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Abstract

ARCHONTM (ARchitecture for Cooperative Heterogeneous ON-line systems) is Europe’s largest project in the
area of Distributed Artificial Intelligence (DAI). It has devised a general-purpose architecture, software
framework and methodology which has been used to support the development of DAI systems in a number of
industrial domains. Some examples of the applications to which it has been successfully applied include:
electricity distribution and supply, electricity transmission and distribution, control of a cement kiln complex,
control of a particle accelerator, and control of a robotics application. The type of cooperating community that it
supports has a decentralised control regime and individual problem solving agents which are large grain, loosely
coupled, and semi-autonomous.

This paper tackles a broad range of issues related to the application of ARCHON technology to industrial
applications. Firstly, it gives the rationale for a DAI approach to industrial applications and highlights the
characteristics which typify this important domain. Secondly, the ARCHON framework is detailed - with a special
emphasis being placed upon the functional and implementation architectures. Thirdly, a preliminary methodology
for developing ARCHON communities is sketched. Finally, the application of the software framework and the
methodology is illustrated through the development of a DAI system in the electricity distribution domain.

1. Introduction

In many industrial applications a substantial amount of time, effort and finance has been devoted
to developing complex and sophisticated software systems. These systems are often viewed in a
piecemeal manner as isolated islands of automation, when, in reality, they should be seen as
components of a much larger overall activity. The benefit of taking a holistic perspective is that the
partial sub-systems can be integrated into a coherent community in which they work together to
better meet the needs of the entire application. By the very fact that they are integrated, the finite
budgets available for information technology development can be made to go further - agents can
share a consistent and up-to-date version of the data, basic functionalities need only be
implemented in one place, problem solving can make use of timely information which might not
otherwise be available, and so on.

Two components are required to devise a well-structured integrated community: a framework
which provides assistance for interaction between the constituent sub-components and a
methodology which provides a means of structuring these interactions. ARCHON addresses both
of these facets - providing a decentralised software framework for creating Distributed AI (DAI)
systems in the domain of industrial applications and devising a methodology which offers guidance
on how to decompose an application to best fit with the ARCHON approach (Wittig, 1992). The
former is concerned with providing the necessary control and level of integration to help the
sub-components to work together; the latter is concerned with decomposing the overall application
goal(s) and with distributing the constituent tasks throughout the community.




ARCHON’s individual problem solving entities are called agents; these agents have the ability
to control their own problem solving and to interact with other community members. The
interactions typically involve agents cooperating and communicating with one another in order
to enhance their individual problem solving and to better solve the overall application problem.
Each agent consists of an ARCHON Layer (AL) and an application program (known as an
Intelligent System (1S)). Clearly distinguishing between an agent’s social know-how and its
domain-level problem solving means that the ARCHON approach is both flexible and open -
imposing relatively few constraints on the application designer and yet providing many useful
facilities. Purpose-built ISs can make use of the ARCHON functionality to enhance their
problem solving and to improve their robustness. However pre-existing ISs can also be
incorporated, with a little adaptation, and can experience similar benefits. This latter point is
important because in many cases developing the entire application afresh would be considered
too expensive or too large a change away from proven technology (Jennings and Wittig, 1992).

To successfully incorporate both purpose-built and pre-existing systems, community design
must be carried out from two different perspectives simultaneously (Varga et al., 1994). A top
down approach is needed to look at the overall needs of the application and a bottom up
approach is needed to look at the capabilities of the existing systems. Once the gap between
what is required and what is available has been identified the system designer can choose to
provide the additional functionality through new systems, through additions to the existing
systems, or through the ARCHON software itself. This methodology shapes the design process
by providing guidelines for problem decomposition and distribution which reduce
inefficiencies.

This paper is organised along the following lines: section two provides a detailed view of
ARCHON’s software framework - covering both inter-agent interactions and interactions
between the AL and its underlying IS. Section three outlines the ARCHON methodology,
section four describes the electricity distribution application and section five shows how the
software and the methodology were applied to this domain. Finally, section six presents the
conclusions of this work and outlines some future plans.

2. The ARCHON Software

The ARCHON software has been used to integrate a wide variety of application program types
under the general assumption that the ensuing agents will be loosely coupled and semi-
autonomous. The agents are loosely coupled since the number of interdependencies between
their respective ISs are kept to a minimum; the agents are semi-autonomous since their control
regime is decentralised (meaning each individual decides which tasks to execute in which
order). The ISs themselves can be heterogeneous - in terms of their programming language,
their algorithm, their problem solving paradigm, and their hardware platform (Roda et al.,
1991) - as their differences are masked by a standard AL-IS interface. An AL views its ISin a
purely functional manner - it expects to invoke functions (fasks) which return results - and there
is a fixed language for controlling this interaction (see section 2.1). The design of the tasks
invoked by the AL needs careful consideration if the AL is not to be swamped with vast
amounts of low-level information which is irrelevant to its job of controlling cooperative
problem solving. As a basic guideline, the tasks should be of sufficient granularity to be used
as a decision point in the AL’s reasoning about local control (further details are contained in
sections three and four). This approach means that some tasks which appear indivisible to the
AL may, in fact, be composed of several distinct processes in the IS.




