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Previous claims to have resolved the two-envelope paradox have been pre-
mature. The paradoxical argument has been exposed as manifestly falla-
cious if there is an upper limit to the amount of money that may be put in an
envelope; but the paradoxical cases which can be described if this limitation
is removed do not involve mathematical error, nor can they be explained
away in terms of the strangeness of infinity. Only by taking account of the
partial sums of the infinite series of expected gains can the paradox be re-
solved.

1. Finite distributions

You are presented with two sealed envelopes, one of which contains twice
as much money as the other, and you select one at random. You are then
offered the chance to swap and take the other instead. If your selected
envelope containsx, and your swap is lucky, you get 2x, but if you are
unlucky you get1/2x. So it seems that your expected utility if you swap is
1/2 × 2x + 1/2 × 1/2x, which is 11/4x. For example, if you have £2 in your
chosen envelope the other envelope must have either £1 or £4, average
£2.50. So it looks as if you should swap. However, exactly the same argu-
ment would have been available if you had picked the other envelope in
the first place.

As it stands it is not difficult to see what is wrong with this argument.
But it can be developed into a paradox that is not so easily resolved.

We shall focus on cases with integral sums of money in the envelopes,
which is how money comes in our world.1 There will be no loss of gener-
ality if we take the values to be the powers of 2: 20, 21, ... , 2n, 2n+1, ....
Let the smallest monetary unit (say £1) be 1: every other unit has to be
divisible by 2 without remainder. In its original version the paradoxical
argument is plainly fallacious. It is given that you choose randomly
between the two envelopes, so that the chance of picking each is 0.5. But
it does not follow from the fact that (x, 2x), (2x, x) are equiprobable that
(x,1/2x), (x, 2x) are equiprobable (cf. Jackson, Menzies and Oppy 1994),
as is plain from Fig. 1 below.

1  As far as we can see, no extra issues of significance are raised by continuous
distributions. See the final section of the Appendix below.
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Clearly, if you have 1 in your envelope you can only gain by swapping.
If you have 2, you get either 1 or 4 on swapping. There is nothing in the
description of the set-up that implies that 4 is as likely as 1. But what if
the respective probabilities,p0 andp1 are such that theweighted average
of 1 and 4 exceeds 2, and moreover this is true for every value in your
envelope greater than 2 (or even on average)?

However, it is easy to see from Fig. 1 that, if there is a maximum sum
that can be put in an envelope, the average expected gain from swapping
is zero, so that not only will no probability distribution for finitely many
powers of 2 satisfy the condition that∀npn+1 > pn but it will not even
yield a gain on average. Each possible gain is matched by an equivalent
equiprobable loss. It is also clear that, if you have the maximum sum in
your envelope, then you are bound to lose on swapping, which alone is
sufficient to show that swapping will not always produce a gain.

In Fig. 12 the maximum value in your envelope is 16, with a maximum
total sum of 24, 16 in your envelope and 8 in the other; but obviously the
situation is the same whatever the maximum value.

A is a random variable for the amount in the selected envelope, andB a
random variable for the amount in the other envelope. “+20p0” is the gain,
weighted by its probability, from swapping an envelope containing 1 for
the other envelope when it contains 2; “–20p0” is the loss of 1, weighted
by its probability, from swapping an envelope containing 2 for theother
envelope when it contains 1, and so on.

Let the probability that 2n is the smaller sum be 2pn. So the probability
that the outcome is (1, 2) isp0 and the probability that the outcome is
(2, 1) is alsop0, and, in general, the probability of (2n, 2n+1) = the proba-
bility of (2n+1, 2n) = pn.

Although it is obvious enough from Fig. 1 that the average net gain on
swapping is zero, it is worth examining the matter more closely in order
to prepare the ground for the genuinely problematic cases.

2  After Kraitchik (1943, pp. 133–34).
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        envelope      envelope

          2 ⇒ 1 × p0
Expectation = .
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Fig. 1

WhenA is 1, the expected gain is 2 – 1, = 20. WhenA has its highest
value, 2k+1, the expected gain is 2k – 2k+1, = – 2k; in other words there is
an expected loss of 2k. Otherwise,E(B|A) – A is the weighted average
value ofB whenA is 2n, minus 2n, that is,

To calculate the average or expectation ofE(B|A) – A, namely
E(E(B|A) – A), we need to weight each instance by its probability,p0 for
A = 1,pk for A = 2k+1, andpn–1 + pn for all other values ofA.

For example, in the case whereA = 21, E(B|A) – A = (20p0 + 22p1)/

(p0 + p1) – 21. Multiplying by the probability weighting,p0 + p1, we get

20p0 + 22p1 – 21p0  – 21p1, which equals 21p1 – 20p0.

In general, 2n–1pn–1 + 2n+1pn – 2npn–1– 2npn = 2npn – 2n–1pn–1.
The sum for the (positive and negative) gains on swapping is tabulated

below for our small illustrative example:

B
 A

20 21 22 23 24

        20 +20p0

        21 –20p0 +21p1

22 –21p1 +22p2

23 –22p2 +23p3

24 –23p3

2n 1– pn 1– 2n 1+ pn+

pn 1– pn+
----------------------------------------------------------- 2n.–
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Since this is a finite sum of finite values its terms may be reordered at will.
Move the second column up, and it is evident that each term in the reor-
dered series sums to zero.

Generalising from this small example: for finite distributions, where the
largest total sum in the two envelopes is 3.2k, the average or expected
expected-gain,E(E(B|A) – A), is

20p0 +

= 20p0 +

=  20p0  – 20p0  + 21p1  – 21p1 + ... + 2k–1pk–1– 2k–1pk–1 + 2kpk – 2kpk

= 0, since all the terms cancel out.

20p0

+ (21p1 – 20p0)

+ (22p2 – 21p1)

+ (23p3 – 22p2)

– 23p3

   (20p0 – 20p0)

+ (21p1 – 21p1)

+ (22p2 – 22p2)

+ (23p3 – 23p3)

2npn 2n 1– pn 1––( )
n 1=

k

∑ 2kpk–

2n 1– pn 1–– 2npn+( )
n 1=

k

∑ 2kpk–
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An alternative form of the paradox can be given by comparing the
expected gain, givenA, on swapping with the expected gain, givenB, on
sticking: you go on to argue that the other envelope containsx, so that
yours has either1/2x or 2x. It then appears profitable both to swap and to
stick. But just as the expected gain on swapping in the case of a finite dis-
tribution is zero, so is the expected gain on sticking. ForE(B – E(A|B)),
the expected gain givenB, just interchange + and – in the calculations
above:

– 20p0 + 20p0  – 21p1 + 21p1 – ... – 2k-1pk–1 + 2k–1pk–1 –  2kpk + 2kpk = 0.

