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Radical Predictive Processing 
 
 
Andy Clark 
 
 
Abstract 
 
Recent work in computational and cognitive neuroscience depicts the brain as an 
ever-active prediction machine: an inner engine continuously striving to anticipate 
the incoming sensory barrage. I briefly introduce this class of models before 
contrasting two ways of understanding the implied vision of mind. One way 
(Conservative Predictive Processing) depicts the predictive mind as an insulated 
inner arena populated by representations so rich and reconstructive as to enable 
the organism to ‘throw away the world’. The other (Radical Predictive Processing) 
stresses the use of fast and frugal, action-involving solutions of the kind 
highlighted by much work in robotics and embodied cognition.  But it goes further, 
by showing how predictive schemes can combine frugal and more knowledge-
intensive strategies, switching between them fluently and continuously as task and 
context dictate. I end by exploring some parallels with work in enactivism, and by 
noting a certain ambivalence concerning internal representations and their role in 
the predictive mind. 
 
 
 
1. The Backdrop: Brains, Bodies, and World 
 
 
Embodied cognitive science is no longer in its infancy. It is now over twenty years 
since the first waves of work on mobile, autonomous robots combined with 
increasing dissatisfaction with the prevailing ‘classical computationalist’ framework 
to suggest a new approach to the sciences of mind – an approach that recognized 
the many ways in which bodily form, action, and the canny use of environmental 
structure could simplify and transform the tasks facing the biological brain (for 
reviews, see Clark (1997), Pfeifer and Bongard (2006)).  Since then, an explosion of 
work on embodied cognition has revealed the many ways in which biological 
intelligence relies upon the complex interplay between brain, body, and world. 
Neural representations, this work has suggested, are not action-neutral mirrors of 
the world. Instead they are in some deep sense ‘action-oriented’ (Clark (1997), 
Engel et al (2013)). They are geared to promoting successful, fast, fluent actions 
and engagements for a creature with specific needs and bodily form. Such 
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representations will be as minimal as possible, neither encoding nor processing 
information in costly ways when simpler routines, combined with world-exploiting 
actions, can do the job. 
 
One of the abiding questions, which this research left open, was how best to 
understand the biological brain – the organ at the center of many of these webs of 
embodied and situated action. Much of the early impact hereabouts was negative – 
we should not understand the brain as a kind of micro-managing controller but 
rather as a lazy orchestrator, making the most of whatever body and world have to 
offer. In recent years, however, work on the ‘predictive brain’ has begun to suggest 
a richer, more positive story. Brains like ours, this work suggests, are multilevel 
prediction engines forever trying to anticipate the incoming flows of sensory 
information.  
 
Such accounts have roots in familiar (but importantly incomplete) models of 
‘passive perception’.  The brain, on these accounts, combines prior knowledge or 
expectations (including knowledge about the present context) with the incoming 
sensory evidence to yield a percept that reflects its best available ‘hypothesis’ 
concerning the most probable state of the world. This view of ‘perception-as-
inference’ originates with Helmholz (1860) and has had many more recent 
champions, including Neisser (1967) and Gregory (1980). It is only in recent years, 
however, that these broad visions have been given effective computational flesh, 
shown to be (roughly speaking) neurally plausible, and seen to converge with 
compelling bodies of work in psychophysics and cognitive psychology showing 
that much of perception conforms to optimal (Bayesian) ways of combining 
sensory evidence with prior knowledge (see Bubic et al (2010), Kveraga et al (2007), 
Friston (2005) (2009), Hohwy (2013), Clark (2013)). Huang and Rao (2011), Bastos 
et al (2012), Knill and Pouget (2004), Yuille and Kersten (2006), Weiss et al  
(2002)). 
 
A promising account that combines all these elements is work on ‘hierarchical 
predictive coding’ or ‘predictive processing’ (PP) models of perception (Friston 
(2005), (2009), Hohwy (2013), Clark (2013)). These approaches make extensive use 
of probabilistic ‘internal models’, but they locate them within a framework that is 
very different from the passive, input-output dominated approaches that 
characterized much previous work in cognitive and computational neuroscience. 
Recently, such accounts have been extended to make greater contact with issues 
concerning action, agency and choice, and with the nature and origins of various 
disturbances to subjective experience (Friston, Adams et al (2012), Fletcher and 
Frith (2009)). Such accounts are highly compatible with key insights from work on 
embodied cognition. The stress on neural prediction binds perception, cognition, 
and the control of action together in a single overarching framework in which they 
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conspire (at varying timescales) to reduce ‘prediction errors’ – the discrepancies 
between what is currently predicted and the evolving shape of the sensory barrage. 
In the next section, I put some flesh on the PP story, before turning (in sections 3 
to 7) to the ‘fit’ with embodied, extended, and enactivist approaches to 
understanding the mind. 
 
 
 2. Predictive Processing 
 
Two core features of the predictive processing (PP) account stand out as especially 
relevant to our current concerns.  First, perception involves the use of a unified 
body of acquired knowledge (a multi-level ‘generative model’) to predict the 
incoming sensory barrage. Second, the use of that knowledge is subject to a 
constant kind of second-order assessment (known as ‘precision estimation’) that 
determines the weighting assigned to specific predictions at all levels of processing, 
and to different aspects of the incoming sensory signal. These weightings reflect 
the varying reliability, in context, of differing aspects of the generative model and 
of the sensory inputs currently available.  
 
This basic schema is best introduced by work on simple sensory perception. A 
familiar view depicts perception as essentially a process of  ‘bottom-up’ feature 
detection. Visual cortex, to take the most-studied example, is thus “traditionally 
viewed as a hierarchy of neural feature detectors, with neural population responses 
being driven by bottom-up stimulus features” (Egner et al 2010 p. 16601). This is a 
view of the perceiving brain as passive and stimulus-driven, taking energetic inputs 
from the senses and turning them into a coherent percept by a kind of step-wise 
build-up moving from the simplest features to the more complex. From pixel 
intensities up to lines and edges and on to complex meaningful shapes (like 
teacups), accumulating structure and complexity along the way in a kind of Lego-
block fashion.  
 
