es tq fonnulatft a hypo
(e.g. about the meaning of a lexical item) a.nd te§t it against experience. e cand

A connectionist network which begins life with a random set of w.elgb 1 ] (a !
no task-specific fancy architecture, see §5 below) and leam§ a generalnzainewnlx1 i (;:)h
ping by exposure to a set of training cases amounts, I clalm,.to a case  whic
we have genuine learning without innate S).Imbollc atorfls. It. is genum}: eam g-
because the acquired mapping is specified in, and' acquired in .vmuc.e of, v vael_
cific inputs to which the net is exposed. It is not like mer.ely -tngg;.nngdaw‘lt(;‘om
edge representation already present in the net. ’I’l}e le:ammg is ac l:eve  withod!
relying on the “contents” of whatever random.actlvatlon pattems't 3 't[l‘e s
tially disposed to produce in its efforts to acquire th'e target mapping. (:1 e o
this last point, reflect (1) that the initial weight assignments, bemg‘rz:: (;::,; " i);
embody no usable knowledge at all and (2) t.hat the process of weight | ; egd s
not a process in which existing representational elements are concatena

tative target knowledge items.
exﬁ:izsez:y to missgthis powerful result. It escapes notice if we a(?o;?t a corlnrxt\l:);
misreading of Fodor’s claim. The misreading c.iepl.cts Fodor as clalmn‘:g (;n y e
representational potential cannot increase (which is surely tr\fe) ax'xd that learn i
involves the testing of hypotheses. It is then all too easy to vnsualls:?.the nz?t;vor
as performing a kind of numerical “hypothesis generation and test” in whic
the test is the measure of network performance (such as surp-squzrllred er-
ror) and the procedure for generating new hypotheses, g_nvenlt e ts}:xc-
cesses or failures of past hypotheses, is given by the learning algonthm.
(Christiansen and Chater 1992, p. 42) ) }
The point to notice, though, is that the networl‘(’s. ezfnrly hypot}!eses are nt:f
framed using a set of symbolic atoms nor (a fortiori) xs.the potential regresen i
tional scope of the network bounded by the represe.nfa-tlonal power (.un tl:r tprrc:lcs
esses of expressive recombination) of such a set of. initial representat'nl(?na ? o é
To repeat, the Tabula Rasa case provides a genuine p::oof of the? ability o son:l °
systems to engage in rational knowledge ach{smon without an mna'te represeb
tational base. For such networks do not acquire knowledge by accident, or.ﬁy
simple triggering. They learn what they learn as a consequence of the specific
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contents of the training set. The connectionist is thus able to offer a genuinely
empiricist vision of learning which is nonetheless not (pace Fodor (1980), p. 279)
committed to the use of hypothesis generation and test defined over a set of ante-
cedent (hence unlearned) symbolic atoms.

The existence proof of rational knowledge acquisition without any innate rep-
resentational base in place, we move on to probe the more empirically plausible
regions in the space of connectionist nativisms. This subspace (between the Tab-
ula Rasa and the Connectionist Classical Device) has recently been divided
(Narayanan 1992) into two parts. One part encompasses various forms of what
Narayanan (after Fodor (1983)) calls “Architectural Nativism”, viz. the innate
specification of gross structural properties such as division into modules etc. The
other part encompasses what Narayanan (1992, p. 80) calls “Representational
Nativism”, viz. a nativism of contents or methods of representation.

The basic idea is that the stored connection weights constitute the knowledge
of a network and hence that pre-setting these amounts to building in real knowl-
edge. By contrast, the gross arrangement of units and weights (numbers of units,
of layers, modules etc.) constitutes the form of the processing device. Pre-setting
these latter parameters may help solve certain problems but falls short of building
in real knowledge. I suspect, however, that the architectural/representational dis-
tinction is not, in fact, a reliable taxonomic device, as we shall soon see.

Suppose a connectionist wishes to escape the paradigm of “tabula rasa” learn-
ing and to give her network a helping hand (e.g. because the target mapping is too
hard, or because the training data is too skimpy, or because the net needs to solve
the problem without an extended period of training). There are various options,
the most important being:

1. Hand-coding of weights.

2. Choice of local or global architecture.
3. Data manipulation.

Hand-coding of weights is the most obvious, but probably least practical solution.
For small problems, it is possible to pre-set connection weights either (a) to solve
the problem or (b) to speed up the process of learning to solve it (much more on
this later). More usual is the practice of choosing a gross architecture (e.g. a divi-
sion into modules (Norris 1990) or the arrangements of layers and units within a
module (McClelland 1989)) which is in some way suited to the target task. Thus
Norris (1990) describes an arrangement of three distinct subnetworks which
together neatly solve a problem (idiot savant data calculation) which visibly
decomposes into three parts. A single, undifferentiated net, presented with iden-
tical data, was unable to solve the problem.