In short, if there is an upper bound to the amount in the envelopes, the
probabilities cannot give rise to the paradoxical argument.

2. Finite mean expectation for an envelope with an infinite
probability distribution

But what if there is no upper limit to the value in an envelope, so that the
probability distribution is over a countably infinite set of values? If the
average expectation for an envelope is finite, then the result above can eas-
ily be extended. Again we can prove that the average expected gain must
be zero.

Since we shall now be dealing with sums of infinite series, it may be
helpful to recall Zeno’s paradox of the Racecourse. In order to run a cer-
tain distance Achilles must first run half that distance, then half of what
remains, then half of that, and so on ad infinitum. The infinite sequence of
these intervals,1/2, 1/4, 1/8,… , (1/2)n, …, (n ≥ 1), steadily decreases
towards 0 as a limit. A sequence which converges to 0 is called a null
sequence. As a matter of definition, the sum of an infinite series is the
limit, L, of the sequence of its partial sums, if that limit exists. In other
words, the sum is that numberL such that, for any intervalε, however
small, after a certain point in the sequence of partial sums all subsequent
members will be withinε of L. The infinite series1/2 + 1/4 + 1/8
+ … + (1/2)

n + … sums to 1, since the sequence of its partial sums,〈sn〉 =
1/2,

3/4,
7/8, … , converges towards 1 asn tends to infinity. In general, an

infinite series has a sum iff the sequence of its partial sums converges. A
necessary condition for the sequence of partial sums to converge is that
the sequence of the terms of the series is null, which following Haggarty
(1993, p. 104) we may callthe vanishing condition.
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To return to the envelopes: the average expectation for your envelope,

E(A), is 20p0 + (2npn − 1 + 2npn). Under the supposition that it has

a finite value, this must therefore be a convergent infinite series.

Thekth partial sum ofE(E(B|A) – A), the average expected gain given
A, is

Since the sequence of partial sums ofE(E(B|A) – A) is the sequence

, we have

It is worth remembering this equality, since whenever we are discussing

the behaviour of the sequence or the limit of that sequence we are

in effect discussingE(E(B|A) – A), that is to say, the average expected gain

on swapping given A.

Now, given thatE(A) = 20p0 + (2npn − 1 + 2npn) is convergent, so

is 20po + 2npn;
3 therefore by the vanishing condition the sequence

of terms , is null, one which tends to 0 as . So the

average expected gain,E(E(B|A) – A), is 0, since it is the limit of this very

sequence.
3 See Haggarty (1993, p. 108), first comparison test.

∞
n 1=∑

20p0 2npn 2n 1– pn 1––( )

n 1=

k

∑+

20p0 2n 1– pn 1–– 2npn+( )

n 1=

k

∑+

20p0 20p0– 21p1 21p1– ...

2– k 2– pk 2– 2k 1– pk 1– 2k 1– pk 1–– 2kpk

+ +

+ +

2kpk (since the previous terms cancel out).

=

=

=

2kpk〈 〉

E E B A( ) A–( ) 2kpk.
k ∞→

lim=

2kpk〈 〉

∞
n 1=∑

∞
n 1=∑

2kpk〈 〉 k 0≥, k ∞→
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In short, whereas with a finite probability distribution the sequence of
partial sums drops to 0 when the complete sum is reached, in the present
case the infinite sequence of partial sums converges to 0 as a limit.

Example

As an illustration, here is an example of a countably infinite probability
distribution for which the average expected sum in your envelope is finite.

The probability that 1 is the smaller value, 2p0, =
1/2.Forn > 0, the prob-

ability, 2pn, that 2n is the smaller value = (1/3)
n: 1/3,

1/9,
1/27,

1/81, .... Since
1/2 + (1/3)

n = 1/2 + 1/2 = 1, this is a normalised distribution.

The following process will generate this distribution. Select a ball ran-
domly from a pair one of which is white, the other black. If the white ball
is drawn letn equal 0. If a black ball is selected on the first draw then
select randomly from two white balls and one black one, replacing the
black ball if it is drawn, and keep doing this until a white ball is selected.
If i is the number of draws preceding the drawing of a white ball, clearly
i may take any of the countably many values 0, 1, ...,n, n+1, .... Letnequal
i: then set the lower sum to 2n. The probability that 2n is the smaller value
is just the probability thatn = i, which in turn is the probability ofi black
balls and a final white ball, which is1/2 for n = 0, and, forn > 0,
1/2 × (1/3)

i −1 × 2/3 = (1/3)
i . The envelope to contain the smaller sum can

then be determined by tossing a fair coin.
The average expectation for an envelope,E(A),

is 33/4, which is the limit of the partial sums:

1/4, 1
1/12, 1

105/108, 2
61/108, 2

311/324, 3
217/972, ...

For example, the 30th partial sum to 5 decimal places is 3.74997.4

4

∞
n 1=∑

20p0 2npn 1– 2npn+( )
n 1=

∞

∑+

20p0 2npn 1– 2npn+( )
n 1=

∞

∑+ p0 2npn 1– 2npn
n 1=

∞

∑+
n 1=

∞

∑+

p0 21p0 2n 1+ pn 2npn
n 1=

∞

∑+
n 1=

∞

∑+ + 3
4
--- 3.2npn

n 1=

∞

∑+

3
4
--- 3.2n.1

2
--- 1

3
---( )n

n 1=

∞

∑+ 3
4
---

3
2
--- 2

3
---( )n

n 1=

∞

∑+ 3
4
---

3
2
---.2+ 33

4
---.

=

= =

= = = =
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The value of the average expected gain givenA, E(E(B|A) – A), is 0

because the sequence ofits partial sums, , is the null sequence:
1/4,

1/3,
 2/9,

4/27,
.... ,1/2(

2/3)
k,….

What happens here is that the positive expected gains (weighted by
their probability),1/4 whenA = 1, and1/12 when A = 2, are balanced by
the infinitely many (weighted) decreasing expected losses whenA > 2:
–1/9, –

2/27, ... , – (1/9)(
2/3)

k–1, ... , which sum to –1/3.

