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Abstract

If the goal of statistical analysis is to form justified credences based on data, then an account
of the foundations of statistics should explain what makes credences justified. I present a
new account called statistical reliabilism (SR), on which credences resulting from a statistical
analysis are justified (relative to alternatives) when they are in a sense closest, on average, to
the corresponding objective probabilities. This places (SR) in the same vein as recent work on
the reliabilist justification of credences generally [Dunn, 2015, Tang, 2016, Pettigrew, 2018],
but it has the advantage of being action-guiding in that knowledge of objective probabilities
is not required to identify the best-justified available credences. The price is that justification
is relativized to a specific class of candidate objective probabilities, and to a particular choice
of reliability measure. On the other hand, I show that (SR) has welcome implications for
frequentist-Bayesian reconciliation, including a clarification of the use of priors; complemen-
tarity between probabilist and fallibilist [Gelman and Shalizi, 2013, Mayo, 2018] approaches
towards statistical foundations; and the justification of credences outside of formal statistical
settings. Regarding the latter, I demonstrate how the insights of statistics may be used to
amend other reliabilist accounts so as to render them action-guiding. I close by discussing
new possible research directions for epistemologists and statisticians (and other applied users
of probability) raised by the (SR) framework.

1 Introduction
Despite a century of debate over the foundations of statistics, only the various Bayesian approaches
to statistical inference have made sustained contact with epistemology — in particular, with the
program of Bayesian epistemology. Philosopher of science Mayo [2018] has offered a frequentist
account of statistical testing in the fallibilist tradition (she calls it “severe testing”) which accords
with much of statistical practice, but being an account of hypothesis testing in particular it falls
short of a full-blooded statistical philosophy (as statistics is concerned with more than hypoth-
esis testing). Aside from Mayo’s work there is little in the way of philosophical foundations for
frequentist statistical practice.

This situation is troubling. Applied statisticians have a broadly frequentist outlook on the
justification of statistical inferences (though they may help themselves to Bayesian computational
machinery, as do Efron [2005] and Gelman and Shalizi [2013], for instance). What’s more, the
Bayesianism of classical Bayesian epistemology — which says that degrees of belief need only
follow the probability calculus, be updated by Bayes rule, and (for so-called objective Bayesians)
respect additional side constraints such as using “uninformative priors” [Yang and Berger, 1996] —
faces serious limitations as applied to statistical practice. Among these limitations is the fact that,
due to the computational cost of Bayesian methods and the difficulty of eliciting informative priors
in complex settings, Bayesian statisticians routinely use “default priors” for reasons of mathematical
and computational convenience, rather than out of a sincere effort to encode their beliefs [Mayo,
2013].

Meanwhile, in recent decades there has been significant progress regarding the justification of
credences in the formal epistemology literature. Early work in this area sought to place Bayesian
epistemology on firmer epistemic ground than the classical pragmatic (Dutch book) arguments
by showing that credences which follow the probability calculus and are updated by Bayesian
conditionalization are, in some sense, closer to the truth than ones which do not obey these rules
[Joyce, 1998, Greaves and Wallace, 2006, Leitgeb and Pettigrew, 2010a,b]. More recently, Dunn
[2015] and Tang [2016] have discussed reliabilist accounts of the justification of particular credences
(rather than just the Bayesian norms), and Pettigrew [2018] has argued that each of these accounts
is extensionally equivalent to (i.e. each deems the same credences justified as) his own favored
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epistemic utility account of justified credence. This account, as well as others discussed by Tang
[2016], critically depends on probabilities which are objective in a frequentist sense; each says (very
roughly) that a credence in a proposition is justified when it is close to the objective probability
of that proposition.

I aim to bridge this gap between the foundations of statistics and recent developments in formal
epistemology. I start with the view that the goal of a statistical analysis is to provide justified
credences (among a set of alternatives) about observable quantities. Concretely, statisticians study
problems like this:

Running Example: Given the working class of models

Xi
i.i.d∼ N(θ0, 1) : θ0 ∈ R,

read “observables Xi are independently and identically distributed (i.i.d) as normal
with variance 1 and unknown mean θ”, and data x1, . . . , xn, what is our best guess at
the distribution of Xi?

Note that I will follow the convention of denoting generic random variables with capital letters,
and realizations of those random variables — i.e. observations from the process encoded by those
random variables — with the corresponding lower-case letters.

A typical answer to the question in (Running Example) is N(xn, 1), where xn is the sample
mean of x1, . . . , xn. In mainstream statistics, arguments for the claim that xn is the best estimator
of θ0 (and therefore, implicitly, N(xn, 1) is the best estimator of the distribution ofXi) are typically
in terms of the “frequentist properties” of the estimator Xn. For instance, assuming the data are
truly distributed as i.i.d normal, then Xn is the uniformly minimum variance unbiased estimator
of θ0. “Unbiased” means that, in repeated samples X1, . . . , Xn, the corresponding estimates Xn

are on average equal to θ0. “Uniformly minimum variance” means that, under the i.i.d normal
assumption and across all unbiased estimators, Xn has the lowest variance regardless of the value
of θ0. Because expected squared error loss decomposes into bias and variance 1 this in turn means
that Xn has uniformly lowest expected squared error loss in the class of unbiased estimators of
θ0; qualitatively, it is closest to θ0 on average, among unbiased estimators (again, under the i.i.d
normal assumption).