PP performs a kind of ‘Bayesian flip’ upon this standard (passive, feedforward) 
image of sensory processing. Instead of trying to build a model of what’s out there 
on the basis of a panoply of low-level sensory cues, these models aim, in effect, to 
predict the current suite of low-level sensory cues from their best models of what’s 
likely to be out there (for this formulation, see Hohwy (2007)). In these models 
(see Rao and Ballard (1999), Lee and Mumford (2003), Friston (2005) (2009)) 
percepts emerge via a recurrent cascade of ‘top-down’ predictions that involve  
(mostly sub-personal) expectations, spanning multiple spatial and temporal scales. 
These expectations are probabilistic and concern the present nature and state of the 
world as presented via the driving sensory signal. It is this key role for downwards-
flowing prediction that allows these systems to cope with noisy and ambiguous 
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sensory inputs. The downwards predictions reflect what the system expects given 
what it already ‘knows’ about the world and about the current context. These 
predictions are combined with incoming sensory data to arrive at better guesses 
about the signal source.  The driving sensory signal is here compared, at multiple 
levels, to a cascade of downwards predictions and mismatches send forward 
‘prediction error signals’ that nuance or alter the prediction until a match is found 
and the sensory data is accommodated. This process runs concurrently and 
continuously across multiple levels of a processing hierarchy. As a very simple 
example, consider the figure below. 
 
  

 
 
 
Reading left to right, the predictive brain meets the raw sensory stimulations from 
the central inscription with a strong expectation of the numeral 13. Reading top to 
bottom, the raw sensory stimulations are met with a different prediction – the 
letter B. In Bayesian terms, in the context of reading the 12, the 13 hypothesis 
makes the raw visual data most probable, while in the context of reading the A, the 
B hypothesis makes the raw visual data most probable (for more on this example, 
see Lupyan and Clark (In Press)). 
 
How is the knowledge used to drive the predictions acquired in the first place? 
Some may be innate, inherent in the basic shape of the neural economy. But a 
major attraction of the multi-layer predictive processing approach is that it lends 
itself very naturally to a form of unsupervised (or, if you prefer, self-supervised) 
learning in which the attempt to predict powers the learning that makes better 
predictions possible. In these models, each ‘higher’ neural population is constantly 
trying to predict the rolling (ongoing) state of the neural population below it. 
During learning, that prediction is compared to the state that actually occurs and 
the neural population generating the prediction gently (automatically) self- tweaked, 
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via standard gradient descent or other means1, so as to progressively reduce the 
error. The prediction task is thus a kind of ‘bootstrap heaven’. To predict the next 
word in a sentence, it helps to know stuff about grammar (and lots more too). But 
one way to learn a surprising amount about grammar is just to look for the best 
ways to predict the next words in sentences. So you can use the prediction task to 
bootstrap your way to the grammar, that you then use in the prediction task in 
future. 
 
Such learning is nicely demonstrated in Rao and Ballard’s early (1999) model of 
predictive coding in the visual cortex. Rao and Ballard implemented a multilayer 
neural network whose input was samples (image patches) from pictures of natural 
scenes. The network had no concrete guiding task or purpose. Instead, visual 
signals were processed via a hierarchical system in which each level tried (in the 
way just sketched) to predict the activity at the level below it using recurrent 
(feedback) connections. If the feedback successfully predicted the lower level 
activity, no further action needed to ensue. Failures to predict enabled tuning and 
revision of the model (initially, just a random set of connection weights) generating 
the predictions thus slowly delivering knowledge of the regularities governing the 
domain. After exposure to thousands of image patches, the Rao and Ballard 
network had learnt to use responses in the first layer to extract features such as 
oriented edges and bars, while the second layer captured combinations of such 
features corresponding to patterns involving larger spatial configurations. Using 
the predictive coding strategy, and given only the statistical properties of the 
signals derived from the natural images, the network was thus able to induce a 
simple multi-layered model of the structure of the data source (images of natural 
scenes).  
 
Now imagine a much richer, more multi-layered, version of the same procedure. 
Here, top-level predictions concern matters that are increasingly discrete and 
abstract (typically, more temporally extended and spatially diffuse) such as that the 
Memphis Tigers are playing baseball, now, in the stadium where you are sitting. 
Lower level predictions track states whose spatial or temporal signatures are 
continuous, local, and more fine-grained, such as the texture of a surface (that of a 
plastic beer glass perhaps). Between these extremes, interpose as many levels and 
kinds of prediction as you can imagine. The task of perception, given such a multi-
layered prediction machine, is to match the incoming multi-modal sensory signal 
with apt top-down predictions at every level. That means finding the best set of 
predictions given the data, the context, and prior knowledge. The role of ongoing 
sensory input here is to constrain the brain’s chronic ongoing guessing.  
 
An important feature of the predictive processing account is that the weight that is 
given to the driving sensory signal (hence the value of prediction errors concerning 
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that signal) can be varied according to its degree of certainty or uncertainty. This is 
achieved by altering the gain (the ‘volume’ to use the standard auditory analogy) on 
the error-units accordingly. The effect of this is to allow the brain to vary the 
balance between sensory inputs and prior expectations at different levels (see 
Friston (2009) p. 299). This means that the weighting of sensory prediction errors 
(hence the relative influence of sensory inputs and prior expectations) at any level 
of processing within the whole hierarchical cascade may itself be flexibly 
modulated. This is sometimes described as optimizing “the relative precision of 
empirical (top-down) priors and (bottom-up) sensory evidence” (Friston (2009) p. 
299). This feature will prove pivotal when we start to explore the links with low-
cost (more ‘embodied’) solutions below. 
 
