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Abstract

As autonomous mobile robots (AMRs) begin living in the
home, performing service tasks and assisting with daily
activities, their actions will have profound ethical implica-
tions. Consequently, AMRs need to be outfitted with the
ability to act morally with regard to human life and safety.
Yet, in the area of robotics where morality is a relevant field
of endeavor (i.e. human-robot interaction) the sub-discipline
of morality does not exist. In response, the Utilibot project
seeks to provide a point of initiation for the implementation
of ethics in an AMR. The Utilibot is a decision-theoretic
AMR guided by the utilitarian notion of the maximization of
human well-being. The core ethical decision-making capac-
ity of the Utilibot consists of two dynamic Bayesian net-
works that model human and environmental health, a
dynamic decision network that accounts for decisions and
utilities, and a Markov decision process (MDP) that decom-
poses the planning problem to solve for the optimal course
of action to maximize human safety and well-being. 

Introduction

Autonomous mobile robots (AMRs) are growing more
human-interactive and functionally complex. AMRs can
now act as interactive tour-guides in museums (Thrun et al.
2000), deliver coffee and mail around office buildings
(Boutilier et al. 2000) and assist the elderly with their daily
activities (Pineau et al. 2003). Human-robot interaction is
being studied through the creation of ‘socially interactive
robots.’ This lively field of research is exploring issues of
emotion, imitation, learning, dialogue and human-oriented
perception (Fong, Nourbakhsh, and Dautenhahn 2003). Yet,
one glaring omission from the survey of research in human-
robot interaction is ‘morality.’ This omission is significant
because there exists an ever-increasing need to create an
AMR that can assess the consequences of its actions in rela-
tion to humans. A founding principle behind the field of
machine ethics is that, as humans hand-over more responsi-
bilities to machines, there must be a corresponding increase
in machine accountability (Anderson, Anderson, and
Armen 2004). This is especially true given recent trends in
consumerism. 
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Personal service robots are entering the home in greater
numbers. As of 2003 there were 1.2 million service robots
sold for domestic use, and this number was projected to
reach 6.6 million by 2007 (U.N./I.F.R. 2004). This trend is
sure to continue into the future as major technological cor-
porations (e.g. Sony, Honda and Mitsubishi) are in a race to
‘push-to-market’ a humanoid robot that acts as a personal
companion/domestic assistant (Economist 2005). These
trends highlight another consideration behind the necessity
of implementing ethics in a robot—autonomous capabili-
ties (e.g. Khatib et al. 1999).

As autonomous mobile robots begin living in the home,
doing our chores for us and interacting with us socially, it
will be imperative that we can count on them acting in a
safe, predictable way. AMRs are distinguished from mere
appliances by their ability to adapt to the environment and
learn new tasks (Thrun 2004). As robots progress in func-
tionality their autonomy expands, and vice versa. With this
synergistic growth new behaviors emerge. These emergent
behaviors cannot be predicted from the robot's program-
ming because they arise out of the interplay of robot and
environment. This source of AMR unpredictability is fur-
ther compounded by the nature of the home environment as
seen through the ‘eyes’ of a robot.

Task environments are specified according to their prop-
erties. For an autonomous mobile robot a real-world home
is partially observable, stochastic, sequential, dynamic,
continuous and often contains multiple agents. This has the
following implications for an AMR: the robot’s sensors
cannot detect all aspects relevant to a choice, it is not
always sure what state it is in, the choice of an action may
affect all future choices, the environment changes over
time, the information the robot receives involves continu-
ously changing variables and the robot must account for
multiple people (Russell and Norvig 2003). This makes a
robot existing in the home a difficult problem to solve in
principle and in practice. Though AMRs are distinguished
by their ability to adapt to the environment, unless they can
reliably account for environmental uncertainty their adapta-
tions will be misguided and result in system failures or
erratic behavior. A robot behaving unpredictably in an
unpredictable environment is cause for further concern
because the home is a dangerous place.

Within the home there are 12 million nonfatal uninten-
tional injuries each year. In the United States, unintentional
injury is the fifth leading cause of death. The top three



forms of fatal unintentional injuries within the home are
falls, poisoning and fires/burns (Runyan and Casteel 2004).
An autonomous mobile robot that is in the home cleaning,
using appliances, preparing food and drinks and interacting
with humans will be confronted with objects and situations
that may lead to unintentional injury or death. As a conse-
quence, an important question to ask is, “how can an AMR
be outfitted with the ability to choose actions that do not
compromise human health and safety?” A potential answer
to this question is presented by the Care-O-bot project.