A final and less widely noticed alternative is to manipulate the training data.
Thus it can be demonstrated that the kind of result Norris achieves by pre-struc-
turing the net can also be achieved by a careful structuring of the training data.
Elman (1991) describes a grammar acquisition problem which defeats a single
network until the training data is divided into several distinct batches, each batch
prompting the net to solve a sub-problem whose solution reduces the complexity
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of solving the sub-problem presented by the nfaxt batch. Manipulating the tr:m;::g
data thus effectively decomposes the single intractable prf)blem t(l:cam mth;;)1 Rg)
X) into a sequence of tractable subproblems (learn mapping P,. sn Ql, i
whose cumulative effect is to solve X. (I discuss the above cases in detail 1
i Ch. 7. ‘ .
(fo;:l:(s:il::tl ri‘rgr::c:diatel; obvious, however, that this last cas<-: (data m'amp;iat:i:rt\z)‘
represents a plausible variety of innate knowledge: In faf:t, |'t dqes, snfufe u«: qaa
manipulation (which effectively alters the stz.m?tlcal dlstnbutfon c;‘ mpt L dara
over time) can be achieved automatically! ThlS. mvplves .allowmg t e neﬁlter e
fully mixed (i.e. unbatched) data but providing it with a kind of stelecf;;']e per o
the form of a short-term memory which gradually Fxpands over time. The 1mlm-
window on the data which the initial (most restrictive) memory alloca:;on pail-
vides results in only the short, simple grammatical structures being actua ge 2::\(1) o
able to power learning. As the window expands, more complex structures o
“yisible” to the net. The overall effect is just as if the data had been carefully
ivided i atches. ‘ .
dlv’;‘(:\idi::;)el:iiate point to notice is that there isan .important sense in ¥llxllcht:2
the above means of “helping” a network are funf:txonally equlyalent. u:h e
beneficial effect of a piece of hand coding of weights may lie in tlfe wztlsyt gne
weightings effectively modularize the network, channelling cenan‘l( }npt:: : m(; "
group of hidden units and others to a different gx:oup. (For a wor mlg1 199;) )
see the discussion of the balance beam example in Ph‘mke':tt and Sinha ( enai.n
Similarly the result of Norris’ architectural pre-structuring 1S to promote a ::llatin
problem decomposition: an effect which can also be obtained .by ml:\mp Mng
training data or short-term memory. It can also (seje .§4) be obmlpe(il : y evolving
weights which enable the net to reorganize thc? training data for ltse .11 L
In and of themselves, these functional equnvalen'c?s, thqugh initially s;:rp >
ing, are not evidence of anything genuinely unfamlh-ar. Itisa t:omirlr.lonp(;u;t:her
the classical paradigm that a given input-output b'ehawour may be ac 1§ve eatin
by “hard-wiring” the system (directly manipulaqng the proc€ssor) or 3' cr;:e " ft
a program (manipulating the representations). It is therefore 1.mportant (:1 sd et
the connectionist equivalences just sketched flow from a dnf.ferent, and de pef
source. For what underlies these equivalences is the.prgfound mfcrper;etfanon rct)h
representation and processing within the connectionist paradigm. It 1s wo
i ify this. . .
pal'l;l::gf::\;xlcztal root of the equivalences (betwefen hand-coding, data m'amP-t
ulation and gross structural pre-organization) lies in the fact _that connectionis
models do not embody a firm distinction between repregtntatan and proce:sor;
Processing in these systems involves the use of connection weights .tohcrca € v(v)e
re-create patterns of activation yielding desired outputs. But these wexi c;s,ea:) we
saw, just are the network’s store of knowlet_ige. Changes to the kn(‘)jw{ hg e
and to the processing device (the web of units and weights) go hand in hand.
McClelland, Rumelhart and Hinton put it:
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The representation of the knowledge is set up in such a way that the
knowledge necessarily influences the course of processing. Using
knowledge in processing is no longer a matter of finding the relevant in-
formation in memory and bringing it to bear: it is part and parcel of the
processing itself. (1986, p. 32)
Whereas, from a classical perspective, it makes perfect sense to clearly distin-
guish between innate architectural facts and innate representational facts, it is by
no means clear that the distinction can bear much weight (pace Narayanan’s tax-
onomy) in a discussion of connectionist nativisms. All there is to manipulate are
unit and weight arrangements, and unit and weight parameters. Since these just
are the system’s encoding of knowledge, it makes little sense to treat them as
“mere architecture”. On the other hand, since there is no separate processing
device apart from these unit and weight settings, it makes little sense to treat them
as purely representational either. Nor will an appeal to transient versus fixed
structure solve the problem. It is true that it is common to keep an arrangement
of units, layers etc. fixed and allow only the weights to change. But it is not nec-
essary. Learning can and often does involve processes which add or delete con-
nections (see Mozer and Smolensky’s (1989) discussion of “skeletonization”)
and we know that real synaptic growth and loss is sometimes a feature of learnin g
in the brain. In fact, the difficulty of drawing a firm distinction between architec-
ture and representation becomes quickly apparent when we turn to real brains
(see Churchland and Sejnowski’s (1992), p. 177) discussion of the difficulty of
distinguishing between information and the channel which “carries” the informa-
tion in real brains). It is the influence of the classical computational paradigm,
with its (generally) neat divisions between program and stored data (and between
algorithmically important detail and “mere implementation detail” (see Fodor
and Pylyshyn (1988)) which leads us, mistakenly, to try to conceive of knowl-
edge representation in connectionist systems in the same way. In reality, connec-
tionist approaches erode the structure/knowledge divide and make it an unhelpful
instrument with which to orchestrate the debates.