What (finally) about action: the lynchpin of embodied cognitive science? An 
intriguing speculation is that: 
 

 “ the best ways of interpreting incoming information via perception, are 
deeply the same as the best ways of controlling outgoing information via 
motor action….so the notion that there are a few specifiable computational 
principles governing neural function seems plausible. ” Eliasmith (2007) p. 
380 
 

Just such a parallelism emerges in recent work on ‘active inference’ (see e.g. Friston 
(2009), Friston, Daunizeau et al (2010)). Action, it is suggested, involves a kind of 
self-fulfilling prophecy in which neural circuitry first predicts the sensory 
(especially proprioceptive) consequences of the selected action. Those 
consequences do not immediately obtain, however, so prediction error ensues. The 
resulting cascade of prediction error is then quashed – ultimately at the level of 
spinal reflexes (Adams et al (2013)) – by moving the bodily plant to bring the 
action about. Predictions of the sensory consequences of actions thus play the role 
more normally assigned to motor instructions, in what amounts to a contemporary 
version of the ‘ideomotor’ theory of James (1890) and Lotze (1852). The difference 
between motor and visual cortex, on this account, lies in what kind of thing (for 
example, a trajectory of motion) is predicted rather than how it is predicted. 
 
Putting all this together reveals perception and action as locked in a continuous 
circular causal embrace. Perceptual hypotheses here inform actions that elicit, from 
the world, the very streams of multi-modal stimulation that they predict (see 
Friston, Adams et al (2012)). In this way we continuously bring into being the 
flows of salient sensory stimulation that our brains predict. This, as we shall later 
see in more detail, builds a robust bridge between PP and some of the core ideas 
behind ‘enactivism’ – for example, the idea (Varela, Thompson and Rosch (1991))) 
that we bring forth our worlds through action. Dynamically speaking, the idea is 
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that the whole embodied, active system self-organizes around the organismically-
computable quantity ‘prediction error’. This delivers a multi-level, multi-area, grip 
on the evolving sensory barrage – a grip spanning multiple spatial and temporal 
scales. That grip simultaneously determines perception and action, and thus selects 
(enacts) the ongoing stream of sensory bombardment itself. The ‘generative model’ 
that here issues sensory predictions is thus nothing but that multi-level, multi-area, 
multi-scale, body-and-action involving grip on the unfolding sensory stream. To 
achieve that grip, if PP is on track, is to know the structured and meaningful world 
that we encounter in experience and action. 
  
We now rehearse some core themes from the literature on embodied cognition 
before returning (section 5) to the ‘fit’ with work on the predictive brain. 
 
3. Productive Laziness 
 
A recurrent theme in work on the embodied, environmentally situated mind has 
been the value of ‘productive laziness’. I owe this phrase to Aaron Sloman 
(personal communication), but the general idea goes back at least to Herbert 
Simon’s (1956) explorations of economical but effective strategies and heuristics: 
problem-solving recipes that are not (in any absolute sense) optimal or guaranteed 
to work under all conditions, but that are ‘good enough’ to meet a need while 
respecting limitations of time and processing power.  For example, rather than 
attempt a full examination of reviews and menus for every restaurant within a 5 
mile radius, we might very well choose one that a trustworthy friend mentioned 
yesterday instead. We do so reasonably confident that it will be good enough, and 
thereby save the temporal and energetic costs of taking further information into 
account.  
 
Fast, heuristically-governed strategies for reasoning are, however, only one part of 
the rich mosaic of ‘productive laziness’. Another part (the focus of much of my 
own previous work in this area – see Clark (1997) (2008)) involves what might be 
thought of as ecologically efficient uses of sensing, and the distribution of labor 
between brain, body, and world. For example, there are circumstances (as Sloman 
(2013) points out) in which the best way to get through an open door is to rely 
upon a simple servo-control, or bump-and-swerve, mechanism. Or consider the 
task of two-legged locomotion. Some bipedal robots (Honda’s flagship ‘Asimo’ is 
perhaps the best-known example) walk by means of very precise, and energy-
intensive, joint-angle control systems. Biological walking agents, by contrast, make 
maximal use of the mass properties and bio-mechanical couplings present in the 
overall musculoskeletal system and walking apparatus itself. Nature’s own bi-pedal 
walkers thus make extensive use of so-called "passive dynamics", the kinematics 
and organization inhering in the physical device alone (McGeer 1990). It is such 
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passive dynamics that enable some quite simple toys, that have no onboard power 
source, to stroll fluently down a gentle incline. Such toys have minimal actuation 
and no control system. Their walking is a consequence not of complex joint 
movement planning and actuating, but of their basic morphology (the shape of the 
body, the distribution of linkages and weights of components, etc). Locomotion, as 
nicely noted by Collins et al (2001 p.608), is thus “a natural motion of legged 
mechanisms, just as swinging is a natural motion of pendulums”. 
 
Passive walkers (and their elegant powered counterparts – see Collins et al (2001)) 
conform to what Pfeifer and Bongard (2007) describe as a 'Principle of Ecological 
Balance’. This principle states: 
 

"first…that given a certain task environment there has to be a match 
between the complexities of the agent's sensory, motor, and neural 
systems…second….that there is a certain balance or task-distribution 
between morphology, materials, control, and environment" Pfeifer and 
Bongard (2007) p 123 
 

This principle reflects one of the big lessons of contemporary robotics, which is 
that the co-evolution of morphology (which can include sensor placement, body-
plan, and even the choice of basic building materials etc) and control yields a 
golden opportunity to spread the problem-solving load between brain, body and 
world. Robotics thus rediscovers many ideas explicit in the continuing tradition of 
J.J. Gibson and of  'ecological psychology'  see Gibson (1979), Turvey and Carello 
(1986)). William Warren, commenting on a quote from Gibson (1979), suggests 
that: 
 

"biology capitalizes on the regularities of the entire system as a means of 
ordering behavior. Specifically, the structure and physics of the environment, 
the biomechanics of the body, perceptual information about the state of the 
agent-environment system, and the demands of the task all serve to 
constrain the behavioral outcome" Warren (2006) p.358 

 
Another Gibsonian theme concerns the role of sensing in action. According to a 
familiar (more classical) vision, the role of sensing is to get as much information 
into the system as is needed to solve the problem. For example, a planning agent 
might scan the environment so as to build up a problem-sufficient model of what's 
out there and where it is located, at which point the reasoning engine can 
effectively throw away the world and operate instead upon the inner model, 
planning and then executing a response (perhaps checking now and then during 
execution to be sure that nothing has changed). Alternative approaches (see e.g. 
Gibson (1979), Lee and Reddish (1981), Beer (2000) (2003), Chemero (2009)) 
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depict sensing as a channel productively coupling agent and environment, 
sidestepping where possible the need to convert world-originating signals into a 
persisting inner model of the external scene.  
 
