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There are two fundamentally di¤erent notions of a class, which, following
tradition, we might call the mathematical and the logical notions, respectively.
The logical notion is essentially the notion of a class as the extension of a
concept, and, following Frege, we will assume that a class in this sense �simply
has its being in the concept, not in the objects which belong to it�([8], p. 183) �
regardless of whether or not concepts themselves di¤er, as Frege assumed, �only
so far as their extensions are di¤erent�(ibid., p. 118). The mathematical notion
of a class, on the other hand, is essentially the notion of a class as composed
of its members, i.e., of a class that has its being in the objects that belong to
it. This notion of a class, we claim, is none other than the iterative concept of
set � or at least that is what it comes to upon analysis. Note that although
what accounts for the being of a class under the one notion is not the same as
what accounts for the being of a class under the other, nevertheless the axiom
of extensionality applies equally to both notions. This means that the axiom of
extensionality does not of itself account for the being of a class.1

Of course the logical notion of a class, especially as developed in Frege�s form
of logicism, is usually thought to be bankrupt as a result of Russell�s paradox.
This assessment, however, is erroneous. In particular, in [5] I explained how
Frege�s view of classes in the logical sense can be reconstructed without paradox
by modifying in either of two ways what I there referred to as Frege�s double-
correlation thesis. The two systems that result from these modi�cations, it
turns out, have certain structural similarities with Quine�s two set theories NF
and ML, especially when the latter are themselves modi�ed so as to include
urelements other than the empty set. This is signi�cant because both NF and
ML are commonly said to �lack a motivation� (cf. [1], p. 219). But this is
because as theories of sets in the sense of classes that are composed of their
members, which is really the only sense to which Quine is willing to commit
himself, both NF and ML are incompatible with the iterative concept of set.
As theories of classes in the logical sense, however, and in particular of the
classes that Frege took to be the correlates of concepts, both NF and ML

1 In an intensional (modal) language, the mathematical notion of a class might well assume
a stronger axiom of extensionality, namely, one in which classes that are composed of their
members are necessarily identical when they have the same members. Such an axiom would not
in general hold for classes in the logical sense, because coextensive concepts are not necessarily
coextensive. (It would hold for those classes in the logical sense that are the extensions of
�rigid� concepts, i.e., concepts that have the same extension in every possible world.)
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can be given a very natural motivation, especially when modi�ed to include
urelements. In what follows we will defend this motivation by examining the
structural similarities in question.

1 NF and the Iterative Concept of Set

The original motivation for NF, according to Quine, was the reconstruction of
the theory of simple types as a �rst-order theory of classes, or what we shall
also call a theory of sets in the sense of classes that are composed of their
members, The theory of simple types, as a theory of classes, was already itself
a reconstruction by Ramsey of Russell�s earlier theory of rami�ed types as a
theory of intensional concepts (or what Russell called propositional functions).
The latter reconstruction was implicit in the interpretation Russell gave to his
axiom of reducibility (cf. [21], p. 58 and p. 166), but whereas for Ramsey classes
were real and had their being in the objects that belonged to them, Russell chose
not to assume that classes had any being at all but rather that all our talk of
classes was to be explained in terms of concepts. Quine, of course, eschews all
intensional entities and saw in the theory of simple types only a theory of sets in
the sense of classes that are composed of their members. (For Quine, apparently,
the axiom of extensionality provides a full account of the being of a class.) The
real ontological import of the theory of simple types, according to Quine, is
a strati�ed comprehension principle for sets which it trivially e¤ects through
its overly restrictive grammatical constraints. If we delete these grammatical
constraints as being improperly retained through their historical connection
with the intensional theory of rami�ed types, then what remains is none other
than the strati�ed comprehension principle for sets given in NF.
Quine also assumed, but only as a �harmless�simplifying gesture, that the

axiom of extensionality was to be applied to all objects whatsoever. It follows of
course that there is then but one urelement, namely, the empty set. Objects that
are not sets, according to Quine, can be simply identi�ed with their singletons,
though of course no commitment need actually be made in NF that there are
any such objects at all. Stated as an applied �rst-order theory (with identity),
the system NF is really quite elegant in its simplicity.
But all is not well with NF as a theory of sets, i.e., as a theory of classes

that are composed of their members. For the notion of a set as a class which is
composed of its members, i.e., of a class that has its being in the objects that
belong to it, is none other, we maintain, than the iterative concept of set. And
NF, apparently, is incompatible with any theory that can he said to represent
the iterative concept of set. Thus, the standard �rst-order set theory that is
taken as a paradigm of systems that represent the iterative concept of set is ZF
(Zermelo-Fraenkel set theory2), and the incompatibility between ZF and NF is
easy to demonstrate. In particular, in ZF there neither is nor can be a universal