The Care-O-bot is a mobile robot designed to assist peo-
ple in their homes, especially those who are elderly or dis-
abled. A frequent accident in industrial settings is a person
getting hit by a robot. In response, safety standards are in
place that govern industrial robots (ANSI/RIA 1999).
Though, no comparable standards are in place for personal
robots. To address the issue of safe human-robot interaction
within the home the Care-O-bot uses redundancy in critical
sensors, risk assessment to determine the consequences of
system failure and motion restrictions while performing
certain actions (Graf and Hägele 2001). The Care-O-bot
proposal for creating a safe personal robot does not offer a
long-term solution, especially when considering robot
autonomy. The Care-O-bot approach amounts to ‘hard cod-
ing’ safety. A more viable long-term solution involves
equipping the robot with the ability to decide, no matter the
task underway or the state of human-robot interaction, the
most appropriate course of action to promote human safety.
Such a solution may present itself by looking at how
humans guide their conduct toward ‘right’ actions.

An ethical theory can be used as a guide when making
decisions. When a person chooses the right action, deter-
mined through ethical deliberation, their conduct is said to
be moral. When moral behavior is couched in terms of act-
ing to promote the flourishing of human well-being it is
called a eudaimonic1 approach. This approach to ethics
defines well-being as, “the degree to which a person is fully
functioning” (Ryan and Deci 2001). When foundational
needs (e.g. health, safety and life) are linked with proper
functioning they take on a normative dimension (Griffin
1986). If a robot employs an eudaimonic approach to ethi-
cal decision-making then the resultant behavior may be in-
line with the flourishing of physiological functioning. The
robot will be steered away from behaviors that deter the
realization of well-being (i.e. result in injury or death) and
steered toward behaviors that support well-being (i.e. result
in health and the preservation of life). The need to outfit
robots with ethical capacities has been recognized by writ-
ers and roboticists alike.
George Bekey, author of Autonomous Robots, has stated

Robots will require an ethical awareness...to ensure
that in pursuit of some goal they do not perform
actions that would be harmful to people (Bekey 2005). 

This sentiment is also expressed in Asimov’s first law of
robotics which roughly states that a robot must not, through

1.Eudaimonia is Greek for ‘happiness’ or ‘flourishing.’
action or inaction, injure or harm a human being. Yet, the
ability for a robot to follow ethical guidelines remains illu-
sive. Rodney Brooks has confessed that robots cannot obey
Asimov’s laws because roboticists are unable to build
robots with the perceptual subtlety required to understand
and apply abstract concepts, such as ‘injury’ and ‘harm,’ to
real-world situations (Brooks 2002). This is a telling admis-
sion for two reasons. First, it highlights the need to make
concrete (i.e. quantifiable) the aspects the robot considers
while making ethical decisions. Second, Brooks’ comment
is ironic because it comes from the father of the subsump-
tion architecture (Brooks 1986). The subsumption architec-
ture is a behavior-based or ‘bottom-up’ approach to the
design of robots. It eliminates the need for extensive high-
level deliberation. Instead, reactive controllers are created
out of augmented finite state machines. When a group of
these ‘dumb’ controllers are implemented in a robot the
interactions between them generates behavior that mimics
‘intelligence.’ The idea that a robot would need to fully
understand moral laws in order to act morally is similar to
the long-standing idea Brooks’ innovation shattered—that
robots must possess ‘top-down’ intelligence in order to act
intelligently. A similar paradigm shift must accompany
robot morality. This shift will come from a creative solution
that enables a robot to begin acting ethically even if it can-
not perceive ethical principles. Such an application of eth-
ics to robotics is termed safety through morality.

There are two broad attitudes or approaches one might
take regarding the realization of safety through morality in
a robot. The laissez-faire approach is based on the idea that
robots pose no safety threat to humans and that safety con-
cerns will work themselves out as robots are developed. In
Artificial Intelligence, a text regarded by many as the AI
‘bible,’ a comment was made indicative of the idea that
robots are safety-neutral, “the machines we build need not
be innately aggressive, unless we decide to build them that
way” (Russell and Norvig 2003). However, designers are
beginning to build robots with aggressive motivations as a
way to solve human-robot interaction problems. Alexander
Stoytchev and Ronald Arkin used frustration to get a robot
to stop its task and anger to issue a warning to the human to
leave the robot alone when it no longer wanted to interact
(Stoytchev and Arkin 2004). When this trend in robotics
toward ‘mood’ motivations is coupled with the ability of
robots to learn behaviors through the observation and imita-
tion of humans (Bekey 2005) the ground is fertilized for an
autonomous mobile robot, living in a house where it is
exposed to verbal or physical abuse, to learn to undertake
threatening actions of its own accord. However, there is
another approach to AMR safety that may rule out the pos-
sibility of such occurrences.