Thus consider the ‘outfielder’s problem’: running to catch a fly ball in baseball. 
Giving perception its standard role, we might have assumed that the job of the 
visual system is to transduce information about the current position of the ball so 
as to allow a distinct ‘reasoning system’ to project its future trajectory. Nature, 
however, looks to have found a more elegant and efficient solution. The solution, a 
version of which was first proposed in Chapman (1968), involves running in a way 
that seems to keep the ball moving at a constant speed through the visual field. As 
long as the fielder’s own movements cancel any apparent changes in the ball’s 
optical acceleration, she will end up in the location where the ball is going to hit 
the ground. This solution, Optical Acceleration Cancellation (OAC), explains why 
fielders, when asked to stand still and simply predict where the ball will land, 
typically do rather badly. They are unable to predict the landing spot because OAC 
is a strategy that works by means of moment-by-moment self-corrections that 
crucially involve the agent’s own movements. The suggestion that we rely on such 
a strategy is also confirmed by some interesting virtual reality experiments in which 
the ball’s trajectory is suddenly altered in flight, in ways that could not happen in 
the real world – see Fink, Foo, and Warren (2009)). OAC is a nice case of fast, 
economical problem-solving. The canny use of data available in the optic flow 
enables the catcher to sidestep the need to deploy a rich inner model to calculate 
the forward trajectory of the ball2.  
 
Such strategies are suggestive (see also Maturana 1980) of a very different role for 
the perceptual coupling itself. Instead of using sensing to get enough information 
inside, past the visual bottleneck, so as to allow the reasoning system to 'throw 
away the world' and solve the problem wholly internally, they use the sensor as an 
open conduit allowing environmental magnitudes to exert a constant influence on 
behavior. Sensing is here depicted as the opening of a channel, with successful 
whole-system behavior emerging when activity in this channel is kept within a 
certain range. In such cases, as Randall Beer  puts it: 
 

“the focus shifts from accurately representing an environment to 
continuously engaging that environment with a body so as to stabilize 
appropriate co-ordinated patterns of behavior” (Beer  2000, p.97). 

 
 
Finally, embodied agents are also able to act on their worlds in ways that actively 
generate cognitively and computationally potent time-locked patterns of sensory 
stimulation. In human infants, grasping, poking, pulling, sucking  and shoving 
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creates a rich flow of time-locked multi-modal sensory stimulation. Such multi-
modal input streams have been shown (Lungarella and Sporns (2005)) to aid 
category learning and concept formation. The key to  such capabilities is infant's 
capacity to maintain co-ordinated sensorimotor engagement with its environment. 
Self-generated motor activity, such work suggests, acts as a "complement to neural 
information-processing" (Lungarella and Sporns (2005) p.25). One major strand of 
work in robotics and artificial life thus stresses the importance of the distribution 
of the problem-solving load across the brain, the active body, and the manipulable 
structures of the local environment. This distribution allows the productively lazy 
brain to do as little as possible while still solving (or rather, while the whole 
embodied, environmentally-located system solves) the problem. 
 
4. Interactive Flow 
 
Work on embodied cognition also calls into question the idea that there is a 
sequential flow of processing whose stages neatly correspond to perceiving, 
thinking, and acting. When we engage the world in daily behavior, we often don’t 
do it by first passively taking in lots of information, then making a full plan, then 
implementing the plan courtesy of some sequence of motor commands. Instead, 
sensing, thinking, and acting conspire, overlap, and start to merge together as 
whole perceptuo-motor systems engage the world.  
 
Examples of such merging and interweaving include work on  interactive vision 
(Churchland et al (1994)),  dynamic field theory (Thelen et al (2001)), and ‘deictic 
pointers’ (Ballard et al (1997)) – for some reviews, see Clark (1997) (2008). For 
present purposes, two illustrative examples will suffice. The first and simplest 
(Mataric (1990) (1992)) is from the early days of situated robotics. As a robot 
moves around a simple maze, it detects landmarks registered as a combination of 
sensory input and current motion. A narrow corridor thus registers as a 
combination of forward motion and short lateral distance readings from sonar 
sensors. Later, if the robot is required to find its way back to a remembered 
location, it activates an interlinked body of such combined sensory and motor 
readings. The stored ‘map’ of the environment is thus immediately fit to act as a 
recipe for action, since the motor signals are part of the stored knowledge. In other 
words, the relation between two locations is directly encoded as the set of motor 
signals that moved the robot from one to the other. The inner map is thus itself the 
recipe for the necessary motor actions. By contrast, a more classical approach 
might first generate a more objective map which would then need to be reasoned 
over in order to plan the route. The Mataric robot thus deploys what Clark (1997) 
describes as ‘action-oriented representations’ - representations that describe the 
world by depicting it in terms of possible actions3.  
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As a second illustration, consider the task studied by Ballard et al (1997). In this 
task, a subject is given a model pattern of colored blocks and asked to copy the 
pattern by moving similar blocks, one at a time, from a reserve area to a new 
workspace. The task is performed by drag and drop using a mouse and monitor, 
and as you perform, eye tracker technology monitors exactly where and when you 
are looking as you tackle the problem. What subjects did not do, Ballard et al 
discovered, was to look at the target, decide on the color and position of the next 
block to be added, then execute their mini- plan by moving a block from the 
reserve area. Instead, repeated rapid saccades to the model were used during the 
performance of the task - many more saccades than you might expect. For 
example, the model is consulted both before and after picking up a block, suggesting 
that when glancing at the model, the subject stores only one piece of information: 
either the color or the position of the next block to be copied, but not both. Even 
when repeated saccades are made to the same site, very minimal information 
looked to be retained. Instead, repeated fixations seem to be providing specific 
items of information ‘just in time’ for use4. Repeated saccades to the physical 
model thus allowed the subjects to deploy what Ballard et al dub ‘minimal memory 
strategies’ to solve the problem. The idea is that the brain creates its programs so 
as to minimize the amount of working memory that is required, and that eye 
motions are here recruited to place a new piece of information into memory. By 
altering the task demands, Ballard et al were also able to systematically alter the 
particular mixes of biological memory and active, embodied retrieval recruited to 
solve different versions of the problem, concluding that in this task “eye 
movements, head movements, and memory load trade off against each other in a 
flexible way” (op cit p.732). This is another now-familiar (but still important) 
lesson from embodied cognition. Eye movements here allow the subject to use the 
external world itself, where appropriate, as a kind of storage buffer (for lots more 
on this kind of strategy, see Wilson (2004), Clark (2008)).  
 