The best we can do, | suspect, is to treat each case individually and ask our-
selves whether this or that specific pre-setting of weights or pre-structuring of
gross architecture is best thought of as building in some item of knowledge or not.
In geMeral, the difference between hand-coding of weights and pre-structuring of
gross architecture reflects if anything a difference in the generality of the innate
knowledge. Thus provision of a tripartite modular architecture may effectively
build in some very general knowledge about the domain, e.g. that it presents a
problem whose decomposition has three distinct parts, whereas hand-coding of
weights can build in much more specific items of knowledge.

Having now sketched the most obvious (and, as it happens, pretty much equiv-
alent) ways in which a connectionist may go “nativist”, the next step is to explore

in detail a specific option which constitutes the most novel and interesting region
of the new space.
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5. Minimal Rationalism

It is the rationalist who, somewhat paradoxically posits the greate;f7 ;on\-)‘r/i:;?:::
element in human cognitive development (see Fodor (.1980), pi )imem -
the empiricist believes that cognitive devel?pme‘;letprtﬂ:shll;rf; yﬂc:: rationflist
whose aim is to make sense of per ' » the 0 '
S(r:(;i:st(:l:le:rge chunk of cognitive development as tumu}g on non;‘at:;)inaler:):;tzf
causal” processes. The clearest case of s.uch a pr.ocess mvolv:s t' ehti nggof e o
a complex behavioural repertoire by a simple stlmulu§ e.g. the :%h reg;; 2red
dot causing feeding behaviour. The gap bet.wee.n the stimulus an : e 1anp?or oL
such that no conceivable process of ratiocmat‘lon cf)uld ex.trac; the p i,
behaviour out of the stimulus alone. It is not given in tht:, stimu .u?f—mzf k):, e
gered by the stimulus. Contrast, for example, NETtalk’s anulsxlt(lpr;987) o
edge about text—phoneme mapp(;ng (Bose'nb;]rftzﬁi:?::t;vsa L ot ¢;f his
sensibly be depicted as given in f co
l::g\‘;;en(:ﬁfecf:xt—»phoﬁeme :\appings). Hence NETtalk falls on the empiricist
i ivide.
Sld’(;‘l(\): :fi:rlmalist posits innate endowments whi.ch enz.lble us to gol way I?ley:;s
what is (in some elusive but intuitive sense) available in t,he da.ta al lgrlte;nmi e
tice, this trick is always domain-specific, e.g- Ql}omsky s rationalist nodel of
grammar acquisition, Fodor’s of concept-acquisition etc. The reason is
l“gTaﬂi(;“i‘::;Zii;“ : :?;::.ﬁ;::::é} rationalism! It would have to involve stratc?-
gies?lvhich successfully go beyond the data in any d(?mam. But hzwb::oulg 1:(1)13
be? For to go beyond the data means to rca?h conclusions not rt;,ac able \;/omain
specific pre-information. Any principles wl'nch 'su'cc.essfully app ydt/o anyl omain
must therefore be exploiting information implicit in the data ar;‘ or res Zx glon-
completely general facts about the structlfre of our universe. Mec a;nsrn;tionglism
ing these kinds of regularity fall clearly mto‘the emplrlc.lst camp. tol ponalier
is by definition domain-specific: it is t}.le claim tpat a beu}g is innal t; )i'n ;;pecmc
of specific items of information which contribute t(? its success p
domains. Domain-general “rationalism” thus collapses n'\to empl.ncxts:n.domain-
Rationalist approaches have in the past peen chﬁaragtenzed r}ot _|uBs tZUCh g
specificity but also by a richness of dOfnam-speCIﬁc mformimon. :Jial e ver
ness, unlike domain-specificity, seems :jn ;:o ;vzz izn:;glni:la ;'seii:::nes.y LS per
i r a being to go beyond the data, ways, \ .
fescl:le::lsllgk;:?nimal Ritiongalist innate end(?wment. It is ‘.ZhlS optloll1 whnlcnh;tl
claim, connectionism offers us a currentl)" unique opponunlty 1t]0 ex? ore.
more general form, Minimal Rationalism is characterized as lfocl ows.d _
ilding i innate knowledge and s y
:)r:xsitl:ia(ijno\f:vll)]gggl:rg :ili?rrr%:l asr:to g? tgigges and structure will ensure the

emergence, under realistic environmental conditlonls, of the basic
knowledge necessary for early success and subsequent learning.
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I here use the term “Minimal Rationalism” for the doctrine labelled “minimal
nativism” in Clark (forthcoming a). The reason is simple: Minimal Rationalism
better captures (for reasons just developed) the detailed flavour of the proposal.
And it distinguishes the position from the one marked by Ramsey and Stich’s
(1991) use of “minimal nativism” as a label for a very different doctrine.

Connectionism’s special contribution to understanding the space of Minimal
Rationalism lies in its easy ability to combine data-driven induction and tiny
domain-specific biases which help drive the inductive process in a desired direc-
tion. A clear example of this, which also introduces the important notion of an
error surface, is the famous problem of exclusive-or (XOR).

