
Recipes, Algorithms, and Programs

CAROL E. CLELAND
Department of Philosophy & Institute of Cognitive Science, University of Colorado, Boulder, CO,
USA

Abstract. In the technical literature of computer science, the concept of an effective procedure
is closely associated with the notion of an instruction that precisely specifies an action. Turing
machine instructions are held up as providing paragons of instructions that "precisely describe" or
"well define" the actions they prescribe. Numerical algorithms and computer programs are judged
effective just insofar as they are thought to be translatable into Turing machine programs. Nontech-
nical procedures (e.g., recipes, methods) are summarily dismissed as ineffective on the grounds that
their instructions lack the requisite precision. But despite the pivotal role played by the notion of a
precisely specified instruction in classifying procedures as effective and ineffective, little attention
has been paid to the manner in which instructions "precisely specify" the actions they prescribe. It
is the purpose of this paper to remedy this defect. The results are startling. The reputed exemplary
precision of Turing machine instructions turns out to be a myth. Indeed, the most precise specifica-
tions of action are provided not by the procedures of theoretical computer science and mathematics
(algorithms) but rather by the nontechnical procedures of everyday life. I close with a discussion of
some of the rumifications of these conclusions for understanding and designing concrete computers
and their programming languages.

Key words: action, algorithm, computer program, effective procedure, precisely specified instruc-
tion, quotidian procedure, symbol, Turing machine

1. Introduction

From a preanalytic, intuitive standpoint, a procedure is effective if correctly fol-
lowing it reliably yields a definite outcome. The Euclidean algorithm, for example,
is ordinarily thought to be effective (for computing the greatest common divisor
of two integers) because correctly applying it to two integers invariably yields
their greatest common divisor. Similarly, instructions for rewiring an electrical
outlet may be said to be effective in virtue of the fact that correctly following
them reliably produces a functioning wall socket. Not all procedures terminate
when followed, however. The Wallis’ algorithm for computingπ provides a salient
example. It may be used to calculate successive and exact values of the decimal
expansion ofπ , but it doesn’t specify a final step terminating in the full decimal
expansion ofπ . In light of cases like this, the concept of effectiveness has come to
be defined in the technical literature in terms of the outcomes of applying individual
instructions as opposed to the outcome of completing the procedure as a whole.
As Marvin Minsky explains in his classic textbook on computer science (Minsky,
1967, p. 105) "our concern here is not with the question of whether a process
terminates with a correct answer, or even ever stops."

Minds and Machines11: 219–237, 2001.
© 2001Kluwer Academic Publishers. Printed in the Netherlands.



220 CAROL E. CLELAND

Minsky doesn’t stop, however, with correctly noting that our concept of effect-
iveness needs to include non-terminating procedures. He further stipulates (p. 105)
that the effectiveness of a procedure be construed in terms of "whether the next step
is always clearly determined in advance." In other words, the effectiveness of a pro-
cedure depends on how well its instructionsspecifythe actions they prescribe. This
amounts to a linguistic proposal for analyzing effectiveness, and, indeed, Minsky
subsequently characterizes (p. 106) effective procedures in linguistic terms, expli-
citly referring to them as "well defined" or "precisely described". It is important to
keep in mind that Minsky does not view himself as introducing a new proposal for
understanding the concept of an effective procedure; he sees himself as explicating
the received view among computer scientists.

In previous work (Cleland, 1993, pp. 291–293, 1995, pp. 12–13), I argued that
Minsky’s account of effectiveness is inadequate and needs to be brought into closer
alignment with the intuitive notion of effectiveness. For procedures are said to be
effective in virtue of the outcomes they yield, and these outcomes are not them-
selves specified by the instructions of procedures; they depend upon the (logical
or mathematical or conventional or causal) consequences of performing the pre-
scribed actions. The solution I proposed was to add a condition stipulating that (in
addition to being precisely specified) the actions prescribed by a procedure reliably
yield definite (abstract or physical) outcomes when performed. I never questioned
the oft-repeated claim that Turing machine instructions provide us with paragons
of precise specification of action, and I defended nontechnical procedures (such as
recipes) against the charge of failing to provide requisitely precise specifications of
action by appealing to the concept of an idealized follower.

In this paper, I focus on the concept of a precisely specified action, and reach
the disconcerting conclusion that the much-lauded precision of Turing machine
instructions is a myth. Moreover, an analysis of the instructions of the nontech-
nical procedures of everyday life–what I shall callquotidian (a.k.a. mundane1)
procedures–reveals that although they are inherently vague, they provide us with
more precise specifications of action than either Turing machines or numerical
algorithms. In other words, quotidian procedures, as opposed to Turing machines,
provide us with the real paragons of precisely specified action! Indeed, as I shall
argue, a careful look at the prescriptions of action provided by Turing machines
reveals that they don’t even provide us withbona fideprocedures, let alone effective
procedures; at best, they may be said to provide us with procedure schemas. I close
with a discussion of some of the ramifications of my conclusions for interpretation
and design of concrete computers and their programming languages.

2. Recipes (and Other Quotidian Procedures)

We shall begin by investigating the precision of quotidian procedures since they
are often rejected as ineffective solely on the the grounds that their instructions fail
to provide requisitely precise specifications of action; thus the fact that correctly



RECIPES, ALGORITHMS, AND PROGRAMS 221

following a recipe invariably results in a particular outcome is judged not to be
sufficient for concluding that the recipe constitutes an effective procedure. First,
however, we need to get some terminology and distinctions out of the way.2 The
following recipe will serve as an example.

Pat the mozzarella balls dry with absorbent kitchen paper. Cut into slices with a
sharp knife and arrange on a serving platter with the tomatoes and basil leaves.
Squirt on a little lemon juice, season with salt and black pepper, and drizzle
with olive oil. Toss gently and serve immediately (Biuso, 1997, p. 15).