In an ARCHON community there is no centrally located global authority, each agent controls
its own IS and mediates its own interactions with other agents. The system’s overall objective
is expressed in the separate local goals of each community member. Because the agents’ goals
are usually interrelated, social interactions are required to meet global constraints and provide
the necessary services and information. Such interactions are controlled by the agent’s AL
(figure 14.1); relevant examples include: asking for information from acquaintances,
requesting processing services from acquaintances, and spontaneously volunteering
information which is believed to be relevant to others.
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AL-IS interface AL-IS interface S
ARCHON Layer (AL) ARCHON Layer (AL) -
Messages
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ARCHON Layer (AL) ARCHON Layer (AL)
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Figure 14.1: Structure of an ARCHON Community

In more detail, an agent’s AL needs to: control tasks within its local IS, decide when to interact
with other agents (for which it needs to model the capabilities of its own IS and the ISs of the
other agents), and communicate with the other agents. The basic functional architecture
highlights these four key aspects of local control, decision making, agent modelling and
inter-agent communication (Figure 14.2). It was decided to embody this functionality in a
modular and layered implementation architecture. This architecture contains four modules -
Monitor (see section 2.1), Planning and Coordination Module (PCM) (see section 2.2),
Agent Information Management (AIM) module (see section 2.3), and High Level
Communication Module (see section 2.4) - each of which is responsible for one aspect of the
functional architecture (Figure 14.3).

In terms of its hardware and software requirements, the ARCHON layer was originally
implemented using LISP as a rapid prototyping language. Later it was ported to C++ in order
to: improve speed, increase portability between different machines, and reduce the amount of
computing resource needed by the AL. The C++ version runs under UNIX on Sun-4
architecture workstations (Sun-4s and SparcStations) and under Linux (a public domain
version of UNIX) on i386 machines. There are also tools available which facilitate the
construction of ARCHON communities (see section 4.6).
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2.1 Monitor

The Monitor is responsible for controlling the local IS. Each IS task is represented in the
Monitor by a Meonitoring Unit (MU). MUs present a standard interface to the Monitor
whatever the host programming language and hardware platform of the underlying IS. Figure
14.4 shows a graphical representation of an MU called TransformTelemetry which takes
TELEMETRY as an input and produces TRANSFORMED-TELEMETRY as an output. The IS
task associated with this MU is called TRANSFORM-TELEMETRY in the ARCHON layer.

ARCHON

Intelligent Layer

System

MU Name TransformTelemetry

Input
TELEMETRY

AL-IS Interface

“TRANSFORM-
TELEMETRY” =
transform_telemetry

“NEED-NETWORK” =
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IS Task Name
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TELEMETRY”

IS Task

transform_telemetry

Result
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Control| Confirmation{| Request Messages

IS Task
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Figure 14.4: TransformTelemetry Monitoring Unit

MU can send and receive messages (control, confirmations and requests) to/from the IS. All
messages have to pass through the AL-IS interface which performs the translation and
interpretation required for the IS to understand the AL directives and for the AL to understand
the IS messages. For instance, in the above example, the interface functionality involves
invoking the IS function transform_telemetry, passing the arguments in the form in
which they are expected by the IS’s host language, and returning the transformed telemetry in
the expected format.

For the IS to be able to react to an AL directive the interface must translate the command into
the corresponding local control action(s). However this interpretation is subject to the
capabilities of the IS - for example, KILL in a C program may just mean that - kill a process;
whereas in a rule-based Prolog system it may mean clear all the facts asserted by the current
task and then stop (e.g. before a fault diagnosis process can be terminated any partial



hypotheses it has asserted must be removed). This means that the interface has to be specialised
to the IS’s programming language - although the ‘C’ language version can be used as foreign
code in other programming languages.

Other interface functionalities include specifying how many invocations of a particular task can
run in parallel and how many can be queued should that limit be reached. For example, it may
be possible to run only one invocation at a time (e.g. updating a global data store), or a task can
have multiple instantiations running in parallel but it may be desirable to have a limit and to
queue other requests for that task until one has completed.

In more detail, the message format between the AL and its IS is as follows:

<AL_TIS message> ::=
(<message_type> <urgency> “<task_name” <tag>
<argument_or_result>)

From the AL to the IS it is:
<message_type>::= <AL_IS_request> | <AL_IS_response>

<AL_IS_request> ::=
start_is_task | kill_is_task | suspend_is_task |
resume_1is_task

<AL_IS_response> ::=
requested_info | requested_info_not_available

and from the IS to the AL it is:
<message_type>::= <IS_AL_request> | <IS_AL_response>

<IS_AL_request> ::=
information_request | intermediate_result

<AL_IS_response> ::=
is_task_started| is_task_killed | is_task_suspended |
is_task_resumed | is_task_completed

It can be seen that the AL can request to start, suspend, resume or kill any IS task and that the
IS will provide an appropriate confirmation. The IS can also make a request to the AL for
information, it can send intermediate results, and it can supply final results when a task
completes. In this context, an intermediate result is one which is sent before the IS task has
completed - this type of information is particularly useful for a monitoring task where it would
be inefficient and disruptive to the IS’s normal flow of control to produce a function which
completed and returned a result.

MUs represent the finest level of control in the ARCHON layer, at the next level of granularity
there are plans. Plans are acyclic OR-graphs in which the nodes are MUs and the arcs are
conditions. These conditions can:

* Be dependant on data already available from previously executed MUs in the plan

* Be dependant on data input to the plan when it started




¢ Make use of the locking mechanism for part of the plan
* Be used to return intermediate results before a plan has completed

A sample plan which ensures that the electricity network is loaded is shown in figure 14.5. This
plan is activated in a fault diagnosis agent as part of its diagnosis routine. Firstly, the
TELEMETRY is transformed into a suitable format by the TransformTelemetry MU.
Secondly, the MU NeedNetwork checks whether that portion of the network from which the
telemetry originated is available locally. Next there is a decision point: if a
network_descriptor was returned by the previous MU then the relevant portion of the
network needs to be obtained, if not then the network is already available locally and the plan
ends. Assuming that the network needs to be loaded, an appropriate request will be sent to the
PCM and eventually the network description should arrive. On return of the network the
CreateNetworkModel MU is executed and the plan terminates.

