Skip to main content
Log in

A System of Axioms for Minkowski Spacetime

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

We present an elementary system of axioms for the geometry of Minkowski spacetime. It strikes a balance between a simple and streamlined set of axioms and the attempt to give a direct formalization in first-order logic of the standard account of Minkowski spacetime in Maudlin (2012) and Malament (unpublished). It is intended for future use in the formalization of physical theories in Minkowski spacetime. The choice of primitives is in the spirit of Tarski (1959): a predicate of betwenness and a four place predicate to compare the square of the relativistic intervals. Minkowski spacetime is described as a four dimensional ‘vector space’ that can be decomposed everywhere into a spacelike hyperplane—which obeys the Euclidean axioms in Tarski and Givant (The Bulletin of Symbolic Logic, 5(2), 175–214 1999)—and an orthogonal timelike line. The length of other ‘vectors’ are calculated according to Pythagoras’ theorem. We conclude with a Representation Theorem relating models \(\mathfrak {M}\) of our system \({\mathscr{M}}^{1}\) that satisfy second order continuity to the mathematical structure \(\langle \mathbb {R}^{4}, \eta _{ab}\rangle \), called ‘Minkowski spacetime’ in physics textbooks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alscher, D. (2016). Theorien Der Reellen Zahlen Und Interpretierbarkeit. Berlin: De Gruyter.

    Book  Google Scholar 

  2. Andréka, H., Madarász, J. X., Németi, I., & Székely, G. (2011). On logical analysis of relativity theories. Hungarian Philosophical Review, 54(4), 204–222.

    Google Scholar 

  3. Ax, J. (1978). The elementary foundations of spacetime. Foundations of Physics, 8(7–8), 507–546.

    Article  Google Scholar 

  4. Barrett, T.W., & Halvorson, H. (2016). Glymour and Quine on theoretical equivalence. Journal of Philosophical Logic, 45, 467–483.

    Article  Google Scholar 

  5. Field, H. (1980). Science without numbers. Princeton: Princeton University Press.

    Google Scholar 

  6. Goldblatt, R. (1987). Orthogonality and spacetime geometry. Berlin: Springer.

    Book  Google Scholar 

  7. Halvorson, H. (2019). The logic in philosophy of science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  8. Hartshorne, R. (2000). Euclid and beyond. Berlin: Springer.

    Book  Google Scholar 

  9. Hilbert, D. (1899). Grundlagen der geometrie.

  10. Jensen, R. B. (1972). The fine structure of the constructible hierarchy. Annals of Mathematical Logic, 4(3), 229–308.

    Article  Google Scholar 

  11. Malament, D. (2019). Mathematical and physical background to “Über die Abhängigkeit der Eigenschaften des Raumes von denen der Zeit”. In A.W. Carus, M. Friedman, W. Kienzler, & S. Schlotter (Eds.) The collected works of Rudolf Carnap (Vol. 1). Oxford: Oxford University Press.

  12. Malament, D. Geometry and spacetime, unpublished notes.

  13. Martin, R.M. (1971). Logic, language, and metaphysics. New York: New York University Press.

    Google Scholar 

  14. Maudlin, T. (2012). Philosophy of physics: space and time. Princeton: Princeton University Press.

    Book  Google Scholar 

  15. Mundy, B. (1986). Optical axiomatization of Minkowski space-time geometry. Philosophy of Science, 53(1), 1–30.

    Article  Google Scholar 

  16. Mundy, B. (1986). The physical content of Minkowski geometry. The British Journal for the Philosophy of Science, 37(1), 25–54.

    Article  Google Scholar 

  17. Pambuccian, V. (2007). Alexandrov–Zeeman type theorems expressed in terms of definability. Aequationes Mathematicae, 74, 249–261.

    Article  Google Scholar 

  18. Quine, W. V. O. (1975). On empirically equivalent systems of the world. Erkenntnis, 9(3), 313–328.

    Article  Google Scholar 

  19. Reichenbach, H. (1924). Axiomatik der relativistischen Raum-Zeit-Lehre. Braunschweig: Fried. Vieweg and Sohn.

    Google Scholar 

  20. Robb, A. (1914). A theory of space and time. Cambridge: Cambridge University Press.

    Google Scholar 

  21. Robb, A. (1936). Geometry of time and space. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Schutz, J.W. (1997). Independent axioms for Minkowski space-time. Boca Raton: CRC Press.

    Google Scholar 

  23. Schwabhäuser, W., Szmielew, W, & Tarski, A. (1983). Metamathematische methoden in der geometrie. Berlin: Springer.

    Book  Google Scholar 

  24. Shoenfield, J. R. (1971). Unramified forcing in axiomatic set theory. In Proceedings of symposia in pure mathematics, XIII, Part I (pp. 357–381). Providence: American Mathematical Society.

  25. Sklar, L. (1985). Philosophy and spacetime physics. Berkeley: University of California Press.

    Google Scholar 

  26. Spector, C. (1958). Measure-theoretic construction of incomparable hyperdegrees. The Journal of Symbolic Logic, 23(3), 280–288.

    Article  Google Scholar 

  27. Suppes, P. (1959). Axioms for relativistic kinematics with or without parity. In L. Henkin, P. Suppes, & A. Tarski (Eds.) Symposium on the axiomatic method. Berkeley: University of California.

  28. Tarski, A. (1959). What is elementary geometry? In L. Henkin, P. Suppes, & A. Tarski (Eds.) Symposium on the axiomatic method. Berkeley: University of California.

  29. Tarski, A., & Givant, S. (1999). Tarski’s system of geometry. The Bulletin of Symbolic Logic, 5(2), 175–214.

    Article  Google Scholar 

  30. Tarski, A., & Szczerba, L. W. (1979). Metamathematical discussion of some affine geometries. Fundamentae Mathematicae, 3(104), 155–192.

    Google Scholar 

  31. Van den Dries, L. P.D. (1998). Tame topology and O-minimal structures. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Babic.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We are grateful to John Burgess, Dino Calosi, Harold Hodes and Chris Wüthrich for discussion and comments on parts of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocco, L., Babic, J. A System of Axioms for Minkowski Spacetime. J Philos Logic 50, 149–185 (2021). https://doi.org/10.1007/s10992-020-09565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-020-09565-6

Keywords

Navigation