The recipe consists of instructions. Each instruction-expression (e.g., "pat the
mozzarella balls dry with absorbent kitchen paper") makes reference to an occur-
rence which is to be brought about (done) as opposed to undergone or merely
happen. That is, each instruction designates an action, more specifically, since
different chefs may apply the same instruction, an action-type (vs. token). The
instructions are expressed by imperatives (e.g., "cut into slices. . . "), indicating
that the follower is to perform the designated action-types. In other words, the
instruction-expressions literally order the performance of the action-types they
designate; I use the expression "prescribe" to distinguish this special referential
relation between an instruction-expression and an action-type from otherreferential
relations.

It is important to distinguish instruction-expressions from instructions. For the
identity of a quotidian procedure depends upon the identity of its constituent in-
structions, not the vehicle of their expression. The same recipe may be expressed in
many different ways, including in different languages and in different terminology
in the same language. Also, some quotidian procedures (e.g., for tying shoelaces)
may be communicated non-verbally. Different instruction-expressions express the
same instruction only if they prescribe the same type of action. Accordingly, the
identity of a quotidian procedure depends upon the identity of the action-types
prescribed by its instruction-expressions. The order in which the instructions are
to be carried out is also crucial to the identity of a quotidian procedure. Failure to
perform the prescribed action-types in the specified order in time constitutes just as
much a failure to follow the procedure as not performing them at all. In our recipe,
the order is specified by the order in which the instruction-expressions appear in
the recipe, e.g., the instruction to pat the mozzarella balls dry comes before the
instruction to slice them, and this is the order in which the specified actions are
supposed to be performed.

We are now ready to investigate the manner in which quotidian procedures
specify the actions they prescribe. Human actions are typically designated in terms
of their consequences. These consequences are usually causal or conventional, as
opposed to logical. As an example, consider an action of raising one’s hand. The
concept of a raising of a hand includes the concept of a rising of a hand; in the
absence of the latter there can be no occurrence of the former, and any competent
speaker of English understands this. Similarly, the concept of signaling includes
the concept of someone being signaled. A raising of a hand will not count as a



222 CAROL E. CLELAND

signaling if no one interprets it as a signaling; at best, it may be characterized as a
failed attempt at signaling. It is important to keep in mind, however, that an action
cannot be identified with its causal or conventional consequences. Not all risings of
hands are raisings of hands. A rising of a hand might, for example, be produced by
a random twitch of some muscle fibers, and hence fail to qualify as something
that was done (an action) as opposed to something which merely happened or
was undergone. Similarly, a raising of a hand may be incorrectly interpreted as
a signaling.

The instructions of quotidian procedures exploit the conceptual connection bet-
ween an action and its consequences. The instruction-expression "slice the cheese",
for example, prescribes that a certain state of the world (sliced cheese) be brought
about. But it doesn’t specify how to do it, whether to use your right hand or left
hand, how to hold the knife against the cheese, etc. It is assumed that a follower
of the recipe already knows how to bring it about. Some quotidian instructions
specify the actions they prescribe in terms of dynamic events, e.g., "kick the ball",
as opposed to states. In bringing about a kicking of the ball, the follower performs
an action of the required sort. But to recapitulate, the instruction expression does
not specify how to kick the ball and the mere fact that an event of a kicking of a ball
occurs is not sufficient for there to have been an action of kicking the ball; I might
have accidentally struck it with my foot while running across a field. Finally, some
quotidian instructions prescribe temporally extended activities that initiate, sustain,
and/or modulate continuous physical processes (as opposed to prescribing transit-
ory actions producing states or fairly delimited events). As an example, consider
the following instruction from the Boy Scout method for starting a fire: "turn the
spindle with long, steady strokes of the bow;" In such cases, it is often difficult to
distinguish the process from the activity that initiates, sustains and/or modulates it.
For the activity and the process overlap in time and are intimately interconnected.
Nevertheless, as in the case of a raising of a hand and a rising of a hand, there is
a difference between an action of turning a spindle and a turning of a spindle; the
presence of the latter is possible in the absence of the former. In short, although
they are intimately connected with their consequences, actions (whether transitory
or extended) are nevertheless distinct from them.

Specifying actions in terms of their causal consequences (whether states, events,
or processes) has the advantage of providing fairly precise criteria for the satisfac-
tion of an instruction. To the extent that we can recognize sliced cheese, kicked
balls, turning spindles, etc., we can determine that we have correctly applied an
instruction. On the other hand, it also means that it is possible for someone to
recognize when an instruction has been correctly applied without knowing how to
apply it. The judges in gymnastics and figure skating competitions provide good
examples of this phenomenon; although they can recognize when various actions
have been correctly performed, few of them know how to perform them. Viewed
from this perspective, it would be better if quotidian instructions specified how



RECIPES, ALGORITHMS, AND PROGRAMS 223

to perform the actions they prescribe, as opposed to merely providing us with
characterizations of their consequences.

Unfortunately, this can’t be done. For although complex actions may be ana-
lyzed in terms of simpler actions, we eventually reach basic bodily actions.3 Basic
bodily actions are specified in terms of their direct effects, which are basic bodily
motions. Like non-basic actions, basic actions are distinct from their consequences;
there is a difference between a movement of my finger and my moving my finger.
This brings us to the question of what distinguishes behavior that is a consequence
of action from behavior that is not. Most contemporary philosophers agree that it
involves being preceded in the right way by a special kind of psychological state,
namely, an intentional (content bearing) mental state. But this is where agreement
ends. There is little consensus about the identity of the intentional mental state and
the nature of its connection to behavior. Moreover, all the proposed accounts of
the connection (and they run the gamut from causal to non-causal) face serious
problems. Fortunately, I don’t need solutions to these difficult problems. All I need
is a minimal intuitive concept of action. For however action is ultimately analyzed,
it will still be true that actions are things that are done, as opposed to undergone or
merely happen, and, most importantly for my purposes, that they are specified in
terms of what is to be brought about (their non-logical consequences), as opposed
to how to bring it about.