Plan Name: Get_Network_Data TELEMETRY

‘ MU TransformTelemetry

TRANSFORMED-TELEMETRY

' MU NeedNetwork

condition
output = network_descripto

MU CreateNetworkModel

Figure 14.5: Get_Network_Data Plan

The highest level at which the IS’s activities are represented is the behaviour level. Behaviours
contain a plan, a trigger condition for activating the behaviour, descriptions of the inputs
needed by the activity and the results which will be produced, and any children of the
behaviour!. There are two types of behaviour: those that are visible to the PCM (and the other
AL components) and those that are purely internal to the Monitor (e.g. DiagnoseFault in

1. The reason for allowing behaviours to be linked is that it permits greater modularity: a plan can be written to
perform one task and then it can be incorporated into several different behaviours.




figure 14.6). The former type are called skills (e.g. DealWithTelemetry in figure 14.6) and
they may be triggered by data arriving from other agents or by direct requests from other
agents.

("BHVR )

Name DealWithTelemetry Visible to the PCM
Input TELEMETRY This behaviour is a Skill
Result FAULT_DIAGNOSIS
Plan
/ BHVR
Get__ —» Name DiagnoseFault
Network Input TRANSFORMED-
Data - TELEMETRY
Result FAULT_DIAGNOSIS
Plan
Diagnose
Child

\Child: None )

Figure 14.6: DealWithTelemetry skill with DiagnoseFault child behaviour

Once the PCM activates a skill the Monitor is responsible for its execution. This involves
testing any plan conditions, activating MUs as and when appropriate, and dealing with
messages from the IS. In order to activate an MU the Monitor ensures that the necessary inputs
are present - they could be available because they were an input to the behaviour in the first
place or because they were generated by the execution of an earlier MU in the same plan.
However if a piece of information is not available in the local context then a request is
forwarded to the PCM (e.g. in the Get_Network_Data plan a request for the network
associated with the generated descriptor may not be available in the local context). Finally, the
Monitor passes the skill’s results back to the PCM and then activates any child behaviours.

2.2 Planning and Coordination Module

The PCM is the reflective part of the ARCHON Layer, reasoning about the agent’s role in
terms of the wider cooperating community (Jennings and Pople, 1993). This module has to
assess the agent’s current status and decide which actions should be taken in order to exploit
interactions with others whilst ensuring that the agent contributes to the community’s overall
well being. Specific examples of the PCM’s functionality include: deciding which skills should
be executed locally and which should be delegated to others, directing requests for cooperation
to appropriate agents, determining how to respond to requests from other agents, and




identifying when to disseminate timely information to acquaintances who would benefit from
receiving it.

The PCM is composed of generic rules about cooperation and situation assessment which are
applicable in all industrial applications - all the domain specific information needed to define
individual behaviour is stored in the self and acquaintance models (Jennings, 1992). The
former contains information about the local IS and the latter contains information about the
other agents in the system. The type of information contained in both models is approximately
the same, although it varies in the level of detail, and includes the agent’s skills, interests,
current status, workload and so on. For example, in order to determine how to process the
request to provide the relevant portion of the network which arises from the
DealWithTelemetry skill, the PCM will make reference to its self model to see if the
information can be provided locally. If the information cannot be provided locally then the
acquaintance models are checked to see if another community member can provide it. A second
illustration of the interplay between the agent models and the PCM occurs when the Monitor
provides the results of a recently completed skill: firstly, the PCM checks the self model to see
if the data can be used locally and then it examines its acquaintance models to see if any other
agents are believed to be interested in receiving the data. The final major role of the PCM is to
deal with requests arriving from other agents. By reference to its self model, it will decide
whether to honour the request and will then activate the necessary skill to provide the requested
data; when the information is available it will ensure that a reply is directed to the source of the
request.

2.3 Agent Information Management Module

The AIM module is a distributed object management system which is designed to provide
information management services to cooperating agents (Tuijnman and Afsarmanesh, 1993).
Within ARCHON, it is used to store the agent models and the domain level data.

The self model contains all the definitions of MUs, plans and behaviours. An agent only models
those acquaintances with which it will interact; the models themselves contain the agent’s
name, the information it is interested in (which the local agent can provide), and the skills it
can perform (which the local agent may need). As an illustration of the models, consider an
agent which is capable of producing information about TELEMETRY. The interest slots of its
acquaintance models would contain those agents who are interested in receiving this
information and the conditions under which they are interested. The following portion of the
acquaintance model specifies that an agent called AVA is interested in TELEMETRY in all
cases, that an agent called LVDA is interested when the operation attribute has value
autoreclosure, and that the agents called IA and HVDA are interested only if the operation
attribute is equal to open or closed

INTEREST-DESCRIPTOR
INFORMATION-NAME: TELEMETRY
INFORMATION-CONDITION:
[ (*AVA”, TRUE);
(*LVDA”, (CONTAIN (TELEMETRY, “OPERATION “Autorec””)));
(“IA HVDA”",
(OR (CONTAIN (TELEMETRY, “OPERATION "“Open””))
(CONTAIN (TELEMETRY, “OPERATION “Closed””)))) ;]




