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Abstract

Consciousness remains a mystery—“a phenomenon that people do not know how to think
about—yet” (Dennett, 1991, p. 21). Here, I consider how the connectionist perspective on infor-
mation processing may help us progress toward the goal of understanding the computational prin-
ciples through which conscious and unconscious processing differ. I begin by delineating the
conceptual challenges associated with classical approaches to cognition insofar as understanding
unconscious information processing is concerned, and to highlight several contrasting computa-
tional principles that are constitutive of the connectionist approach. This leads me to suggest that
conscious and unconscious processing are fundamentally connected, that is, rooted in the very
same computational principles. I further develop a perspective according to which the brain con-
tinuously and unconsciously learns to redescribe its own activity itself based on constant interac-
tion with itself, with the world, and with other minds. The outcome of such interactions is the
emergence of internal models that are metacognitive in nature and that function so as to make it
possible for an agent to develop a (limited, implicit, practical) understanding of itself. In this light,
plasticity and learning are constitutive of what makes us conscious, for it is in virtue of our own
experiences with ourselves and with other people that our mental life acquires its subjective char-
acter. The connectionist framework continues to be uniquely positioned in the Cognitive Sciences
to address the challenge of identifying what one could call the “computational correlates of con-
sciousness” (Mathis & Mozer, 1996) because it makes it possible to focus on the mechanisms
through which information processing takes place.
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1. Introduction

About 25 years ago, as an undergraduate student at the Universit!e Libre de Bruxelles, I
was lucky to attend a lecture that Donald Broadbent delivered in the stately, wood-paneled
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hall of the University Foundation in the center of Brussels. There, Broadbent presented his
latest work on “implicit learning,” a phenomenon first explored by Arthur Reber in 1967
whereby people are shown to be able to learn about novel information without intention to
do so and without awareness of the underlying regularities. Broadbent’s ingenious experi-
ments propelled the field in hitherto unexplored directions and proved a seminal source of
inspiration for my own work. Thus, I quickly set out to conduct a series of experiments
modeled after Berry and Broadbent (1984).

Because I also had an interest in thinking about experimental phenomena through the
lens of computational modeling, I began exploring how one could conceive of a theory
of implicit learning that was amenable to computational instantiation. This proved to be
surprisingly challenging. Indeed, when Reber (1967) proposed that learning can proceed
without intention and without awareness, theorizing in the psychological sciences was
dominated by the so-called classical models of information processing (e.g., Newell &
Simon, 1972). Such models, up until the early 80s, all seemed to begin with the idea that
learning is driven by hypothesis testing. Likewise, such models assumed that knowledge
always consists of abstract, declarative, propositional-like representations. Implicit learn-
ing seemed to be irreconcilable with such assumptions: Not only does it often fail to
result in propositional, verbalizable knowledge, but its central characteristic is probably
its incidental nature, that is, the fact that one becomes sensitive to novel information
merely through processing the material. Unlike what is the case when one learns about
new facts or new procedures by being told about them, knowledge acquisition in implicit
learning situations is not driven by consciously held hypotheses (though, of course, par-
ticipants in psychology experiments will always formulate and test hypotheses when
asked to participate in a study: consciousness cannot be “turned off”). Thus, the notion
that learning can proceed unintentionally seemed to present a singular challenge for tradi-
tional perspectives on how change occurs in cognitive systems.

When I learned about the ideas that the PDP group (McClelland & Rumelhart, 1986;
Rumelhart & McClelland, 1986) were pioneering at the time, I experienced an epiphany
of sorts: There was now a clear, coherent framework with which to think about learning
in a manner that was finally divorced from the classical assumptions, at least insofar as
they were held with respect to human learning. Connectionism seemed to provide a solid
alternative theory through which to understand how knowledge may accrue in cognitive
systems through little more than mere exposure, almost as a side effect of information
processing. The fact that connectionism seemed to provide the appropriate foundations
with which to think about implicit learning is what prompted me to go work at Carnegie
Mellon, first with Lynne Reder and then with Jay McClelland. The 4 years that followed
proved incredibly exciting, for the work we carried out clearly demonstrated how one
could build the lineaments of a theory of implicit learning based on the novel conceptual
foundations provided by connectionism.

Here, I would like to visit these issues again and consider how our perspective has chan-
ged over the last 20 years. I begin by spelling out the conceptual challenges associated
with accounting for unconscious cognition and implicit learning based on classical assump-
tions. Next, I assess the implications of a connectionist approach to the phenomena of
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implicit cognition and attempt to highlight a few of the most important principles that
underpin this endeavor. In the third section, I speculate on how connectionism can help us
understand not only cognition without consciousness but also cognition with consciousness,
and we propose the idea that the latter crucially depends on learned redescriptions of a sys-
tem’s own activity—a proposal that I have elsewhere dubbed “the Radical Plasticity The-
sis” (Cleeremans, 2008).

2. The trouble with classical approaches

In Cleeremans (1997) and also in Cleeremans and Jim!enez (2002), I suggest that the
central reason why dissociations between conscious awareness and behavior remain so
controversial, even today, is fundamentally a conceptual one—namely that the phenom-
ena of implicit cognition cannot be reconciled with classical perspectives on information
processing.

Empirically, the central characteristic of unconscious processing is the observation that
an agent’s behavior is influenced by knowledge of which it remains unaware. In Cleere-
mans (1997), I define implicit knowledge as follows:

At a given time, knowledge is implicit when it can influence processing without
possessing in and of itself the properties that would enable it to be an object of
representation.

Thus, unconscious knowledge is knowledge that is causally efficacious yet unavailable
to form the contents of conscious experience. Now, consider the manner in which knowl-
edge is represented in classical models of cognition (Anderson, 1983; Newell, 1990).
Such models—roughly speaking, the “Computational Theory of Mind” (see Fodor, 1975,
1983; Fodor & Pylyshyn, 1988, Pylyshyn, 1980, 1984) take it as a starting point that cog-
nition consists of symbol manipulation. The flow of information processing in classical
models goes roughly like this: There is a central processor that fetches or stores informa-
tion in knowledge bases and processes it. The processor interacts with the world through
input/output systems. Knowledge (either “programs” or “data”) is represented symboli-
cally. Bates and Elman (1993) dubbed this perspective on cognition “The First Computer
Metaphor of Cognition” and characterized it as follows (p. 630):

At its core, the serial digital computer is a machine that manipulates symbols. It takes
individual symbols (or strings of symbols) as its input, applies a set of stored algorithms
(a program) to that input, and produces more symbols (or strings of symbols) as its out-
put. These steps are performed one at a time (albeit very quickly) by a central processor.
Because of this serial constraint, problems to be solved by the First Computer Metaphor
must be broken down into a hierarchical structure that permits the machine to reach
solutions with maximum efficiency (e.g., moving down a decision tree until a particular
subproblem is solved, and then back up again to the next step in the program).
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In such systems, thus, knowledge always takes the form of symbolic propositions
stored in a mental database (i.e., productions rules or declarative statements). There are
two important and problematic features about such representations. First, they remain
causally inert until activated or otherwise accessed by the processor. Second, their shape
(symbolic propositions) makes their contents immediately accessible by the processor.
The conjunction of these two features renders the entire approach incapable of account-
ing for unconscious cognition, for it entails that representations cannot influence process-
ing independently of being accessed (activated, manipulated) by the processor. However,
this property—causal influence without access—is precisely what one means when one
says that knowledge is unconscious. A production rule, for instance, cannot influence
ongoing processing unless the algorithm that drives the entire system has established that
the rule’s preconditions match current input and that the rule could now be applied. Intu-
itively, this is akin to a human participant who figures out, when confronted with a
mathematical problem, for instance, that an arithmetical expression can be simplified in
certain ways described by a rule that he has learned. But this process is clearly a con-
scious process. Now consider what happens when a chess expert intuitively decides to
move a particular chess piece. One could claim that the same process described above in
the case of the arithmetic problem now takes place: A heuristic rule is identified as
being relevant to the particular situation at hand and applied. However, the chess expert
claims that he is unable to justify his choice: The move he made is just what came to
mind. Perhaps he could explain the specific reasons why he chose that particular move
given sufficient time and effort, but the move itself simply appeared to pop in his mind.
The difference between the arithmetical problem and the chess move is one of con-
sciousness: One seems to have access to the relevant knowledge in the first instance, but
not in the second.