3. Algorithms

So how do the more refined procedures of mathematics compare to quotidian pro-
cedures? We will focus on numerical algorithms since they are the prototypical
examples from mathematics. Consider the following version (Hennie, 1997, p. 9) of
the Euclidean algorithm for computing the greatest common divisor of two positive
integers:

Step 1: Letb anda be specific positive integers. Compute the remainder ofa
with respect tob. Call this remainderr, and proceed to Step 2.

Step 2: Ifr = 0, terminate the computation withb as the result. Ifr 6= 0, replace
a by b andb by r. Now repeat Step 1.

At first glance, it seems to conform to my analysis of the precision of specific-
ation provided by quotidian procedures, the obvious difference being that many
of the action types prescribed are numerical. A little reflection on the nature of
the specifications provided by its instructions, however, reveals some significant
differences.

Unlike quotidian instructions, most numerical instructions do not designate the
action-types they prescribe in terms of their consequences, which are numerical
values as opposed to states, events, or processes. This is especially obvious in
the case of operations involving large numbers. The concept of dividing 4,724 by
1,181, for example, does not include the concept of 4 like the concept of raising a
hand includes the concept of a rising of a hand or the concept of turning a spindle



224 CAROL E. CLELAND

includes the concept of a turning of a spindle. But this is just as true of numerical
operations involving small numbers. For as Kant pointed out some time ago (Smith,
1965, pp. 52–53), considered just in itself, the instruction ‘add 5 to 7’ does not
"include" the concept of 12 in its meaning. It is important to appreciate that ap-
pealing to past experience cannot circumvent this problem. Associating 12 through
experience with adding 5 to 7 is not the same as the concept of 12 being included
in the meaning of the instruction ‘add 5 to 7’. This is not to deny that Kant’s notion
of "meaning inclusion" is vague and metaphorical. The distinction I am drawing,
however, is not quite the same as the much maligned analytic-synthetic distinction.
For the conceptual connection between raisings of hands andrisingsof hands and
turningsof spindles andturningspindles is much closer and more obvious than the
conceptual connection betweenbachelorhoodandmalenessor triangularity and
three sidedness, being reflected in the very terminology used to designate actions
and their consequences. Numerical instructions do not exhibit any obvious concep-
tual connection between the numerical operations they prescribe and the numerical
consequences of performing them, and this, I submit, makes them significantly
different from quotidian instructions.

If algorithms don’t specify numerical operations in terms of their numerical
consequences, then, surely, they must specify them in terms of the activity required
to produce those consequences; otherwise, how can a numerical instruction be said
to tell one what to do? Unfortunately, this does not seem to be the case either. The
objects ostensibly manipulated (numbers) are neither perceptible nor causally effic-
acious. Besides, even if we identify numbers with numerals, numerical instructions
still can’t be said to provide us with specifications of action. For although action
presupposes things to manipulate, having something to manipulate isn’t enough to
constitute action. In our recipe, for instance, it wouldn’t have sufficed to specify
cheese and a knife. One also had to specify what is to be done to the cheese by
the knife, namely, slice it (as opposed to stab it, beat it, dice it, etc.). But it isn’t at
all clear that we manipulate numerals qua physical objects (inscriptions) when we
satisfy numerical instructions. In the first place, we often perform numerical oper-
ations in our heads; in contrast, we can’t slice cheese in our heads. Furthermore,
in contemporary mathematics the idea that numerical operations involve genuine
manipulations has been eliminated. Numerical operations are identified with func-
tions which, in turn, are identified with sets of ordered pairs (whose elements may
be numbers or, themselves, ordered pairs of numbers), and sets of ordered pairs
are completed structures, as opposed to ways of doing things. In short, we really
don’t know what we are doing when we perform a numerical operation, and if we
don’t know what is involved in performing a numerical operation, we can hardly
describe how to do it.

One cannot circumvent this problem by maintaining that our knowledge of how
to perform basic numerical operations is grounded in previous experience. For the
fact that we have successfully performed a numerical operation isn’t sufficient to fix
its application in a new case. Kripke’s famous numerical question (Kripke, 1982,



RECIPES, ALGORITHMS, AND PROGRAMS 225

pp. 20–21) provides a good example. Assuming that I have never before performed
addition on numbers greater than 56, what determines that ‘125’ is the correct
answer to the question "68 + 57= ?"? Nothing that I have done previously can
determine that "+" means addition (where addition is identified with a unique set
of ordered pairs). For there are infinitely many sets of ordered pairs which are
just as compatible with the finite number of examples of addition to which I have
been exposed up until the time I apply the instruction, including "quus", which I
symbolize by "∗" and Kripke defines as follows:x ∗ y = x + y if x, y < 57, andx + y
= 5 otherwise. In other words, everything I have done up to the point of supplying
an answer to the question at hand is as compatible with the answer ‘5’ as it is with
the answer ‘125’. Indeed, everything I have done is consistent with every possible
answer since to each possible answer there corresponds a function compatible with
my earlier experiences with numbers less than 57. It should be obvious that this
difficulty cannot be resolved by supplying a more precise description of "+". For
what, short of stating in full the infinite set of ordered pairs defining the function
of addition, could possibly pin down that I mean addition by "+" and not some
other function. Kripke concludes that nothing other than the brute contingent fact
of widespread agreement fixes the correct application of a numerical instruction.

Kripke extends his conclusion about numerical instructions to instructions in
general, contending that for any instruction whatsoever there are always an in-
definite number of possible hypotheses about its future use which are consistent
with its past use. His position amounts to a sweeping inductive skepticism about
meaning. Goodman’s new riddle of induction (which shows that past experience
is insufficient to determine that, for example, "green" means green as opposed to
grue4) supplies the classic argument for non-numerical expressions (see Goodman,
1983, pp. 72–83). It is important to keep in mind, however, that Kripke’s skeptical
argument is based upon the assumption that the only possibility for fixing the
meaning of an expression is its past use. If this dubious positivist assumption is
false (and it does seem natural to construe his argument as areductio!) the skep-
tical conclusion about meaning doesn’t go through. But we are still faced with the
problem of making sense of how numerical instructions can be said to provide
precise specifications of the operations they prescribe. For to recapitulate, we don’t
know what is involved in performing a numerical operation and numerical instruc-
tions don’t provide us with criteria for their successful application. This leaves us
in a much worse predicament than we are in the case of quotidian instructions
since (eschewing extreme inductive skepticism about meaning) quotidian instruc-
tions provide us with criteria for their successful application; although they don’t
tell us how to perform the actions they prescribe, they do specify recognizable
consequences of performing them.