Putting all this together already suggests a much more integrated model of 
perception, cognition and action. Perception is here tangled up with possibilities 
for action and is continuously influenced by cognitive, contextual, and motor 
factors. This is, indeed, exactly the picture suggested by Pfeifer et al’s (2007) notion 
of the ‘self-structuring of information flows’. Action serves to deliver fragments of 
information ‘just in time’, and that information guides action, in an ongoing 
circular causal embrace. Perception thus construed need not yield a rich, detailed 
and action-neutral inner model awaiting the services of ‘central cognition’ to 
deduce appropriate actions. In fact, these distinctions (between perception, 
cognition and action) now seem to obscure, rather than illuminate, the true flow. 
In a certain sense, the brain is revealed not as (primarily) an engine of reason or 
quiet deliberation, but as an organ for the environmentally situated control of 
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action. Cheap, fast, world-exploiting action, rather than the pursuit of truth, 
optimality, or deductive inference, is now the key organizing principle.  
 
Embodied, situated agents, all this suggests, are masters of ‘soft assembly’, building, 
dissolving, and rebuilding temporary ensembles that exploit whatever is available, 
creating shifting problem-solving wholes that effortlessly span brain, body, and 
world. 
 
5. Frugal Prediction Engines 
 
The PP model, with its relentless stress on the role of top-down, generative-model 
based prediction may seem an unlikely choice as the theory of the brain best suited 
to partner the kinds of alternative model of mind just sketched. And there is, 
indeed, a way of understanding PP that would be quite inimical to the various 
“lessons from embodiment’’ mentioned above. Such an understanding (let’s call it 
‘conservative predictive processing’) would depict our cognitive contact with the 
world as rooted in a kind of neuronally-encoded rich inner recapitulation of an 
observer-independent reality. This would offer a prediction-based version of what 
Anderson (2014) describes as the ‘reconstructive’ approach to perception. Such an 
approach uses sensing to build up (in the classical feedforward version) or activate 
(in the Conservative Predictive Processing model) an inner model that recapitulates 
the structure and richness of the real-world. That rich inner model is then able to 
stand-in for the external world for the purposes of planning, reasoning, and the 
guidance of action. The upshot is that the model-rich cognizer is able to ‘throw 
away the world’ and select her actions and responses by manipulating the inner 
model instead. 
 
I shall not further rehearse the many reasons why we should be suspicious of such 
approaches (for such assessments, see Churchland et al (1994), Clark (1997), 
Pfeifer and Bongard (xx)). But we have already seen one practical (in fact, flagship) 
example of an alternative, in the form of the OAC approach to solving the 
outfielder’s problem. Here, sensing delivers an action-based grip upon the world, 
rather than a rich reconstruction apt for detached reasoning.  Such a grip may 
intrinsically involve organismic action, as when the outfielder runs so as to keep 
the image of the ball stationary on the retina. By thus acting she ensures that she 
will be in a position to catch the ball when it descends towards the pitch. In such 
cases, behavioral success is not the outcome of reasoning defined over a kind of 
inner replica of the external world. Rather, it is the outcome of perception/action 
cycles that operate by keeping sensory stimulations within certain bounds. This is 
the same kind of strategy celebrated by other work in ecological psychology 
showing, for example, how diving seabirds (gannets) predict time-to-impact 
according to the relative rate of expansion of the image in the optic array - see Lee 
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and Reddish (1981), and discussion in Tresilian (1999). Such strategies are deeply 
non-reconstructive. 
 
PP, however, is in no way committed to the conservative (richly reconstructive) 
reading that would render it incompatible with such solutions. On the contrary, 
one of the fundamental principles of PP renders it opposed to that reading. This is 
because the goodness of a predictive model is determined by accuracy minus 
complexity5. Accuracy here names the ability to predict the task-salient sensory flux, 
while complexity varies according to the number of parameters in the model. Thus 
Fitzgerald et al note that: 
 

“Bayes optimal agents seek both to maximize the accuracy of their 
predictions and to minimize the complexity of the models they use to 
generate those predictions” Fitzgerald et al (2014, p.1) 

 
Minimizing complexity requires reducing computational costs as far as possible, 
consistent with performing the task at hand. Formally, this can be achieved by 
incorporating a complexity-penalizing factor - sometimes called an Occam factor, 
after the 13th century philosopher William of Occam who famously cautioned us 
not to “multiply entities beyond necessity”. Overall ‘model evidence’ is then a kind 
of composite quantity reflecting a delicate (and context variable) 
accuracy/complexity trade-off. PP systems are thus driven to learn and deploy the 
least complex (fewest parameters) solutions that will serve our needs. Crucially, PP 
accounts are also diametrically opposed to ‘passive perceiver’ stories. Instead, as we 
saw in section 2, the prediction machinery simultaneously drives perception and 
action so as to reduce salient prediction error. That means action gets called upon 
to serve simplicity too. 
  