This approach is to be contrasted with (orthodox) Bayesian statistics, wherein the analyst places
a prior distribution over the class of candidate models, and updates this prior given data to obtain
a posterior over candidate models. This posterior, according to the usual Bayesian story, encodes
the analyst’s rational degrees of belief about the underlying model. It is also used to obtain the
“posterior predictive distribution” over the observable in question, which is supposedly the analyst’s
rational beliefs about future observables from the same process. Returning to (Running Example),
the analyst may place a prior θ0 ∼ N(θπ, σ

2
π) over the possible values of the unknown θ0. The

resulting posterior and posterior predictive distributions turn out to be

(θ0 | x1, . . . , xn) ∼ N

(
1

1
σ2
π
+ n

[
1
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π

θπ + nxn

]
,

1
1
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π
+ n

)
(1)

(Xn+1 | x1, . . . , xn) ∼ N

(
1

1
σ2
π
+ n

[
1

σ2
π

θπ + nxn

]
,

1
1
σ2
π
+ n

+ 1

)
.

(We will see Equation 1 again in the discussion of prior reliability in Section 2.2.)
On the account I develop, arguments from frequentist properties are used to justify the choice

of estimator of the objective probability distribution. On the other hand, the estimator of the
objective probability distribution is given an epistemic interpretation, just as Bayesians give the
posterior predictive distribution an epistemic interpretation. (Indeed, the posterior predictive dis-
tribution can be seen as a “Bayes estimator” (defined below) of the objective probability distribution
for certain choices of scoring rule.) So my account focuses, like posterior predictive Bayesian anal-
ysis, on the quantification of (epistemic) uncertainty over observables, while tying the justification

1 I.e. For an estimator θ̂, E
θ̂|θ0

(θ̂−θ0)2 = E2
θ̂|θ0

(θ̂−θ0)+Variance
θ̂|θ0

(θ̂) = Bias2
θ̂|θ0

(θ̂)+Variance
θ̂|θ0

(θ̂), where

subscript (θ̂ | θ0) means an expectation taken with respect to the distribution of estimator θ̂ when θ0 is the true
value of the parameter of interest.
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of these epistemic probabilities to their reliability with respect to the objective probabilities, much
in the spirit of frequentism.

In Section 2, I develop this reliabilist account of the justification of credences, called statistical
reliabilism. While we will see that statistical reliabilism in a way refers to a familiar family of
statistical principles, I will argue that taking its implications seriously leads to novel insights about
strict versus permissive views on the justification of statistical methodology; the appropriate use
of priors; and the separation of statistical activity into justification conditional on a set of models
on one hand, and into exploration, model criticism, and model revision on the other.

In Section 3 I explore the connections between my account and other accounts of reliabilist
justification of credence discussed in Tang [2016] and Pettigrew [2018]. I will show that, once
amended to make these accounts action-guiding (in the sense of making definite statements about
which credences are justified) in the absence of knowledge of the relevant objective probabilities,
they can be seen as applications of the (SR) framework.

As a final remark on the scope of the article: I do not recapitulate the extensive arguments
over reliabilism. However, in Section 3 I do show how my account, similarly to other accounts of
reliabilist credal justification, may be defended from several important objections facing reliabilism.
Nor do I take up the problem of analyzing objective probability. I will only say that a concept of
objective probability is useful and perhaps indispensable in statistical practice, as well as in the
explication of reliabilism, which I consider to be the most promising direction for the justification
of belief.

2 Statistical reliabilism
Suppose we wish to form justified credences about observable quantity X, with (unknown) objec-
tive probability distribution P0. In this section I give a process-reliabilist account of justification.
In statistical language, “estimation” of the true distribution P0 is an example of a process pro-
ducing an epistemic probability distribution over X. So the best-justified credence, in the case
of statistical estimation, is that produced by the estimator which is closest (in a sense) to the
objective probabilities on average.

In statistics, an estimator is just a function from data to an estimate of a quantity of interest.
In the introduction, we saw an estimator of the mean of a normal distribution, T : (X1, . . . , Xn) 7→
Xn. Estimators may instead map data to entire candidate objective distributions, for instance
T ′ : (X1, . . . , Xn) 7→ N(Xn, 1) from the same example. For simplicity, I will discuss estimation
in terms of the estimation of model parameters. However, keep in mind that the distribution
corresponding to the optimal estimator in the space of parameters need not be the distribution
which is optimal with respect to a scoring rule that directly measures the distance to the true
distribution. (See (Squared error) and (KL divergence) below as an example of this distinction.)
Indeed, Lawless and Fredette [2005] show that “plugin” estimators like N(Xn, 1) are suboptimal
(in a certain sense) with respect to KL-divergence, which is arguably a more appropriate measure
of how close the estimated distribution is to the true objective distribution.