The exclusive-or problem is simply this: find a network which, if trained on a
database of cases in which the input-output mapping is given by the truth table
for exclusive-or, will learn to compute that function, i.e. to output true if and only
if at least and at most one of the disjuncts is true. The famous complication here
is that no simple two-layer net (comprising two input units and one output unit
corresponding to the inputs and outputs specified by the truth table) can learn to
solve this problem. This is in marked contrast to other functions (like “and” and
“inclusive-or”) which can be learned by simple two layer nets. The reason is sim-
ple: the XOR problem is in an important sense “higher order”—it involves an
operation performed on the output of an inclusive-or function, viz. the net must
solve for inclusive-or and then check to see if both disjuncts are true (in which
case the output must code for false). This can be accomplished by e.g. adding two
hidden units (i.e. a two-unit layer intervening between input and output) one of
which acts as a feature detector for conjunction (both input values coding for
true) and can inhibit the output coding for true in such cases. All this is no doubt
boringly familiar (see P. S. Churchland and T, Sejnowski (1992), pp. 107-11 for
a full discussion). But we are not home yet.

So far, the XOR example illustrates the need for a certain configuration of
units and connections if the problem is to be soluble. But in practice we need a
little more. This is where the notion of an error surface becomes important.

Connectionist devices learn by adjusting the connection weights most respon-
sible for each incorrect output. We can picture the achieved state of knowledge
of such a system as a point in a space which has one dimension for each connec-
tion weight. The learning task is to move to a location in weight space which will
determine the desired input-output mapping. Change the position in weight space
and (ceteris paribus) you change the system’s knowledge, for better or worse.
Learning thus consists in a gradual movement within weight space with each step
designed to reduce the error signal. It is helpful to picture this process as motion
relative to an error surface. Thus imagine a high dimensional space in which one
axis (the vertical, say) represents amount of error. The other axes (the horizontals,
one per connection) represent the weights. The values of all the weights at a given
time determine a specific overall error and hence a specific point relative to this
error landscape. When the weights change, the location of this point changes. The
goaNis to move the point to a location at which the error is as small as possible.

Minimal Rationalism 599

For some problems, such an error surface hz§s a sir‘nple, basin-like shape w;‘t}:
a single minimum. In these cases an error minimization procedure,. such as t f:;l
provided by back propagation, is guaranteed t.0 find th.e best solution as it Wld
drive the point (defined by the weights) downhill, reducing error at each st;yi) an
hence bringing the net ever closer to the bottom of the basin. Other. problems,
however, define rather different and more problematic surfac.es. Thusﬁlmagme an
error surface whose shape is not a concave basin but instead is more like a moun-
tain range with several peaks and intervening troughs of varying dep{hs. The n:m;
imal possible error corresponds to the deepest trough. B}lt a pamculards: o
initial weights may determine a point in weight space which is separate hrotr)n
that deepest trough by one or more intervening .(less deep) troughs. To rez:;:e the
target, these troughs and the uphill slopes which follow them, need to tx:-
versed. But a weight change procedure which seeks always 'to move aheadl y
reducing the error signal will clearly not get beyond thg ﬁrst‘mterve.mng valley.
To move on would necessitate going uphill and hence briefly increasing the error
signal. In such cases things have to get worse before they get better. YOR et
The important fact, for our purposes, is that thg error surface for the ned
described earlier is of the “difficult” stripe involving what P. S.”Churchland a;)
T. Sejnowski aptly describe as “ravines and assom?d potholes” (1992, p. lhl- )h
Suppose, then, that a great selective advantage wxll'accrue to any .net w 1lc
solves XOR: how are we to promote success? Othe.rwme put, .how nyght evolu-
tion “fix” things so that a network embedded in a given organism gains the pos-
i ive advantage?
ltedOSneielel:;:n:l and maiimal option is to hand-code the .sollftion. Tht? absolutf:ly
minimal option is to provide the necessary archit_ecture (l.e'. include hldd.er.x units)
and hope for the best (i.e. hope that the network is not led into a local mnmr.m.Jm).
Alternatively, we might include some general procedure t.o escape local minima,
e.g. allowing much larger weight changes; but such solutlons. impose qther costs
(e.g. missing the right solution by oscillating betwe.en two pom.ts in weight space
when the solution lies smack in between). In practice, connectionists qpt neither
for the absolutely minimal (and failure-prone) option nor fgr the dor.nam-'general
(and also failure-prone) option. Instead, they act as th‘mal Rationalists and
indulge in a small amount of weight fixing whose eff‘cct (given t?na‘t problem anfi
that efror surface) is to ensure successful leaming‘g_ntcn tht? training data. As it
happens, the solution in this case is to avoiq large initial wengh.ts. As long as the
initial weights are small, any random dismbuuor} of such \‘velg.hts turns out to
determine a position on the error surface from which a solution is sa_fely.reacha-
ble (see P. S. Churchland and T. Sejnowski (1992), p. 111). .(As an aside, it s.ee'ms
likely that similar effects, for other problems, could be achieved by f:onstrammg
specific weights to be positive and others to be negative—a type of innate struc-
turing known to be present in the brain.) ' o . .
Here, then, is a simple case of Minimal Rationalism in action: pre-set some O
the initial weights so as to determine not a solution to a spe.c.lﬁc problem put a
location (on the error surface defined by a problem/data pairing) from which a
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solution can be reached, given realistic input data, by an error minimization pro-
cedure. Such a location may be specified in detail (if we fix a specific set of
weights) or in general (if we simply fix the parameters within which “random”
weightings are to be assigned).