Now here is the key argument: If one assumes, as do thoroughly classical approaches
to cognition, that the mechanisms involved in each case always entail accessing and acti-
vating the relevant rule, then one is left with no principled difference between cognition
with and without awareness, for in both cases, the very same mechanisms (specifically:
access to the relevant knowledge) are involved.

More formally, the argument could be spelled out in this way:

1. Awareness of some knowledge entails access to the relevant representations.
2. In classical models, representations take the form of symbolic propositions.
3. Symbolic propositions cannot be causally efficacious unless they are accessed.

Therefore, in classical models, causally efficacious representations are necessarily con-
scious. Briefly put thus, the argument I introduced in Cleeremans (1997) is this: If you
believe that cognition consists exclusively of manipulating structured, symbolic, proposi-
tional representations, then you only have two possibilities of accounting for the phenom-
ena of implicit cognition. You can either (1) ascribe them to a separate “psychological
unconscious” (Kihlstrom, 1987, 1990) that is capable of performing exactly the same
sorts of computations as your conscious system is (specifically: access to the relevant
knowledge), only minus consciousness (Searle, 1992), or (2) explain them away by reject-
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ing existing evidence for implicit cognition altogether and claim that all of cognition
involves conscious knowledge (e.g., Shanks & St. John, 1994).

There is also a third possibility, which consists of rejecting the idea that unconscious
cognition always involves symbol manipulation. This is the “third way” that connection-
ism has made so salient over the past 20 years. While the classical perspective takes it as
a starting point that information processing involves operations modeled after conscious
cognition, connectionism turns this perspective on its head and proposes that information
processing begins with unconscious cognition. It is worth pointing out here that many
contemporary approaches rooted in symbolic processing (e.g., ACT-R, CLARION) have
evolved to the point that they share many features more typically associated with connec-
tionist models, such as associative processing.

Once we eliminate the idea that all of cognition, be it with or without consciousness,
involves symbol manipulation, we can then focus on exploring what we can do without
symbols. We are then facing the great challenge of figuring out how we can get symbols
in the game after all, but at least we begin with more plausible assumptions. In the next
section, I briefly overview how connectionism has changed our understanding of uncon-
scious cognition.

3. What have we learned from connectionism?

Connectionist models have provided genuine insights into how knowledge can influ-
ence processing without access—a hallmark of unconscious processing—and of how
change can accrue as a result of mere information processing—a hallmark of the phenom-
ena of implicit learning. Numerous models of implicit learning based on connectionist
models have now been proposed (see Cleeremans & Dienes, 2008; for a recent review),
and it is fair to say that such models have been very successful in accounting for the
mechanisms that subtend performance in a wide range of relevant empirical paradigms
(see Cleeremans, Destrebecqz, & Boyer, 1998; for an overview), from artificial grammar
learning (e.g., Dienes, 1992) and sequence learning (Cleeremans & McClelland, 1991) to
process control (Gibson, Fichman, & Plaut, 1997) or priming (Mathis & Mozer, 1996).

The first fully implemented connectionist models of implicit learning are found in the
early efforts of Dienes (1992) and of Cleeremans and McClelland (1991). While authors
such as Brooks (1978) and Berry and Broadbent (1984) had already suggested that perfor-
mance in implicit learning tasks such as artificial grammar learning or process control
may be based on retrieving exemplar information stored in memory arrays, such models
have in general been more concerned with accounting for performance at retrieval rather
than on accounting for learning itself. The connectionist approach, by contrast, has been
centrally concerned with the mechanisms involved during learning since its inception,
and therefore constitutes an excellent candidate framework with which to think about the
processes involved in implicit learning.

My purpose here is not to review these developments in detail (see Cleeremans &
Dienes, 2008), but rather to focus on how several fundamental principles that characterize

A. Cleeremans / Cognitive Science (2014) 5



the connectionist approach are relevant to our understanding of the differences between
conscious and unconscious processing. In the following, I discuss each in turn.

3.1. Active representation

As discussed above, this first principle highlights a fundamental difference between
classical and connectionist representations, namely that the former are inherently passive
whereas the latter are continuously active. Indeed, the symbolic, propositional representa-
tions characteristic of classical models of cognition (i.e., production rules and declarative
knowledge) are intrinsically passive: They are objects (data structures) stored in mental
databases and can only influence ongoing processing when an algorithm (i.e., an inference
engine) has determined that certain trigger conditions are met. Thus, for a classical repre-
sentation to be causally efficacious, it first needs to be accessed or otherwise made active
in some way. But, as discussed above, this necessary link between causal efficacy and
access is immediately problematic for our conceptualization of the differences between
information processing with and without awareness. The difficulty stems from the (tac-
itly) assumed equivalence between causal efficacy, access, and consciousness. This equiv-
alence in turn stems from the fact that in classical perspectives on cognition, there is a
complete separation between representation and processing. Connectionism solves this
quandary very elegantly by proposing that access is not necessary to drive information
processing. Nothing “accesses” anything in a connectionist network. Instead, connection-
ist models assume that all the long-term knowledge accrued over experience is embedded
in the very same structures that support information processing, that is, the connection
weights between processing units. Such knowledge therefore does not need to be accessed
in any way to be causally efficacious; it simply exerts its influence automatically when-
ever the units whose activation propagates through the relevant connections are active.
Thus, knowledge in connectionist networks is active in and of itself, and fundamental
phenomena such as priming are accounted for naturally without the need to postulate
additional mechanisms.

An important consequence of the fact that long-term knowledge in connectionist net-
works accrues in connection weights as a mandatory consequence of information process-
ing is that connectionist models capture, without any further assumptions, two of the
most important characteristics of implicit learning, namely (1) the fact that learning is
incidental and mandatory, and (2) the fact that the resulting knowledge is difficult to
express. A typical connectionist network, indeed, does not have direct access to the
knowledge stored in connection weights. Instead, this knowledge can only be expressed
through the influence that it exerts on the model’s representations, and such representa-
tions may or may not contain readily accessible information, that is, information that can
be retrieved with no or low computational cost (see Kirsh, 1991). Arguably, symbolic
approaches may capture the same distinction through the difference between compiled
and interpreted code. It would be too long to discuss the finer issues raised by this possi-
bility here, but two points are worth mentioning. First, all compiled code necessarily
existed as interpreted code before compilation took place. This makes the strong
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prediction, under the assumption that compiled code corresponds to unconscious knowl-
edge and that interpreted code corresponds to conscious knowledge, that all the uncon-
scious knowledge we possess at some point previously existed as conscious knowledge.
Whether this holds true or not is a matter for empirical investigation, but there is evi-
dence that we are sensitive to regularities that were never made explicit (see Pacton,
Perruchet, Fayol, & Cleeremans, 2001, for an example in the domain of learning ortho-
graphic regularities). Second, whether compiled or interpreted, symbolic computer code
always needs a processor to execute it (and hence access it) for it to be causally effica-
cious. This stands in sharp contrast with the patterns of connection weights that drive pro-
cessing in connectionist networks, which exert their effects directly, merely as a result of
transmitting activation.