In many industrial applications the domain level data which the agents need to exchange has a
complex internal structure. In ARCHON, this structure is specified and maintained by AIM.
For example, TELEMETRY is defined in the following manner:

TELEMETRY
Text STRINGS Time INTEGER
Text_time STRINGS Substation STRINGS
Plant STRINGS Operation STRINGS
Source STRINGS

and a specific instance is as follows: (note this piece of telemetry would be deemed to be of
interest to the AVA and LVDA agents, but not to the IA or HVDA agents)

((Telemetry

(Text 'ALARM 01JAN94 12.00/12.00 SBSTN1 SUBSTATION1 Cl1
CIRCUIT BREAKER AUTOREC')

(Time 10874390) (Text_time '01JAN94 12.00/12.00')
(Substation 'SUBSTATION1') (Plant 'SUBSTATION1C1')
(Operation 'AUTOREC') (Source 'ALARM'))

Once domain data has been stored in AIM it is possible for the AL’s reasoning and control
mechanisms to retrieve it. By giving it a definite structure, it is possible to access the named
sub-parts (e.g. checking that the attribute operation equals open). If the application designer
does not require the AL to access these components then the structure’s details need not be
given. The scheme is also flexible enough to allow for a halfway house where that part of the
data the AL needs to reason about is structured, as above, and that part which is not looked at
is left unstructured (e.g. the text field above).

2.4 High Level Communication Module

The High Level Communication Module (HLCM) allows agents to communicate with one
another using services based on the TCP/IP protocol. The HLCM incorporates the functionality
of the ISO/OSI Session Layer which continuously checks communication links and provides
automatic recovery of connection breaks when possible. Information can be sent to named
agents or to relevant agents (decided by reference to interests registered in the acquaintance
models).

3. The ARCHON Methodology

As already mentioned, the design of an ARCHON system takes a mixed top down and bottom
up approach. Taking a top down approach means the designer must look at the overall problem
that the system is being asked to solve and identify the corresponding system-level goals. Next,
the tasks necessary to achieve these goals need to be identified and suitably decomposed.
Finally, the data flows between the tasks need to be determined. However this classical design
perspective is not the full story in the type of applications with which we were faced - in many
cases the system designer wanted to utilise existing ISs to provide some of the functionality.
There are sound reasons for doing this: saving development time, familiarity with existing
systems - both by the designer and the eventual end user - and proven technology.

For this reason, ARCHON has also been designed to allow pre-existing (legacy) systems to be




integrated. However the use of such systems constrains the task decomposition and distribution
processes (if these systems are to be used in a similar way to their original standalone
counterparts). As an example, using an existing IS to provide a particular set of functionality
typically implies that all the tasks will be co-resident in the same agent, whereas in a totally
unconstrained distribution they may have been dispersed into multiple agents. It is at this
pragmatic level where the bottom up considerations are of primary concern. The designer must
examine the capabilities of the existing systems (in terms of their goals and tasks) and then
compare these tasks with those suggested by the top down approach. Typically there will be a
mismatch, since: the pre-existing systems do not provide all of the necessary functionality,
some pre-existing system functionality is not required in the cooperating system, and some
functionality is duplicated

Having performed this analysis, the designer must decide which of the pre-existing system’s
functionality should be exploited, which functionality necessitates the creation of new ISs, and
which functionality can be supported by the AL. If new systems are to be created then it is
important that they too have a clear functional role (rather than simply being a collection of
tasks which do not fit in elsewhere). Some adaptation of existing systems may be required in
order to ensure that the necessary tasks can be invoked by the AL (see Jennings et al. (1993)
for a detailed analysis on a real-world example). Typically this process aims to improve the
structure of the IS; for example, a standalone system may print results to the screen as they are
produced and never build up an internal representation. A possibly useful reconceptualisation
could be to develop a data structure to contain the full result and then return the complete
answer from a suitable accesssor function.

It may be the case that there are a number of pre-existing ISs from the same domain that can
perform the same task, but that the systems themselves are at different stages of development.
For example, one IS may have been used in the real world and have an existing connection to
it to obtain data. Another may require the same data but have only a simple interface (e.g. it is
still in a prototype stage and reads data from a file). By integrating these two systems, it is
possible to use the better developed interface for both systems and thus provide a significant
improvement to the prototypical IS.

An important aspect of the bottom up methodology includes a thorough analysis of the data to
be exchanged - this is important because the semantics of the data, as well as its syntax, need
to be uncovered before meaningful interchange can take place (e.g. it is possible for two
similarly named data types to have totally different meanings). This analysis is especially
crucial when the cooperating community involves components which have been developed at
different times and with which the designer has different levels of familiarity. A common
source of such confusion occurs when data from different sources is not entirely compatible in
all aspects. As an example consider the notion of ‘time’. There are many reasons why ‘time’ in
one IS differs from ‘time’ in another: it may be a matter of format (e.g. the time is in seconds
rather than minutes from a given base time - the base time might differ too!), or, more
importantly, although seemingly related they may measure different attributes (e.g. one could
be a measure of CPU time used and the other of system time). This point is worth stressing
because when a system is run in stand alone mode the absolute meaning of the data may not be
as important to the user as a comparison between different outputs (e.g. he may have forgotten
what the units are but knows what a good reading is and how to compare readings). Problems
arise when two systems are integrated and it is thought that two (or more) data types can be
easily interchanged because they appear similar.