Once again, forE(B – E(A|B)), the expected expected-gain givenB, just
interchange + and – in the calculations above: as before, the sequence of
partial sums  converges to 0.

So far the results presented, albeit in our own way, have already been
established in the literature. Now we move on to the genuinely paradoxi-
cal cases.

3. Infinite paradoxical cases

The general proof thatE(E(B|A) – A) = 0 does not go through when the
average expectation for an envelope,E(A), is infinite.

If E(A) is not finite then its series

must diverge, growing without limit. We cannot therefore infer, as before,

that the infinite series 20p0 + (2npn − 2n − 1pn − 1) converges, but

neither can we exclude it.5 In other words, the possibility that

E(E(B|A) -- A) equals zero is not ruled out. What fails is the general argu-

ment that itmust sum to 0.

WhenE(A) is infinite, it is possible for the sequence to con-
verge to a limit or to be divergent whether by oscillation or by diverging
to infinity. To determine which it is we have to look at the particular prob-
ability distribution concerned.

5 This is because the vanishing condition is necessary but not sufficient. The
vanishing condition entails that ifE(A) converges the sequence of partial sums of
E(E(B|A) – A), 〈2kpk〉, is null, but not that〈2kpk〉 is non-null ifE(A) does not con-
verge.

2kpk〈 〉

2– kpk〈 〉

20p0 2npn 1– 2npn+( )
n 1=

∞

∑+

∞
n 1=∑

2kpk〈 〉
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We know, from what has already been established in the literature, that
there are cases where diverges to infinity, and soE(E(B|A) – A) is
infinite. Some writers express scepticism about infinite expectations, dis-
missing them as absurd (Castell and Batens 1994, and cf. Broome 1995):6

but what if there are cases where the expectationE(E(B|A) – A) has a pos-
itive finite value, which will occur whenever limk → ∞2kpk is a positive real
number? Such cases would be paradoxical cases in which the average
expected gain is uncontroversially well-defined and which an appeal to
doing the wrong sort of mathematics or going beyond the sense which our
mathematical model provides (abusing infinities) will not dissolve the
paradox.7

To prove that such cases exist, consider the distribution8 where the
probability that 1 is the smaller value, 2p0, =

1/6, and, forn ≥ 1, the prob-
ability, 2pn, that 2n is the smaller value, ispn–1 + (1/4)

n.9

The expected expected-gain givenA will once again be the limit of the
sequence of partial sums, :

20p0 = p0 = .

21p1 = 20p0 + 20 = 20p0 + .
6 Of course they would not say thatE(A) is well-defined in these cases either,

so they would not say as we have that the expectation for the sum in envelope was
infinite, but rather that in these cases there is no finite expectation forA.

7  In the Appendix below we call such paradoxical cases “best paradoxical”, by
contrast with cases where the expected gain is not finite, which we call “un-
bounded paradoxical”.

8  We owe this example to Robert Black.

9  The distribution is normalised, since

A process to generate this distribution using black and white balls analogous
to the process described for the distribution in the example of the last section will
not have quite the same pleasing simplicity. You need to continue the following
random selections until a white ball is drawn. First select a ball randomly from a
box of one white and five black balls. If a black ball is selected, select from a box
of 2 white and 3 black balls. Then select from a box of 11 white and 13 black balls.
For each subsequent selection double the number of white balls and add three
more, and double the number of black balls and add one more.

2kpk〈 〉

2pn
n 0=

∞

∑ 2p0 pn 1–
n 1=

∞

∑ 1
4
--- 

  n, whence

2pn
n 0=

∞

∑ pn
n 0=

∞

∑–

n 1=

∞

∑+ +

1
6
---

1
3
---

2pn
n 0=

∞

∑

+

2 1
6
--- 1

3
---+ 

  1.

=

=

= =

2kpk〈 〉
1
12
------

1
4
--- 

  1 1
2
--- 1

2
--- 

  1
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22p2 = 21p1 + 21 = 21p1 + ,

and in general, whenk ≥ 1,

2kpk = 2k–1pk–1 + 2k–1 = 2k–1pk–1 + .

The first term of the sequence, then, is1/12, and each subsequent term,sk,

is equal to its predecessor,sk–1, plus1/2(
1/2)

k, that is,sk–1 plus thekth value

in the sequence1/4, 1/8, 1/16,
1/32, ... , the members of which sum to1/2.

Thus the sequence increases steadily, converging to the limit1/12 +
1/2(

1/2)
k = 7/12. Cashed out, the sequence goes

approaching 7/12 (=
1792/3072) asymptotically. SoE(E(B|A) – A) = 7/12.

Obviously the expected gain is always positive, since, for every
n, pn > 1/2pn+1. Even those who are sceptical about infinite expectations
must find this example paradoxical, since the average expected gain con-
ditional onA is finite.10

The infinite series

E(E(B|A) – A) = 20p0 +

begins

It cannot be rebracketed as

because then its sum would be 0, whereas in the original arrangement the
sum is7/12, and a convergent series has a unique sum. Rearranged in this
way, it is the series forE(E(B–A)|A+B)), the average of the expected gains
given the total sum in the two envelopes, which accordingly is unequal to
E(E(B|A) – A) in this case. Indeed it is well known that such series can be
illicitly rearranged to converge to any real number (see Haggarty 1993,
pp. 115–16).

10 Discrete paradoxical infinite distributions like that given by Broome (1995,
pp. 6–7) do not yield a finite value for this expectation. Broome’s example is:
         2pn = 1/3(

2/3)
n, n ≥ 0.

1
4
--- 

  2 1
2
--- 1

2
--- 

  2

1
4
--- 

  k 1
2
--- 1

2
--- 

  k

∞
k 1=∑

1
12
------ 1

3
--- 11

24
------ 25

48
------ 53

96
------ 109

192
--------- 221

384
--------- 445

768
--------- 893

1536
------------ 1789

3072
------------ …, , , , , , , , , ,

∞
n 1=∑ 2n 1–– 2npn+( )

1
12
------ 1

12
------– 1

3
---+ 

  1
3
---– 11

24
------+ 

  11
24
------– 25

48
------+ 

  …+ + + +

1
12
------ 1

12
------– 

  1
3
--- 1

3
---– 

  11
24
------ 11

24
------– 

  …+ + +
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Each partial sum includes the gain on swapping for the outcome
(2k–1, 2k) but not the loss for (2k, 2k–1). For example, whenk = 4, the sum
includes the gain for (8, 16) but not the loss for (16, 8).