3.2. Emergent representation

The second principle simply states the following: Sensitivity to some regularity does
not necessarily imply that the regularity is itself represented as an object of representa-
tion. What I mean by this is the following: It is not because you observe that the actions
of an agent indicate that it is sensitive to certain regularities (such as in implicit learning
situations) that you can conclude that these regularities are represented in its cognitive
system as objects of representation that the agent can manipulate intentionally. There are
so many examples of the importance of this principle that entire books have been written
about it—see, for instance, the nice popularized treatment of this issue by Steven Johnson
(2002), simply titled “Emergence.” Thus, bees construct complex nests and perfectly reg-
ular hexagonal cells without any evidence that they even have simple representations of
the overall structure of the nest. It is hard not be reminded of behaviorism in this context,
but this is certainly one thing behaviorism got right: You do not always need internal rep-
resentations to account for complex behavior. Of course, one must always be careful not
to throw away the baby with the bathwater, to revisit an old clich!e: We undeniably enter-
tain systems of complex representations that we can access, manipulate, ponder about,
and so on—just not always, and just not for anything.

In cognitive psychology, this principle of “Emergent Representation” has been
expressed most clearly through dynamical approaches to Cognitive Science (van Gelder,
1998; Port & van Gelder, 1995) and through the connectionist approach (McClelland,
2010). To illustrate, consider the fact that connectionist networks can be often described
as obeying rules without possessing anything like rule-like representations. A very well-
known example is Rumelhart and McClelland’s (1986a,b) model of the acquisition of the
past tense morphology. In the model, not only are regular verbs processed in just the
same way as exceptions, but they are not learned through anything like processes of rule
acquisition.

Another example that attracted considerable attention when it was first reported is Hin-
ton’s (1986) “family-trees” demonstration that a back-propagation network can, through
training, become sensitive to the structure of its stimulus environment in such a way that
this sensitivity is clearly removed from the surface features of the stimulus material. In
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Hinton’s words, “The structure that must be discovered in order to generalize correctly is
not present in the pairwise correlations between input units and output units” (p. 9). The
model thus exhibits sensitivity to functional similarity based on the distributional infor-
mation present in the input, and, as a result, develops abstract knowledge of the relevant
dimensions of the domain. Because it is so illustrative of the points I wish to make here,
it is worth going over this simulation in some detail.

Hinton’s network was a relatively simple back-propagation network trained to process
linguistic expressions consisting of an agent, a relationship, and a patient, such as for
instance “Maria is the wife of Roberto.” The stimulus material consisted of a series of
such expressions, which together described some of the relationships that exist in the
family trees of an Italian family and of an English family. The network was required to
produce the patient of each agent-relationship pair it was given as input. For instance, the
network should produce “Roberto” when presented with “Maria” and “wife.” Crucially,
each person and each relationship was presented to the network by activating a single
input unit. Hence, there was no overlap whatsoever between the input representations of,
say, Maria and Victoria. Yet, despite this complete absence of surface similarity between
training exemplars, Hinton showed that after training, the network could, under certain
conditions, develop internal representations that capture relevant abstract dimensions of
the domain, such as nationality, sex, or age. Hinton’s point was to demonstrate that such
networks were capable of learning richly structured internal representations as a result of
merely being required to process exemplars of the domain. Crucially, the structure of the
internal representations learned by the network is determined by the manner in which dif-
ferent exemplars interact with each other rather than by their mere similarity expressed,
for instance, in terms of how many features (input units) they share—a property that
characterizes sensitivity to functional rather than physical similarity. Hinton thus provided
a striking demonstration of this important and often misunderstood aspect of associative
learning procedures by showing that under some circumstances, specific hidden units of
the network had come to act as detectors for dimensions of the material that had never
been presented explicitly to the network. These results truly flesh out the notion that rich
knowledge can simply emerge as a by-product of processing in structured domains. This
introduces a crucial distinction, one that I will return to later, between sensitivity and
awareness.

As a final example, consider also that a Simple Recurrent Network (Elman, 1990)
trained on only some of the strings that may possibly be generated from a finite-state
grammar will generalize to the infinite set of all possible grammatical instances (Cleere-
mans, Servan-Schreiber, & McClelland, 1989; Servan-Schreiber et al., 1991), thus demon-
strating perfect, rule-like generalization based only on the processing of a necessarily
finite set of exemplars. Interestingly, the representations developed by the network when
trained on such material exhibited, under certain conditions, the remarkable property of
corresponding almost perfectly with the nodes of the grammar: Cluster analyses indeed
showed that the similarity structure of the learned internal representations that the net-
work has developed about the relationships between each sequence element and its possi-
ble successors reflects the structure of the very grammar the network had been trained
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on. Again, and crucially, such structure simply emerges out of exposure to relevant stim-
uli.

3.3. Graded processing

The third principle states that information processing as carried out by the brain (i.e.,
neural computation) is inherently graded (see Munakata, 2001 for an excellent over-
view). Note that this is not incompatible with the observation of all-or-none outputs. In
fact, the logistic function that is so central to many neural network models demonstrates
how the relationship between two quantities can be simultaneously graded and dichoto-
mous, just as continuous variations in the temperature of a body of water can make it
change state (i.e., freeze) at a critical point. Again, the connectionist literature is replete
with striking demonstrations of this principle (see Elman et al., 1996). One of the clear-
est is perhaps McClelland’s (Schapiro & McClelland, 2009) model of the balance scale
problem, in which continuous, incremental learning nevertheless produces both the pla-
teaus and the abrupt, stage-like changes in performance characteristics of many aspects
of cognitive development. Another potent illustration of how graded representations can
nevertheless produce complex patterns of associations and dissociations between several
aspects of behavior is provided by the work of Munakata, McClelland, Johnson, and
Siegler (1997) on object permanence, in which a Simple Recurrent Network was used to
model children’s ability to keep active representations of hidden objects. In both cases,
the graded nature of the underlying representations is crucial in producing the observed
effects; that is, it is precisely in virtue that representations are graded that such models
are successful in accounting both for the steady changes characteristic of plateaus and
for the abrupt changes characteristic of stage-like transitions. Again, while the implica-
tions of graded processing are perhaps clearest in the case of development, they are just
as relevant to our understanding of the differences between conscious and unconscious
processing for they highlight the fact that qualitative differences can accrue from purely
quantitative changes. Whether consciousness is graded or all-or-none is both an impor-
tant empirical debate (Sandberg et al., 2010; Sergent & Dehaene, 2004; Windey et al.,
2013) as well as challenging conceptual issue, for it is the case that graded output can
be obtained based on the operation of all-or-none computing elements, and that all-or-
none output can be obtained based on the operation of graded computing elements. Con-
nectionism, in many cases, has given us new conceptual tools with which to think about
the distinction between graded and all-or-none processing.

3.4. Mandatory plasticity

This final principle states that learning is a mandatory consequence of information pro-
cessing. Thus, the brain is inherently plastic. Every experience leaves a trace in many
neural pathways. William James stated that “Every impression which impinges on the
incoming nerves produces some discharge down the outgoing ones, whether we be aware
of it or not” (James, 1890, vol. 2, p. 372). Donald Hebb (1949) later operationalized this
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idea in the form of what is now known as the Hebb rule, which simply states that activity
between two neurons will tend to increase whenever they are simultaneously active. The
Hebb rule, unlike other learning procedures, actually forms the basis for elementary
mechanisms of plasticity in the brain, namely long-term potentiation (see Bliss & Lomo,
1973) and depression.