2We ignore the question here of whether or in what sense the axiom of replacement accords
with the iterative concept of set (cf. [1], section IV). We could just as well speak of Zermelo
set theory instead.
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set, and therefore no set has an absolute complement In addition, in ZF no set
can be a member of itself. In NF, on the other hand, there is a universal set,
which as such is therefore a member of itself; and of course every set has an
absolute complement.
The guiding principle of ZF, incidentally, is what Russell once called the

limitation of size doctrine, i.e., the doctrine that sets are not to get too big too
fast (cf. [20], p. 152). According to this doctrine, we are �to admit only those
instances of the axiom schema of comprehension which assert the existence of
sets which are not too �big�compared to sets which we already have�([10], p.
32). Of course, it is just this doctrine that is realized by the iterative concept
of set, since according to the latter sets are formed at stages by iterating the
operation: X ! X[P(x), where P(x) is the power set of X. It is by identifying
the being of a set with its �formation�in this manner, incidentally, that we are
able to say that the iterative concept of set is none other than the analysans of
the mathematical notion of a set as a class that is composed of its members,
i.e., of a class that has its being in the objects which belong to it.
Of course, the stages at which sets are formed are themselves well-ordered,

and although the strongest form of the iterative concept of set assumes that for
any given ordinal � there is an �th stage (cf. [25], Chapter VI), a weaker form
assumes only that there is a stage corresponding to some limit ordinal (cf. [1], p.
221). But even this is not really essential to the concept (cf. [I5], p. 98), and in
fact the theory of sets (sometimes also called general set theory) obtained from
ZF by omitting the axiom of in�nity might be said to represent the core form
of the iterative concept. This is important, since if we exclude in�nite stages
and ignore the cumulative nature of the operation in question, then what we get
by representing the stages by di¤erent types is essentially the theory of simple
types as a theory of classes that are composed of their members. As a theory of
classes, in other words, the theory simple types represents a restricted form of
the iterative concept of set, and in fact it represents a form which has its origin
in Schr½oder�s Algebra der Logik.
Schr½oder, as Alonzo Church has observed, anticipated the theory of types

(as a theory of classes) when he took �the universal class 1 which appears
in his algebra, not as an absolute universal class, but as composed of all the
elements of a certain domain �xed in advance�[2], p. 150). Once such a quasi-
universal class or �manifold� was given, a second may then be obtained (to
which the algebra was to be applied in turn) �by taking the subsets of the
�rst to be the individuals of the second�(ibid.); and by continuing in this way a
�hierarchy of reine Mannigfaltigkeiten may be extended to in�nity�(ibid.). The
important restriction Schr½oder imposed on this hierarchy was that no subset of
the domain of �individuals� considered at any one stage of the hierarchy was
to be among the individuals of that stage, and that consequently the laws of
logic, as the laws of this algebra, were to be restricted in any given application
only to the �individuals�of the stage in question. Russell�s �rst theory of types
in Appendix B of his Principles of Mathematics was essentially this theory of
classes, incidentally, though to what extent Russell was himself aware of this
fact is not clear (cf. [5], Section 8). That is, it was classes and not propositional
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functions to which Russell assigned types in that appendix; and the classes in
question, moreover, were �classes as many�; i.e., classes that essentially were
nothing but their members. (It was not until after publication of the Principles
that Russell adopted his famous �no classes�theory.)
Now as a restricted form of the iterative concept of set, the theory of simple