ARCHON uses a standard data representation mechanism which allows the AL to make




decisions based on the contents of the IS data. For example, the interests expressed in the
acquaintance models can be dependant on the value of certain attributes of the data (e.g. agents
diagnosing faults on electricity networks are interested in telemetry messages reporting the
change of state of switches - see section 2.3), as might the triggers which activate behaviours.
However this is not to say that the AL representation is imposed on the IS, indeed the IS can
represent data in any way that it chooses, but rather that it can be used as a means of transferring
data. New ISs can be designed to use this format and existing ones can be adapted to understand
it. If there really is a necessity for an IS to represent data in a totally different way then this can
also be accommodated. For example, data can be left in its original format in the message - this
means the AL cannot make decisions based on that part of the data - or a file name can be sent
where the data can be accessed. The latter relies on a common file system but is very useful for
large amounts of structured data which the AL need not understand.

4. Using ARCHON to Manage an Electricity Distribution and Supply
Network

The ARCHON software and methodology have been used to develop real-world DAI systems
in a number of different industrial domains, these include:

* Electricity distribution and supply (Cockburn et al., 1992; Varga et al., 1994)

Electricity transmission and distribution (Corera et al., 1993)

Control of a cement kiln complex (Stassinopoulos and Lembessis, 1993)
* Control of a particle accelerator (Jennings et al., 1993)
* Control of a robotics application (Oliveira et al., 1991)

In this paper we concentrate on the first of these applications. The DAI system which has been
developed is called CIDIM (Cooperating Intelligent systems for DIstribution Management
systems) and its aim is to help control engineers manage electricity distribution and supply
networks.

4.1 The CIDIM Application

CIDIM is being developed as an aid to the control engineer who is responsible for ensuring the
continuity of electricity supply to customers. The main jobs to be carried out include: planning
and carrying out maintenance work safely and in coordination with the field engineer,
identifying faults on the network, and taking action to restore supply should this be necessary.
The electricity network control system allows remote operation of circuit breakers and reports,
via telemetry, automatic switching operations in response to faults, alarms and load readings.
The control system covers the high voltage network and part of the low voltage network, but
for much of the low voltage network switching for maintenance purposes is done manually by
the field engineer in radio contact with the control engineer. Due to the lack of telemetered
protection equipment, customer telephone calls reporting loss of supply play an important role
in decision making about the low voltage network. The final important source of information
used by the control engineer concerns lightning strikes - these may be the cause of a fault and
so indicate a good starting point for the field engineer to look for damaged equipment.

CIDIM assists the control engineer by: (i) automatically providing a comprehensive range of




services such as fault diagnosis, lightning detection, user driven restoration planning and
automatic rechecking of restoration plans; (ii) automatically collating much of the information
which is currently collected manually by reference to stand-alone systems. ARCHON also
permits information from conventional knowledge sources, such as a database or the telemetry
system, to be shared by more than one agent within the community (thus increasing the degree
of consistency).

4.2 Tailoring the ARCHON Methodology to CIDIM

The top down aspect of the ARCHON methodology for the CIDIM application is obtained by
examining the role of the control engineer. The main aspects of this job are as follows:

* Ensure continuity of supply to customers
* Supervise maintenance on the network
* Restore power after faults
The tasks which are performed in order to meet the above goals are:
* Create safe switching plans for maintenance and repair
* Diagnose faults on the network

These are the goals and tasks at the highest level. These activities were then broken down
further; descriptions were made of: the individual tasks (e.g. fault diagnosis and restoration
planning), the data requirements for these tasks (e.g. telemetry, lightning data and network
data), and the inter-relations between the tasks and the data (e.g. fault diagnosis requires
telemetry and network data).

The bottom up aspect of the methodology for CIDIM was obtained by examining the
functionality of the pre-existing and standalone systems which were currently used in the
Control Room. These systems were:

* High Voltage Expert System (HVES) (Cockburn ef al., 1991a; Cockburn, 1992)

Diagnoses the location and type of high voltage fault on the electricity network. To
do this it uses telemetered information from the network protection system (which
automatically operates circuit breakers in order to first isolate the faulty section
from the rest of the network and then, if possible, restore power). Originally, the
HVES had its own network representation and a separate process for accepting
telemetry. It was designed so that it could still work if telemetry messages were
missing although sometimes it was unable to discriminate between competing
alternatives if it did not have sufficient information.

* Switching Schedule Production Assistant (SSPA) (Cross et al., 1992)

When there is a permanent fault, or a need for maintenance work, a safe switching
plan needs to be created. This ensures that the area to be worked on is isolated from
the rest of the network and that it is safe for the field engineers to start their work.
Originally, the SSPA had its own network representation.




* Weather Watch System (Scott, 1988; Lees, 1992)

The location of lightning strikes can be useful supplementary data to the control
engineer. It can help in fault location on overhead lines - on a long line it is best to
start to look for damage near to a lightning strike - and can also warn the field
engineer that it is unsafe to work in a particular location.

4.3 Applying the ARCHON Methodology to CIDIM: High Level System Design

By comparing the requirements from the top down analysis with the functionality of the
existing systems, it can be seen that:

* There is no assistance for low voltage fault detection. Telemetry data is only present
at the point where the high and low voltage networks join and it alone cannot locate
the fault or identify its type. However information from customers’ telephone calls
which report their loss of supply can be used.

* Sometimes the control engineer will want to operate automatic circuit breakers from
the control room in an attempt to restore power by an alternative route. In such cases,
a check to see if these operations are safe will help minimise the chance of costly
mistakes.