O’Reilly and Munakata (2000) proposed an interesting distinction between what they
called “model learning” (Hebbian learning) and “task learning” (error-driven learning).
Their argument is framed in terms of the different computational objectives that each of
these types of learning processes fulfills: capturing the statistical structure of the environ-
ment so as to develop appropriate models of it on the one hand, and learning specific
input–output mappings so as to solve specific problems (tasks) in accordance with one’s
goals on the other hand. There is a very nice mapping between this distinction—
expressed in terms of the underlying biology and a consideration of computational princi-
ples—and the distinction between incidental learning and intentional learning on the other
hand. Thus, as made clear by the manner in which information processing is construed in
the connectionist framework, (1) representations are dynamical, constantly causally effica-
cious objects, and (2) change occurs as soon as information processing takes place.

The fact that learning is almost viewed as a by-product of information processing net-
works accounts very naturally (that is, without requiring further assumptions) for a host
of phenomena associated with unconscious cognition, and in particular with implicit
learning.

To summarize, these four connectionist principles—active representation, emergent
representation, graded processing, and mandatory plasticity—help us recast the differ-
ences between conscious and unconscious cognition in a manner that is strikingly differ-
ent from thoroughly classical approaches. Instead of assuming that representations take
the form of inert symbolic propositions that cannot be active unless they are somehow
accessed, we now have a constantly causally efficacious network of subsymbolic compu-
tational elements (units, neurons). These features make it easy to understand how knowl-
edge can influence behavior in a way that does not entail that the relevant representations
be accessed as objects of representation, which is precisely what happens in the many
phenomena characteristic of implicit cognition, such as priming, implicit learning, and
implicit memory.

However, we now face the even greater challenge of understanding how such systems
can also account for consciousness. What are the computational principles through which
one can characterize the differences between conscious and unconscious representations?
This is the question that I attempt to sketch an answer to in the next section.

4. Consciousness

Numerous theories of consciousness have been proposed over the last 20 years (see
Atkinson, Thomas, & Cleeremans, 2000)—each author in this burgeoning domain seems
to have his or her own theory of consciousness. While it would take an entire book to
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attempt to summarize the state-of-the-art in this respect, it is probably sufficient for the
purposes of this text to point out that most theories fall into two (broadly defined) camps:
global workspace theories and higher order theories.

Global workspace theory (GWT, see Baars, 1988; Dehaene, Kerszberg, & Changeux,
1998) is currently the most consensual account of the functional characteristics of con-
sciousness. According to GWT, conscious representations are globally accessible in a
manner that unconscious representations are not. Global accessibility, that is, the capacity
for a given representation to influence processing on a global scale (supporting, in partic-
ular, verbal report), is achieved by means of “the neural workspace,” a large network of
high-level neural “processors” or “modules” linked to each other by long-distance cor-
tico-cortical connections emanating from layer 5 of the cortex. Thus, while information
processing can take place without awareness in any given specialized module, once the
contents processed by that module enter in contact with the neural workspace, “ignition”
occurs and the contents are “broadcast” to the entire brain, so achieving what Dennett
(2001) has dubbed “fame in the brain.” In this respect, it is interesting to note that in
some ways, early connectionist models such as the interactive activation model (McClel-
land, 1981) already contain the lineaments of GWT.

GWT thus solves the quandary spelled out in the introduction (i.e., which computa-
tional principles differentiate between conscious and unconscious cognition) by distin-
guishing between causal efficacy and conscious access through architecture: On one
hand, knowledge embedded in peripheral modules can bias and influence processing with-
out entering the global workspace, and so remain unconscious. On the other hand, knowl-
edge that is sufficiently supported both by bottom-up factors such as stimulus strength
and by top-down factors such as attention can “mobilize” the neural workspace, resulting
in “ignition” and so become conscious and available for the global control of action.

Higher order thought (HOT) theories of consciousness (Lau & Rosenthal, 2011; Rosen-
thal, 1997) have a very different flavor. According to HOT, a mental state is conscious
when the agent entertains, in a non-inferential manner, thoughts to the effect that it cur-
rently is in that mental state. Importantly, for Rosenthal, it is in virtue of occurrent HOTs
that the target first-order representations become conscious. In other words, a particular
representation, say, a representation of the printed letter “J,” will only be a conscious rep-
resentation to the extent that there exists another (unconscious) representation (in the
same brain) that indicates the fact that a (first-order) representation of the letter “J” exists
at time t. Dienes and Perner (1999) have elaborated this idea by analyzing the implicit-
explicit distinction as reflecting a hierarchy of different manners in which a given repre-
sentation can be explicit. Thus, a representation can explicitly indicate a property (e.g.,
“yellow”), predication to an individual (the flower is yellow), factivity (it is a fact and
not a belief that the flower is yellow), and attitude (“I know that the flower is yellow”).
Fully conscious knowledge is thus knowledge that is “attitude-explicit.” A conscious state
is thus necessarily one that the subject if conscious of. While this sounds highly counter-
intuitive to some authors (most notably Ned Block, see e.g., Block, 2011), it captures the
central intuition that it is precisely the fact that I know (that I experience the fact, that I
feel) that I possess some knowledge that makes this knowledge conscious.
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HOT thus solves the problem of distinguishing between conscious and unconscious
cognition in a completely different manner, specifically by assuming the involvement of
specific kinds of representations the function of which it is to denote the existence of and
to qualify target first-order representations. Such HOTs, or metarepresentations, need not
be localized in any particular brain region, but of course the densely interconnected
prefrontal cortex is a good candidate for such metarepresentations to play out their
functions.

Regardless of whether one takes GWT or HOT to best characterize the differences
between conscious and unconscious cognition, one question that connectionist thinking
about this issue prompts us to ask is: How do we get there? How do we build the global
workspace? Where do metarepresentations come form?

Considering existing theories of consciousness through a connectionist lens offers the
tantalizing possibility not only of unifying the two accounts but also of rooting them both
in mechanisms of learning. On this view, unconscious representations constantly compete
with each other to capture the best interpretation of the input (Maia & Cleeremans,
2005). This competition is biased by further representations that capture the system’s
high-level, learned knowledge (its expectations and its goals). The “winning coalitions”
come to dominate processing as the result of prior learning, and hence afford the global
availability claimed to be constitutive of consciousness by GWT. Global availability is
not sufficient, however, for one can perfectly imagine all of the aforementioned to take
place without consciousness (as any interactive neural network readily demonstrates).
What I surmise to be also necessary, congruently with the assumptions of HOT, is that
the winning representations be known as objects of representation by the system that pos-
sesses them. In other words, that first-order representations be redescribed by other repre-
sentations in such a way as to make the former be identified or recognized by the system
as familiar states of knowledge, that is, “attitude-explicit” in the terminology of Dienes
and Perner.

In the following, I first attempt to flesh out the main computational principles that dif-
ferentiate GW-like theories from HOT theories of consciousness. Next, I describe recent
simulation work in which we specifically explore how it may be possible to build connec-
tionist models that capture the central intuition of HOT, namely that knowledge is con-
scious when it is appropriately redescribed by means of metarepresentations.