If we now pause to ask after the precise content of the innate knowledge con-
tained in, say, a specific assignment of weights supposed to determine a favour-
able point on an error surface, we are in for a surprise. Such an assignment of
weights will not in general encode any knowledge at all, at least not of a familiar,
propositionally specifiable kind. We cannot specify the content of the position in
weight space by reference to a mapping which involves real or imaginary objects
properties and relations (such as tables, chairs, unicorns, loving etc.).This con-
trasts with many trained up networks whose acquired knowledge we can at least
gesture at using familiar propositional resources (e.g. the XOR net knows about
exclusive-or, NETtalk knows something about graphemes and phonetics, the net
described in P. M.Churchland (1989) knows about rocks and mines etc.). None-
theless, it is clear that the advantage which the favourably located net enjoys is in
a real sense informational. It “knows” things which stop it from inducing certain
conclusions (corresponding to dangerous local minima) from the training data.
The effect is not unlike the building-in of specific heuristics to govern induction
in a domain (as in e.g. the BACON models of scientific discovery—see Langley
et al. (1987)), except that (unlike the BACON heuristics) the contents in the net
case are not obviously specifiable using the resources of English or any other nat-
ural language.

The question also arises whether a net which starts in a minimally favourable
location on the error surface (i.e. far from the solution but without intervening
local minima) should best be counted as an exemplar of empiricist or of rational-
ist cognitive development. If we follow Fodor’s idea that the better the inductive
basis the less rationalist the procedure (Fodor 1980, p. 280) we must count the
case in hand as perilously close to empiricism! After all, the training provides a
firm inductive basis for any net which avoids the minima. On the other hand, the
type of initial weight manipulation needed to avoid the minima is problem spe-
cific—and problem specific innate endowments move us into the familiar space
of rationalisms. The case described is interesting just because it so neatly strad-
dles our accepted categories—hence the label of “Minimal Rationalism”.

Phylogenetic fixing of a minimally favourable location on an error surface
dees not, however, exhaust the Minimal Rationalist arsenal. For a principal
device has yet to be introduced. This involves the possibility of complex interac-
tions between small initial biases and received environmental inputs to yield spe-
cific cognitive competencies. A nice example of such potential for cooperation is
given in Karmiloff-Smith (1992a). It concerns the well-established and presum-
ably innate tendency of the human neonate to attend to face-like stimuli (see
Johnson and Morton (1991)). In what might such an innate tendency consist? Are
the details of the human face already encoded in the weights of some sub-network
at birth? Not necessarily. A more minimal possibility is that what s innate is just

\
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a mechanism which detects the presence of “three high-contrast blobs in the p(?si-
tion of the eyes and the mouth” (Karmiloff-Smith 1992a, p. 256). The provisan
of such a mechanism at a point upstream (close to the sensory inputs) on a certain
neural pathway will have dramatic effects on the development of resources
downstream (deeper in the brain) from such a “gate”. For the provision of the
minimal gateway sets the scene for the subsequent data-driven development ofa
module specialised for face recognition. The innate tendency to selectively filter-
in “three blob” style stimuli will cause the cortical circuits downstream from the
gate to receive training inputs which (given the child’s actual environment) are
heavily dominated by human faces. Such circuits will then learn to become spe-
cialised for human face recognition. Such solutions will surely appeal to evolu-
tion, which is one of the laziest of designers (see e.g. Jacob (1977), Clark (1989)
Ch. 4). Once provided with an innate mechanism which acts as a three-blob ga'te-
way, evolution can sit back and let the data carry the rest of the burden. P'Joflce
also that the provision of such a gateway effectively reconfigures the statxs?ncal
profile of the input data. Thus suppose faces in fact comprise just 10% of a Chlld’.S
visual input. Ordinary connectionist learning could easily fail, under §uch condi-
tions, to yield sophisticated face-recognition strategies. But now consnf:lcr not the
gross inputs (to the system/child) but the effective inputs to a specific down-
stream neural network. If the net is downstream from the three-blob gateway, the
inputs here are likely to be 99% dominated by human faces. A network subje.cf to
such a barrage will quickly and efficiently learn to become a face-recognition
device.

Minimal Rationalism thus places much faith in the gentle manipulation (by
small initial biases) of the way incoming data is taken by an organism (i.e. the
way it is selectively filtered and sent to various locations in the brain). This com-
plex interaction between small innate tendencies and external inputs is most rem-
iniscent (as Karmiloff-Smith notes) of Piaget’s (1955) notion of an “epigenetic”
interaction between training and innate tendencies, except that it allows for
domain-specific innate biases of a kind inimical to Piaget’s ideas about general
purpose learning (Karmiloff-Smith 1992b, Ch. 7). . ‘

A final example should establish the full potential of the Minimal Rationalist
option. It involves the combination of the “error-surface” manoeuvres and ttfe
idea of innately specified reconfigurations of the input data. The example is
drawn from a simulation due to Nolfi and Parisi (1991). The task is to “evolve”
an artificial organism which will be capable of learning to find food in a simu-
lated world. The “organism” (a computer simulation) receives “sensory” input
which specifies the location of nearby food. It must learn to take this informatiqn
and use it to generate motion commands which will move it to where the food is
located, so it must learn a general “sensory-input—>motion towards food” map-

ing.
P gne solution would be to use ordinary connectionist “tabula rasa” learning.
This works here. But a drawback of such learning is its supervised nature: the
error signal is driven by knowledge of what the right answer would be. This kind
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of supervision is often biologically unattractive. All too often we don’t know
what the right answer would be until we’ve found it!