It is easy to verify that the expectation for the random variableA, the

value in the selected envelope, is not finite. We have seen that the

sequence of partial sums is not null but tends to the limit7/12,

whence the series 2npn must grow indefinitely (diverge to +∞, by

the vanishing condition), and so therefore mustE(A) = 20p0 +

(2npn − 1 + 2npn) (by the first comparison test, Haggarty 1993,

p. 108).

On the other hand, if we consider the average expected gain given the
total of the sums in the envelopes,E(E(B–A|A+B)), this sums to zero not
only for finite probability distributions but also for all infinite ones too:

Finite distribution

Infinite distribution

Since each partial sum equals zero, the sequence of` partial sums is null.
SoE(E(B|A) – A) ≠ E(E(B – A|A+B)).

If we consider the average expected loss given the sum in the other
envelope, |E(B – E(A|B))|, we find that there is an argument, parallel to
that forE(E(B|A) – A), that sticking is profitable. Thekth partial sum of
E(B – E(A|B)) is –2kpk. SoE(B – E(A|B)) = limk→ ∞–2kpk, which in the
present example is –7/12, aloss of 7/12. Here, each partial sum includes the
loss on swapping for the outcome (2k, 2k–1) but not the gain for (2k–1, 2k).
For example, whenk = 4, the sum includes the loss for (16, 8) but not the
gain for (8, 16). Again,E(B – E(A|B)) andE(E(B – A|A+B)) are not the
same.

To summarise, in the present example:

(1) E(E(B|A) – A) converges to a positive limit;

(2) E(E(B–A|A+B)) converges to 0;

(3) E(B – E(A|B)) converges to a negative limit.

2kpk〈 〉
∞
n 1=∑

∞
n 1=∑

pn 2n 1+ 2n–( ) pn 2n 2n 1+–( )+( )
n 0=

k

∑ 0=

pn 2n 1+ 2n–( ) pn 2n 2n 1+–( )+( )
n 0=

∞

∑ 0=
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These are to be distinguished fromE(B–A) andE(A–B), which are
equivalent to them only when they are all equal to 0.11 With the distribu-
tion used as an example above, the infinite series for the former goes

and the sequence of its partial sums oscillates between 2kpk and 0:

Here the infinite series is divergent by oscillation; and so, by symmetry, is
E(A–B). Scott and Scott (1997) and Arntzenius and McCarthy (1997),
unlike Broome (1995), both appear to resolve the paradox by construing
the paradoxical cases in those terms. But if the average expected gain is
calculated in the way it has been above, asE(E(B|A) – A), it is defined.
Even those who argue that it is undefined in the cases where the average
expected gain is not finite will have to admit it is defined in the example
used here.

Now, sinceE(A) andE(B) are both infinite, it may seem that this result
does not involve any inconsistency. If the expected value of each envelope
is infinite, can there be any difference between those values? Ifx is finite,
certainly (7/12 + x) > x, but if it is not we cannot say that—which, in the
words of Chalmers (1996), is “just another example of a familiar phenom-
enon, the strange behaviour of infinity”.

However, pointing this out will not resolve the paradox. It does not dis-
tinguish the two-envelope case from the following variant, where there is
a genuine positive expected gain. DetermineA according to the probabil-
ity distribution we have been using in this section:p0= 1/12, pn+1= 1/2 pn +
1/2(

1/4)
n for n ≥ 1. Let the probability ofA = 1 bep0 and the probability of

A = 2n, n ≥ 1, bepn-1 + pn. Then determineB thus: ifA = 1,B = 2, elseB
= half or doubleA, with the probability ratiospn–1 : pn. If A comes out as
4, for example, the expectation forB is (2p1 + 8p2)/(p1 + p2) = 44/9. You
are handed the first sealed envelope containing the sumA and given the
option of swapping it for the second, whose content isB. It will always be
rational to swap and the average expected gain will be7/12, though the
expectations for each envelope have no finite mean.

11  The series forE(B – A) is alternating:
Clearly its partial sums alter-

nate between 0 and 2npn, so that, whenever the sequence is null, dn

will converge to zero, and will be divergent otherwise. For more detail see the Ap-

pendix.

∞
n 0=∑ dn 20= p0 20p0 21p1+– 21p1– 22p2 ….–+

2npn〈 〉 ∞
n 0=∑

1
12
------ 1

12
------– 1

3
--- 1

3
---– 11

24
------ 11

24
------– 25

48
------ …+ + + +

1
12
------ 0

1
3
--- 0

11
24
------ 0

25
48
------ …, , , , , , ,
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In the paradoxicalenvelope cases only one of the three results on swap-
ping—(1) positive average gain, (2) zero average gain, (3) average loss—
can be correct.

Cases (1), (2) and (3) correspond to calculating the expected expected-
gain on swapping byE(E(B|A) –A), E(E(B–A|A+B)) andE(B–E(A|B))
respectively.12 Each of the series for these expectations can be constructed
by various regroupings of all the terms for the series forE(B–A) (as can
be seen by inspecting the beginning of the Appendix), which is to say that
these series exhibit certain symmetries as completed infinite series. If
those symmetries were preserved in the sequences of partial sums by
which the sums of those infinite series are defined, the fact that
E(E(B -- A|A+B)) = 0 would allow us to conclude that they all summed to
zero. However, those symmetries are absent in the sequences of partial
sums, and it is for this reason that we cannot in general assume that these
different series will have the same sum. One subtlety of the paradox is that
it disguises this from us. A further subtlety is that by appealing to the sym-
metry in a distorted manner (equiprobability of our envelope being the
larger or the smaller used to tempt us to assume equiprobability ofB being
half or twiceA when givenA = 2n) it insinuates the presumption that irre-
spective of the probability distribution concerned we can disregard the
symmetry of the setup when choosing how to calculate the expectations.
But that symmetry is significant, since it cannot matter which envelope we
calledA. As we show in the next paragraph, choosing to calculate the
average expected gain on swapping by calculatingE(E(B|A) – A) or
E(B -- E(A|B)) ignores the symmetry of the setup. Yet any consideration
(un)favourable to one is equally (un)favourable to the other, and they can-
not both be correct unless they are both zero, since one is the negative of
the other. What follows, then, is the reason whyE(E(B–A|A+B)) is the
uniquely correct way to calculate the expected expected-gain in the para-
doxical cases.