I am not denying that we correctly perform numerical operations in response
to numerical instructions. This is not the issue with which we are concerned. We
are concerned with the question of how "precisely" an instruction may be said to
specify the action-type it prescribes. And the disturbing conclusion to which we are



226 CAROL E. CLELAND

being led is that quotidian instructions provide us with more precise specifications
of action than do numerical instructions. It is important to keep in mind that the
concept of precision with which we are concerned is highly specialized. It has little
to do with the idea of eliminating vagueness or increasing numerical accuracy.5 No
one denies that quotidian instructions are vague in the sense that there will always
be cases where we are genuinely uncertain as to whether a given instruction has
been successfully executed. A good example is a small child who, in response to the
instruction "slice the cheese", cuts cheese into large, irregular chunks. The instruc-
tion followed by the child can be made less vague by rewording it and specifying
that the widths of the slices not exceed a certain value and that the slices conform to
more specific geometrical constraints. Numerical instructions do not lack precision
in this sense. Furthermore, while it is true that, before completing a prescribed
computation, we can often "guess" the range of numbers within which the solution
falls, this is not because the instruction contains reference to the range of numbers
concerned. It is because we have had previous experience with numbers falling
within that range or have already completed a partial computation of the answer.
The meaning of the instruction ‘add 4,323 to 2,562’ does not include the concept
of the range of numbers between 6,500 and 7,000 any more than it includes the
concept of 6,885. In other words, numerical instructions do not provide numerically
inaccurate specifications of their consequences either. Numerical instructions lack
precision in Minsky’s sense, namely, we cannot make good sense of the claim that
they determine in advance what a follower is to do, and no amount of fiddling
with their wording can improve the situation. In contrast, although they do not tell
us how to perform the actions they prescribe, quotidian instructions do provide
us in advance with criteria for their successful application, criteria which, while
they can never be completely freed from problems with vagueness, may be refined
and made more definite. Thus there is a sense in which they can be said to (albeit
inexactly) determine in advance what a follower is to do. It is in this sense–the sense
crucial to the contemporary concept of an effective procedure–that the instructions
of quotidian procedures may be said to provide us with more precise specifications
of action than those of numerical algorithms.

4. Turing Machines and Their Programs

The standard retort to concerns about the precision of specifications of action
provided by numerical algorithms is to point out that they may be reformulated
as Turing machine programs. Turing machine programs are supposed to provide us
with procedures whose instructions are paragons of precisely specified action; un-
like quotidian procedures, they are supposed to provide us with perfect "precision"
in Minsky’s sense of the word, i.e., to unequivocally determine in advance the next
step.

Although they are sometimes given formal mathematical characterizations, Tur-
ing machines are most commonly characterized informally as very general, abstract



RECIPES, ALGORITHMS, AND PROGRAMS 227

mechanisms. Let us therefore begin our discussion of Turing machines with their
informal characterization. A Turing machine is said to consist of a "mechanism,"
known as a "finite state machine," coupled to an external storage medium called
the "tape". The tape, which could be represented by anything (from a bunch of tin
cans to graph paper) is divided into squares. At any given moment, the tape has
only finitely many squares. However, an indefinite number of additional squares
may be added to either end, making it effectively infinite. Each square of the
tape is occupied by at most one of a finite number of distinct symbols; the set
of symbols, usually represented by {SO,. . . Sn}, is called "the alphabet" of the
machine. The finite state machine is linked to the tape through a "head" which is
said to be "positioned" over one of the squares. At any given moment, the machine
is characterized as being in one of a finite number of "internal states", qi,. . . , qm.
As is the case with a concrete machine, these states completely define the Turing
machine’s mechanism, i.e., the finite state machine. However, unlike the internal
states of a concrete machine, the internal states of a Turing machine are not physical
structures. They are explicitly identified with instructions. A Turing machine is said
to be in a specific state qi only if it is about to carry out a specific instruction i. It
doesn’t matter how qi is physically realized. All that matters is that the machine is
about to carry out instruction i.

Turing machines are said to "follow" procedures called "programs." A Turing
machine program is extensionally defined by its instruction set. Unlike the instruc-
tions of quotidian procedures and numerical algorithms, the instructions of Turing
machine programs are always conditional in form; an initial configuration of the
machine is necessary (and always provided) to fix the sequence of actions. The
instructions prescribe that the head do certain very simple things (such as move
to the right one square) depending upon what symbol is in the square of the tape
currently being scanned. There are a number of different ways to represent a Tur-
ing machine program, including quadruples, flow graphs, and machine tables. The
following machine table provides a good example of a Turing machine program:

S0 S1

q1 S1q1 Lq2

q2 S1q2 Lq3

q3 S1q3 Slq3

The first row of the table represents a single instruction which prescribes two pos-
sible outcomes depending upon what symbol is being scanned by the head, viz.,
write an S1 and go into state q1 if scanning an SO, or move the head to the left
one square and go into state q2 if scanning an S1. One can see how the machine
operates by inspecting the following representation of its moment by moment con-
figurations:



228 CAROL E. CLELAND

0000000 0000100 0000100 0001100 0001100 0011100

q1 q1 q2 q2 q3 q3

Each sequence of numbers represents the contents of the machine’s tape during
one of its configurations; the sequence to the far left represents the initial config-
uration (each square contains an SO, represented by a "0", and the machine is in
state q1) and the sequence to, the far right represents the final configuration (three
consecutive S1’ s, represented by "111", on an otherwise "blank" tape). The q1,
which appear below each sequence, represent the state of the machine during that
particular configuration; each of the qi are positioned directly below the symbol
(in bold type) which is being scanned by the head at the moment in question. Thus
one can see that the machine table represents a Turing machine program that prints
three consecutive S1’s when started in state qi on a tape filled with S0’ s.