4.1. Computational principles to distinguish conscious from unconscious representations

A salient point of agreement shared by most GW-like contemporary theories of con-
sciousness is the following: Conscious representations differ from unconscious representa-
tions, in that the former are endowed with certain properties such as their stability in
time, their strength, or their distinctiveness, all of which enable such representations
to exert global influence on ongoing processing. Interestingly, Rumelhart, Smolensky,
McClelland, and Hinton (1986) had already characterized consciousness as involving a
trajectory through a sequence of stable states. I have proposed the following definitions
for these properties:
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Stability in time refers to how long a representation can be maintained active during
processing. There are many indications that different neural systems involve representa-
tions that differ along this dimension. For instance, the prefrontal cortex, which plays a
central role in working memory, is widely assumed to involve circuits specialized in the
formation of the enduring representations needed for the active maintenance of task-rele-
vant information (Frank, Loughry, & O’Reilly, 2001).

Strength of representation simply refers to how many processing units are involved in
a given representation and to how strongly activated these units are. Strength can also be
used to characterize the efficiency of an entire processing pathway, as in the Stroop
model of Cohen, Dunbar, and McClelland (1990). Likewise, in attractor networks (Mozer,
2009), strength refers to how well a system has been tuned through training to a particu-
lar representation, that is, to how easy it is for such a system to produce an appropriate
response to the representation. Strong activation patterns exert more influence on ongoing
processing than weak patterns.

Finally, distinctiveness of representation refers to the extent of overlap that exists
between representations of similar instances. Distinctiveness, or discreteness, has been
hypothesized as the main dimension through which cortical and hippocampal representa-
tions differ (McClelland, McNaughton, & O’Reilly, 1995), with the latter becoming
active only when the specific conjunctions of features that they code for are active them-
selves. In the context of the terminology associated with attractor networks, this contrast
would thus be captured by the difference between attractors with a wide basin of attrac-
tion, which will tend to respond to a large number of inputs, and attractors with a narrow
basin of attraction, which will only tend to respond to a restricted range of inputs. The
notion also overlaps with the difference between episodic and semantic memory, that is,
the difference between knowing that Brutus the dog bit you yesterday and knowing that
all dogs are mammals: There is a sense in which the distinctive episodic trace, because it
is highly specific to one particular experience, is more accessible and more explicit than
the semantic information that dogs all share a number of characteristic features. This lat-
ter knowledge can be made explicit when the task at hand requires it, but it is normally
only conveyed implicitly (as a presupposition) by statements about or by actions directed
toward dogs.

Importantly, stability, strength, or distinctiveness can be achieved by different means.
They can result, for instance, from the simultaneous top-down and bottom-up activation
involved in the so-called reentrant processing (Lamme, 2004), from processes of “adap-
tive resonance” (Grossberg, 1999), from processes of “integration and differentiation”
(Tononi & Edelman, 1998), or from contact with the neural workspace, brought about by
“dynamic mobilization” (Dehaene & Naccache, 2001). It is important to realize that the
ultimate effect of any of these putative mechanisms is to make the target representations
stable, strong, and distinctive, in precisely the way attractor basins instantiate in dynami-
cal connectionist networks (Mathis & Mozer, 1996).

Hence, a first important computational principle through which to distinguish between
conscious and unconscious representations is the following:
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Availability to consciousness depends on quality of representation, where quality of
representation is a graded dimension defined over stability in time, strength, and
distinctiveness.

While high-quality representation thus appears to be a necessary condition for their
availability to consciousness, one should ask, however, whether it is a sufficient condi-
tion. Cases such as hemineglect, blindsight (Weiskrantz, 1986), or, in normal subjects,
attentional blink phenomena (Shapiro, Arnell, & Raymond, 1997), inattentional blindness
(Mack & Rock, 1998) as well as some instances of change blindness (Simons & Levin,
1997), for instance, all suggest that quality of representation alone does not suffice, for
even strong representations can fail to enter conscious awareness unless they are some-
how attended. Likewise, merely achieving stable representations in an artificial neural
network, for instance, will not make this network conscious in any sense—this is the
problem pointed out by Clark and Karmiloff-Smith (1993) about the limitations of what
they called first-order networks: In such networks, even explicit knowledge (e.g., a stable
pattern of activation over the hidden units of a standard back-propagation network that
has come to function as a “face detector”) remains knowledge that is in the network as
opposed to knowledge for the network. In other words, such networks might have learned
to be informationally sensitive to some relevant information, but they never know that
they possess such knowledge. Thus, the knowledge can be deployed successfully through
action, but only in the context of performing some particular task.

Hence, it could be argued that it is a defining feature of consciousness that when one
is conscious of something, one is also, at least potentially so, conscious that one is con-
scious of being in that state, an assumption that is at the core of HOT theories of con-
sciousness (Rosenthal, 1997). This analysis thus suggests that a further important
principle that differentiates between conscious and unconscious cognition is the extent to
which a given representation endowed with the proper properties (stability, strength, and
distinctiveness) is itself the target of meta-representations. Note that metarepresentations
are de facto assumed to play an important role in any theory that assumes interactivity.
Indeed, for processes such as resonance, amplification, integration, or dynamic mobiliza-
tion to operate, one minimally needs to assume two interacting components: a system of
first-order representations, and a system of metarepresentations that take first-order repre-
sentations as their input.

Thus, a second important computational principle through which to distinguish
between conscious and unconscious representations is the following:

Availability to consciousness depends on the extent to which a representation is itself
an object of representation for further systems of representation.

It is interesting to consider under which conditions a representation will remain uncon-
scious based on combining these two principles. There are at least four possibilities. First,
knowledge that is embedded in the connection weights within and between processing
modules can never be directly available to conscious awareness and control. This is sim-
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ply a consequence of the fact that consciousness, by assumption, necessarily involves
explicit representations (i.e., patterns of activation over processing units). This is equiva-
lent to Dehaene and Changeux (2004)’s principle of “active firing.” The knowledge
embedded in connection weights will, however, shape the representations that depend on
it, and its effects will therefore be detectable—but only indirectly, and only to the extent
that these effects are sufficiently marked in the corresponding representations.

Second, to enter conscious awareness, a representation needs to be of sufficiently high
quality in terms of strength, stability in time, or distinctiveness. Low-quality representa-
tions (i.e., weak representations, fleeting representations, or representations that fail to be
sufficiently distinct from other representations) are therefore poor candidates to enter con-
scious awareness. This, however, does not necessarily imply that they remain causally
inert, for they can influence further processing in other modules, even if only weakly so.
This forms the basis for a host of subthreshold effects, including subliminal priming, for
instance.

Third, a representation can be strong enough to enter conscious awareness but fail to
be associated with relevant metarepresentations. There are thus many opportunities for a
particular conscious content to remain, in a way, implicit, not because its representational
vehicle does not have the appropriate properties, but because it fails to be integrated into
other conscious contents.

Finally, a representation can be so strong that its influence can no longer be controlled,
as is the case when a behavior has become automatic. In these cases, it is debatable
whether the knowledge should be taken as genuinely unconscious, but the point is that
such very strong representations can trigger and support behavior without conscious
intention and without the need for conscious monitoring of the unfolding behavior. In
such cases, consciousness has become optional, in a way.

Strong, stable, and distinctive representations are thus explicit representations in the
sense put forward by Koch (2004): They indicate what they stand for in such a manner
that their reference can be retrieved directly through processes involving low computa-
tional complexity (see also Kirsh, 1991). Conscious representations, in this sense, are
explicit representations that have come to play, through processes of learning, adaptation,
and evolution, the functional role of denoting a particular content for a cognitive system.