What distinguishesE(E(B–A|A+B)) as correct is that only in this case
do the partial sums of the expectations properly respect the set-up, namely
that,wherever you can have 2n in your envelope and twice as much in the
other, you can, with equal probability, have 2n+1 in yours and half as much
in the other, and vice versa. It does so because each of its terms, given by
E(B–A|A+B=3.2n), consists in the case where you have 2n and the other
has twice as much, and you have 2n+1 and the other has half as much. In
the case ofE(E(B|A) – A), while the possibility that 2n+1 is in the other
envelope is included in the partial sums for this expectation, the case in
which 2n+1 is in your own is excluded; and vice versa forE(B – E(A|B)).

12 In the Appendix we give mathematical reasons for dismissingE(B -- A) and
E(B) – E (A) as ways of calculating this expectation.
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So the partial sums ofE(E(B|A) – A) always include a gain without its
symmetrical loss, while the partial sums ofE(B – E(A|B)) always include
a loss without its symmetrical gain.13 Thus onlyE(E(B – A)|A + B), which
gives zero gain, respects the symmetry of the set-up for every finite partial
sum. But it is precisely in terms of the sequence of partial sums that the
average expected gain is defined.

It may seem that these considerations are not enough to distinguish the
standard two-envelope case from the variant described above in which the
sum in the second envelope is always determined by a separate procedure
as half or double the first. If there is no upper bound on the sums involved
in either case, what is the difference? In the variant case must not an out-
come with 2n+1 in the first envelope and 2n in the second be possible
whenever (2n, 2n+1) is possible (even if they are not equiprobable)? But if
we see the infinite cases as extrapolations from or extensions of the finite
ones, we can see that partial sums which exclude one of these two possi-
bilities but not the other distort the set-up in the standard case but not in
the variant one.

It now emerges that it was a mistake to assimilate the two-envelope par-
adox to the St. Petersburg paradox as Broome (1995) and Arntzenius and
MacCarthy (1997) do. The St. Petersburg paradox turns on our unwilling-
ness to invest a huge finite sum on the basis of an infinite expectation. The
essence of the two-envelope paradox is that there is a way of calculating
the mean expected gain on swapping that makes it come out non-zero. As
we have seen, the best paradoxical two-envelope cases are those in which,
though the expectation for your envelope is not finite, the expectation of
E(E(B|A) – A) is clearly well-defined and finite.

Suppose that instead of keeping the contents of the envelope you finally
settle for, you get nothing unless you swap, in which case you receive the
amount gained or pay the sum lost on swapping. This does not change the
paradox significantly, and removes any confusion that might arise from
the fact that neither envelope has a finite expectation in the problematic
cases. So, by contrast with the St. Petersburg paradox, it is not an infinite
expectation which makes the problematic two-envelope cases paradoxi-
cal.

13  In terms of a table like Fig. 1, the partial sums forE(E(B|A) – A) end on a
complete row, thereby missing out –2npn; and the partial sums forE(B -- E(A|B))
end on a complete column thereby missing out 2npn. The partial sums for
E(E(B--A|A+B)), of course, step down the diagonals.
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4. Looking inside your envelope

At first sight the paradox seems to return if it is supposed that, before
choosing whether to swap, you look inside your envelope and therefore
know what sum it contains. Now the expected gain for the paradoxical dis-
tributions is unquestionably positive. For example, if value in your enve-
lope is 4, the other envelope must have 2 or 8. Suppose it actually has 2.14

If you had looked inside the other envelope instead, you would have
known the first envelope contained 1 or 4, and then your expected gain on
swapping would be negative. But then your knowledge would be different
in the two cases. In one case you know the value ofA, in the other ofB.
Their evidential value on their own is different. For an analogy, suppose
my wife and I know that Fred is friendly with Amanda and Samantha, and
that Samantha is friendly with Fred and Joe. We catch sight of a couple
arriving at a party, but in the darkness I recognize Fred and do not see his
companion. My wife, who is some distance in front of me, spots Saman-
tha but does not see who is with her. I conclude that the Fred is with
Amanda or Samantha, she concludes that Samantha is with Fred or Joe.

We both have partial, but different evidence, on the basis of which we
reach our different conclusions. Nothing odd about this.

Knowing the contents of your envelope before choosing whether to
swap does nevertheless give you an advantage, since you will always gain
by swapping if you find 1 in your envelope.

This probably does not remove the puzzlement, since it seems that
swappingevery time after looking is better “on average”. But what is to
be meant by “on average”? It might seem that we are talking about a situ-
ation in which you have different information so that the considerations of
§3 do not apply. But that is incorrect. Although if you looked in the enve-

14  Indeed, this apparent resurrection of the paradox does not depend on your
actually opening your envelope, since even when your envelope remains sealed
you nevertheless know thiswould be the situation if you had opened it.

}

{

friendly with →

← friendly with

Amanda

SamanthaFred

Joe
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lope you would have different information, whether swapping is better on
average is unaffected by that knowledge. So the considerations of§3 still
apply. Rather, the effect of talking about looking in your envelope is to
persuade us to return to calculatingE(B|A) – A, and we knowE(B|A) – A
is positive for any particular value ofA since we have chosen paradoxical
distributions that make it so. Now, with the thought that it is better “on
average”, it seems that we should calculate the average ofE(B|A) –A, that
is, E(E(B|A) – A). Thus are we beguiled once more into calculating the
wrong expectation, wrong for the reasons already given in§3.

To elaborate, let us suppose that you take part in thousands of repeated
trials with possibly different total sums, with the probabilities given above
(which you know). You are allowed to see what is in your envelope before
deciding whether to swap but you have to pay a small premium, say a
quarter of the expected gain, to swap, except that if you have 1 in your
envelope the premium is 1. A general policy of swapping is likely to lose
you money, and the more trials there are the more likely this is.

To see this, it may help to suppose that I get the other envelope each
time, and look in it, without of course knowing what is in yours. I am
allowed to keep a sum equal to what I find or choose to receive a sum
which is the same as that in your envelope, but I must pay a premium of a
quarter ofmy expected gain. If we both pay a premium each time we can-
not both profit from the exchange, and at least one of us must lose if we
always choose the other sum: the more trials there are the more likely we
both lose.