We are now in a position to explicitly compare Turing machine programs to
quotidian procedures for the purpose of assessing the precision with which they
specify the action-types they prescribe. The instructions of Turing machine pro-
grams are expressed in the form of common English imperatives (e.g.,write an S1,
moveto the left one square), and hence seem to prescribe actions in the same sense
that quotidian instructions prescribe actions. Moreover, the order in which these
action-like occurrences are performed is predetermined in time; it is secured by the
complex conditional nature of the instructions and the initial configuration of the
machine. A closer look, however, suggests that the ostensible similarities between
Turing machine programs and quotidian procedures are misleadingly metaphorical.

Let us begin with Turing machine symbols since these are the entities ostens-
ibly manipulated ("written" and "erased") by Turing machines. Turing machine
symbols are traditionally characterized as purely formal. They are said to be purely
formal in the sense that the ways in which they are manipulated depend only upon
their "shape" (vs. content). Thus the shapes of Turing machine symbols are crucial
to the identity of the action-types prescribed by Turing machine instructions. The
question is can we make good sense of the claim that Turing machine symbols have
shape?

Considered just in itself, independently of its physical realizations, a Turing
machine is an abstract machine-type. One might therefore think that the shape of a
Turing machine symbol could be determined by generalizing across different phys-
ical realizations of the same Turing machine. The idea is to identify the shape of
a symbol with whatever geometrical feature is had in common by all of its tokens.
But this won’t work. Across different physical realizations of the same Turing
machine, the same symbol may be instantiated by objects having incommensurable
shapes, e.g., pencil squiggles, punched squares, pebbles in tin cans. Moreover, we
needn’t use geometrical features to encode Turing machine symbols. We could use
weights or colors, or even properties of events (e.g., the duration of a flash of light).
The point is any definite but distinct physical properties may be used to encode
and distinguish the symbols of a Turing machine (type). Indeed, the only physical



RECIPES, ALGORITHMS, AND PROGRAMS 229

constraints on tokens of Turing machine symbols hold within (vs. across) phys-
ical realizations of Turing machines, namely, all tokens of the same symbol must
have in common some (it doesn’t matter what) physical property and all tokens of
different symbols must differ in some physical property.6 Thus, although different
code-types for Turing machine symbols (which will be specific to particular realiz-
ations of Turing machines) may be distinguished in terms of the physical properties
of their tokens, different Turing machine symbols (qua constituents of a specific
Turing machine considered independently of any of its instantiations) can not be
so distinguished. For the most that may be said about Turing machine symbolsper
se is that tokens of different symbols have different but not any definite physical
properties. At best this gives us a relation of bare physical difference among sym-
bols. Unfortunately, a relation of bare physical difference isn’t enough to provide
us with the concept of the shape (however broadly construed) of a Turing machine
symbol since it is an external relation among symbols and external relations aren’t
capable of individuating their relata.

In the context of the formal mathematical analysis, even this minimalist con-
ception of the shape of a Turing machine symbol must be relinquished. Mathem-
aticians analyze Turing machines in terms of mathematical structures. Mathemat-
ical structures consist of functions and relations (both of which are identified with
sets ofn-tuples, ordered in the case of the former), and constants. The prototypical
("usual") mathematical structure for a Turing machine includes three binary func-
tions (the "next place" function, the "next symbol" function, and the "next state"
function), and two symbols, which are commonly said to be the integers 0 and
1.7 It is important to appreciate that these integers can’t be viewed as numerals
(which have shape) since this would amount to conflating an abstract mathemat-
ical structure (viz., the usual structure for the Turing machine) with its concrete
representations. So it seems that they must be bona fide integers. But integers
(qua abstract mathematical objects) have no physical characteristics. This suggests
that the only thing that can serve to distinguish Turing machine symbols is bare
numerical difference, which completely precludes the possibility of making sense
of the claim that they have unique distinguishing structures, however minimal.
Finally, mathematicians do not identify Turing machines with their prototypical
mathematical structures; they identify them only up to isomorphism. That is to
say, considered independently of a particular realization, a specific Turing machine
is a class of isomorphic structures (both abstract and concrete). Viewed from this
perspective, Turing machine symbols amount to nothing more than logical roles in
a second order structure, which, considered in itself, is no more a Turing machine
than the set of all red objects is a red object. As such, Turing machine symbols
are best thought of as conveniences of discourse, as opposed to symbols of some
intangible and rarefied sort. Until we get to the level of the individual structures in
the equivalence class defining a Turing machine we don’t have genuine symbols.
We have placeholders for symbols–symbol variables. As a consequence, we can’t



230 CAROL E. CLELAND

be said to have specifications of action, however imprecise, at the level of a Turing
machine considered independently of any of its instantiations.

Furthermore, even supposing that Turing machine symbols were bona fide sym-
bols, the instructions of a Turing machine program still couldn’t be said to provide
us with precise specifications of action. For as discussed earlier, although action
presupposes things to manipulate, having something to manipulate isn’t enough to
constitute action. Despite the use of familiar English expressions for action such
as “erase” and “write”, Turing machine instructions do not specify what is to be
done once their symbol variables are replaced by symbols. What counts as erasing
and writing a symbol is left completely open. If pebbles replaced the variables, for
instance, erasing a pebble could be realized by activities as diverse as pulverizing
it, painting it, or removing it from a tin can, to mention just a few possibilities.
This difficulty is accentuated in the formal mathematical account since there is no
requirement that the structures in the equivalence class defining a specific Turing
machine even be dynamic. For the basic Turing machine operations (erase, write,
move) are defined in terms of orderedn-tuples (mathematical functions), which do
not require change (let alone change which qualifies as action) for their realization;
they may be instantiated by spatially as well as temporally ordered structures. As a
mathematician once cheerfully conceded to me, a Turing machine could be realized
by a quartz crystal! In other words, insofar as the operations specified by a Turing
machine are given a formal mathematical interpretation, they cannot be said to
represent actions, however indefinite.