An alternative is to use so-called “genetic algorithms” techniques to evolve a
solution. In this approach, a multitude of different networks (ones with different,
but random weights) are tried out. The most successful are allowed to reproduce
(with minor weight variations) to form a new generation.The process is repeated
until good eating is achieved. Such a technique could also succeed (see papers in
Meyer and Wilson (eds.) 1991). But it, too, has a cost: evolution is required to
“hard-wire” the complete solution to the problem, a strategy that is both inflexible
and expensive. If a cheaper (lazier) solution were available, there is reason, as we
remarked earlier, to suppose it would be preferred.

Nolfi and Parisi found just such a solution. Instead of having the evolutionary
prdcess operate directly on a set of units and weights leading to motion com-
mands, they allowed evolution to operate on a different set of units and weights
whose task was not to give motion commands but to train a net which does. The
organism thus comprised two sub-nets, called the standard (motor control) net
and the teaching net. The teaching net and the standard net received the same
inputs (“sensory” data). The standard net was allowed to learn in the usual, super-
vised way. But instead of depending on prior knowledge of the right answers to
generate the target output relative to which the error signals are computed, it
received target outputs from the teaching net. The genetic algorithms approach
was then taken. This allowed the evolutionary process to progressively select
organisms whose intemnal teaching nets did the best job of generating training sig-
nals which would lead the overall organism to ingestive success. The process suc-
ceede.d. After about two hundred generations, each comprising a hundred
organisms, ingestive success was achieved.

A reasonable fear, at this point, might be that nothing much has been achieved
by the evolutionary detour involved in the selection of an auto-teaching capacity.
Perhaps all that has happened is that the teach net has evolved so as to solve the
“ingestion maximization” problem and the standard net then copies this evolved
solution, in which case there is no real gain over the straightforward method of
genetic evolution.

The actual situation is much more complex and interesting. To bring this out,
consider the following two results. First, Nolfi and Parisi compared the eating
competence of a mature evolved, auto-teaching organism to that achieved by a
matched control simulation relying solely on evolutionary learning (i.e. using
only the standard net). The competence of the auto-teaching network turned out
significantly to exceed that displayed by the control simulation. Second, it was
possible to show that the competence displayed by the standard net (in the auto-
teaching organisms) after the teaching regime actually exceeded that of the
teacher! Thus in a test simulation organisms’ motions were directly controlled by
the outputs (the teaching targets) from the teaching net of a successful organism.
It transpired that the teach net’s own evolved know-how fell short of that
achieved by its associated student (standard) net by a margin of some 150 food
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items per lifetime. This is probably because there is sometimes a difference
between an optimal target output and an optimal motion: the most effective tar-
get, for teaching purposes, need not always be the best action. To see why this is
so and to complete our explanation of the simulation results, we need to look a
little more closely at the role of the initial weights and the process of learning.
In a control simulation designed to rule out the possibility that genetic evolu-
tion had built the correct solution directly into the standard net (and hence was
not exploiting the teaching net at all), Nolfi and Parisi allowed the standard net of
a 200th generation organism to control actions using weights frozen at birth. As
expected the net was a failure and clearly encoded no useful solution at birth. It
does not follow, however, that the initial weights play no special role. This was
nicely demonstrated by a further experiment in which the weights in the standard
net were randomized at birth and the teach net allowed to train it as before. Under
these conditions, the organism turns out to be a total failure: the randomization of
the standard weights at birth destroys the ability of the overall organism (standard
net/teaching net pairing) to learn to approach food. The reason is that:
the standard weights are not selected for directly incorporating good eat-

ing behaviours ... but they are accurately selected for their ability to let
such a behaviour emerge by life learning. (1991, p. 10)

The initial weights of the standard network matter insofar as first, they have been
selected so as to encode an initial position in weight space which avoids local
minima during gradient descent learning; and second, they have been co-selected
alongside the weights in a specific teaching network, i.e. there is potential for the
harmonized evolution of specific teaching net/standard net pairings. Under such
conditions of co-evolution, a given teach net may learn to give training inputs
geared to the specific initial position in weight space occupied by its associated
standard net. Such an exploitation of co-evolutionary possibilities would help
explain the discrepancy between the results achieved by a teach net alone (when
allowed to control movements) and those achieved by a teach net/standard net
pairing. The necessary knowledge may be distributed in partial and non-intuitive
ways between the two, and some of the teaching outputs may be geared not to
coding for optimal immediate behaviour but to the task of pushing a specific point
in weight space (the point which describes the initial weight-complex of the
standard net) as fast as possible towards a global solution to the ingestion prob-
lem. In these ways the initial weights on the standard net may encode no directly
useful knowledge about the domain while nonetheless playing a vital role in con-
ferring on the overall system an ability to learn about that specific domain. In
sum, the two sub-nets have co-evolved so as to conjointly encode a solution to
the one step removed problem of how to learn about that specific domain given
ecologically realistic inputs.

Evolutionary pressure acting not on individual networks but on complex net-
works of networks may thus lead to the development of a body of partial repre-
sentations (Arbib 1993) which interact, without central executive control, so as
to allow the system to learn to solve specific kinds of problem. To see just how
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elusive the contents of such partial representations may become, let us consider
one final twist to the Nolfi and Parisi investigation.