Here is a first pass at formulating the account:

Statistical reliabilism for estimators, first pass (SRE-α): An epistemic prob-
ability distribution p̂ over X is justified with respect to a class of estimators T and
scoring rule L2 iff, given data D and objective probability distribution P0 for X, p̂ is a
realization of P̂ = T (D) and T ∈ argmin

T ′∈T
ED|P0

L(T ′(D), P0).

Examples of scoring rules include:

• Squared error: Let P0 belong to a class of models parameterized by a Euclidean vector
θ — for instance, {N(θ, 1) : θ ∈ R} in (Running Example) — such that θ(P ) returns the
parameter corresponding to distribution P . Then,

Lsquared error : (P, P0) 7→ ‖θ(P )− θ(P0)‖2,

where ‖·‖ is the Euclidean norm.
2In the statistical and machine learning literatures, scoring rules are usually called loss functions.
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• Kullback-Leibler (KL) divergence:

LKL divergence : (P, P0) 7→
∫
P (x) log

P (x)

P0(x)
dx.

KL divergence directly measures the inaccuracy of distribution P with respect to distribution
P0, rather than measuring the distance between the corresponding parameters.

But credence-forming processes need not depend only on data and estimator; we will see this in
the discussion of priors in Section 2.2. So we have the more general formulation:

Statistical reliabilism, first pass (SR-α): An epistemic probability distribution p̂
over X is justified with respect to a class of credence-forming processes P̂ and scoring
rule L iff, given objective probability distribution P0 for X, p̂ is a realization of P̂ ∈
argmin
P̂ ′∈P̂

EP̂ |P0
L(P̂ ′, P0).

Introducing the risk function of statistical decision theory

R(·, P0) : T 7→ ED|P0
L
(
T (D), P0

)
,

we see that (SRE-α) is exactly the requirement that the estimator minimize risk in the class T. The
problem, of course, is that R depends on the unknown distribution P0. Luckily, statistics provides
methods of measuring the risk of an estimator across a class of models P (e.g. P = {N(θ, 1) : θ ∈ R}
from (Running Example)) rather than just at single distribution. I will call such measures reliability
measures. There are two classical reliability measures in statistical decision theory. The first is
worst-case risk over P, and the corresponding best estimators in this sense (when they exist) are
called minimax estimators. The second is average risk with respect to a weighting function π over
P, and the corresponding estimators are called Bayes estimators [Berger, 2013]. We can write
these as follows:

Rminimax(T,P) = sup
P0∈P

R(T, P0)

Rπ-Bayes(T,P) =

∫
P

R(T, P0)dπ(P0).

Letting Tn be a sequence of estimators defined on a growing dataset Dn, with T ∈ {Tn}n∈N, we
can also consider asymptotic measures as n grows. This often simplifies theoretical arguments. For
instance, there is the asymptotic maximum risk over small neighborhoods of P0,

Rl.a.-minimax(T,P) = lim
δ↓0

lim inf
n→∞

sup
{P∈P:‖θ(P )−θ(P0)‖<δ}

R(Tn, P0),

whose minimizers are called “local asymptotic minimax” estimators (and can in some cases be
obtained without knowing P0) [Van der Vaart, 2000]. Finally, there are reliability measures which
do not depend on a class P. Examples include resampling measures such as the bootstrap and
cross-validation [Efron and Gong, 1983] and (penalized) empirical risk [Vapnik, 1992]. For instance,
consider datasets D = {Xi}ni=1 and scoring rule L defined on pairs (P̂ ,X). Then we have:

Rpenalized empirical risk(T,P) =
1

n

∑
i=1

L(T (D), Xi) + Penalty(T (D))

= Rempirical risk(T,P) + Penalty(T (D)).

where Penalty is a penalty function which measures the complexity of the estimate T (D). (We
write these reliability measures as if they depend on P in order to keep the notation consistent.)
The penalty is introduced to prevent minimizers of Rpenalized empirical risk from over-fitting the data
and therefore generalizing poorly to new samples.

Thus we have the amended formulation for estimators:

Statistical reliabilism for estimators (SRE): An epistemic probability distribu-
tion p̂ is justified with respect to a class of estimators T, class of models P, and re-
liability measure R iff, given total evidence D, p̂ is a realization of P̂ = T (D) and
T ∈ argmin

T ′∈T
R(T ′,P).
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We may also define reliability measures on generic credence-forming processes to obtain the general
formulation:

Statistical reliabilism (SR): An epistemic probability distribution p̂ is justified with
respect to a class of credence-forming process P̂, class of models P, and reliability
measure R iff p̂ is a realization of P̂ ∈ argmin

P̂ ′∈P̂
R(P̂ ′,P).