If all those cases where you have 2 in your envelope are picked out then
the average gain for them is likely to be positive. In considering the aver-
age gain for a given value in your envelope we are not considering a truly
representative sample, one for which we are as likely to have the larger
sum in our envelope as the smaller. The calculated expected gain when
you find 2 in your envelope takes account only of the outcomes (2, 1) and
(2, 4), not of the respectively equiprobable (1, 2) and (4, 2). Now, in gen-
eral, the average gain when you have 2n in your envelope is likely to be
positive. And, if every possible value in your envelope is allowed for, is
not every possible outcome embraced? Yes, but surprisingly it does not
follow that your average gain over the whole run is likely to be positive.
For, as we have already shown, in the paradoxical casesE(E(B|A) – A) ≠
E(E(B – A|A+B)). Finally, the argument that, since you would want to
swap if you looked you ought to swap anyway (see footnote 13), arbi-
trarily excludes what you would want to do if you looked in the other
envelope, since if you looked in the other envelope you would not want to
swap.
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Consequently, it would be rational to ignore what you know about the
contents of your envelope.

It is as if you were trying to predict the verdicts in criminal trials, know-
ing that defendants are usually found guilty but being acquainted only
with the defence case in each instance. On the basis of this selective infor-
mation it might well be that the probability of a finding of guilt would gen-
erally be lower than that of acquittal, but you are likely to be more
accurate in your predictions if you ignore this information and generally
predict a guilty verdict.

5. Appendix

5.1. Discrete cases

For discrete infinite probability distributions there are five different series
which may be held to give the average expected gain on swapping.

E(E B A) A–( ) an

wherea0

,
n 0=

∞

∑

20p0 andan 2npn 2n 1– pn 1– for n 0>–

20p0( ) 20p0– 21p1+( ) 21p1– 22p2+( ) ...              (1)+ + +

=

= =

=

E B E A B( )–( ) bn

whereb0

,
n 0=

∞

∑

2– 0p0 andbn 2n 1– pn 1– 2npn for n 0>–

2– 0p0( ) 2( 0p0 21p1)– 21p1 22p2–( ) ...           (2)+ + +

=

= =

=



18 Michael Clark and Nicholas Shackel

Brackets have been used to emphasise individual terms of the series.

That these are all distinct series is evident from the fact that they are

defined by sequences which are not identical:〈an〉 ≠ 〈bn〉 ≠ 〈cn〉 ≠ 〈dn〉.

(5) is the difference between two series, each of which is∑en. Of course,

they may have the same sum, but that has to be proved, and can be proved

only by considering the sequences of their partial sums, which in turn can

only be determined from the sequences which define their terms.

E E B A A– B+( )( ) cn, wherecn 2npn 2npn

20p0 20p0–( ) 21p1 2p1
1–( ) 22p2 22p2–( ) (3)+ + +=

–=
n 0=

∞

∑=

E B( ) E A( )– en
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∞
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The sum of∑cn is always defined, and is always zero.
If the alternating series∑dn has a sum, it sums to zero, but unless the

sequence of its partial sums,

〈xn〉 where

is null, which as noted above in footnote 11 will be the case when〈2npn〉
is null, it will be divergent and so will not sum to anything. Arbitrary
regroupings of all the terms from an alternating series such as∑dn will
give series with the same sums only if the alternating series isabsolutely
convergent, that is, in this case, iff∑|dn| is convergent.

When∑dn is not absolutely convergent, then, as we noted in §3 above,
for any real number there will be a way of grouping all the members of
〈dn〉 into a new series that converges to that number. If an alternating infi-
nite series which is not absolutely convergent were equivalent to any
regrouping of it, then any number could be proved equal to any other num-
ber. Notoriously, we would have

 0 = 0 + 0 + 0 +...
= (1 – 1) + (1 – 1) + (1 – 1) + ...
= 1 – 1 + 1 – 1 + 1 – 1 + ...
= 1 + (– 1 + 1) + (1 – 1) + (1 – 1) +...
= 1 + 0 + 0 + 0 +...
= 1.

LEMMA  E(A) is finite if and only if∑dn is absolutely convergent.

PROOF

Only if. If E(A) = 3.2npn, is finite, and so convergent, then

2npn is convergent by the scalar product rule (Haggarty 1993, p.

106).

Thenth partial sums of∑|dn| are

xn
2mpm if n 2m, i.e. n even=

0 if n 2m 1, i.e.n odd+=



=

∞
n 0=∑

∞
n 0=∑

2 2kpk if n

k 0=

m

∑ 2m 1+=

2 2kpk 2mpm if n+

k 0=

m 1–

∑ 2m=









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So the sequence of partial sums∑|dn| has an odd and an even subse-

quence (ibid., p. 88). So long as they converge to the same limit then

∑dn will converge to that limit. The odd subsequence is〈2 2kpk〉

and, since 2npn is convergent and equals1/3E(A),

limm→∞〈2 2kpk〉 = 2
3E(A). The even subsequence is

〈2 2kpk + 2mpm〉. Since 2npn is convergent, we know that

〈2mpm〉 is null. Hence the even subsequence is a sum of convergent

sequences, so that

limm→∞ 〈2 2kpk + 2mpm〉

= limm→∞〈2 2kpk〉 + limm→∞〈2mpm〉

= E(A) + 0 = E(A) (ibid., p. 73, sum rule).

Therefore∑|dn| converges, so that∑dn is absolutely convergent.

If. Suppose that∑dn is absolutely convergent. Then∑|dn| is absolutely

convergent.∑|dn| = (20p0) + (20p0) + (21p1) + (21p1) + ... = (20p0 +

20p0) + (21p1 + 21p1) + ... by the rearrangement rule (ibid., p. 116), =

2.2npn. So 2.2npn is convergent, whence by the scalar

product ruleE(A) = 3.2npn is convergent. ThusE(A) is finite.

(At this point it is worth recalling that in speaking of the four series,

∑an to ∑dn, we are speaking of the behaviour of the corresponding expec-

tations, and that paradox appears when these series and (5) do not have the

same sum.)