To see how this might all work in practice, recall  the role of ‘precision weighting’ 
in sculpting patterns of causal influence among neuronal populations. Precision 
weighting alters the ‘gain’ on specific prediction error units, and thus provides a 
means of systematically varying the relative influence of different neural 
populations. The most familiar role of such manipulations is to vary the balance of 
influence between bottom-up sensory information and top-down model-based 
expectation. But another important role is to implement fluid and flexible forms of 
large-scale ‘gating’ among neural populations. This works because very low-
precision prediction errors will have little or no influence upon ongoing processing, 
and will fail to recruit or nuance higher-level representations. Altering the 
distribution of precision weightings thus amounts to altering patterns of ‘effective 
neuronal connectivity’ – in other words, altering the ‘simplest circuit diagram’ 
(Aertsen and Preissl, 1991) underlying current processing. This delivers an inner 
processing economy that is pervasively context-sensitive.  
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Now let’s return to the outfielder’s problem described earlier. Here too, already-
active neural predictions and simple, rapidly-processed perceptual cues must work 
together (if PP is correct) to determine a pattern of precision-weightings for 
different prediction error signals. This creates a transient web of effective 
connectivity (a temporary distributed circuit) and, within that circuit, it sets the 
balance between top-down and bottom-up modes of influence. In the case at hand, 
however, efficiency demands selecting a circuit in which sensing plays the non-
reconstructive role described above. The temporary task of visual sensing, in this 
context, becomes that of cancelling the optical acceleration of the fly ball. That 
means giving high weighting to the prediction errors associated with cancelling the 
vertical acceleration of the ball’s optical projection, and (to put it bluntly) not 
caring very much about anything else. Apt precision weightings thus select a pre-
learnt, fast, low-cost strategy for solving the problem. Contextually recruited 
patterns of precision weighting thus accomplish a form of set-selection or strategy 
switching6. This assumes that slower processes of learning and adaptive plasticity 
have already sculpted patterns of neural connectivity in ways that make the low-
cost strategy available. But this is unproblematic. It can be motivated in general 
terms by the drive towards minimizing complexity (which is indistinguishable, 
under plausible constraints, from the drive towards ‘satisficing’). The required 
learning can thus be accomplished using prediction error minimization operating at 
many time-scales. Such processes range all the way from the slow learning of the 
child baseball player, to the faster online adaptation of the pro-player factoring in 
(during a match) changing specifics of the wind conditions and the play of 
opposing batters.  
 
The upshot is a complex but rewarding picture in which bedrock processes of 
predictive learning slowly install models that include precision expectations 
allowing patterns of effective connectivity to be built and re-built ‘on the fly’. This 
enables  fast, knowledge-sparse modes of response to be recruited and nuanced 
according to current context. The resulting compatibility of ‘productively lazy’ and 
model-based approaches should come as no surprise. To see this, we need only 
reflect that the model or model fragment that underlies any given behaviour can be 
a simple, easily computed, heuristic (a simplified ‘rule-of-thumb’) just as easily as 
something with a more complex causal structure.  Such low-cost models will in 
many cases rely upon action, exploiting patterns of circular causal commerce 
(between perceptual inputs and motor actions) to deliver task-relevant information 
‘just in time’ for use. Dealing with a complex time-pressured world demands the 
use of many strategies, ranging from very simple heuristics to more complex 
structures of interacting approximations. Within PP, that diverse landscape exists 
within an overarching  eco-system in which many strategies emerge, dissolve, and 
interact according to changing estimations of precision7. Such an eco-system is 
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continuously dynamically self-reconfiguring, constantly engaging actions that yield 
new inputs that recruit new strategies in a potent rolling cycle.  
 
Notice, finally, that known external (e.g. environmental) operations are entirely apt 
for precision-based selection. For example, when performing the block-placing 
task (Ballard et al (1997)) described above, the brain must assign high precision to 
the predictions that underlie the various actions that are allowing us to ‘use the 
world as it’s own best model’ while performing the task. Such world-engaging 
actions are determined, in turn, by the acquired estimation that reliable, salient 
(task-relevant) information is available at such-and-such a location and at such-
and-such a time. The strategies thus selected are, just as Ballard et al suggested, 
minimal-internal-memory strategies whose success conditions require both 
organismic action and the co-operation of the external environment. The transient 
task-specific assemblies selected by varying estimations of precision are thus not 
restricted to the brain or even the organism8. Instead, transient neural coalitions 
select actions that may fold in the use of any amount of environmental structure 
and scaffolding9.  Radical PP thus offers a systematic way of combining deep, 
model-based flexibility with the use of multiple, fast, efficient, environmentally-
exploitative, routes to action and response10.   
 
6. Enacting Our Worlds 
 
An immediate implication of this larger story is that there is a very real sense in 
which human agents help construct the very worlds they encounter in perception. 
This process of construction corresponds rather closely to the mysterious-
sounding notion of ‘enacting a world’, at least as that notion appears in Varela et al 
(1991)11. 
 
Varela et al write that: 
 

“The overall concern of an enactive approach to perception is not to 
determine how some perceiver-independent world is to be recovered; it is, 
rather, to determine the common principles or lawful linkages between 
sensory and motor systems that explain how action can be perceptually-
guided in a perceiver-dependent world” Varela et al (1991) p. 173 
 

 
Such an approach to perception is prefigured, Varela et al report, in the work of 
Merleau-Ponty (1945/1962). There, Merleau-Ponty stresses the important degree 
to which perception itself is structured by human action. Thus we often think of 
perception as simply the source of information that is then used for the guidance 
of action. But expand the temporal window a little and it becomes clear that we 
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might equally well think of action as the selector of the perceptual stimulations 
themselves. In the words of Merleau-Ponty: 
 

“…since all the stimulations which the organism receives have in turn been 
possible only by its preceding movements which have culminated in 
exposing the receptor organ to external influences, one could also say that 
behavior is the first cause of all the stimulations” Merleau-Ponty 
(1945/1962) p.13 

 
In a striking image, Merleau-Ponty then compares the active organism to a 
keyboard which moves itself around so as to offer different keys to the “in itself 
monotonous action of an external hammer” (op cit)12. The message that the world 
‘types onto the perceiver’ is thus largely created (or so the image suggests) by the 
nature and action of the perceiver herself: the way she offers herself to the world. 
The upshot, according to Varela et al (1991, p. 174) is that “the organism and 
environment [are] bound together in reciprocal specification and selection”.  
 