To the extent that they do not provide us with specifications of action, Turing
machine instructions can not live up to their promise of providing us with more
precise specifications of action than quotidian instructions. Indeed, they cannot
even be said to provide us with specifications of procedure since, as I have argued,
the concept of action is essential to the concept of procedure. At best, they may
be said to provide us with procedure schemas, i.e., temporally ordered frameworks
for procedures. When these schemas are filled in with bona fide specifications of
action, we get genuine procedures.

5. Concrete Computers and Their Programs

This brings us to concrete computers and their programs. A modern digital com-
puter executing a program is commonly characterized as "being" (realizing or
instantiating) a Turing machine. As an example, consider the following program
for determining the greatest common divisor of two positive integers. It is written
in an artificial languagecalled BASIC.

10 INPUT "FIRST NUMBER =", A
20 INPUT "SECOND NUMBER =", B
30 Q=INT(A/B)
40 R=A-B∗Q



RECIPES, ALGORITHMS, AND PROGRAMS 231

50 IF R> 0 THEN GOTO 60 ELSE GOTO 90
60 A=B
70 B=R
80 GOTO 3O
90 PRINT "GCD =", B

The BASIC program prescribes what seem to be bona fide actions. Considered
just in itself, however, it cannot support the claim that concrete computers execut-
ing programs are instantiations of Turing machines. The number of symbols and
action-types exceeds those of the usual structure for a Turing machine (which,
it will be recalled, is limited to two distinct symbols and three distinct action-
types). Put another way, the BASIC language is too rich to underwrite a relation
of isomorphism between a computer executing a typical BASIC program and the
usual structure for a Turing machine.8 It should be clear that this is true for all high
level languages, e.g., JAVA, LISP, PASCAL, C, Ada.

The BASIC program closely resembles a numerical algorithm. Some of the
instructions are couched in terms of common English imperatives (e.g., lines 80
and 90) whereas others are expressed as familiar functions with one unknown value
(e.g., lines 30 and 40). Indeed, a BASIC programmer can follow it just as easily as
she can follow the Euclidean algorithm presented earlier.9 Nevertheless, construed
as something that can be followed by a human being, the program doesn’t represent
an improvement over the Euclidean algorithm. The instruction in line 40, for ex-
ample, can no more fix for a human follower what counts as its correct or incorrect
application than the instruction in "Step 1" of the Euclidean algorithm to compute
the remainder ofa with respect tob. In neither case does the instruction provide
criteria for determining that an action of the required type has been successfully
completed. Moreover, like the Euclidean algorithm, the instructions of the program
don’t specify how to carry out the numerical actions they prescribe; it is merely
assumed that a follower knows how to do it. In short, construed as something that
may be followed by a human being, the BASIC program represents no improve-
ment over the Euclidean algorithm; it seems to be just a different expression of
it.

There is, of course, a striking difference between a computer executing the
BASIC program and a person following the Euclidean algorithm. We know how
the computer works–how the machine’s software and hardware translate the in-
structions into a sequence of electronic states and how the circuits of the machine
subsequently transform these states into other states. As a consequence, one may
feel confident that the sequence of electronic states that the machine passes through
are causally determined in advance by the program. In contrast, we don’t know
what a human being does when she follows the Euclidean algorithm, and hence
aren’t very confident that what she does is similarly determined in advance; our
uncertainty is exacerbated by the fact that humans frequently make mistakes when
following algorithms. Viewed from this perspective, the BASIC program seems to



232 CAROL E. CLELAND

provide us with a more precise (in Minsky’s sense) method for determining the
greatest common divisor of two integers than the Euclidean algorithm.

It is important, however, not to confuse knowing (at least in principle) how a
computer executes a line of code with knowing whether it did what it was supposed
to do, namely, determine the quotient of two positive integers. This is a subtle point.
In one sense a computer may be said to apply an instruction correctly if there are
no hardware or software failures while it is processing the line of code; it did just
what it was told to do. In another sense, however, the machine may be said to
apply the instruction correctly only if it gets the result that a human being would
get if she applied the instruction correctly. But in the latter sense the machine is
no better off than a human following the same line of code. For the computer may
be judged to have successfully executed the line of code but still not gotten the
correct result. In other words, even supposing that the program causally determines
in advance which physical states the computer passes through, it doesn’t follow
that what the computer does is to compute the greatest common divisor of two
positiveintegers.

The preceding discussion underscores a frequently overlooked point. Whether
a computer or a human being determines the correct values of a specific numer-
ical function when following a procedure expressly designed for this purpose is
secured neither by the procedure itself nor by what the human or computer does
when following it.10 There may be very good reasons for believing it to be true,
reasons based upon well entrenched, theoretical mathematical considerations. The
use of inverse functions to check one’s calculations when balancing a checkbook
provides a familiar example. Identity relations among functions are similarly util-
ized to test the numerical operators of computers. But while such tests may in-
crease one’s confidence in the identity of a function, they provide no guarantees.
The claim that a function being computed is division, for instance, is at best an
empirical hypothesis, and like all empirical hypotheses open to challenge. Any
concrete computer has a finite life span, and hence actually computes only partial
functions. Given any partial function, there are an infinite number of different
ways of continuing it, and each of these yields a different total function. In ad-
dition, there are the inevitable hardware and software failures which afflict all
concrete computers, resulting in the computation of partial functions which are,
technically speaking, inconsistent with the total functions (e.g.,division) the ma-
chines allegedly compute. All of these problems are conveniently glossed over
by the misleading metaphor of a Turing machine as an abstract but nevertheless
bona fide mechanism. For it makes a concrete computer seem more like a Turing
machine than it really is, and insofar as a Turing machine is identified with a
formal mathematical structure the conjecture that a concrete computer computes
a particular function may seem more like a mathematical theorem than an em-
pirical hypothesis; it may seem that computer science is more mathematics than
science.11