The proactive approach to safety through morality
assumes that the capacity to act morally is like other behav-
ioral capacities—made manifest in robots when they are
actively pursued. The development of morality in AMRs
will be incremental. The sooner philosophers and roboti-
cists collaborate toward the common goal of outlining,
installing and testing an ethical decision-making architec-
ture, the sooner the ethical capacities will climb out of



infancy, the more readily the public will accept robots in
the home and the more we will avert future accidents and
crises. In response to these concerns this paper sketches a
potential implementation of a Utilibot or an autonomous
mobile robot based on Utilitarianism. The overarching
theme is that ethical theory and technology both gradually
improve with each successive iteration of the Utilibot. The
next section of the paper frames the initial Utilibot solution,
and the bulk of the implementation section focuses on the
development of Utilibot 1.0. Then, Utilibot 2.0 and 3.0 are
briefly sketched before the concluding section.

Solution Definition
Utilitarianism is a theory based on the maximization of
human well-being. It states that an action is morally right if
and only if it is equal to or greater than all other action
alternatives in terms of the total amount of utility generated
(Audi 1995). Act utilitarianism, based on the utility of
actions, has been recognized as a theory amiable to quanti-
fication and thereby a natural choice for machine imple-
mentation (Anderson, Anderson, and Armen 2004). Yet,
utilitarianism has also been critiqued as being a theory that
is not practical for machine implementation.

One such criticism holds that act-utilitarianism requires
an agent to do what actually, as opposed what might, gener-
ate the best consequences. And this, of course, is impossi-
ble because it requires omniscience to know what will
actually occur prior to its occurrence (Anderson, Anderson,
and Armen 2004). Another critique is that consequential-
ism (i.e. the broad sense of utilitarianism) is computation-
ally intractable for calculating real-world decisions in real-
time. To paraphrase, it is impossible to calculate all the con-
sequences of all the actions for all people affected for all
time (Allen, Varner, and Zinser 2000). However, both criti-
cisms misinterpret utilitarianism as a decision procedure.
To the contrary, most utilitarians apply the principle of util-
ity as a criterion of moral conduct. By utilitarian accounts,
utility outlines the conditions that must be realized for an
action to be morally right. But, most utilitarians do not
require a decision-maker to determine whether these condi-
tions will actually be realized before a decision can be
made (Armstrong 2003). Thus, it is permissible to use a
moral theory as a criterion of ‘right’ and a separate decision
procedure to calculate the utility of potential outcomes.
What is a logical choice for a decision procedure?

Decision theory lends itself to machine implementation.
A decision-theoretic agent decides between potential
actions by choosing the action that generates the maximum
expected utility (MEU). Decision theory is a combination
of probability theory and utility theory. Probability theory
represents what an agent should believe about the state of
the world given the evidence (or observations) provided.
Utility theory represents the agent’s preferences between
potential outcomes or fully specified states of the world.
Combining probability and utility theory, decision theory is
a normative theory that prescribes how an agent should act
based on what it believes (Russell and Norvig 2003). The
agent’s ‘belief state’ changes as it lives in an environment.
Accumulating a larger history of stored observations, the
agent becomes more adept at predicting the potential conse-
quences of its actions. However, there is always uncertainty
in the agent’s observations and predictions, so the agent
must account for this uncertainty by using probabilistic
models like Bayesian networks and Markov decision pro-
cesses. Using act-utilitarianism as a moral theory of right
action and decision-theoretic tools to calculate the right
action in a given situation the question quickly becomes,
“how do you quantify the impact of actions in terms of their
likelihood of causing injury or death?”