In a further experiment, Nolfi and Parisi allowed individual (lifetime) learning
to occur symmetrically: that is, both the standard net and the teaching net were
allowed to learn from each other during the organism’s lifetime. In the previous
simulations, recall, the teaching net was subject only to evolutionarily deter-
mined weight change. Its behaviour was therefore static within the organism’s
lifetime in that a given sensory input would always cause the same training signal
to be produced no matter when the input was received. But as we saw earlier it is
often beneficial (cf. Elman’s (1991) work on the “expanding memory window”
described in §4 above) for a network to receive different kinds of training at dif-
ferent temporal stages of learning. The symmetrical teaching simulation aillows
us to address such complexities vusing a population of organisms in which each
sub-net passes target outputs to the other and an individual leamning algorithm
(back propagation) is allowed to amend the weights in each. The “teacher” net is
now a kind of student too and can be led to change the training output it will pro-
duce (for a given input) as a result of weight changes induced by the output of the
other network. The output of each sub-net thus contributes to changes in the
weights of the other as the lifetime progresses. The possibility of complex tem-
poral harmonizations of activity is thus now opened up.
~ The ewgntual performance of the symmetrical teaching net was perhaps disap-
pointing. It did not exceed (indeed, did not even quite match) that of its predeces-
sor. What is of interest, however, is the fact that in the new simulation the initial
knowledge built in by evolution was even more arcane and diffuse. Whereas the
previous teaching net clearly began life encoding a fair solution to the ingestion
problem (albeit one ultimately surpassed by its own student standard net), in the
symmetrical teaching case neither sub-net, when tested at birth, encoded any-
thing approaching a useful solution. What has now evolved is instead an even
more subtle kind of knowledge: knowledge about how to co-operate so as to
learn, and about how to co-operate so as to learn to teach! Neither net is now
clearly marked as student or teacher. But the two nets, in the context of an eco-
logically realistic input environment, constitute a delicately harmonized system
selected to display the type and sequence of learning necessary to yield a fit
mature organism.

The space of possible ways in which knowledge might be innately specified is
thus very large and includes some rather subtle cases. These cases often exploit
an inviting gap between raw incoming data (gross input) and the training data
later seen by a downstream network engaged in some form of connectionist
learning (effective input). Between these two, evolution may insert many kinds
of transformation factor (see Clark (forthcoming a). The teach nét in Nolfi and
Parisi’s first simulation is one such factor. The 3-blob filter in the Karmiloff-
Smith/Johnson and Morton example is another. In exploiting such transformation
factors, we need not (and typically do not) return to a position in which the actual
environmental inputs are mere triggers for full, innate knowledge-schemes.
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Instead, we confront a continuum of possible degrees of innateness corr?spo.nd-
ing to the extent to which 2 given transformation faf:tf)r. moulfls the training in a
certain direction. To compound such effects, the initial 'welghts of the targ.ef
(learning) network may (as in the case of the standard ne.t in the Nolfi an-d Parisi
simulation) have been selected so as to facilitate the acquisition of a spef:x.ﬁc type
of knowledge. Further, such weights may have bez?n selectgd soas to i:'ac.:nhtate tl'tx)e
acquisition of that knowledge given a transformation fur{ct;czn whxch is 1tse:lf sub-
ject to change as a result of feedback during the organism's lflleldUal. lifetime
(as in the symmetrical teaching case). And ﬁnall.y, tran§format'10.n'functnor.\s mayf
be delicately harmonized (courtesy of co-evolution) with the m.mal locations o
downstream networks on specific error surfaces. Nor is the notlf)n ofa fransfor-
mation function limited to the particular exemplars of auto-teaching ‘and m.put fil-
tering with which we have been concerned. It includes any case m.whlch thei
training input to one net is the output of another rather than qlrect envnronmenta
stimulation. It thus covers all cases in which learning occurs in the neurologlca.lly
realistic context of signals passing through a network of networks. In pursuing
the incarnation of innate knowledge in such systems we contin.ue (pac; Fodor) to
depict the mind as fundamentally a connectionist-style learning engine. We do
not seed it with any set of classical representational atoms. Nonetheless, we do
depict it as a highly structured system (a co-evolved network gf networl.(s) be.arl;
ing significant innate biases, and delicately coupled to the environment in whic

learning will take place.

5. Conclusions: the opacity of innate content

Minimal rationalism presents a peculiarly opaque kind of nativist picture. It is a
picture in which evolution manipulates the internal re§ources used tc'> encod.e
knowledge. Yet the content of such native endowments is often not easily specx;
fiable. What does a minimally favourable location on an error sgrface represent?
What is represented in the initial weights of an evolved te?chmg network 2 la
Nolfi and Parisi? The only case where we seem to have a grip on the actual con-
tents involved is the 3-blob detector. This is, I think, revealing. 3