2.1 Choosing a reliability measure
How do we decide on a reliability measure R? Classical statistical decision theory is divided over
minimax and Bayesian choices. Each faces salient objections. Setting aside the fact that minimiax
estimators do not always exist, their conservatism seems ill-motivated. On the other hand, the
problem of the choice of prior π for the Bayesian choice is vexing if it is to be given an epistemic
interpretation, as this requires the further justification of π; in 2.2 I give an alternative account of
priors within the (SR) framework which avoids this difficulty. If π is treated simply as a weighting
function introduced to allow for the measurement of reliability independent of P0, and spreads
weight evenly (in some sense) over P, then it seems to be an attractive choice, as it avoids the
pessimism of minimax while guaranteeing admissibility (i.e. that the estimator is not dominated
in risk over P by another element of T) under certain conditions (by the celebrated complete class
theorems [Berger, 2013]). Of course, identifying functions which “spread weight evenly” over P is
fraught, as the history of the principle of indifference attests [Shackel, 2007]. But if the deflationary
and heuristical view of the choice of R mentioned below is appropriate, then these worries too may
be deflated.

At least as concerning, and more neglected, questions of justification arise for asymptotic mea-
sures like Rl.a.-minimax. Geyer et al. [2013] make the obvious but overlooked point that

We know that asymptotics often works well in practical problems be- cause we can check
the asymptotics by computer simulation (perhaps what Le Cam meant by “checked on
the case at hand”), but conventional theory doesn’t tell us why asymptotics works
when it does. It only tells us that asymptotics works for sufficiently large n, perhaps
astronomically larger than the actual n of the actual data. So that leaves a theoretical
puzzle.

• Asymptotics often works.

• But it doesn’t work for the reasons given in proofs.

• It works for reasons too complicated for theory to handle.

The lack of a logical relationship between asymptotic results and the finite-sample reliability of esti-
mators seems to leave, in the absence of finite-sample results which explain the connection (but also
render the asymptotics superfluous), only induction from the observed success of asymptotically
sound methods as a justification for their use.

As for “model-free” measures like Rpenalized empirical risk, these are typically regarded as esti-
mators of an underlying reliability measure (and their use justified by the kind of asymptotic
arguments which have just been called into question). However, for the purposes of this presenta-
tion I leave open the possibility that the model-free reliability measures may in some cases stand
on their own. Indeed, we will see examples in Section 3 where there is no obvious way of specifying
a class of models and therefore a model-free measure may be called for.

This leads me to consider a more general perspective on how the choice of reliability measure
might be defended. We may treat the selection of R as a meta-decision problem, based on the
modeler’s experience with the outcomes of similar choices. Let C be a set of candidate reliability
measures and, for each R ∈ C, let U(R) be the observed utility of using R in similar past situations,
or in relevant simulation experiments; U(R) includes things like the predictive accuracy of the
estimator derived from R on newly observed data, and relative computational cost. Then they
may choose T by minimizing R∗ = argmaxR∈C U(R). Of course, this meta-decision problem is
inevitably informal given the ill-definedness of the terms involved. And such an account raises
questions about how and when the empirical performance of statistical methodology in one setting
should be expected to hold in another — questions which would likely benefit from philosophical
input. But this is at least a plausible account of how experienced modelers do, in fact, choose among
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statistical approaches, and lends some justification to the widespread ecumenism and “pragmatism”
among statisticians.

Another, perhaps indirect, reason for a deflationary view of disputes over the choice of R is
that justification on (SR) is tentative in the first place. As I discuss at greater length in Section
2.3, the justification of credence relative to a set of models and estimators is only a small part of
statistical activity. Much more work goes into exploring the data in order to generate new modeling
strategies, and searching for flaws in the assumptions which lead to the credences / estimates. It
is difficult, given this point of view, to expend much energy trying to identify a unique solution
concept, and is perhaps enough to regard R as a heuristic for the quality of statistically-grounded
credences, underdetermined but still justified by qualitative considerations of reliability.

2.2 Priors
Rather than considering only epistemic probability distributions arising from deterministic esti-
mators T (D), we may consider estimators which contain an additional source of randomness: the
inclusion of prior information. Priors — at least, informative priors (those not constructed using
principle of indifference-like arguments [Yang and Berger, 1996]) — are appropriately regarded as
random variables in this framework because they result from a chancy credence-forming process:
the elicitation of a prior from an expert. Crucially, Bayes estimators, which are constructed by
updating this elicited prior given the data-at-hand, will be more reliable than estimators which use
only the data-at-hand only if the prior elicitation process meets a certain threshold of reliability.