Physiological functioning is monitored by reading and
recording human vital signs or ‘vitals.’ When a person has
a heart attack there is a characteristic change in the electro-
cardiogram (ECG) reading. When a person falls or gets
injured there is a change in pulse rate and blood pressure. If
the robot is performing service tasks it needs to ensure that
its actions do not create circumstances that may result in
human injuries. The robot needs to have the ability to rec-
ognize and learn household dangers, pair the dangers with
potential task actions and pair all of this with the expected
utility for human physiological functioning given certain
states of the world. Also, through inaction, the Utilibot
should not miss an opportunity to act to preserve life.
Equipping the Utilibot with the ability to recognize and
respond to medical emergencies requires a real-time link to
human vital signs. Several beneficial technologies exist that
provide non-invasive, portable, wireless biometric monitor-
ing (Bonato 2005). One such technology is the CPOD unit
developed by NASA. With a human wearing a CPOD unit
the robot can wirelessly receive the following readings:
ECG, blood pressure, body temperature, respiration and
oxygen saturation. Another physiological option is the Bio-
Sign unit developed by Oxford BioSignal. It uses algo-
rithms to detect deteriorating health prior to the evidence of
symptoms. This tool could be incorporated into the robot’s
architecture to alert the robot when a significant change in
functional health has been detected.

However, even with quantifiable measures of the state of
the human, the number of emergencies and injuries that
could occur is exponential. We could never hope to start
with a robot that possessed the full range of considerations.
Given this fact, it is more practical to delimit the parame-
ters of the first installation. One such parameter is the task
environment. The goal is to provide the Utilibot with envi-
ronment sensor readings in a way that does not overwhelm
the robot but still provides it with timely data (e.g. Panan-
gadan et al. 2005). Utilibot 1.0 could be trained and tested
in a controlled environment. An ideal environment would
be a smart-home or research lab like MIT’s PlaceLab,
which uses algorithms for monitoring both the health of the
indoor environment and the human. A lab with a rich sens-
ing network would provide the Utilibot with the ability to
fully observe the states relevant to measure. We also need
to consider the parameters for the human user. 

In considering the number of users the robot monitors,
the robot will need to keep a separate user profile for each
person it tracks (Pineau 2003). So, a prudent initial restric-
tion is to start with monitoring only one human user. A goal



for Utilibot 1.0 is to build a user profile and work through
the ‘bugs’ of adjusting the probabilities of injury and emer-
gency according to its observations of the user. When the
system is initialized the user completes a detailed medical
questionnaire. This questionnaire may contain the follow-
ing categories: personal information, personal history, fam-
ily history, current physical capacity, review of systems
(e.g. respiratory, cardiovascular and neurological) past
medical history, lifestyle risk factors (e.g. smoking, alcohol
and drugs) and current medications. This enables the Utili-
bot to generate a detailed user profile and alter the probabil-
ities accordingly. Then, after briefly monitoring the user’s
vital signs, a baseline is established against which improve-
ment or deterioration of health can be measured. What
health emergencies or deteriorations do we want the Utili-
bot to initially recognize?

Having a robot in the home that can detect deteriorating
health and act to activate the emergency response system
(EMS) closes the loop in the ‘chain of survival.’ Many peo-
ple think they have indigestion or heart burn when they are
actually having a heart attack. Many people have strokes in
their sleep or rationalize the stroke symptoms until serious
insults to the body and brain have occurred. Stroke is the
number three cause of death in the United States and the
leading cause of serious, long-term disability (AHA 2005).
Heart disease, a heart attack in particular, is the number one
cause of death in the United States (AHA 2005). Arrhyth-
mias are disorders of heart rhythm that alter the probability
of a person having a heart attack or stroke. Atrial fibrilla-
tion is a risk factor for stroke, increasing risk about five-
fold (Wolf, Abbott, and Kannel 1991). Arrhythmias also
cause deaths. Ventricular fibrillation is thought to cause
most sudden cardiac deaths (AHA 2005). The Utilibot can
receive online or offline training to recognize ECG wave-
forms characteristic of different arrhythmias.

Heart attack, stroke and arrhythmia also need to be cou-
pled with risk factors and signs and symptoms. These fac-
tors alter person-specific probabilities and weightings. For
example, people with hypertension (i.e. chronic blood pres-
sure of 160/95 mm Hg or higher) have four times the risk of
stroke than people with blood pressure that is normal (AHA
2005). Aside from the hard evidence of vital sign readings,
the robot can also ask questions and make observations. In
a situation where a person might be having a heart attack
the robot can ask, “are you experiencing crushing chest
pain?” If the person exhibits diaphoresis (i.e. profuse
sweating) and pale skin tone, then the probability that the
person is having a heart attack increases. Coupling vital
signs, risk factors and symptoms the robot is able to draw
conclusions about the current state of human health with a
high degree of certitude. This provides the robot with infor-
mation that enables it to respond effectively. The next con-
sideration is what tasks the Utilibot will perform.