So, by this lemma:

m

k 0=∑
∞
n 0=∑
m

k 0=∑

m 1–

k 0=∑ ∞
n 0=∑

m 1–

k 0=∑
m 1–

k 0=∑
2
3
--- 2

3
---

∞
n 0=∑ ∞

n 0=∑
∞
n 0=∑
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(a) wheneverE(A) is finite, ∑dn is absolutely convergent and
hence series (1) to (5) are all equal by the rearrangement rule,
since they are all composed of rearrangements of∑dn;

(b) wheneverE(A) is not finite,∑dn is not absolutely convergent,
and we cannot appeal to the rearrangement rule to prove (1)
to (5) equal.

But (b) does not mean that (1) to (5) must all be divergent, or that some of
them may not be equal. In this case we must assess their sums by consid-
ering the sequences of their partial sums, which turn out to depend on the
sequence〈2npn〉, the sequence of partial sums of∑an, that is, of
E(E(B|A) -- A), which as we know is closely related toE(A).

So whenE(A) is finite no paradoxes arise. WhenE(A) is not finite we
can have both non-paradoxical and paradoxical cases.

We present the following results:
WhenE(A) is not finite, the sequence〈2npn〉 may

(i)   be null. In this case∑an = ∑bn = ∑cn = ∑dn = 0, and (5) is unde-
fined (being the difference of two divergent sequences). An ex-
ample of a probability distribution which has this effect is:

; and, for n≥ 1, .

(ii)  converge to a finite positive numberx, so that∑an > 0, ∑bn < 0
(because if∑bn has a sum it will be the limit of the sequence of
negative terms,〈–2npn〉), ∑cn = 0,∑dn oscillates and (5) is unde-
fined. In this case the average expected gain given by∑an may
(as in the example of §3) or may not involve an expected gain for
every value ofA. An example of a probability distribution for the
latter case is:

 2p0 = ; 2pn = pn–1, n ≥ 1.

Here the average expected gain is1/4; the only value ofA for
which there is a gain is 1, and forA > 1 the expected gain is 0.

(iii) diverge to +∞. See footnote 10 for an example in the literature.
∑an diverges to +∞, ∑bn diverges to –∞, ∑cn = 0. As with (ii),
∑dn oscillates and (5) is undefined.

(iv) oscillate. In this case∑an, ∑bn and∑dn oscillate,∑cn = 0, and (5)
is undefined.

The following considerations apply:

(a) Expectations for which the corresponding series has no defined
sum are themselves undefined and need not be considered.

2p0 1 2pn
n 1=

∞

∑–= 2pn
1

n 1+
------------ 1

2
--- 

  n 1–
=

1
2
---
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(b)  Expectations for which the series is divergent by oscillation can-
not in any sense be said to have a sum, and so are undefined.

(c) Expectations for which the series is divergent to positive or neg-
ative infinity may, controversially, be said to have an infinite
sum, and as such may be said to be controversially well defined.

(d) Expectations for which the series is convergent are uncontrover-
sially said to have a sum and so may be said to be uncontrover-
sially well defined.

Whenever the expectations are well defined but with different sums we
have a potentially paradoxical case. Hence:

1.   No paradoxes arise under case (i) since all four of the expectations
corresponding to∑an, ∑bn, ∑cn and∑dn well defined and equal,
and by (a) the other may be disregarded.

2. In case (iv) by (a) and (b) onlyE(E(B–A)|A+B) is well defined, so
no paradox arises.

3. In cases (ii) and (iii)E(B–A) andE(B) – E(A) are undefined by
(b) and (a) respectively, so need not be considered.

4. In case (ii) all three of the expectations corresponding to∑an,
∑bn, and∑cn are uncontroversially well defined by (d), and be-
ing unequal give rise to the sort of paradox not previously dis-
cussed in the literature, which we refer to as “best paradoxical”.

5.  In case (iii) the expectations corresponding to∑an, and∑bn are
controversially well defined by (c)—with∑cn = 0 as always—
and being unequal give rise to the sort of paradox previously dis-
cussed in the literature, which we refer to as “unbounded para-
doxical”.

For these reasons in paradoxical cases (cases (ii) and (iii)) we need to
choose between, andonly between, the expectations corresponding to
∑an, ∑bn, and∑cn.

5.2. Continuous cases

We conclude with a note on continuous distributions, for the version of the
paradox in which money is treated as if it were a continuous rather than a
discrete quantity.

For continuous as well as discrete cases, whenever the relevant infinite
series and improper integrals are well-behaved, which is always the case
whenE(A) is finite, we can prove using standard probability theorems that

    E(B) – E(A) = E(B – A)
   = E(E(B – A|A + B))
   = E(E(B|A) – A)
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   = –E(A – E(B|A))

   = –E(B – E(A|B)) by symmetry.

SinceE(A) = E(B), each of these = 0. (Cf. Broome 1995, pp. 10–11.) They
hold in virtue of

(i) E(X – Y) = E(X) – E(Y) (see, for example, DeGroot 1989, p.
188, theorem 3)

(ii) E(E(X|Y)) = E(X) (ibid., p. 220, theorem 1)

(iii) E(aX) = aE(X) (ibid., p. 187, theorem 1).

Just as in the discrete case, there are probability density functions
where the values of the envelopes do not have a finite expectation but
E(E(B|A) – A) is finite, and others too where the latter expectation is infi-
nite, as we proceed to demonstrate.

Let the random variableS represent the smaller sum in the two enve-
lopes, and let it have probability density functionf(s) and cumulative dis-
tribution functionF(s), such thatS takes values only from [0,∞), that is,
F(0) = 0,F(∞) = 1. Let the random variablesA andB represent the sums
in the envelopes, and their p.d.f.’s and c.d.f.’s befA(a), fB(b), FA(a), FB(b).
We shall determine these as functions off(s). ObviouslyfA(a) = fB(b) and
FA(a) = FB(b). To determine the p.d.f. ofA we consider its c.d.f.FA(a) =
Pr(A ≤ a). (See Degroot 1989, pp. 102ff.)

Now A ≤ a (i) whenever 0≤ s≤ a/2, since, whetherA is the smaller sum
or the larger, it is still less than or equal toa; or (ii) whena/2 < s≤ a and
A = s.

SoFA(a) = Pr(A ≤ a) = Pr(0≤ s ≤ a/2 or (a/2 < s≤ a andA = s))
= F(a/2) –F(0) + Pr(a/2 < s≤ a) (since Pr(A = s) = 1/2)

= F(a/2) + (F(a) – F(a/2))

= F(a) + F(a/2).