Once a representation has accrued sufficient strength, stability, and distinctiveness, it
may be the target of metarepresentations: The system may then “realize,” if it is so capa-
ble, that is, if it is equipped with the mechanisms that are necessary to support self-
inspection, that it has learned a novel partition of the input; that it now possesses a new
“detector” that only fires when a particular kind of stimulus, or a particular condition, is
present. Humphrey (2006) emphasizes the same point when he states that “This self-mon-
itoring by the subject of his own response is the prototype of the ‘feeling sensation’ as
we humans know it” (p. 90). Importantly, my claim here is that such metarepresentations
are learned in just the same way as first-order representations, that is, by virtue of contin-
uously operating learning mechanisms. Because metarepresentations are also representa-
tions, the same principles of stability, strength, and distinctiveness therefore apply. An
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important implication of this observation is that activation of metarepresentations can
become automatic, just as it is the case for first-order representations.

What might be the function of such metarepresentations? One intriguing possibility
is that their function is to indicate the mental attitude through which a first-order representa-
tion is held: Is this something I know, hope, fear, or regret? Possessing such metaknowledge
about one’s knowledge has obvious adaptive advantages, not only with respect to the agent
himself but also because of the important role that communicating such mental attitudes to
others plays in both competitive and cooperative social environments.

Beyond giving a cognitive system the ability to learn about its own representations,
there is another important function that metarepresentations may play: They can also be
used to anticipate the future occurrences of first-order representations (see Bar, 2009; on
the human brain as a prediction machine). Thus for instance, if my brain learns that the
Supplementary Motor Area (SMA) is systematically active before the Primary Motor
Area (MA) then it can use SMA representations to explicitly represent their consequences
downstream, that is, M1 activation, and ultimately, action. If neurons in SMA systemati-
cally become active before an action is carried out, a metarepresentation can link the two
and represent this fact explicitly in a manner that will be experienced as intention; that
is, when neurons in the SMA become active, I experience the feeling of intention because
my brain has learned, unconsciously, that such activity in SMA precedes action. It is this
knowledge that gives qualitative character to experience, for, as a result of learning, each
stimulus that I see, hear, feel, or smell is now not only represented but also re-represented
through independent metarepresentations that enrich and augment the original representa-
tion(s) with knowledge about (1) how similar the manner in which the stimulus’s repre-
sentation is with respect to that associated with other stimuli, (2) how similar the
stimulus’s representation is now with respect to what it was before, (3) how consistent is
a stimulus’s representation with what it typically is, (4) what other regions of my brain
are active at the same time that the stimulus’s representation is, etc. This perspective is
akin to the sensorimotor perspective (O’Regan & No€e, 2001) in the sense that awareness
is linked with knowledge of the consequences of our actions, but, crucially, the argument
is extended inwards, that is, to the entire domain of neural representations (it can also be
extended further outwards—this is what I take Theory of Mind to be—but that story is
too long to tell here).

I would thus like to defend the following claim: Conscious experience occurs if and
only if an information processing system has learned about its own representations of the
world. To put this claim even more provocatively: Consciousness is the brain’s theory
about itself, gained through experience interacting with the world, and, crucially, with
itself. I call this claim the “Radical Plasticity Thesis” (Cleeremans, 2011), for its core is
the notion that learning is what makes us conscious. How so? The short answer, as hinted
above, is that consciousness involves not only knowledge about the world, but, crucially,
knowledge about our own internal states, or mental representations. How can we begin to
explore this line of thought using computational modeling? In the following, I present an
overview of the recent work we have carried out in attempting to do just so.
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5. Metacognitive networks

In a strikingly insightful article titled “The Cognizer’s innards, A psychological and
philosophical perspective on the development of thought,” Clark and Karmiloff-Smith
(1993) wrote:

[. . .] genuine thinkers, we submit, are endowed with an internal organization which is
geared to the repeated redescription of its own stored knowledge. This organization is
one in which information already stored in an organism’s special-purpose responses to
the environment is subsequently made available, by the RR [Representation Redescrip-
tion] process, to serve a much wider variety of ends. Thus knowledge that is initially
embedded in special-purpose effective procedures subsequently becomes a data struc-
ture available to other parts of the system. (p. 488)

We have recently begun exploring these ideas, focusing on the following question:
What kind of mechanism may enable the sort of redescription processes envisioned by
Clark and Karmiloff-Smith? First, enabling redescription of one’s own internal states
minimally requires such internal states to be available to redescription, where availability
is contingent, as discussed above, on such internal states being patterns of activation
endowed with certain characteristics such as their strength, their stability in time, and
their distinctiveness. Note that these assumptions rule out many potential sources of inter-
nal knowledge. For instance, the sort of weak, fleeting representations presumably result-

Fig. 1. What kind of mechanism would make it possible for a network to find out about and learn something
about its own internal states?
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ing from the presentation of a brief stimulus would be poor candidates to be available to
further processing. Likewise, the associative links that exist between representations, if
implemented through patterns of connectivity between groups of units, as they would be
in connectionist networks, would remain inaccessible to further processing.

Second, those representations that meet the requirements for redescription need to be
accessed by another part of the system whose function it is to redescribe them. This
requires the existence of monitoring or observing systems, such as depicted in Fig. 1.
Something needs to be able to observe, from the outside so to speak, the states of the sys-
tem. Note that this is precisely what modelers are doing when poring over the activation
patterns learned by a trained network. Here, however, we would like this process to be
integrated into the system itself, so that the system itself redescribes its own activity in
the service of further tasks. There are several possible approaches to this problem.

An important point worth highlighting right away is that any network that contains one
or multiple layers of hidden units is in a sense already redescribing its own activity to
itself: Each layer of hidden units constitutes a redescription of its inputs. But there is an
important difference between redescriptions of this kind and what one could call indepen-
dent redescriptions, that is, redescriptions that lie outside the causal chain that links input
and output. I shall return to this difference in the discussion.

I suggest that the general form of such redescription mechanisms is something similar
to what is depicted in Fig. 2. Two independent networks (the first-order network and the
second-order network) are connected to each other in such a way that the entire first-
order network is input to the second-order network. Both networks are simple feedfor-
ward back-propagation networks. The first-order network consists of thee pools of units:
a pool of input units, a pool of hidden units, and a pool of output units. Let us further
imagine that this network is trained to perform a simple discrimination task, that is, to
produce what is named Type I response in the language of signal detection theory. My
claim is that there is nothing in the computational principles that characterize how this
network performs its task that is intrinsically associated with awareness. The network
simply performs the task. While it will develop knowledge of the associations between
its inputs and outputs over its hidden units, and while this knowledge may be in some
cases very sophisticated, it will forever remain knowledge that is “in” the network as
opposed to being knowledge “for” the network.

A trained network of this kind could thus properly be described as being sensitive to
its inputs, but there is no sense in which it can be described as being aware of what it
has learned. In other words, such a (first-order) network can never know that it knows: It
simply lacks the appropriate machinery to do so. Likewise, in signal detection theory,
while Type I responses always reflect sensitivity to some state of affairs, this sensitivity
may or may not be conscious sensitivity; that is, a participant may be successful in dis-
criminating one stimulus from another, yet fail to be aware that he is able to do so and
thus claim, if asked, that he is merely guessing or responding randomly.

Enabling such metacognitive judgements about one’s own performance thus appears to
require the involvement of a second-order network, the task of which consists of learning
about the internal states of the first-order network in such a way as to make it possible
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for it to make decisions about when the first-order network is correct or not. In its more
general form, as depicted in Fig. 2, such an architecture would also be sufficient for the
second-order network to perform other judgements, such as distinguishing between a hal-
lucination and a veridical perception, or developing other kinds of knowledge about the
overall geography of the internal representations developed by the first-order network.