During physiological health emergencies recognition and
response time dictates the likelihood of survival and the
amount of damage sustained. Once the Utilibot has recog-
nized the human is having a medical emergency, the Utili-
bot will activate the emergency health system
(ContactEMS), give the human a chewable aspirin
(GiveAsprin), administer oxygen using a mask (Adminis-
terOxygen) and transmit vital sign readings to the EMS dis-
patcher or hospital (TransmitVitals). These non-threatening
actions can save lives. If a person that is having a stroke
takes a 160 to 325 mg aspirin it greatly reduces the risk of
reinfarction and the likelihood of death (Cummins 1997).
Also, the goal during a stroke is to increase the oxygen sup-
ply to ischemic tissues (i.e. tissues that are dying) by giving
a person oxygen (Cummins 1997). The Utilibot will also be
concerned with injuries that could occur while completing
its tasks.

As mentioned earlier, the three most prevalent forms of
fatal non-intentional injuries in the home are falls, poison-
ing and fires/burns. The Utilibot may perform three tasks
and watch to ensure that these dangers do not arise. The
tasks are mopping the floor (MopFloor), preparing a cup of
tea (MakeTea), and cleaning the kitchen countertop (Clean-
Countertop). During floor mopping, a wet floor could lead
to a fall. In training, the Utilibot will need to time its floor
mopping routine to account for foot traffic patterns, user
observation history and the user’s calendar of activities
(e.g. Outlook calendar). The Utilibot will need to mop the
floor when the user is least likely to walk through as the
floor is drying. The Utilibot needs to pair failure to deter-
mine and act in this way with the potential for injury or a
negative impact on health. If the robot needs to obtain more
information to reliably determine when it should mop the
floor it can ask exploratory questions of the human such as,
“will you be going in the kitchen area within the next
twenty minutes?” For the tea making routine either a gas or
electric stove could be used. The goal in this test is for the
robot to ensure that the stove is turned off completely so
that gas is not leaking into the air or a burner is still left on.
The Utilibot needs to link failure to verify these safety
checks with the probability of a person getting burned or
caught in a fire. Then, these potential outcomes need to be
linked with the negative utilities they represent. Now, we
transition to the implementation of safety through morality.

Implementation
Creating a hybrid health care/personal service robot will
require the integration of several existent capabilities.
Instead of listing out all hardware and software potentially
required to create the autonomous mobile robot I will men-
tion capacities and provide references. In addition to per-
ception and vision, the Utilibot is assumed to possess the
following functionality: service robot mobility (Lindström,
Orebäck, and Christensen 2000), task manipulation (Holm-
berg and Khatib 2000), localization (Thrun et al. 2001),
integrated planning and control (Low et al. 2002), social
interaction (Thrun et al. 2000) and people tracking (Pineau
et al. 2003). 

In addition to these capacities, the Utilibot possesses
hardware specific to its problem solution: iRobot’s Scooba
(autonomous floor mop), oxygen tank and Venturi mask,
CPOD biometric monitor, bar-code scanner or RFID base
station to identify products and hazards in the house and
particulate monitors to recognize environmental hazards



(e.g. carbon monoxide). To recognize the impact of poisons
and chemicals on humans the Utilibot will have a knowl-
edge database of toxicology information. The robot also
has a knowledge-base for pharmacology information on
medications (e.g. Physician’s Desk Reference). These
knowledge-bases may have online access for performing
searches and receiving updates. This software is housed in
a hybrid architecture. 

A hybrid software architecture integrates deliberative
planning and reactive control. It is recognized as the most
effective design strategy in autonomous mobile robotics
(Low et al. 2002). This architecture allows the robot to
make decisions based on due deliberation about the nature
of the world yet also respond seamlessly in real-time. By
concentrating on the Utilibot’s deliberative element (also
known as the performance element) which generates an
optimal control policy for robot behavior, we set-up the
possibility of designing an optimal controller for the reac-
tive-layer that is based on the high-level solution (Russell
and Norvig 2003). The Utilibot’s performance element
would ideally be integrated into a larger ‘learning’ architec-
ture, but this remains an area open to future research. For
now we will focus on the hallmark of the Utilibot’s ethical
decision-making capacity—the Wellnet. 

The Wellnet Architecture
The well-being software network (or Wellnet) consists of

four primary modules. The first two modules are Bayesian
networks that model the state of human and environmental
health. The third module, called the Decision Network,
integrates the input from the Environment and User Net-
work and adds to the graphical synthesis the potential task
actions the robot could perform, including the resulting
utilities. The final module is the Wellnet Planner. It takes
the Decision Network as input and models it as a Markov
decision process (MDP), then a policy iteration algorithm
solves for the optimal policy or best course of action.