* The overall security of the network is not considered. Rather than just waiting for,
and reacting to, faults the control engineer could proactively switch out overloaded
lines and reroute power.

In order to provide the missing functionality it was decided that the following additional ISs
were required to respectively deal with each of the above points: (i) low voltage expert system
(LVES); (ii) switch checking system (SCS); and (iii) security analysis system. Note that the last
two systems have yet to be fully integrated into the CIDIM cooperating community.

With the development of these new ISs, the overall system provides most of the functionality
required by the control engineer. As several of the systems make use of telemetry (HVES,
LVES) and require network data (HVES, LVES, SSPA, SCS), it was decided to create
dedicated agents to provide these services - respectively, the telemetry agent (TA) and the
information agent (IA). As the HVES already had a program running as a separate process
which accepted telemetry from the network and translated it into a standard format, it was
decided to make this program into the TA. The TA could then provide this service, and a
standard format, to the other community members. In the UK, different Regional Electricity
Companies (RECs) have different telemetry formats and so moving CIDIM to another REC
would simply require changes to the IS of the TA program (rather than to all the agents using
telemetry). The IA holds the network database for all agents; again although each REC has a
different database, and a different structure within that database, this approach only requires
changes to the IS of the IA when CIDIM is ported to a different company.

It was decided to provide a common user interface to CIDIM because one of its major functions
is to collate and present integrated information from different sources (e.g. when there is
relevant information about lightning strikes it needs to be presented in conjunction with the
output of the fault diagnosis activity if it is to have the maximum impact). The common
interface also means that the control engineer can view CIDIM as a single system and need not
be aware of the source of the results (e.g. fault reports from the HVES and the LVES are simply



reported as faults - if they are displayed differently it is because they relate to different voltage
levels and not because they are produced by different agents).

Both the HVES and the SSPA already had graphical displays of the electricity network, but as
the SSPA’s interface was more sophisticated it was used as the basis of the system’s common
interface (named the Advisor Agent). For reasons of familiarity, it is still possible to use the
existing interfaces for some of the systems; for example, the SSPA is user driven and when
creating a switching schedule it is easier and more efficient to use the existing display (this is
possible because there is no need for interaction with the rest of the CIDIM system when
creating a switching schedule). The CIDIM system as it now stands is shown in Figure 14.7.

Network
Database %

Lightning
Information

SESSION LAYER

Vol(t)age Volt%lge Switch Advisor
Diagnosis Diagnosis Pknglf;g A%}em
Agent Agent (S§P A) (AVA)

(LVDA) (HVDA) |

Users
Figure 14.7: The CIDIM Community

Integrating these different sub-systems in CIDIM allows the agents to interact, this, in turn,
gives the following benefits over and above their standalone counterparts:

(1) Automatic look up and cross referencing of lightning data when there is a fault.

(ii) Display of all relevant results in an integrated manner.



(iii) Interactions between the high and low voltage diagnosis agents and the TA can
resolve conflicts in high voltage diagnosis when telemetry is missing.

(iv) Notification of faults in areas where work is planned.

The first two points are dealt with earlier in this section, hence we concentrate on the remaining
cases here. Point (iii) illustrates how an integrated system is able to provide the control engineer
with better quality information. The HVES can diagnose faults when some telemetry
information is missing, however in such cases its diagnosis can be less precise about the nature
(permanent/transient) or locatien of the fault. In CIDIM these shortcomings can be minimised
in two ways. Firstly, the fact that a permanent fault on the high voltage network can lead to a
loss of supply on the low voltage network, since the former feeds the latter, can be exploited.
In such a case the high voltage diagnosis agent can ask the low voltage agent if the low voltage
network has been affected. The second improvement is that the high voltage agent can ask the
TA whether the substation from which the telemetry is missing is working. Replies from each
of these agents will assist the high voltage agent in deciding on the nature and location of the
fault.

Point (iv) is one illustration of how information passing between agents can trigger useful
actions. When the high voltage agent produces a diagnosis it will send it to the SSPA which
will then recheck any preplanned restoration plans on the updated state of the network. If this
analysis results in the conclusion that the plans need to be redone, because of the effect of the
fault, then the user is automatically informed.

4.4 Agent Design

The key design decision within an individual agent concerns the interaction between the AL
and its underlying IS. Assuming the agent’s high-level role has been clearly defined (see
section 4.3), the functionality which is of use to other agents must be identified, as must the
appropriately abstract logical grouping of the local functionality.

To illustrate these concepts in a concrete manner, the design of CIDIM’s low voltage diagnosis
agent (LVDA) will be expanded upon in detail. This instantiation is viewed from a bottom up
perspective - i.e. the level at which the IS and the AL interact is determined, then the MUs,
plans, behaviours and skills are determined, and, finally, the self and acquaintance models are
populated. The LVES diagnoses faults using telemetry and telephone calls - a diagnosis can be
triggered by either type of information and the outcome may rely on more than one piece of
telemetry or more than one telephone call. The diagnosis process is rule based and relies on the
incoming data to update its internal representations of the hypotheses. A firm diagnosis is only
made when there is a sufficient degree of certainty that all the relevant indicators have arrived.
The time the system should wait for data to arrive is dependent on the nature of the fault and is
reassessed each time new data arrives. Before the diagnosis can commence the relevant portion
of the electricity network needs to be loaded.