types as a theory of classes also realizes a restricted form of the limitation of
size doctrine; and, indeed, it is for precisely this reason that an axiom of in�nity
to the e¤ect that there are in�nitely many urelements is needed in type theory.
Also, just as the axiom of choice is neither provable nor disprovable in ZF (and
therefore not really involved in the iterative concept of set), it is also neither
provable nor disprovable in the theory of simple types as a theory of classes.
Yet, in NF, which is supposed to be a �rst-order reconstruction of the theory
of simple types as a theory of classes, the axiom of choice is disprovable, and
therefore, because the axiom is provable for �nite sets, it follows that some set
in NF is in�nite (cf. [22]). In NF, moreover, because it contains the Boolean
calculus of classes, there is a complete symmetry between the existence or being
of sets that are small and the existence or being of sets that are large: that is, the
doctrine of the limitation of size is completely rejected in NF. It is no wonder
then that as a theory of sets, i.e., as a theory of classes that are composed of
their members, NF is said to �lack a motivation�.
The alternative to this conclusion, of course, is thatNF is really not a theory

of sets in the sense of classes that are composed of their members. That is, if
it has any philosophically coherent motivation at all, then it is as a theory of
classes in the logical sense, i.e., in the sense in which classes have their being
in the concepts whose extensions they are, and not as a theory of classes that
have their being in the objects that belong to them. Such an alternative, it
is clear, requires a background theory of concepts, and in particular a theory
of predicable concepts whose extensions are classes in the logical sense. That
is, such an alternative presupposes a superseding theory of predication in which
predicates, despite their not being singular terms, can be said to have referential
signi�cance, and therefore one in which quanti�cation with respect to predicate
positions can be said to be signi�cant as well. This conclusion, needless to say,
would not be welcome to anyone, such as Quine himself, who rejects the idea
that predicate quanti�ers can have any referential signi�cance at all. For Frege,
however, the notion that predicate quanti�ers have a referential signi�cance even
though predicates are not themselves singular terms is not only acceptable but
is in fact forced upon us by the very nature of language and thought (cf. [5],
Sections 1 and 2).

2 The Theory of Simple Types and Frege�s Double-
Correlation Thesis

It is sometimes claimed, as Church observed (long before the view became fash-
ionable), that Frege�s Stufen or levels of concepts �constitute an anticipation
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of the simple theory of types�([2], p. 151). Church himself rejects this claim,
however, and he is right in doing so if by the theory of simple types we mean
either a theory of classes in the sense already described or a theory of concepts
all of which can have classes as their extensions in the same sense in which �rst-
level concepts have classes as their extensions. Of course, in some sense Frege�s
theory of di¤erent levels of concepts does amount to a theory of types. But still,
unlike the situation in Russell�s theory of types where all propositional func-
tions have extensions in the same sense in which the �rst-order propositional
functions that apply to concrete individuals do, in Frege�s theory only �rst-level
concepts have or even can have extensions. To be sure, according to Frege,
every concept of a given level falls within some concept of the next higher-level;
but still, no concept in Frege�s hierarchy can be said to fall under a higher-level
concept the way that objects fall under �rst-level concepts.
Nor is this merely a verbal distinction either! E.g., second-level concepts cor-

respond not to predicates the way that �rst-level concepts do, but to variable-
binding operators that apply to w¤s (well-formed formulas) and result in w¤s
when so applied (such as the existential quanti�er when a¢ xed to an individ-
ual variable). (Equivalently, second-level concepts correspond to w¤s with free
predicate variables that may he used in a third-level comprehension principle to
specify such a variable binding-operator, such as the w¤8x[F (x)! G(x)], which
speci�es the second-level relation of subordination between one �rst-level con-
cept and another (cf. [3].) Unlike predicates, these operators can be commuted
and iterated, as well as occur within the scope of one another. And of course
the same observation applies to operators for third and higher-level concepts,
except that these operators can also he commuted with those for second-level
concepts, and therefore they can occur within the scope of the latter as well. Is
this important? Indeed it is, for contrary to the view of the theory of types as
a restricted form of the iterative concept of set, what it seemed to suggest to
Frege is that there are no more third- and higher-level concepts than there are
second-level concepts; and, apparently, this is why he saw no point in explicitly
introducing notation for third- and higher-level concepts into his ideography (cf.
[9], p. 41).3

Frege also saw no point in introducing quanti�ers regarding second-level
concepts; and the reason why is that he also assumed that there are no more
second-level concepts than there are �rst-level concepts. That is, according to
Frege, and this is what we mean by his double-correlation thesis, all second-level
concepts can be correlated one-to-one with certain special �rst-level concepts,
which in turn can be correlated one-to-one with special objects called concept-
correlates. These concept-correlates are none other than Frege�s value-ranges