The reason we are able to subsume the 3.blob case under a reasonably familiar
kind of content-specification is that it involves an externally specifiable content.
In this case (but not the others) we can specify the content by refercnc? to what,
in the external world, it is about. What the other minimal ration_allst options show
us, however, is that very often the informational beneﬁt's of an innate endowment
may be much more inward looking. They have to do with what some parts of the
brain communicate to other parts of the brain (as in the au‘to-teachn-ng case‘) or
with the representational significance of the internal dyfxamncs associated with g
particular type of learning algorithm (as in the “IOf:at'non-on-an error surface
case). In these cases, our usual mode of content-ascription seems bound to break
down. There is nothing remotely familiar for these states to be about.
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States of the external world still enter indirectly into such stories. In speaking
of an error surface we are speaking of a construct ifself dependent on a conception
of what is to count as success for the network. Our understanding of such success
will itself plausibly involve reference to behaviours whose specification (e.g.
“good eating behaviour™) builds in reference to familiar states of affairs. But this
kind of indirect involvement does not affect our main point, which is that the ini-
tial state of knowledge of a network (as determined by its initial weights and
structure) often resists informative propositional specification while nonetheless
encoding significant knowledge. For suppose all we can immediately say of some
network A is that A passes training data to another net B in a way which is deli-
cately geared to B’s initial location on an error surface. In that case the fact that
the rarget location on that error surface (the place the net should occupy, after
training) encodes a body of knowledge which will then succumb to more famil-
iar, propositional, world-referring content-descriptions goes no way at all
togvards informatively specifying what is initially known by either net. Where
such initial states are concerned, the process of content-ascription by correlation
with real-world states simply fails to get a grip.

One option is to conclude that such initial states are not representational. But
this is perverse. The evolutionary benefits of the innate endowments in question
are clearly informational, and amount, as we remarked, to the specification of
problem specific induction heuristics. All that is special about these heuristics is
that they resist propositional specification.

A better option, I think, is to allow that such endowments are genuinely repre-
sentational but to accept that their contents need not be expressible using the
familiar resources of our public language. Such endowments do embody a kind
of yvisdom or knowledge, but not a kind which yields to the expressive resources
of daily language.

The first moral, then, is that the investigation of the nature of innate knowledge
should not be tied to any folk-vocabulary oriented conception of the content of
such knowledge. Rather, innate knowledge may concern facts whose best expres-
sion is geometrical (as in the weight space examples) or in some other way alien.
The contents of such endowments are not always to be given by familiar world-
referring propositional constructions.

The second moral, already touched on earlier, is that even the intuitive division
between innate representational endowments and innate structural facts is likely
to be unproductive here. As we saw, the manipulation of intuitively structural ele-
ments is often equivalent to the manipulation of intuitively representational ones.
Evolution is not likely to care much about which route it uses. Moreover, the fact
that certain structural pre-settings (e.g. providing four layers of units in a given
sub-net) do not yield benefits immediately describable in familiar representa-
tional terms cannot now be relied on to distinguish the two cases. In these circum-
stances, it seems best to allow that the understanding of structure, representation
and learning go hand in hand. Any attempted divorce between representational

and structural issues will only obscure the delicate interplay between architecture
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and weights upon which much successful learning depends. IEI aqditi.on, unlike
«maximal” rationalists such as Fodor, we cannot afford to marginalize in any way
the role of the environment in presenting a rich inductive t?asis to the evolved
organism. A “lazy” evolution will have fixed on minimal mna{e endowments
which make the most of whatever information is there for the taking. ‘

A final disclaimer. In arguing for a partially non-propositional (geor'nemc,
mathematical) specification of some of our innate representational rep‘e.rtonre Ido
not mean to endorse any form of eliminativism with respect to proposxt_xonal con-
tent-specification schemes. Unlike e.g. P. M.Churchlan.d (}989), I believe that a
great deal of our knowledge (and the knowledge of artificial neural nets) can be
usefully specified propositionally. It is not false to say that NETtalk knows some-
thing about phonemes, or that face-recognition net knows that such-and-such a
face is associated with a particular name. (At least, it is not false because of the
non-classical mode of internal representation!) The fact that a panigular form of
internal representation is itself non-propositional (or non-sent.e{\tlal) does not
show that it does not encode contents ap? for report using proposmor'\al resources
(see Clark (forthcoming b). In some cases, however, the represe{xt.atlonal stgte of
a non-sentential encoding device may indeed resist even propositional s;x:cnﬁs:a-
tion. On a minimal rationalist model, much of what we innately know will be like
this: it will be knowledge about the shape of error surfaces, or kn.owledge about
how best to filter input signals downstream, or about how to actively transform
environmental inputs into useful teaching signals. In all thcs:e. cases, the know}-
edge concerned will resist informative specification in familiar terms. But this
need not surprise us. What evolution “told” the brain to encode as an zfxd to learn-

ing need have little in common with the eventual product of that learning: knowl-
edge of others, of ourselves and of the external world. ‘

To end on a traditional note, it may be worth reflecting that the story .I have
told amounts to this: that the brain’s innate endowment may be best conceived as
involving, at times, a kind of “knowing how” and not 2 “know.ing that”-(Ryle
1949). Even this “knowing how?” is elusive, for we cannot s'pecxfy what_ it con-
cerns by reference to some external event (compare knowing how to juggle).
Instead it is a know-how appropriate to the brain’s own special problem: hov{ to
get the most out of the barrage of data which assail the senses, given the operation
of a certain class of (gradient descent) learning algorithms. If such know-how
looks alien to us, it is because we merely reap the rewards of our brain’s success.

School of Cognitive and Computing Sciences ANDY CLARK
University of Sussex

Brighton
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