The User Network. This network models human health
and well-being. It has the ability to recognize and track
states of medical emergency, risk factors, signs and symp-
toms, baseline and optimal health, vital signs and health
history. This information is modeled as a dynamic Bayesian
network (DBN). A DBN represents uncertain knowledge
by accounting for the prior value of the state variables, the
likelihood of the variables transitioning from one state to
the next and the observation values received from the sen-
sors (Russell and Norvig 2003). In constructing the User
Network we will use the medical emergency of a stroke as
our primary illustration. 

The Utilibot is a powerful ‘first responder’ in the case of
a stroke because people often have mini-strokes, called
transient ischemic attacks, that precipitate a major stroke
but often go unnoticed (Cummins 1997). The initial step is
to set up a standard Bayesian network (i.e. Bays net)1. To

1.A variation on a pure Bays net, called a quantitative temporal Bays net,
was used to represent the user model in an AMR that assisted elderly peo-
ple with their daily activities in a nursing home (Pineau 2003).
do this we need to gather the cause and effect variables that
are relevant to a stroke. These variables make up the nodes
of the network2.

Next, the nodes of the network are linked together with
arrows that indicate the directionality of cause and effect. If
X is thought to generate Y, then X is a parent of Y. Then,
the effect of a parent node on a child node is quantified
using a conditional probability distribution. For example,
the probability that hypertension is a risk factor for a stroke
is represented as P(Stroke|Hypertension). These statistics
are stored in conditional probability tables in the database.
The probability values are assigned in consultation with
subject matter experts, case studies and detailed statistics
reports. Findings in statistics reports are usually grouped by
age, race and sex. Once the user’s profile is generated, the
User Network is updated to reflect the user-specific transi-
tion probabilities. When setting up the Bays net is com-
pleted, it is extended to a dynamic Bayesian network
(DBN) that is capable of monitoring human health.

A DBN consists of an initial configuration of the state
variables, a transition model and a sensor model. This net-
work is dynamic because time slices or ‘snapshots’ of the
state variables and sensor values are projected forward one
time-step. Then, connections are made between the time
slices. This allows the Utilibot to know, based on current
biometric sensor values and the transition model, the next
state of health the human is likely to transition into. This
process can be repeated by copying the initial time slice and
making connections between successive time slices until
the DBN is completely specified (Russell and Norvig
2003). Using simulation, the User Network can be trained
to recognize states indicative of a stroke. For example, dur-
ing a stroke the ECG reading reflects a prolongation of the
QT interval and changes in the ST-segment resembling a
myocardial infarction (Cummins 1997). This change in the
CPOD’s ECG reading is linked with the initial configura-
tion of the state variables that preceded the state indicative
of a stroke. The probability of transition between the states
is updated in real-time using a particle filtering algorithm,
which is a highly efficient way to update the network to
reflect the current state and observation values (Russell and
Norvig 2003). As an added benefit, when an inference or
query is run on the network, such as P(Stroke|PriorStroke =
true, Diabetes = false, Hypertension = true, ECGStroke =
true, Numbness = true), the particle filtering algorithm
returns consistent probabilities. In performing lab tests to
improve the User Network, simulations of the ECG values
indicative of a stroke could be prompted to the Utilibot and
the primary user could exhibit the signs and symptoms of
having a stroke.

The Environment Network. This network models aspects
of the environment that impact human health. The Environ-
ment Network employs the same algorithmic tools as the
User Network. Additionally, the Environment Network’s
knowledge-base contains information on poisons and other

2.Nodes could represent single variables or they could represent a meta-
variable which is itself comprised of a network of variables.



household objects that impact human health. These items
include cleaning products, medications, gases, industrial
chemicals, sharp objects and appliances. The Bays net in
the Environment Network contains probability connections
like P(Fall|WetFloor) or P(Poisioning|CarbonMonoxide).
Once the nodes, links and probabilities are specified the
Environment Network creates a hazard-specific map of the
house. The location of dangerous household products are
placed on the map as well as the probability of injuries
occurring at certain locations [e.g. P(Fall|Kitchen, Wet-
Floor = true)]. In testing the Environment Network, new
household products or environmental hazards could be
introduced into the environment and the Utilibot must rec-
ognize the objects as potential dangers, link them with the
potential negative impact for humans in certain situations
and then update the network values along with the map of
the environment to reflect the new household dangers.