To continue with (Running Example): given a certain class of priors, the Bayes estimator of
θ0 in (Running Example) is given by θ̂Bayes = αn(σ

2
π) ·Xn + (1− αn(σ2

π)) · θπ, where (θπ, σ
2
π) are

the prior mean and variance and αn(σ2
π) is a weight in (0, 1) that depends on the sample size and

prior variance (Equation 1).
On my account, (θπ, σ2

π) is treated as a random variable, and in particular as the output of a
chancy process which may be more or less reliable with respect to the true distribution N(θ0, 1)
on some appropriate reference class. Then the expected squared-error loss with respect to the true
mean θ0 is:

R(θ̂Bayes, θ0) =Eθ̂Bayes|θ0(θ̂Bayes − θ0)2

=E(X1,...,Xn,σ2
π)|θ0α

2
n(σ

2
π)(Xn − θ0)2 + E(θπ,σ2

π)|θ0(1− αn(σ
2
π))

2(θπ − θ0)2+
2E(X1,...,Xn,θπ,σ2

π)|θ0αn(σ
2
π)(1− αn(σ2

π))(θπ − θ0)(Xn − θ0).

So, the risk with respect to the squared error loss decomposes into the risk of the sample mean,
the risk of the prior, and the covariance between the error of the sample mean and that of
the prior. Thus, if we have reason to believe — either due to evidence from a formal elicita-
tion process, or qualitative domain-specific considerations — that the unreliability of (θπ, σ

2
π),

E(θπ,σ2
π)|θ0αn(σ

2
π)

2(θπ − θ0)2, is high, then we might prefer the no-prior estimator Xn.
This simultaneously vindicates the Bayesian insistence that prior information be considered

— insofar as the inclusion of prior information improves reliability — and makes sense of efforts
to elicit reliable priors, which are difficult to justify in the classical Bayesian framework which
places minimal constraints on credences. (The entire subfield of prior elicitation is dedicated
to developing methods for improving the reliability of prior elicitation methods, for instance by
developing exercises which improve the calibration of domain experts whose priors are to be elicited
[O’Hagan et al., 2006].) The reliabilist understanding of priors can also explain the hesitancy of
statisticians to use informative priors in cases where it is unclear how to “correctly” represent prior
knowledge, even if a formal prior elicitation process is not feasible for the analysis in question.
On the other hand, (SR) leaves open the possibility of incorporating prior information in ways
other than via Bayesian conditionalization. For instance, Boos and Monahan [1986] use priors in
combination with the bootstrap to obtain posterior-like uncertainty quantification, and Schweder
and Hjort [1999] describe methods for combining likeilhoods with “prior confidence distributions”
as a frequentist analog to the Bayesian procedure for incorporating prior beliefs.

2.3 Contingency, exploration, and criticism
(SR) is an account of justification with respect to a class of models P. While a limitation, I also
take it to be a virtue of (SR) that it respects the open-endedness of statistical practice. Indeed,
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forming credences based on a fixed set of models is only a small part of the working statistician’s
job. Exploring the data and critiquing the choice of P is often the bulk of the work. For instance, a
statistician analyzing data from (Running Example) might examine diagnostic plots of x1, . . . , xn,
or conduct formal statistical tests which measure how unlikely the data are under the model
assumptions, to determine whether {Xi

i.i.d∼ N(θ, 1) : θ ∈ R} is an appropriate class of models.
Evidence of (say) heavy tails might lead them consider a wider class of candidate distributions,
while evidence of (say) correlation between consecutive observations might lead them to re-evaluate
the assumption of independence.

So (SR) is complementary to approaches which emphasize open-ended model-building, criticism,
and revision such as Gelman and Shalizi [2013] and Mayo [2018] (though a rigorous account of how
P should itself be chosen and revised is beyond the scope of the current work). And, while the
dependence of data-based beliefs on model assumptions and the importance of data exploration
and iterative model-checking may be truisms among mainstream statisticians, similar insights are
perhaps neglected in the formal epistemology literature. In Section 3 I will place (SR) in the context
of existing reliabilist theories of justified credence, and show how the this and other lessons of the
statistical point of view may shed light on issues of the justification of belief beyond statistics.

3 Statistical reliabilism beyond statistics
Returning to the formal epistemology literature, I explore connections between (SR) and two
other reliabilist accounts of justified credence. In Section 3.1, I develop amendments to accounts
presented in Tang [2016] and Pettigrew [2018] which render them action-guiding by allowing them
to make statements about justified credences without knowledge of objective probabilities. I then
show that the amended accounts coincide with applications of (SR). In Section 3.2, I show how (SR)
may be defended from salient objections to reliabilism in a similar fashion as previous accounts,
but in a way that follows directly from the (SR) framework without needing to posit additional
epistemic principles.