SincefA(a) =  we have p.d.f. ofA,

fA(a) = ( F(a) + F(a/2))

= f(a) + f(a/2).

SoE(A) tends to infinity if and only ifE(S) does.

1
2
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We have

E(B|A) =  from Broome (1995, p. 10)15

    =

and hence

Now if  and  exist, which they do if the

expectation of the smaller sum,E(S), is finite, then we can take a further

step:

WhenE(S) is not finite, then sinceE(S) = , which by defini-

tion equals , it means that  does not

exist, either because is unbounded as  (when we

say thatE(S) is infinite), or because the integral oscillates as In

this case we cannot take the further step and must evaluate
15 Arntzenius and McCarthy (1997, p. 40) criticise Broome’s derivation as in-

adequate. Nevertheless, the result is correct, and it can be derived in an unim-

peachable way by consideringE(B|A=a) = (B|a ≤ A ≤ a + δa) if that limit

exists, which it does if the c.d.f of the smaller envelope is differentiable.
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E(E(B|A) --- A) =

directly.
There is at least one family of p.d.f.’s forS rich in cases whereE(A) is

infinite (becauseE(S) is infinite) and yetE(E(B|A) – A) is finite. The fam-
ily is

wherek is a normalising constant so that .

Conjectures:

(a) Whend = 1E(S) is infinite yetE(E(B|A) – A) is finite.

(b) Whend is in (1/2, 1) bothE(S) andE(E(B|A) – A) are infinite.

(c) Whend ≤ 1/2 then , so thatf is not a p.d.f;

and whend > 1 thenE(S) is finite, so thatE(E(B|A) – A) = 0.

We have a general proof of (a) and proofs of various cases and sub-fam-
ilies of (a), (b) and (c). For example, all three conjectures are true when-
ever the quadratic in the denominator is a perfect square.

For concreteness, we now give an example where, just as in the discrete
case, though the envelopes have no finite expectation there is a perfectly
well-defined and finite average expected gain on swapping. For the p.d.f.

we find thatE(A) = E(B) = E(S) = ∞ while E(E(B|A) − A) = loge4/(2π) ≈
2/9. The continuous example given by Broome (1995, p. 7),f(s) = 1/
(s + 1)2, also turns out to yield a finite average expected gain, since it
belongs to the subfamily mentioned at the end of the last paragraph.

We now consider a conjecture which, if proved, gives reason to believe
that for continuous cases no extra issues of significance arise. It may be
the case that there are pathological p.d.f.’s for which the conjecture would
not apply. However, it should apply to all “normal” p.d.f.’s for which the
c.d.f. is differentiable. Since at present it is unclear whether any expecta-
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tions apart fromE(E(B–A)|A+B)) are evaluable when the c.d.f. is not dif-
ferentiable, this may not matter, because then no such pathological cases
give rise to paradoxical expectations. However, if the evaluation of other
expectations can be got through on a weaker condition, there may yet be
continuous cases beyond our present considerations. If anyone can con-
struct such a case and justify the evaluation of differing average expected
gains we would be fascinated to see it.

The discrete cases are determined by the behaviour of the sequence
〈2npn〉, which is to say, just byE(E(B|A) – A), since〈2npn〉 is the sequence
of partial sums ofE(E(B|A) –A). The distinctions made among the various
average expected gains for the discrete cases made at the beginning of this
Appendix could have been phrased in terms of integrals to give a similar
range of infinite integrals for the various average expected gains in the
continuous cases. They too depend on the behaviour ofE(E(B|A) – A). So
to show that no extra issues arise it will suffice to show thatE(E(B|A) – A)
in the discrete case is convergent if and only if some corresponding con-
tinuousE(E(B|A) – A) is finite. For then any continuous case will have a
corresponding discrete case to which our argument will apply, which in
turn will inform us about the continuous case (hence the need for the
biconditional).

In the discrete caseE(E(B|A) – A) = an as defined above. In the

continuous case let , whenE(E(B|A) − A) =

. Given the restriction thath(a) is continuous, positive and

decreasing on [0,∞), a simplification of the Euler–Maclaurin summation

series tells us that h(n) converges if and only if  con-

verges (is finite). (Binmore 1982, p. 136; Haggarty 1993, pp. 113, 233–4.

This is the integral test for convergence.)

CONJECTUREE(E(B|A) – A) in the discrete case is convergent if and only
if some corresponding continuous E(E(B|A) – A) is finite.

SKETCH OF PROOF

Only if. We define  such thath(n) equals a suitable function

of an. Provided this function is linear, then the combination rules for

integrals together with Euler–Maclaurin give us thatE(E(B|A) – A) =

∞
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 is convergent. Detail is needed here to prove the uniqueness

of h(s) and thatf(s) derived in the obvious way fromh(s) is a p.d.f.

If. We define an such that for all n, an equals a suitable function

of h(n). So long as this function is linear then the combination rules for

series together with Euler–Maclaurin give us thatE(E(B|A) --- A) =

an is convergent. Detail is needed here to get from hn to

an and then to prove that deriving thepn in the obvious way from

thean gives us a probability distribution.

We emphasise that we have not carried out this proof. Nevertheless, the
conjecture is plausible and the proof sketch looks feasible.

There is nothing about this conjecture which means that what it sets up
as corresponding discrete and continuous cases are behaviourally the
same qua paradox. The behavioural correspondences it gives are only
that:

1. If one converges and is non-paradoxical, the other may be ei-
ther non-paradoxical or best paradoxical (E(E(B|A) – A) finite
and non-zero) but not unbounded paradoxical (E(E(B|A) – A)
infinite).

2. If one converges and is paradoxical the other may either be
non-paradoxical or best paradoxical but not unbounded para-
doxical.

3. If one diverges whether by being infinite or by oscillation the
other may diverge to infinity or by oscillation.

The significance of the plausibility of this conjecture is that it gives
weight to the assertion that the continuous cases parallel the discrete ones.
We believe it is sufficient to claim that the considerations that apply to the
various ways of calculating the average expected gains in the discrete
cases carry over into the continuous cases. In the body of the paper we
argued thatE(E(B–A)|A+B)) is the correct way to calculate the average
expected gain. So for continuous cases we find that since

we have
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