This kind of relation is described by Varela et al as one of  ‘structural coupling’ in 
which“ the species brings forth and specifies its own domain of problems” (op cit 
p.198) and in that sense ‘enacts’ or brings forth (op cit p.205) its own world. In 
discussing these matters, Varela et al are also concerned to stress that the relevant 
histories of structural coupling may select what they describe as ‘non-optimal’ 
features, traits, and behaviors: ones that involve ‘satisficing’ (see Simon (1956)) in 
the sense introduced (without using that label) in section 3 above, i.e. settling for 
whatever ‘good enough’ solution or structure “has sufficient integrity to persist” 
(Varela et al (op cit) p.196). Radical PP has the resources to cash all these enactivist 
cheques, depicting the organism and the organism-salient world as bound together 
in a process of mutual specification in which the simplest approximations apt to 
support a history of viable interaction are the ones that are learnt, selected, and 
maintained.  
 
The simplest way in which a PP-style organism might be said to actively construct 
its world is by sampling. Action here serves perception by moving the body and 
sense-organs around in ways that aim to ‘serve up’ predicted patterns of 
stimulation. In particular, they aim to serve up predicted sequences of high-
reliability, task-relevant information.  This is a very clear case, it seems to me, of 
the kind of ‘active keyboard’ effect imagined by Merleau-Ponty - the organism 
selectively moves its body and receptors to try to discover the very stimuli that it 
predicts. In this way, different organisms and individuals may selectively sample in 
ways that both actively construct and continuously confirm the existence of  
different ‘worlds’. It is in this sense that, as Friston, Adams, and Montague (2012 p. 
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22) comment, our implicit and explicit models might be said to “create their own 
data”.  
 
Such a process repeats at several organizational scales. Thus we humans do not 
merely sample some natural environment. We also structure that environment by 
building material artifacts (from homes to highways), creating cultural practices and 
institutions, and trading in all manner of symbolic and notational props, aids, and 
scaffoldings. Some of our practices and institutions are also designed to train us to 
sample our human-built environment more effectively – examples would include 
sports practice, training in the use of specific tools and software, learning to speed-
read, and many, many more. Finally, some of our technological infrastructure is 
now self-altering in ways that are designed to reduce the load on the predictive 
agent, learning from our past behaviors and searches so as to serve up the right 
options at the right time. In all these ways, and at all these interacting scales of 
space and time, we build and selectively sample the very worlds that - in iterated 
bouts of statistically-sensitive interaction - install the generative models that we 
bring to bear upon them. 
 
The task of the generative model in all these settings is to capture the simplest 
approximations that will support the actions required to do the job – that means 
taking into account whatever work can be done by a creature’s morphology, 
physical actions, and socio-technological surroundings. Such approximations are 
constrained to “provide the simplest (most parsimonious) explanations for 
sampled outcomes” (Friston, Adams, and Montague (2012) p.22). There is thus  no 
conflict with work that stresses biological frugality, satisficing, or the ubiquity of 
simple but adequate solutions that make the most of brain, body, and world.  
 
7. Revisiting Representation 
 
There remains, however, at least one famously vexed issue upon which PP and the 
enactivist (at least if history is any guide) seem doomed to disagree. That is the 
issue of ‘internal representation’. Thus Varela et al are explicit that, on the 
enactivist conception “cognition is no longer seen as problem solving on the basis 
of representations” (op cit p.205). PP, however, deals extensively in internal 
models – rich, frugal, and all points in-between - whose role is to control action by 
predicting complex plays of sensory data. This, the enactivist might fear, is where 
our promising story about neural processing breaks bad. Why not simply ditch the 
talk of inner models and internal representations and stay on the true path of 
enactivist virtue? 
 
This issue requires a lot more discussion than I shall (perhaps mercifully) attempt 
here.13 Nonetheless, the remaining distance between PP and the enactivist may not 
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be as great as that bald opposition suggests. We can begin by noticing that PP, 
although it openly trades in talk of inner models and representations, invokes 
representations that are probabilistic and action-oriented through and through. 
These are representations that are fundamentally in the business of serving up 
actions within the context of rolling sensorimotor cycles. Such representations aim 
to engage the world, rather than to depict it in some action-neutral fashion, and they 
are firmly rooted in the patterns of organism-environment interaction that served 
up the sensory stimulations that installed the probabilistic generative model. 
 
The inner models thus constructed involve efficient encodings that deliver  a grip 
upon a world of multiple competing affordances for action. The shape of that grip 
is well captured by Itay Shani who writes that: 
 

“Actual sensory systems are not concerned with truth and accuracy as such 
but rather, with action and the need to maintain the functional stability of 
the organisms in which they are embedded. They do not report, or register, 
what is where like an idealized scientific observer but, rather, help organisms 
to cope with changing conditions in their external, and internal (somatic), 
environments.” Shani (2006) p. 90  

 
This is exactly the role played, if PP is correct, by the internal multi-level 
probabilistic generative models that guide perception and action. It is also the role 
more broadly played by what Engel et al (2013) describe as ‘dynamic directives’ – 
dispositions towards action that are rooted in emergent ensembles that can include 
multiple neural and bodily structures. 
 