3.1 (SR) as an action-guiding version of other reliabilist accounts
On the first account considered here — (Brier) as discussed by Tang [2016] — credences are justified
if they are produced by a process which yields credences that are close to the truth in expected
squared error loss. Here is a comparative version, which I denote (Brier-α) to parallel SR-α; and
where Tang only writes that credences should have “a low average Brier score”, I write out the
expectation to make its relation to the present account explicit:

Brier-α: For any set P̂ of credence- forming processes, a credence of p̂ in q is justified
relative to P̂ iff p̂ is a realization of P̂ and P̂ ∈ argmin

P̂ ′∈P̂ E(P̂ − X)2, where X =

1(Q) are indicators of propositions Q3 on an appropriate reference class for q, and the
expectation is taken with respect to the joint distribution of (P̂ ,X) on some relevant
reference class of propositions.

(Brier-α) is inadequate because it is not action-guiding without knowledge of the relevant
(objective) expectation for each P̂ ; without knowing the true Brier scores (expected squared errors)
we do not know which credence to accept. However, (Brier-α) is actually a special case of (SR-α)
and may therefore be amended to render an (action-guiding) version of (SR), which we can call
(SR-Brier). Let {qi}ni=1 be propositions in a relevant reference class and define xi = 1(qi). For
each P̂ ∈ P̂ let {p̂i}ni=1 be n realizations of P̂ . Then, one reliability measure is

Rempirical risk(P̂ ,P) =

∑n
i=1(p̂i − xi)2

n
,

which is exactly the (empirical) Brier score used to evaluate real-world forecasters and forecasting
systems [Brier and Allen, 1951, Gneiting and Raftery, 2007].

Tang rejects (Brier-α). He objects that on (Brier-α), processes which form intermediate cre-
dences will never be perfectly justified, as their Brier score will never be 0. He raises the further

3That is, 1(q′) =

{
0 when q′ is false;
1 when q′ is true.
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worry that if “perfect justification” is relativized to a reasonable class of credence-forming processes,
then it may be too easy to have perfectly justified credences; for instance, if an agent has access
to only one, highly unreliable credence-forming process, (Brier-α) allows their credence to be per-
fectly justified. Tang says this is the wrong conclusion. I reply that it is beside the point whether
a credence is “perfectly justified” if it is the only game in town. However, the unreliability of all
available processes may prompt a rational agent to search for better credence-forming processes.
This point is a generalization of the points made in Section 2.3 about the complementarity between
justification contingent on a set of models, and processes which generate new and improved sets of
models (or estimators). If we take the view that forming credences is part of an iterative process
of fixing and expanding the set of available credence-forming processes, Tang’s worry about the
“easiness” of credal justification under (Brier-α) is defused.

The second account is Pettigrew [2018]’s epstemic value reliabilism:

Epistemic value reliabilism for justified credence (ERC): credence of p̂ in propo-
sition q by an agent S is justified iff

(ERC1) S has ground g;

(ERC2) The credence p̂ in q by S is based on ground g;

(ERC3) If S has ground g′ ⊆ g, then the objective probability of q given that the agent
has ground g′ approximates or equals p̂ — that is P0(q | S has g′) ≈ p̂.

Pettigrew’s account also fails to be action-guiding when the objective conditional probability
in (ERC3) is unknown. However, we may reconcile (ERC) with (SR) by the following pro-
cedure. Suppose we have data {(xi, p̂ji , gi}ni=1 for each credence-forming process P̂ j . Then,
given grounds g we can adopt the credence from credence-forming process corresponding to j∗ =
argmin

j

1
#{gi=g}

∑
gi=g

(p̂ji − xi)2, i.e. the optimal empirical Brier score for cases where the credences

are based on grounds g. This is just an application of (SR-Brier) to the subset of relevant (cre-
dence, proposition) pairs where the credence was formed based on g. Notice that this conditional
Brier score is a measure of the average of squared errors (P0(q | S has g)− P̂ j)2; thus we preserve
the spirit of (ERC3) while having a procedure which allows us (at least in an idealized setting) to
actually identify a (relatively) justified credence.

This leads to a generalization of (SR) in which epistemic probability distributions depend on
the available grounds for belief:

Statistical reliabilism with grounds (SRG): An epistemic probability distribution
p̂, given the most inclusive available grounds for belief g, is justified with respect to a
class of credence-forming processes P̂ (which are random maps from grounds to prob-
ability distributions), class of models P, and reliability measure R if p̂ is a realization
of P̂ (g) and
P̂ (·) ∈ argmin

P̂ ′(·)∈P̂
R(P̂ (·)′,P),

where reliability measures here act (in general) on collections of random variables indexed by
grounds, i.e. random maps g 7→ P̂ (g).

(SRG) is a generalization of (SR) because, in the simplest case, we may regard the credence-
forming process P̂ as a black box (i.e. we do not have access to the grounds on which the credences
are based), and therefore the grounds may be modeled as the constant g = {}. In this case, we
can drop the dependence of P̂ (·) on g and recover (SR).