Can we use such architectures to account for relevant data? That is the question we set
out to answer in recent work (e.g., Cleeremans, Timmermans, & Pasquali, 2007) aimed at

Fig. 2. General architecture of a metacognitive network. A first-order network, consisting for instance of a
simple three-layer backpropagation network, has been trained to perform a simple classification task and thus
contains knowledge that links inputs to outputs in such a way that the network can produce Type I responses.
By design, this entire first-order network then constitutes the input to a second-order network, the task of
which consists of redescribing the activity of the first-order network in some way. Here, the task that this sec-
ond-order network is trained to perform is to issue Type II responses, that is, judgments about the extent to
which the first-order network has performed its task correctly. One can think of the first-order network as
instantiating cases where the brain learns about the world, and of the second-order network as instantiating
cases where the brain learns about itself.
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exploring different facets of the overall challenge that the relationships between perfor-
mance and awareness represents.

In different simulations I overview below, we have chosen to focus on exploring the
relationships between performance and post-decision wagering. Post-decision wagering
was introduced by Persaud, McLeod, and Cowey (2007) as a measure of awareness
through which participants are required, on a trial-by-trial basis, to place a high or a low
wager on their decisions, such as relative to stimulus identification for example. The
intuition behind this measure is that people will place a high wager when they have con-
scious knowledge that their decision was correct, and a low wager when they are uncer-
tain of their decisions. In this, wagering is thus similar to other subjective measures of
awareness such as confidence judgments (Seth, Dienes, Cleeremans, Overgaard, &
Pessoa, 2008). According to Persaud et al., wagering provides an incentive for partici-
pants not to withhold any conscious information, as well as not to guess, making it a
more objective measure of awareness than confidence judgments. Despite recent criticism
of Persaud et al.’s claims (Dienes & Seth, 2010), wagering certainly reflects the extent to
which an agent is sensitive to its own internal states.

Beginning with Cleeremans et al. (2007), we therefore focused on creating “wagering
networks,” for wagering affords easy quantification and thus appeared more readily ame-
nable to computational simulation than other metacognitive measures such as confidence.

(A)

(B)

Fig. 3. Architectures for wagering networks. (A) Network architecture for the Iowa gambling task simulation
(see Pasquali et al., 2010, simulation 3). The network consists of a first-order feedforward backpropagator, of
which the hidden units feedforward into a set of second-order hidden units, which in turn feed forward into
two wagering units. (B) Network architecture for the Blindsight and AGL simulations (see Pasquali et al.,
2010, simulations 1 and 2). The network consists of a first-order feedforward backpropagation autoassociator,
of which the input and output units are connected through fixed weights to a second-order comparator, which
in turn feeds forward into two wagering units.
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We have found that different approaches to instantiating the general principles we have
described so far are required to capture empirical findings.

In one, as hinted above, the first-order and the second-order network stand in a hierar-
chical relationship and are thus part of the same causal chain, but they are trained on dif-
ferent tasks, one corresponding to first-order decisions and the second corresponding to
metacognitive decisions, that is, decisions about the first-order network’s performance
(see Fig. 3A). Such networks are best described as hierarchical metacognitive networks,
since the sensory input needs to be fully processed by the first-order network before it
becomes available to the second-order network. Further, the information contained in the
second-order network is directly dependent on the information contained in the first-order
network in that the hidden unit patterns predict both the first-order and the second-order
responses.

In a second approach (Fig. 3B), the two networks are truly independent. Here, the
first-order network again consists of a simple feedforward back-propagation network,
trained for instance on performing auto-association on its inputs. Unlike hierarchical mod-
els, however, here, the second-order network uses comparator units to assess the differ-
ence between first-order input and output so as to make a decision about whether the
first-order network was correct or not in its decision. Thus, in such networks, the second-
order network lies outside of the first-order causal chain, because the information used by
the first-order network to execute its task is not the information used by the second-order
network to place a high or a low wager. Thus, such networks are in principle what has
been called the “dual-channel” models. Nevertheless, since both networks “plug into” the
same basic knowledge (first-order performance), this type of model is effectively a hybrid
between hierarchical and dual-route models. Note that in either case, our assumptions are

Fig. 4. Architecture for the digit classification metacognitive network. A first-order network instantiates a
simple feedforward backpropagator trained to classify “visual” input patterns representing the shapes of digits
0–9 in 10 categories. A second-order network is assigned the task of wagering on the first-order network’s
performance based on the latter’s internal representations of the stimulus. The second-order network thus per-
forms judgements about the extent to which the first-order network is correct in its own decisions.
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oversimplified, for a complete implementation of the theory would require overcoming
the limitation that the second-order network cannot influence processing as it takes place
in the first-order network.

In one of our first simulations, which I will describe in more detail here, the first-order
feedforward backpropagation network (see Fig. 4) consisted of 7 input units representing
digit shapes (as on a digital watch), 100 hidden units, and 10 output units for the 10 dig-
its. The task of the first-order network is a simple one: It consists of identifying the
“visual” representations of the digits 0–9. This is achieved by training the first-order net-
work to respond to each input by activating one of its 10 output units. The 100 first-order
hidden units connected to a different pool of 100 hidden units of the second-order feed-
forward network, with 2 output units representing a high and a low wager, as shown in
Fig. 3.

The task of the higher order network consisted of wagering on the first-order network’s
decisions. It was trained to place a high wager if the first-order network had provided a
correct answer (correct identification of the digit), and to wager low when the first net-
work had given an incorrect answer (misidentification of the digit). Both networks were
trained simultaneously. Importantly, this implies that the second-order network is trained
on a continuously changing training set, since the first-order network patterns of activa-
tion over its hidden units are themselves changing as a result of training.

A learning rate of 0.15 and a momentum of 0.5 were used during training of the first-
order network. The second-order network was simultaneously and independently trained
to wager high or low on the performance of the first-order network. This was achieved
simply by training the network to activate one output unit when the first-order network
had produced the correct response and a second output unit when it had not, using a sim-
ple winner-take-all approach. In an attempt to explore differences in the learning regime
of the second-order network, we also contrasted a condition where the second-order net-
work was trained with a learning rate of 0.1 and a condition where it was trained with a
much lower learning rate of 10!7. Because this can (admittedly very crudely) be taken as
reflecting different degrees of metacognitive awareness; we dubbed the first condition
“high awareness” and the second “low awareness.” Ten such networks were trained to
perform their tasks concurrently throughout 200 epochs of training and their performance
averaged. The performance of all three networks (the first-order network; the second-
order network trained with a low learning rate, and the second-order network trained with
a higher learning rate) is depicted in Fig. 5.

Chance level for the first-order network is 10% (there is one chance of out 10 of cor-
rectly identifying one digit among ten); it is 50% for the second-order network (one
chance out of two of placing a correct wager). The figure shows that the first-order net-
work simply gradually learns to improve its classification performance continuously until
it achieves 100% correct responses at the end of training. The performance of the “high
awareness” second-order network, however, exhibits a completely different pattern.
Indeed, one can see that the second-order network initially performs quite well, only to
show decreasing performance up until about epoch 40, at which point its performance
has sagged to chance level. From epoch 40 onwards, the second-order network’s perfor-
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mance increases in parallel with that of the first-order network. This U-shaped perfor-
mance pattern is replicated, to a lesser degree and with slightly different dynamics, in the
“low awareness” second-order network.