RECIPES, ALGORITHMS, AND PROGRAMS 233

The manner in which a computer processes a program is quite different from
the way in which a human being processes a numerical algorithm. The computer
can’t be said to "understand" the instruction-expressions except insofar as it has
another program (an interpreter) to "translate" the high level BASIC instructions
into its machine language; a computer lacking such a program can’t apply the in-
structions. Indeed, one could by-pass the interpreter and code the program directly
in machine language as strings of octal (or hexadecimal) numerals. This makes
what the computer does seem more like following a Turing machine program; for
strings of octal numbers have binary equivalents. Nevertheless, the computer can’t
be said to understand strings of numerals any more than it can be said to understand
BASIC instructions. For there aren’t any numerals (let alone numbers) inside the
machine; at best, the computer may be said to accept numerals as input and to
produce numerals as output (on printout, monitor screens, etc.). What is inside the
computer are circuits etched on silicon chips, and what the computer does when
it executes a program is to open and close these circuits in causally predetermined
ways. This activity is the only thing the computer may be said to "understand".
The use of English imperatives, mathematical formulae, and sequences of numer-
als are solely for the benefit of programmers who are trying to get the machine
to exhibit overt behavior like that of a mathematician following the Euclidean
algorithm. But what the computer actually does in response to the instructions of
the BASIC program resembles neither the psychology nor the neurophysiology of
human thought processes; what the computer does is pass into and out of electronic
states.

What makes concrete computers such powerful and useful devices is neither
their instantiating Turing machines nor their providing us with more precise meth-
ods for computing numerical algorithms but, rather, their capacity for emulating
a human being following a quotidian procedure. Just as the salad recipe specifies
in advance that cheese be sliced by a knife without specifying how this is to be
accomplished so the BASIC program causally determines in advance that certain
things be achieved (some of which are given numerical interpretations by humans)
without determining how they are to be accomplished. Not only can different types
of computer (having different physical components and architectures) execute the
same BASIC program, but the same computer executing the same BASIC program
at different times will (depending upon what else it happens to be doing) activate
different circuits and chips. In other words, computer programs underdetermine
the behavior of the machines that implement them. This is the source of the power
and utility of the modern digital computer. Programmers and users can specify in
the context of their interests, training, and purposes what is to be done without
having to concern themselves with the messy physical details required to bring it
about.

It is important to keep in mind just how different this is from what a Turing
machine (qua abstract, logical "device") reputedly does when it "follows" a pro-
gram. The program logically predetermineseverythingthat is done by the machine;



234 CAROL E. CLELAND

nothing is left open.12 As a consequence, there isn’t a distinction betweenwhatthe
machine does andhow it does it. In contrast, no computer program (considered
just in itself) provides a complete specification of the behavior of the machine
implementing it; even the lowest level programs (machine language programs)
depend upon a complicated encoding scheme called the "machine code format"
to fix the physical states the machine actually passes through. This gap between
the hardware and the software of a concrete computer mirrors the gap between the
specifications provided by a quotidian procedure and the differing ways in which a
human being may satisfy them. Just as a quotidian procedure underdetermines the
behavior of a human being by leaving open how its specifications are to be realized,
so a computer program underdetermines the behavior of a concrete machine by
leaving open how its specifications are to be realized. In other words, the power
and utility of the modem digital computer resides in its almost human plasticity,
and this plasticity is a consequence of our having succeeded in automating the
following of a quotidian procedure.

If I am right about the nature of the significant relation between concrete com-
puters and their programs some popular views about the nature of minds and
machines need rethinking. What computers executing programs mimic is the overt
behavior of humans following quotidian procedures, and the overt behavior of a hu-
man following a quotidian procedure does not in an illuminating way resemble the
neurophysiological or psychological processes underlying it. Similarly, the physics
of a computer processing a program does not resemble the behavior explicitly
prescribed by the program. Indeed, the whole point of a quotidian procedure is
to isolate and insulate a sequence of overt behavior from the messy causal details
of producing it. But if this is so, the celebrated computer metaphor for cognition
seems fundamentally misguided; for it is founded on the idea that having a mind is
just a matter of executing the right program.

Moreover, my account suggests that it is a mistake for theoretical computer sci-
ence to focus on Turing machines as paragons for the design of concrete computers.
For there is no more reason to require that the physical processes causally generat-
ing the input/output functions specified by programs resemble the logical activity
of Turing machines than there is to suppose that the neurological or psychological
processes of a chef following a recipe resemble her overt activity in the kitchen.
Instead, the focus should be on physics, more specifically, on identifying and ex-
ploiting physical processes for achieving results that are currently unobtainable or
could be obtained in a more rapid or efficient manner.

Indeed, on the account just adumbrated, the central concern about Turing’s
tantalizing but enigmatic oracles disappear.13 Oracles are logical black boxes for
carrying out uncomputable tasks. They accept digital input and produce digital out-
put, and hence can be integrated into standard Turing machines, allowing them to
compute functions they otherwise couldn’t compute; Turing called these enhanced
Turing machines "O-machines". As an example, consider the infamous "halting
problem", which is the problem of designing a Turing machine that computes



RECIPES, ALGORITHMS, AND PROGRAMS 235

the functionf(m,n) = 1 or 0, wherem is a binary number (string of Os and 1s)
representing a Turing machine andn is a binarynumber representing the contents
of the machine’s tape. If machine m halts when started withn on its tape, the
value of f(m,n) is 1; otherwise it is 0. It is well known that a universal Turing
machine cannot compute this function; it is Turing uncomputable. But one can
imagine augmenting a universal Turing machine by an oracle taking the arguments
of the function as input and returning the appropriate value as output.14 The ob-
vious worry about oracles is that their internal operations are a mystery; Turing
did not provide them with a positive characterization, remarking only that they
work by "unspecified means". On my view, however, this isn’t a serious concep-
tual difficulty since the whole point of a concrete computer is to provide us with
the ability to specify tasks independently of the physical details of carrying them
out.