4.4.1 IS Tasks and Monitoring Units

ARCHON is designed to have a relatively coarse granularity of interaction between the AL and
its IS - indeed it is inefficient to introduce unnecessary interactions. As mentioned in section
2.1, the IS must be conceptualised as a number of functional units. Even if the IS is rule based,
and works by side effect, this is still possible as the following example from the LVDA
illustrates.




One of the activities performed by the LVES is to diagnose faults using telemetry information
as an input. As shown by figure 14.8, this activity involves a complex series of actions within
the IS: the first thing to check is whether the telemetry relates to an existing hypothesis or
whether a new hypothesis is needed. In the latter case, the IS must set a timer to indicate when
it can report its final diagnosis - this depends on the information received and an estimation of
the time by which the remaining necessary information will arrive. In the former case, there
will already be an active behaviour concerned with this hypothesis and so a timer will already
have been set, but the IS may need to update the hypothesis and possibly reset the timer (e.g.
if the new data represents the final piece of expected information then the timer can be set to
Z€ero). ’

IS Task Diagnose_Fault

Existing
Hypothesis?

Create New
Hypothesis

Update Hypothesis

Set Timer Reset Timer

Diagnose Fault

Return Diagnosis

Figure 14.8 The IS Task Diagnose_Fault

Despite this complexity, it was decided to encode this process in a single IS task because there
is no further need for interaction with the AL before the task completes. The corresponding MU
is represented in the AL as follows:

MU DiagnoseFault ; : MU Name
“Diagnose_Fault” ;; IS Task Name (see fig. 14.8)
(TRANSFORMED-TELEMETRY) ;; mandatory input(see fig. 14.6)
({FAULT_ DIAGNOSIS) I resplt (see fig. 14.6)

4.4.2 Plans

The Diagnose plan which performs the diagnosis is extremely simple and just involves
calling the DiagnoseFault MU (see figure 14.6). In contrast, the Get_Network_Data



plan which loads the relevant network before the diagnosis is made is more complex (see
Figure 14.5). After the telemetry has been suitably transformed, the MU NeedNetwork
checks whether the network from which the telemetry originated is represented internally in the
IS. If it is not then the IS extracts a network descriptor, by which the relevant portion of the
network can be accessed, from the telemetry message and returns it to the Monitor as the result
of the MU;; if the network is already available then no result is returned. Next there is a decision
point: the Monitor checks if a network descriptor was returned, if not then the network is
already available and the plan ends; however if a network descriptor was returned then a
request is made to the PCM for the network (since it cannot be produced locally). The PCM
checks its acquaintance models, sees that the IA can provide the network (see section 4.4.4),
and so sends it a request for assistance. On return of the network, an appropriate model is
established by the CreateNetworkModel MU.

4.4.3 Behaviours and Skills

To allow for easier testing and expandability two behaviours were created,
DealWithTelemetry and DiagnoseFault (see Figure 14.6), to control the diagnosis
process with respect to telemetered information. DealWithTelemetry is the skill visible
to the rest of the ARCHON Layer, being a child behaviour DiagnoseFault is internal to
the LVDA’s Monitor. The trigger which fires the DealWithTelemetry skill can be
expressed in the following manner:

TRIGGER DealWithTelemetry-Trigger

(TELEMETRY) ;; Arrival of this info is the trigger

[ ;; Actions associated with trigger
EXECUTE (DealWithTelemetry) ;

1

4.4.4 Self and Acquaintance Models

The self model of the LVDA contains a description of the skills which can be executed locally.
As well as DealWithTelemetry (shown below), there is DealWithTelephoneCalls
(which controls fault diagnosis using customer reports of loss of supply), and
ResolveHV_Conflict (which the high voltage agent will request in order to determine
whether or not a high voltage fault has affected the low voltage network - refer to the discussion
in section 4.3).

Name: DealWithTelemetry

Trigger: DealWithTelemetry-Trigger ; See section 4.4.3
Inputs: ((TELEMETRY :mandatory))

Results: (FAULT_DIAGNOSIS)

Plan Name: Get_Network_Data

Children: (DiagnoseFault)

In order to perform its designated role in CIDIM, the LVDA only needs to be aware of two
other agents: the information agent and the advisor agent. For the IA it represents the fact that
it can perform the skill GetNetworkSubstation (which needs to be executed to provide
the network required by the CreateNetworkModel MU of the Get_Network_Data
plan):



Name: GetNetworkSubstation
Trigger: ()

Inputs {(network_descriptor)
Results (NETWORK)

For the advisor agent, the acquaintance model indicates that it is interested in the outcome of
the diagnosis (to show to the control engineer):

INTEREST-DESCRIPTOR
INFORMATION-NAME: FAULT_ DIAGNOSIS
INFORMATION-CONDITION:

[
(“AVA”, TRUE);
]

It can be seen that although the LVDA does have interactions with the TA and the high voltage
agent it does not model them. This is because the models are constructed on a need-to-know
basis: the LVDA simply receives telemetry from the TA and so does not need to know about
its interests and skills; the high voltage agent makes requests of the LVDA, but not vice versa,
so the high voltage agent models the LVDA but not the other way around. Further details of
these models can be found in Cockburn ez al. (1991b) and Cockburn (1993).

4.5 An Example Cooperative Scenario

Below a simple scenario showing how the LVDA interacts with the telemetry agent (TA), the
information agent (IA), and the advisor agent (AVA) to diagnose and report a fault on the low
voltage network is described. The names of MUs, plans, and behaviours are those used in
earlier sections.