One can understand this performance pattern as follows. Initially, the second-order net-
work quickly learns that the first-order network is systematically incorrect in classifying
the digits (which is expected since it has not begun to learn how to perform the task).
The safest response (i.e., the response that minimizes error) is thus to always bet low.
This, incidentally, is what any rational agent would do. However, as the first-order net-
work quickly begins to exceed chance level performance on its digit classification task,
the performance of the second-order network begins to decrease. This corresponds to a
stage where the second-order network is beginning to bet “high” on some occasions as it
learns to categorize states of the first-order network that are predictive of a correct classi-
fication. An interesting pattern of dissociation then occurs, for the second-order network
is performing rather poorly just when the first-order network is beginning to truly master

Fig. 5. Performance of the first-order and second-order networks digit-classification network, as a function of
training expressed as number of epochs.
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its own digit classification task. One can think of that stage as corresponding to a point
in training where the system as a whole is essentially acting based on unconscious knowl-
edge: First-order performance on the digit classification task is well above chance level,
yet, wagering by the second-order network is close to chance, and is at chance on epoch
40. Intuitively, at that point in time, the networks are performing just like a participant
who is able to correctly make decisions yet claims to be guessing—precisely the dissocia-
tion one observes in many implicit learning and subliminal priming paradigms. Thus,
epoch 40 corresponds to the second-order network’s “most doubtful moment.” One could
view this as the moment at which the higher order network abandons a simple “safe”
strategy of low wagers and explores the space of first-order hidden unit representations,
looking for a criterion that will allow it to separate good from bad identifications.

Later on, after epoch 40, the second-order network has learned enough about when the
first-order network will be correct versus incorrect to begin attempting to maximize its
own wagering performance. As the two networks simultaneously learn to perform their
respective tasks, one then sees the entire system shifting from a situation where there is
no relationship between first- and second-order performances to a situation where the two
are correlated. This transition reflects, under our assumptions, a shift between unconscious
versus conscious processing.

In later work (Pasquali, Timmermans, & Cleeremans, 2010), we have explored similar
models based on germane or identical architectures and shown that they are capable of
accounting for the data reported by Persaud et al. (2007) in three different domains: artifi-
cial grammar learning, blindsight, and the Iowa gambling task (IGT).

In all three cases, our simulations were successful in duplicating the patterns of associ-
ations and dissociations observed in human participants with respect to the relationship
between task performance and wagering. For instance, Fig. 6 shows the results of a simu-
lation study of the IGT (Bechara, Damasio, Damasio, & Anderson, 1994), which requires
participants to choose, on each trial, a card that they may select from one of four decks.
Unknown to them, two of the decks are advantageous in the long term for they yield
modest wins, but wins that ultimately exceed the modest losses also associated with those
decks. The other two decks are initially enticing because they yield substantial wins early
on, but ultimately disadvantageous for they also contain cards associated with severe
losses. Because participants are initially ignorant of the reward structure of the decks
each of their choices is, at least initially, ambiguous with respect to the outcome. In Per-
saud’s adaptation of the IGT, participants additionally placed wagers on whether each
card would be winning or losing. The wager is placed after deck selection, but before
turning over the card (revealing how much was won or lost). Participants typically man-
age to improve deck selection well before they start wagering advantageously, suggesting
implicit knowledge. However, when participants are made more aware of their strategy to
determine deck relative pay-offs by being asked specific questions regarding their strategy
such as “What would you expect your average winning amount to be by picking 10 cards
from deck 1?,” wagering follows performance more closely (Maia & McClelland, 2004).

In our simulation (using the architecture depicted in Fig. 3A), as in the digit task simu-
lation, we captured the difference between “low awareness” and “high awareness”
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conditions by the simple expedient of modulating the learning rate of the second-order
network accordingly. The results show a good fit with the human data and are thus sug-
gestive that differences in the extent to which the second-order is allowed to learn about
the first-order information is instrumental in defining metacognitive access (and hence,
awareness, by this account). This is borne out by a recent study of Fleming, Weil, Nagy,
Dolan, and Rees (2010) which indicates large individual differences in people’s ability to
judge their own performance. Strikingly, the authors found that differences in metacogni-
tive ability were subtended not only by differences in the activity of anterior prefrontal
cortex but also by structural differences in the white matter of these regions.

It may seem that the proposed mechanisms are identical with signal-detection accounts
of metacognition (e.g., Scott & Dienes, 2008). However, there is a crucial difference. Sig-
nal detection accounts typically make the second-order distinction between confidence
and guessing (high vs. low wagers) on the very signal that is used for first-order classifi-
cations by setting two boundaries on the signal: one boundary that accounts for the first-
order classification and a second boundary (on either side of the first-order boundary) that

(A)

(B)

(C)

(D)

Fig. 6. Results for the Iowa gambling task simulation. Network performance is plotted across time (epochs)
for (C) “low awareness” and (D) “high awareness” conditions. Persaud et al.’s results are reproduced (with
permission) for comparison purposes (A and B for low and high awareness conditions, respectively).
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distinguishes between guessing (cases that fall within the area defined by the second
boundaries) and cases that fall outside of these boundaries (on the extremes of the distri-
bution). In such an account, confidence thus depends directly on first-order signal
strength. However, in the hybrid models we have also proposed (Fig. 3B), the second-
order classification does not depend on the same signal as the first-order task. Indeed,
instead of wagering high or low based on signal strength, the second-order network
re-represents the first-order error as a new pattern of activation. Thus, before it can wager
correctly, the second-order network, like the first-order network, has to learn to make a
new, single-boundary classification based on this second-order representation (the error
representation). Thus, the second-order network actually learns to judge the first-order
network’s performance independently of the first-order task itself. The difference between
our model and signal detection theory is substantial, for it impinges on whether one con-
siders Type I and Type II performance; that is, first-order and second-order judgments
about these decisions entertain hierarchical or parallel relationships with each other. This
issue is currently being debated, with some authors defending a dual-route model (Dehae-
ne & Charles, 2010) and others (Lau, 2010) defending hierarchical models. The simula-
tion work described in Pasquali et al. (2010) is suggestive that the former may be more
fruitful in that they afford additional flexibility and generality.

5. Conclusions

Information processing, be it conscious or not, necessarily takes place in brains inter-
acting with their environment. Because brains consist of large-scale, interacting neural
networks, it must be the case that the difference between conscious and unconscious
amounts to functional differences between the way such networks are organized. In other
words, conscious and unconscious processing are fundamentally connected, that is, rooted
in the very same principles of information processing—a point already made forcefully
by Searle (1992). The singular challenge we are thus faced with is to understand how the
symbolic representations characteristic of conscious information processing can emerge
out of the subsymbolic representations characteristic of unconscious information process-
ing. One possibility to address this challenge, outlined here, is that the brain continuously
and unconsciously learns to redescribe its own activity itself based on constant interaction
with itself, with the world, and with other minds. The outcome of such interactions is the
emergence of internal models that are metacognitive in nature and that function so as it
make it possible for an agent to develop a (limited, implicit, practical, embodied) under-
standing of itself. In this light, plasticity and learning are constitutive of what makes us
conscious, for it is in virtue of our own experiences with ourselves and with other people
that our mental life acquires its subjective character. The connectionist framework contin-
ues to be uniquely positioned in the Cognitive Sciences to address the challenge of identi-
fying what one could call the “computational correlates of consciousness” (Cleeremans,
2005; Mathis & Mozer, 1996), both because it makes it possible to focus on the mecha-
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nisms through which information processing takes place and because its fundamental
principles are inspired by the manner in which the brain computes.
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