Of course, the legitimacy of the abstract concept of an oracle doesn’t establish
their physical possibility; that is a matter for physics to decide. Nevertheless, it
would be a mistake to conclude that oracles are of only theoretical interest because
we could never confirm that a proposed physical candidate produced something
genuinely Turing unoomputable. For there is no more reason to insist that a phys-
ical device couldn’t compute a Turing uncomputable function on the grounds that it
is impossible to conclusively verify it than there is to insist that my hand calculator
can’t compute division on the grounds that it is impossible to conclusively verify it.
To recapitulate, the claim that any physical entity (machine or human) computes a
total function is an empirical hypothesis. Just as there may be good reasons for
thinking that my calculator computes division so there might be good reasons
for thinking that some mysterious, physically real, black box solves the halting
problem. Unfortunately, however, it is beyond the scope of this paper to pursue this
issue any further.15

Notes

1In earlier papers (Cleland, 1993, 1995), I called ordinary, everyday procedures such as recipes and
methods "mundane procedure" But after receiving many comments about having given them too
mundane a name, I have decided to rename them "quotidian procedures"!
2This material was developed in an earlier paper (Cleland, 1993, pp. 287–288).
3Some philosophers reject the claim that the basic actions are bodily actions, contending that bodily
actions arise out of still more basic actions (variously called "volitions", "willings", or "tryings")
which are purely mental. They claim that purely mental actions are needed to explain cases where
one unsuccessfully attempts an overt bodily motion, e.g., tries to move a paralyzed limb. But even if
this is the case, it doesn’taffect my point here since the actions prescribed by quotidian instructions
are bodily actions.
4Grue is the "property" of being either green or first examined beforet (wheret is some specific but
wholly future time), or blue and not examined beforet
5I am grateful to Fred Kroon for pointing this out to me.



236 CAROL E. CLELAND

6I am using the term "property" in what is sometimes called the sparse sense; i.e., I am excluding
disjunctive and negative properties.
7The usual structure for a Turing machine is most often formulated by mathematicians in terms of a
universal Turing machine, but this fact is irrelevant to the point I am making here.
8The relation between a high level program and its physical realization in a particular machine is
controversial. Many computer scientists hold that a computer program ("software") is an abstract
machine made out of text. Others have argued that a program is constructed not out of text but rather
physical things such as electron charges and magnetic fields. For a review of this debate, see Colburn
(1999, pp. 3–19). Both extremes strike me as confused, and I suspect that this confusion is at the root
of the view that a computer executing a high level program (which doesn’t look at all like a Turing
machine program) is nonetheless an instantiation of a Turing machine program. The confusion arises
out of the mistaken view that there isn’t a fundamental difference between a procedure and the
processes that realize it.
9Admittedly, not all high level programs for computing the Euclidean algorithm will as closely
resemble the Euclidean algorithm. A good example is a JAVA program. But a JAVA programmer
will be able to follow it just as easily as she can follow the numerical algorithm.
10For a more detailed discussion of these issues see my "Effective Procedures and Computable
Functions" (1995, pp. 17–20).
11As James Fetzer has discussed (Fetzer, 1988, pp. 1048–1063, 1991, pp. 197–216), the notion that
computer science is a branch of pure mathematics is very popular among computer scientists and
extremely problematic.
12For a more detailed discussion of this issue, see my "Is the Church-Turing Thesis True?" (1993,
pp. 301–304).
13Turing introduced the concept of an "oracle" in his 1938 doctoral dissertation "Systems of logic
based on Ordinals". This, work was subsequently published in 1939 in theProceedings of the London
Mathematical Societyseries (pp. 161–228).
14For a more detailed discussion of using an 0-machine to solve the halting problem, see Copeland
(1998, pp. 129–131).
15I would particularly like to thank Jerry Seligman and Fred Kroon for extensive and helpful discus-
sions of this material. I would also like to thank the Department of Philosophy in The Faculties at the
Australian National University (Canberra) for providing space, equipment, and helpful discussions
(particularly Peter Roeper) during the academic year 1998–99.

References

Biuso, Julia (1997),Italian Cooking, Newport Beach: C.J. Publishing.
Cleland, Carol E. (1993). ‘Is the Church-Turing Thesis True?’,Minds and Machines3, pp. 283–212.
Cleland, Carol E (1995), ‘Effective Procedures and Computable Functions’,Minds and Machines5,

pp. 9–23.
Colburn, Timothy (1999), ‘Software, Abstraction, and Ontology’,The Monist82, pp. 3–19.
Copeland, Jack (1998) ‘Turing’s O-machines, Searle, Penrose and the Brain,’Analysis58.2, pp.

129–131.
Fetzer, James (1988), ‘Program Verification: The Very Idea’,Communications of the ACM32, pp.

1048–1063.
Fetzer, James (1991), ‘Philosophical Aspects of Program Verification? ‘Minds and Machines1 pp.

197–216.
Goodman, Nelson (1983),Fact, Fiction and Forecast, Cambridge: Harvard University.
Hennie, Fred (1977),Introduction to Computability, Reading: Addison-Wesley.
Kripke, S. A. (1982),Wittgenstein on Rules and Private Language, Oxford: Blackwell.



RECIPES, ALGORITHMS, AND PROGRAMS 237

Minsky, Marvin (1967),Computation: Finite and Infinite Machines, Englewood Cliffs: Prentice-Hall.
Smith, N. K., trans.,Kant’s Critique of Pure Reason(V, 1), New York: St. Martins.
Turing, Alan (1939), ‘Systems of Logic based on Ordinals’,Proceedings of the London Mathematical

Societyseries 2, 45, pp. 161–228.