3One can of course model variable-binding operators in terms of sets (as is done in [3]). But
in that case, at least if the operators are understood to stand for Frege�s higher-level concepts,
the modeling must be restricted to Henkin�s general models for type theory (cf. [13]). To insist
that general models are not the real or �primary� semantics for variable-binding operators is
to confuse Frege�s theory of types (if one insists on calling it that) with Russell�s � or what
essentially comes to the same thing given Frege�s extensional view of concepts, it is to confuse
Frege�s hierarchy of concepts with a restricted for of the iterative concept of set.
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( Wertverläufe), which in the monadic case Frege also called classes (Begri¤-
sumfangen). Thus quanti�ers regarding second-level concepts are unnecessary,
according to Frege, because second-level concepts �can be represented in a cer-
tain manner�by �rst-level concepts whereby the concepts �that appear as ar-
guments of the former are represented by their value-ranges�([7], Section 25).4

That is, in symbols (in the case of unary concepts):

8Q9F8G[QxG(x)$ F (�xG(x))]:

In the relational case, incidentally, Frege�s basic law V, namely,

�xF (x) = �xG(x)$ 8x[F (x)$ G(x)];

is none other than a special instance of his double-correlation thesis. For what
is indicated on the right side of this law is none other than the second-level
relation of material equivalence or mutual subordination of two �rst-level con-
cepts; and on Frege�s extensional view of concepts (as functions From objects
to truth-values) such an equivalence amounts in e¤ect to their �identity�. That
is, Frege�s basic law V amounts to correlating the �rst-level relation of identity
with his second-level relation of mutual subordination. Such a correlation is
needed, Frege observed, because �to construe mutual subordination simply as
equality is forbidden by the basic di¤erence between �rst- and second-level re-
lations. Concepts cannot stand in a �rst-level relation. That wouldn�t he false,
it would be nonsense. Only in the case of objects can there be any question of
equality (identity). And so the said transformation [from mutual subordination
to identity] can only occur by concepts being correlated with the same object. It
is all, so to speak, moved lawn a level�[8], p. 182, italics added).
Now just as �rst-level concepts can be �moved down a level�by being corre-

lated with their extensions, so too, by Frege�s double-correlation thesis, second-
level concepts can be moved down a level by being correlated with certain special
�rst-level concepts, which in turn of course are correlated with their own ex-
tensions. But then, third-level concepts can be similarly �moved down a level�
by being correlated with second-level concepts, and therefore by the product
of these correlations, third-level concepts can in e¤ect be correlated with �rst-
level concepts, which again are correlated with their own extensions. Similarly,
fourth-level concepts can be correlated with third-level concepts and therefore
with �rst-level concepts as well. In general, in other words. all concepts of what-
ever level can in e¤ect be correlated with �rst-level concepts, and these in turn
can be correlated with their extensions. Frege�s entire hierarchy of concepts,
can be collapsed into the universe of �rst-level concepts, which in turn can be
correlated with the classes that are their extensions. In this regard, the theory
of classes that is contained in Frege�s theory of types of concepts is radically

4Frege�s thesis is stated for all second-level functions, not just concepts, i.e., not just
for those functions that have truth-values as their values. For convenience (and otherwise
for reasons discussed in [5], Section 2), we will ignore functions other than concepts. Also,
although we will in general restrict ourselves to the monadic case throughout, we will also
sometimes refer to relations as concepts.
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di¤erent from the theory of simple types as itself a theory of classes, i.e., it is
radically di¤erent from the theory of simple types as a restricted form of the
iterative concept of set.
Of course, Frege�s theory, as originally described, is subject to Russell�s

paradox. But this result has nothing to do with the di¤erence between Frege�s
hierarchy of concepts and the theory of simple types as a restricted form of
the iterative concept of set. Indeed, by modifying in either of two ways Frege�s
double correlation thesis, we can reconstruct Frege�s theory so that the resulting
framework is provably consistent if the theory of simple types as a restricted form
of the iterative concept of set is consistent. The two alternative systems resulting
by these reconstructions, it turns out, are similar in structure to Quine�s set
theories NF andML, and of course that suggests re-evaluating the latter in the
light of our two modi�cations of Frege�s double correlation thesis.