To make (SRG) more concrete, take an adapted version of Pettigrew’s story about the reliability
of flower identification. Suppose a friend and I spend morning and evening looking at flowers in
a field. For the ith flower we encounter, we each write down our beliefs p̂1i , p̂2i in the proposition
qi = [Flower i is a corncockle], look up the answer xi = 1(qi) in our guidebook, and mark it down.
Upon seeing flower n + 1, we each form credences p̂1n+1, p̂

2
n+1. Now I wish to adopt a justified

credence from the two available credences. I write down the (overly simplistic) class of models P1:

(Xi, P̂
1
i )

i.i.d∼ P 1
0

(Xi, P̂
2
i )

i.i.d∼ P 2
0
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where P 1
0 and P 2

0 are unknown, objective joint probability distributions.
P1 treats our respective credence-forming processes as black boxes. But suppose at each flower

i we are additionally tracking the lighting level `i. We each know that our confidence is modulated
by `i (we are less confident in low light), and therefore the grounds on which we each base our
credences about the ith flower are gi = {`i}. I may then build a more complex (though still overly
simplistic) class of models P2:

((Xi, P̂
1
i ) | `)

i.i.d∼ P 1
0 (`)

((Xi, P̂
2
i ) | `)

i.i.d∼ P 2
0 (`),

(where P 1 and P 2 are now maps from grounds to conditional probability distributions), and
invoke (SRG) to obtain (relatively) justified credences about Xn+1 given grounds {`n+1}. For
concreteness, suppose `i ∈ {Dim,Bright}, and that an equal number of flowers have been seen
under Dim and Bright conditions. Then, suppose `n+1 = Dim. Taking Rempirical risk as a reliability
measure, I have two ways to choose my (relatively) justified credence from {p̂1n+1, p̂

2
n+1} given

grounds {`n+1 = Dim}:

p̂P1
n+1({`n+1}) = p̂j

∗

n+1, where j
∗ = argmin

j∈{1,2}

1

n

n∑
i=1

(p̂ji − xi)
2

p̂P2
n+1({`n+1}) = p̂j

∗

n+1, where j
∗ = argmin

j∈{1,2}

1

2n

∑
`i=Dim

(p̂ji − xi)
2.

At first blush, p̂P2
n+1 seems clearly preferable to p̂P1

n+1, because it is based on more inclusive grounds.
However, it is based on half as much data. This means that the random variable P̂P2

n+1 will have
greater variance than P̂P1

n+1, and variance reduces reliability (see Footnote 1, for example). So it
is not automatically the case that the credence based on more inclusive grounds is preferable from
the perspective of (SRG).

This point goes beyond the comparison of P1 and P2. We may consider still more realistic
models; it is sensible, for example, to model P̂ ji ({`i}) as a dependent process whose accuracy is
improving over time. Refer to some formalization of this set of candidate processes as P3. P3 is
presumably a more faithful representation of the credence-forming processes, it is again higher-
variance than P1 and P2 due to its greater complexity. In a formal setting, we might consider
the (hierarchical) model class P4 = {P1,P2,P3} and use model selection techniques (which are
constructed to select the model class which optimally trades off complexity and fit to the data, in
a reliabilist sense) 4 to arrive at a justified credence via (SRG).

Now, I do not envision people actually assessing their credences in this way. But the account
exhibits several properties which should figure into reliabilist accounts of belief generally. First,
judgements about the reliability of credences over observables depend on assumptions about the
structure of the underlying process. Second, those assumptions may be critiqued and revised, both
by reasoning about the plausible mechanisms underlying the reliability of the credence-forming
process (as we did when we formulated model class P3), and by comparing (if only intuitively) how
well the candidate models trade off simplicity and fit to the data (as would be formalized in the
process of selection among the models in P4).

3.2 The Generality and Graining problems
The requirement in (ERC) that credences be based on the most inclusive available grounds is moti-
vated (following Comesaña [2006] and Tang [2016]) by two problems for reliabilism: the Generality
Problem [Conee and Feldman, 1998], and what Pettigrew calls the Graining Problem. The Gen-
erality Problem is that there seems to be no non-arbitrary way of saying what count as instances
of a “process”, and that some ways of defining the process by which a credence is produced will
render that process reliable, while others will render it unreliable. The most-inclusive-grounds
requirement aims to solve this problem by introducing a non-arbitrary constraint on the definition
of the process-type: the process should be one of forming credences based on the most inclusive

4See Forster and Sober [1994] for a philosophical discussion of a popular model selection technique.
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available grounds. This simultaneously addresses the Graining Problem, which is the problem that
credences may be based on different subsets of the available evidence.