What are the contents of the states governed by these multi-level action-oriented 
probabilistic generative models? The generative model issues predictions that 
estimate various identifiable worldly states (including states of the body.  But it is 
also necessary, as we have repeatedly seen, to estimate the context-variable 
reliability (precision) of the neural estimations themselves. It is these precision-
weighted estimates that drive action, and it is action that then samples the scene, 
delivering percepts that select more actions. Such looping complexities will make it 
hard (perhaps impossible) adequately to capture the contents or the cognitive roles 
of many key inner states and processes using the terms and vocabulary of ordinary 
daily speech. That vocabulary is ‘designed’ for communication, and (perhaps) for 
various forms of cognitive self-stimulation. The probabilistic generative model, by 
contrast, is designed to engage the world in rolling, uncertainty-modulated, cycles 
of perception and action. The representations thus constructed are: 
 

“Not actual re-presentations or duplicates of objects in the world 
but….incomplete, abstract code that makes predictions about the world and 
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revises its predictions on the basis of interaction with the world” 
Lauwereyns (2012) p.74 

 
 
Within PP high-level states (of the generative model) target large-scale, increasingly 
invariant patterns in space and time. Such states help us to keep track of specific 
individuals, properties, and events despite large moment-by-moment variations in 
the stream of sensory stimulation. Unpacked via cascades of descending prediction, 
such higher-level states simultaneously inform both perception and action, locking 
them into continuous circular causal flows. Instead of simply describing ‘how the 
world is’, these models  - even when considered at the ‘higher’ more abstract levels 
-  are geared to engaging those aspects of the world that matter to us. They are 
delivering a grip on the patterns that matter for the interactions that matter.  
 
Varela at al (1991) strongly reject appeals to ‘internal representation’. But for them, 
this notion implies the ‘action-neutral’ capture of what they call a ‘pregiven world’. 
Organism and world, they argue, are instead co-defined by a history of structural 
coupling: a kind of active ‘fitting’ of each to the other, rather than a passive 
‘mirroring’. Radical PP, I have tried to show, fully respects this intuition. It posits a 
hierarchical generative model that helps maintain the integrity and viability of a 
system by enabling it to minimize prediction errors and thus avoid compromising 
(possibly fatal) encounters with the environment. That distributed inner model is 
itself the result of self-organizing dynamics operating at multiple temporal scales, 
and it functions selectively to expose the agent to the patterns of stimulation that it 
predicts. The generative model thus functions – just as an enactivist might insist - 
to enable and maintain a structural coupling in which the viability of the organism 
is preserved.   
 
8. Conclusions: Embodied, Embedded, Enactive Prediction Machines 
 
Creatures like us are built, it seems, to be persistently active and productively lazy. 
We are built to maximize success while minimizing effort, both intellectual and 
physical. We do this, Radical PP suggests, by deploying webs of inner resources 
that are both prediction-based and fundamentally action-oriented. Such resources 
are not in the business of representing the world in some passive, descriptive 
manner. Instead, they are built to engage it in complex rolling cycles in which 
actions determine percepts that select actions, evoking and exploiting all manner of 
environmental structures and opportunities along the way.  
 
The probabilistic, prediction-driven inner economy also selects, moment-by-
moment, the very strategies that we deploy. Those strategies range from the quick 
and dirty to the slow and accurate, from those dominated by bottom-up sensory 
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flow to those more reliant upon top-down contextual modulation, and all points 
and admixtures in between. Such strategies readily include the use of available 
bodily actions and the exploitation of local environmental resources. The worry 
that predictive processing organizations might over-emphasize computationally 
expensive, representation-heavy strategies over other (quicker, dirtier, more 
‘embodied’) ones is thus fully and satisfyingly resolved. The ever-active predictive 
brain stands revealed as a lazy brain - a brain vigilant for any opportunity to do less, 
while achieving more. 
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occasional dramatic fluctuations in the flight path (see Shaffer et al (2004)).  
 
3 Such representations bear some resemblance to what Gibson (1979) called "affordances," 
where these are the potentials of use and activity that the local environment offers to a specific 
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‘pushmipullyu’ representations, that simultaneously describe how things are and prescribe how 
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the changes even for blocks and locations that had been visited many times before, or that were 
the focus of the current action. 
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8 See Anderson et al (2012), Anderson (2014). 
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Chalmers (1998), Clark (2008)) that bio-external structures and operations may sometimes form 
such integral parts of an agent’s cognitive routines as to be best thought of as ‘extending the 
mind. For a thorough rehearsal of the positive arguments, see Clark (2008). For critiques, see 
Rupert (2004) (2009), Adams and Aizawa (2008)). For a rich sampling of the ongoing debate, see 
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10 For lots more on this ‘embodied prediction engine’ story, see Clark (In Press).  
 
11 There is now a large, and not altogether unified, literature on enaction. For our purposes, 
however, it will suffice to consider only the classic statement by Varela et al (1991). Important 
contributions to the larger space of enactivist, and enactivist-inspired, theorizing include Noe 
(2004) (2010), Thompson (2010), and Froese and Di Paulo (2011). The edited volume  by 
Stewart et al (2010) provides an excellent window onto much of this larger space. 
 
12 Part of this image is misleading, insofar as it suggests that the external world is merely a source 
of undifferentiated perturbations (the repeated striking of a monotonous hammer). What seems 
correct is that the agent, by exposing herself to the varied stimulations predicted by the 
generative model, actively contributes to the world as sampled. Since it is only the world as 
sampled that the model needs to accommodate and explain, this delivers a very real sense in 
which (subject to the overarching constraint of structural self-maintenance i.e. persistence and 
survival) we do indeed build or ‘enact’ our individual and species-specific worlds. 
 
13 I have engaged such arguments at great length elsewhere – see Clark (1989) (1997) (2008) 
(2012). For sustained arguments against the explanatory appeal to internal representation, see 
Ramsey (2007), Chemero (2009), Hutto and Myin (2013). For some useful discussion, see 
Sprevak (2010) (2013), Gallagher, Hutto, Slaby, and Cole (2013). 
 