The Decision Network. This network consists of a model
called a dynamic decision network (DDN). A DDN is a
Bays net that is expanded to include nodes for utilities and
actions1. This network also conducts inference and updates
using a particle filtering algorithm. 

The Decision Network receives input from the Environ-
ment Network, User Network and an auxiliary Task Net-
work. The Utilibot also receives general information (e.g.
internal state, localization and human-robot interface) from
a separate dynamic Bayesian network that specializes in
non-health related modeling. These nodes, links and condi-
tional probabilities are combined into a single DBN that
provides a ‘snapshot’ of the state of the robot, the human
and the environment—both general and health-specific.
The Decision Network then pulls in partially-ordered plans
and action decompositions from the Task Network that are
relevant given the current value of the state variables.
These actions are placed within the network as decision
nodes. If the state of the world indicates MakeTea would be
appropriate, it pulls in actions related to that task. Actions
are coded with preconditions and effects. So, for example,
MakeTea would contain the following decomposition:
Action (HeatWater, PRECOND: Water ^ HotStove, EFFECT:
Hot ^ Water). The value of these actions, given the state of
the variables, is determined by assigning utility values to
possible outcome states.

When assigning utilities, a positive change in health
yields a positive utility and a negative change in health a
negative utility. Because vital signs are being used in Utili-
bot 1.0, a scale is created with -1000 representing death and
+1000 representing optimal vital signs. We avoid arbitrari-
ness because vital sign values are species-specific (e.g.
optimal blood pressure is 120/80). Outcomes can be placed
on this scale as deviations from the optimum value or as
deviations from the extremes of the value range. For exam-
ple, if death results from a temperature over 108°F, then
108°F and above is assigned a utility of -1000. If 104°F

1.By way of reference, a DDN modeled the decisions and utilities of forms
of treatment for an aortic coarctation (Lucas 1996). For more information
on the DBN to DDN transformation see Dean and Wellman (1991).
indicates a high fever but not death, then it may receive a
utility of -800. Groupings of variables are also placed on
the scale (e.g. a heart attack results in a certain ECG read-
ing, elevated blood pressure and a rapid heart rate). This
brings up a consideration. The possible outcomes, and the
variable configurations they represent, are exponential.
Trying to account for all variable combinations would be
impossible. This is further complicated by states that com-
pound or are additive. The solution to this problem is to
group outcomes according to attributes (Russell and Norvig
2003). A multiattribute utility function simplifies the speci-
fication of outcomes by allowing us to say, for instance, the
physiological insults resulting from stroke reinfarction are
cumulative negative utilities. Once this process is finished,
the DDN ends up modeling utilitarian concerns in a form
that lends itself to machine implementation.

When utilitarianism is used in the literal sense, as a deci-
sion-making procedure, it usually gets expressed along the
lines of: determine the situation, enumerate the action alter-
natives, for each possible action calculate the utility of the
consequences for each person affected, sum the resulting
utilities and select the action with the highest utility. Bar-
ring the stipulation that an agent could, even in theory,
account for the effect of all action alternatives on all people
affected, a DDN houses the thrust of the utilitarian formula-
tion because, “a decision network represents information
about the agent’s current state, its possible actions, the state
that will result from the agent’s action, and the utility of
that state” (Russell and Norvig 2003). However, the short-
coming of using a literal utilitarian decision procedure or a
stand-alone decision network is that these models can dis-
cover the maximum expected utility (MEU) for episodic or
one-shot decisions, but they fall short when the MEU
depends on a sequence of decisions made across an entire
state space. This brings up the necessity of the final module
within the Wellnet.

The Wellnet Planner. This planner solves sequential deci-
sion problems in environments that are unpredictable. It
does this by calculating the utility of potential courses of
action and selecting the one that generates the highest
expected utility. More specifically, the Wellnet planner
receives the DDN from the Decision Network and models it
as a Markov decision process (MDP)2. The MDP is then
used as input for a policy iteration algorithm, which gener-
ates the optimal control policy for the Utilibot’s behavior.
The optimal policy tells the Utilibot what decision to
make—to maximize expected utility in relation to the
human—in every state that it might enter within the state
space (Liu and Koenig 2005). This gives the Utilibot the
ability to reach its goals by always pursuing the course of
action that is best for human well-being. When there is a
conflict between considerations (e.g. speed and safety) the
MDP provides the Utilibot with a way to resolve the con-
flict or navigate the trade-offs. This is accomplished
through the specification of rewards during the MDP
design-phase.

2.For an overview of MDPs see Boutilier, Dean, and Hanks (1999).