If (ERC) is indeed safe from Generality and Graining, then (SRG) is, too, by also requiring that
credences be based on the most inclusive grounds g (and, in the case of statistical estimation, the full
data set D). But the role grounds and data play in the (SR) framework is somewhat subtle, and
helps to explain the intuition motivating the Comesaña/Tang/Pettigrew most-inclusive-grounds
requirement. This is because (SRG) does not require that the entire dataset or grounds is “active”
in the same way that (ERC) requires credences to depend on the most inclusive grounds; on (SR),
we are allowed to consider estimators which discard any amount of the information at hand. To
take an extreme case, we may even include in T estimators of the form T : D 7→ c for some constant
c. For rich-enough T, however, such estimators will be automatically discarded as a consequence
of our formulation, because estimators which throw away information in this way are known to
be unreliable. As an example, consider the squared error loss of estimators T1 : D 7→ c and
T2 : D 7→ Xn of the true mean of Xi ∼ N(θ0, 1). For any θ0, the risks of each with respect to the
squared error loss turn out to be (given n “draws” from N(θ0, 1)):

R(T1(D), θ0) = ED|θ0(T1(D)− θ0)2 = (c− θ0)2

R(T2(D), θ0) = ED|θ0(T2(D)− θ0)2 =
1

n
.

Thus any of the reliability measures we have seen (with the exception of Bayes estimators which
use a weighting function concentrated on c) would prefer N(Xn, 1) to N(c, 1) as an epistemic
probability distribution for Xn+1.

Or, consider Pettigrew [2018]’s example of a person forming a credence about the color of
a ball drawn from an urn. Half of the balls are black and half are white and each is marked
with a unique number. The person has drawn a ball which they see as White and marked
with the number 73. What credence should they form on the basis of their visual experience
g = {Color=White,Number=73}? Pettigrew points out that it is irrational to base our beliefs
only on the grounds {Number=73} (and therefore form a credence of 1

2 that the ball is White),
which is the sort of observation that motivates the “most-inclusive grounds” stipulation. However,
from the point of view of (SR) there is no need to invoke an additional principle. Consider two
credence forming-processes, one based only on {Number} and the other based on the full data
{Color,Number}:

P̂1 : {Color,Number} 7→ P (Color = White | Number) =
1

2

P̂2 : {Color,Number} 7→ 1(Color = White),

Then (assuming the person’s vision is intact) P̂2 is perfectly reliable, but P̂1 is not; its expected
squared error loss, for instance, is 0.25.

On the other hand, as discussed in Section 2.2, “throwing away” data may sometimes improve
reliability, if that data enters via an unreliable process — for instance, via systematically bad prior
elicitation in the case of Bayesian estimation. Similarly, because more complicated models have
higher variance (and therefore, all else equal, lower reliability), we may sometimes prefer credences
which do not “activate” the most inclusive grounds. The upshot is that the statistical-reliabilist
point of view explains why we should generally base our beliefs on all of the available evidence:
evidence provides information, and more information leads to more reliable beliefs (in a way that
can be quantified in formal statistical settings). At the same time (SR) explains why we may
sometimes rightfully reluctant to include certain sources of information when forming beliefs.

4 Conclusion
There are several issues I have not had space to discuss here. One is how the choice of scoring rule
L figures into the justification of the corresponding reliability measure. There has been substantial
discussion of the epistemic significance of scoring rules in both statistics and formal epistemol-
ogy [Gneiting and Raftery, 2007, Leitgeb and Pettigrew, 2010a, Levinstein, 2017], and there is
surely more to be said about how various putative epistemic requirements for scoring rules (such
as “propriety”) interact with other considerations (such as computational efficiency) in the (SR)
framework. Another area I have neglected is the confidence distribution approach to statistical
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foundations. While little-discussed in the philosophy literature, the confidence distribution ap-
proach purports to unify frequentist and Bayesian approaches to statistics by giving an account of
epistemic probability (“confidence”) which is grounded in frequentist properties [Schweder, 2018].
In particular, confidence distributions are distributions on the space of parameters for a class of
models which make calibrated statements of confidence, in the sense that (say) 95% confidence
intervals derived from such a distribution will (under the model assumptions) contain the true
parameter value in 95% of samples [Xie and Singh, 2013]. This makes the confidence approach a
rival to (SR) as a reliabilist foundation for statistics. However, confidence distributions need not
be optimal in the (SR) sense (though they turn out to be in some cases; see Lawless and Fredette
[2005]), and therefore do not exhibit what I regard as the appropriate sense of reliability. Indeed,
this is an instance of the often-noted inadequacy of calibration relative to accuracy as a notion
of reliability for probability statements; see the discussion of (Calibration) versus (Brier) in Tang
[2016], for example.

The (SR) account also points to promising opportunities for collaborations between formal
epistemologists and statisticians. First, as touched on briefly in 2.1, the nature of the justification
of a statistical procedure via asymptotic arguments and simulation experiments would likely benefit
from philosophical clarification. Second, the adoption of reliabilism for credences raises questions
about what a reliabilist decision theory might look like; for instance, should agents calculate
expected utilities by averaging utilities against an (SR)-justified epistemic probability distribution?
Or should expected utility be estimated directly, just as epistemic probabilities are obtained by
estimating objective probabilities in (SR)? This question parallels questions in the literature on
optimal sequential decision-making over “model-based” versus “model-free” approaches [Sutton and
Barto, 2018], as well as “direct” versus “indirect” methods of optimizing expected utility [Zhao and
Laber, 2014].
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