The TA is continually receiving telemetry from the electricity network. This is transformed into
the standard ARCHON format by its IS and is made available to the PCM as an intermediate
result. The TELEMETRY is checked against its acquaintance models, by the PCM, and is sent
to the LVDA if its operation is autoreclosure (see section 2.3).

On arriving at the LVDA, the PCM checks to see if any skills will be triggered by the incoming
data. In this case, the skill DealWithTelemetry is triggered (see section 4.4.3) and the
TELEMETRY data is added to its context. Control then passes from the PCM to the Monitor in
order to execute the associated plan (Get_Network_Data - see figure 14.5). The first MU,
TransformTelemetry, is invoked - its input, TELEMETRY, is extracted from the context
of the behaviour. The Monitor creates a message containing the name of the IS task
(TRANSFORM-TELEMETRY - figure 14.4) and the TELEMETRY data and sends this to the IS
via the interface. The task is performed and the result, TRANSFORMED-TELEMETRY, is added
to the context of the behaviour. The next MU in the plan, NeedNetwork, is then activated -
this checks if the network has been loaded for the TRANSFORMED-TELEMETRY. Next the
plan forks and so, by convention, the leftmost branch is tried first. This branch contains a
condition checking on the output of the previous MU. If a network descriptor has been
produced then the condition is satisfied and the CreateNetworkModel MU is activated.
Assuming this to be the case, CreateNetworkModel has NETWORK as an input. The
Monitor checks to see if this is available within the behaviour’s context: it is not, so a request
is made to the PCM for the data. The PCM first checks, by referring to the self model, to see if




the LVDA can produce the data itself. As it cannot, a check on the acquaintance models is
made. It is seen that the IA can provide the data using the GetNetworkSubstation skill
and that this skill requires the data network_descriptor to be sent from the behaviour’s
context (see section 4.4.4). The request is passed onto the HLCM where the IA’s address is
found and the message is actually delivered. The request is dealt with by the IA (with reference
to its self model) and the appropriate portion of the network is returned. The LVDA’s PCM
then makes this result available to the behaviour from which the request originated. The
CreateNetworkModel MU is then activated and upon its completion the plan ends.

As the DealWithTelemetry behaviour has finished, its child behaviour
DiagnoseFault is called. The plan Diagnose is started and the MU DiagnoseFault
is activated with input TRANSFORMED-TELEMETRY (see section 4.4.4). If this produces a
new fault diagnosis then it will be some time before the MU returns a result. In the meantime,
new telemetry and telephone calls will arrive, some of which will start new diagnoses and some
of which will add to the one started by the original behaviour. When the DiagnoseFault
MU completes the behaviour DiagnoseFault terminates, as does its parent
DealWithTelemetry. On completion of the behaviour, the result (FAULT_DIAGNOSIS)
is made available to the PCM. Note that the results of the other MUs (e.g. TRANSFORMED-
TELEMETRY) are not specified as a result of the behaviour and so are not passed on. The PCM
checks the self and acquaintance models to determine whether the diagnosis can be used locally
(it cannot) or by another agent (it can - the AV A is interested (see section 4.4.4) and so it is sent
the result).

4.6 System Debugging

Debugging in a multi-agent system is an even more complex and time consuming process than
it is for standalone systems since more than one entity is being tested at the same time. In
CIDIM, this process was exacerbated by the fact that some of the ISs were still under
development when the cooperating community was being designed. To reduce the scope for
errors it was decided that dummy ISs would be used for the preliminary testing phase (dummy
ISs are stubs which return a result without computation). These stubs were then incrementally
replaced with the real programs and a further round of testing was undertaken. The benefits of
using this approach are as follows: the possibility of errors is reduced, the IS gives a known
response, and the overall time for system testing is decreased. Also this mode of operation is a
necessity when an agent is created from the first IS - since checks must be made to ensure that
the agent responds properly to requests and volunteered information which arrive from its
acquaintances.

An important feature of the ARCHON development environment which made this testing
process considerably easier was the ability to trace each of the agent’s modules in terms of the
flow of messages between them. Figure 14.9 shows telemetry being received from the TA’s IS
as an intermediate result of the behaviour StartUp. The HLCM trace window shows this
result being sent to the IA, the AVA and the HVDA as unrequested information because of the
contents of their respective acquaintance models.
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Figure 14.9: Tracing Facilities of the ARCHON Toolbox

5. Conclusions and Future Plans

This paper has outlined the main features of the ARCHON approach to building real-world
DALI applications in the industrial supervision and control domain. By necessity, some aspects
of this description are lacking in detail but in such cases we have made reference to more
comprehensive literature. Although the ARCHON system has been primarily designed based
on our experiences of the supervision and control domain, it is felt that the architecture and the
methodology will generalise, in a relatively seamless manner, to new application areas. Indeed
this possibility is being actively pursued by a number of organisations!

In its present form, the CIDIM application consists of seven agents - the telemetry agent, the
information agent, the weather watch agent, the low voltage diagnosis agent, the high voltage
diagnosis agent, the switch planning agent, and the advisor agent. The community was tested
by providing it with data gathered from a number of actual disturbance episodes. During these
trials the agents cooperated with one another, in the manner described, to achieve the goals
outlined in this paper. For the future, two avenues of exploitation are being pursued. Firstly, the
possibility of running the CIDIM system in field trials is being investigated. Secondly, the
ARCHON technology, and some of CIDIM’s intelligent systems, are being offered to regional
electricity companies as a way of improving the level of integration in their control rooms.
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