A Markov decision process is characterized by three ele-
ments: an initial state S0, a transition model T(s, a, s’) and a
reward function R(s). The DDN from the Decision Net-
work represents the transition model. Then, each outcome
state of concern for Utilibot 1.0 is linked with a reward R(s)
function1. The reward function specifies the trade-off
between risk and reward. If the reward function for a given
state is negative it motivates the robot to want to get out of
that state and navigate toward the goal state, which contains
a fixed positive reward (Russell and Norvig 2003). Using
our illustration, if a person is having a stroke we do not
want the robot taking the ‘long route’—a conservative
path—to finding the human or calling 9-1-1. Thus, within a
state of emergency, the reward function would be a high
positive value for finding the phone or locating the human
and a high negative reward for all other states. Rewards can
also be assigned to objects within the environment we want
the robot to avoid while accomplishing a task (Papudesi
and Huber 2003). If the robot is spraying a cleaning agent
on the kitchen countertop it must know that spraying fruit
or food on the counter yields a negative reward. A negative
reward is assigned to food on the countertop while the
Utilibot is spraying the cleaning agent. During training, the
robot must link the negative reward of the state of spraying
food with the negative utilities of the states that might fol-
low for human well-being. That is, when food is sprayed
with a toxic chemical the utility of future states is negative
for human health because humans ingest food, and if a per-
son ingests food containing household chemicals it may
result in an adverse effect for physiological functioning in
the form of poisoning. Now, we will briefly look at possible
next-generation Utilibots. 

For the second generation of Utilibot the notion of well-
being expands from physiological injury and survival to the
flourishing of psychological aspects of experience. Utility
is measured by the Benthamite standard of ‘pleasure’ and
‘pain.’ To assess these subjective elements, the decision-
theoretic tool-set extends to include experienced utility
(EU), which quantifies Hedonic well-being (Kahneman
2000). The user completes a questionnaire that generates a
picture of functional health as subjectively experienced
(e.g. a Rand 36-item health survey). For Utilibot 2.0 the
amount of environmental feedback relaxes, and the Utilibot
begins accounting for partially-observable factors, such as
sensor error. To accomplish this the MDP becomes a par-
tially-observable Markov decision process or a POMDP. In
a POMDP the notion of a ‘belief state’ is refined to become
a probability distribution across all of the states (Russell
and Norvig 2003). This gives the robot the ability to base
its decisions on what it knows and what it doesn’t know.
Utilibot 2.0 also includes preventative health capacities.

In addition to assuring safety while accomplishing tasks,
Utilibot 2.0 undertakes tasks that actively promote well-
being. These abilities include acting as a health advisor.

1.Rewards and utilities can both be assigned to states. The reward function
of a state R(s) is a short-term value for being in that state, whereas the util-
ity function U(s) is a long-term value for all the states that are likely to fol-
low from that state forward.
The robot may suggest and monitor exercise routines, per-
form educational activities such as reading e-books or act
as a reflective listener to provide the user with a therapeutic
way to objectify thoughts and feelings. The measure of
medical emergencies and injuries continues to expand as
well (e.g. diabetes, Alzheimer’s, choking, drowning, etc.).

In Utilibot 3.0 the notion of well-being approximates
‘happiness.’ Because much of our happiness as humans
depends on social relations the robot includes an additional
person in its calculations. Considering the well-being of
two people in reference to its decisions brings up the need
for a tool that can account for multiple agents. So, Utilibot
3.0 adds to its decision-theoretic base analytical tools based
on game theory. There is a lot of research being done in the
arena of multiple agents, but it typically involves multiple
robots or swarms trying to act cooperatively to accomplish
goals (Fong, Nourbakhsh, and Dautenhahn 2003). How-
ever, some of the advances in this area of robotics might be
leveraged for calculating utility that involves the consider-
ation of multiple people.

Conclusion
The Utilibot project is poised at the beginning of an excit-
ing new synthesis of robotics, ethics and medicine. As
autonomous mobile robots increase in functionality, auton-
omy and ubiquity within the home the ethical ramifications
of their actions are bound to increase. As a result, AMRs
need to be equipped with the ability to make decisions
based on the impact for human well-being. The sooner the-
orists and roboticists commit to the common goal of proac-
tively pursuing safety through morality for autonomous
mobile robots the more unnecessary crises and complexi-
ties will be avoided. The Utilibot project is an explicit way
to realize the primary qualification for the practice of engi-
neering which is, “to accept responsibility in making engi-
neering decisions consistent with the safety, health and
welfare of the public” (IEEE 1990).
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