3 Frege�s Logicism as a Second-Order Predicate
Logic with Nominalized Predicates

Frege�s original Begri¤sschrift, as is well known, amounts to the �rst formula-
tion ever given of standard second-order predicate logic. It is clear of course
that Frege viewed his system as providing a logical analysis of the predicates
that occur in natural language. In the Grundgesetze, Frege supplemented this
predicate logic with his smooth=breathing abstraction operator that when ap-
plied to w¤s generated complex singular terms. These singular terms were of
coarse taken as denoting value-ranges, which for reasons already indicated, Frege
also called concept-correlates. What we have not yet noted, however, is that
these concept-correlates are also none other than the objects that Frege look
the nominalized predicates of natural language to denote (cf. 151, Sections 4
and 5). In this regard, we maintain, Frege intended that his overall system was
to provide a logical analysis not only of the predicates that occur in natural lan-
guage but also of the predicate nominalizations that occur therein as well. For
this, among other reasons, it was suggested in [5] that the confusion sometimes
made of Frege�s theory of value-ranges with a second-order set theory might
best be obviated by directly describing his theory of value-ranges as a theory of
concept-correlates in the sense of the objects that are denoted by nominalized
predicates. In other words, Frege�s form of logicism, we maintain, can best he
described as a second=order predicate logic with nominalized predicates. That,
in any case, is the approach we stall adopt here.
In doing so, however, we will for convenience allow ourselves certain liberties

in the way we will represent predicates and their nominalizations. In particular,
we will represent the unsaturated nature of predicates (at least when they occur
as such) by the requirement that they be accompanied by a pair of parentheses
(and commas as well in the case of a relational predicate). We will then represent
the nominalization of a predicate by the deletion of these parentheses (and the
accompanying commas, if any). Thus, whereas F (x) and R(x; y) are w¤s in
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which F and R occur as predicates, G(F ) and G(R) are w¤s in which F and R
occur as singular terms. In F (F ) and R(F;R), of course, F and R occur both
as predicates and as singular terms (though no single occurrence can be both
as a predicate and as a singular term). The predicate expressions that occur
in the argument or subject positions of other predicates, or of themselves as
well, needless to say, are intended as representing the nominalized predicates
that occur in natural language. Note that adding such su¢ xes as �-ity�, �-
ness�or �-hood�to nominalized occurrences of predicates would be completely
super�uous here, because such occurrences are already formally identi�ed as
subject position occurrences; and of course the same observation applies to such
related phrases as �the concept F�or �being an F�. Such phrases and su¢ xes
are important in English syntax, no doubt, because they serve to mark derived
nominal expressions in the surface grammar of English: but it is sheer sophistry
to insist that such surface grammatical features of English either must or should
occur in our logical forms, as though a logical error were being committed
otherwise.
In addition, we will also use Church�s �-operator for the formation of complex

predicates. (This is in keeping with most of the higher-order predicate logics
formulated in the recent literature.) Thus, where '(x) is a w¤, we also have
[�x'(x)]( ) as a complex predicate (note the accompanying pair of parentheses)
and [�x'(x)] as a complex singular term. For convenience, however, we will
usually drop the accompanying parentheses (and commas) when referring to
predicates (as unsaturated expressions), though always, whenever a predicate
occurs in a w¤ as a predicate, it will have an accompanying pair of parentheses
(and commas as well if it is a relational predicate).
Finally, in describing our logical grammar we will for convenience identify

the di¤erent types of meaningful expressions by associating them with di¤erent
natural numbers. Thus we will understand 0 to represent the type of all singular
terms, 1 the type of all w¤s (propositional forms), and n + 1, for all n > 0, as
the type of all n-place predicate expressions. (We will ignore the introduction of
predicate and individual constants in the present paper.) We assume of course
the availability of denumerably many individual variables, and, for each natural
n denumerably many n-place predicate variables. (We identify propositional
variables with the 0-place predicate variables.) We take �x�, �y�, �z�and �w�, with
or without numerical subscripts, to refer (in the metalanguage) to individual
variables, and �Fn�, �Gn�, �Hn�, �Rn� to similarly refer to n-place predicate
variables. (We will usually drop the superscript when the context makes clear
the degree of a predicate variable.) We will also use �u�to refer to variables in
general, and �a�and �b�to refer to singular terms in general. We take !, :,
=, 8, � as primitive logical constants and assume the others to be de�ned (as
abbreviations of the metalanguage) in the usual way. For each natural number
n, accordingly, we recursively de�ne the meaningful expressions of type n, in
symbols, MEn, as follows:

1. every individual variable (or constant) is inME0, and every n-place pred-
icate variable (or constant) is in both MEn+1and ME0;
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2. if a; b 2 ME0, then (a = b) 2 ME1;

3. if � 2 MEn+1, and a1; :::; an 2 ME0, then �(a1; :::; an) 2 ME1;

4. if ' 2ME1, and x1; ; ::; xn are pairwise distinct individual variables, then
[�x1:::xn'] 2 MEn;

5. if ' 2 ME1�then :' 2 ME1;

6. if '; 2 ME1, then ('!  ) 2 ME1;

7. if ' 2 ME1, and a is an individual or a predicate variable, then 8a' 2
ME1;

8. if ' 2 ME1, the [�'] 2 ME0; and

9. if n > 1, then MEn � ME0.

Singular terms, which we shall also refer to simply as terms, are understood
to be all the members of ME0; and for n > 0, we understand the members
of MEn+1 to be /n-place predicate expressions. W¤s or propositional forms
are of course all the members of ME1. Note that whereas by clause (9) every
predicate expression is a term, not every w¤ is a term. We di¤er in this regard
from what Frege would allow; but the di¤erence is unimportant since by clause
(4), where n = 0, [�'] is a w¤ i¤ ' is a w¤, and by clause (8) [�'] is a term. In
other words, besides 0-place predicate variables (and constants), w¤s are terms
only when pre�xed by the �-operator. Thus, in general, we may read �[�']�as
�that '�when it occurs in a w¤ as a term, i.e., when it occurs in one of the
argument or subject positions of a predicate expression.
If we take this logical grammar as a counterpart to Frege�s own original ideog-

raphy, then, ignoring Russell�s paradox for the present, the axioms of standard
second-order predicate logic when applied to this grammar can be taken as the
counterparts to Frege�s basic laws of logic. The following axiom set will serve us
for this purpose. Of course we include an axiom for �-conversion, and an axiom
that identi�es what a nominalized predicate variable (or constant) denotes with
what its corresponding nominalized �-abstract denotes. Also, we add a *-label
to all theses that are understood to include w¤s having nominalized predicates
as singular terms among their instances. Bondage and freedom are understood
de�ned in the usual way.

(A0*) all tautologous w¤s,

(A1*) 8u('!  )! (8u'! 8u );

(A2*) ' ! 8u'; where u is an individual or predicate variable not occurring
free in ',

(A3*) 9x(a = x), where a is a singular term in which x does not occur free;

(LL*) (a = b) ! (' $  ), where a; b are singular terms and  comes from '
by replacing one or more free occurrences of b by free occurrences of a,
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(CP*) 9Fn8x1:::8xn[F (x1; :::; xn) $ '], where Fn does not occur free in '
and x1; :::; xn are distinct individual variables,

(�-Conv*) [�xn:::xn'](a1; :::; an) $ '(a1=x1; :::; an=xn), where a1; :::; an are
singular terms and each ai is free for xi in ',

(Id��) [�xn:::xnR(x1; :::; xn)] = R, where R is an n-place predicate variable (or
constant).

As inference rules, we shall assume modus ponens (MP) and universal gen-
eralization (UG) as applied to an individual or a predicate variable. Note that
by Leibniz�s law, i.e., (LL*), and (A0*)�(A3*), the principle of universal instan-
tiation of a singular term for an individual variable is provable:

(Ul�1) 8x'! '(a=x).

This is essentially Frege�s basic law (lla). Frege�s basic law (IIb) is similarly
derivable from the second-order counterpart of (LL*) and by using (CP*) instead
of (A3*). Note also, incidentally, that (LL*) and (�-Conv*) together yield the
following generalized form of Frege�s basic law (Vb):

[�x1:::xn'] = [�x1:::xn ]! 8x1:::8xn('$  ):

Of course, this is only one direction of Frege�s basic law V. The other di-
rection, i.e., Frege�s basic law (Va), is the following principle of extensionality,
which we will consider separately from the other axioms:

8x1:::8xn('$  )! [�x1:::xn'] = [�x1:::xn ]: (Ext�)

Finally, although we have not included variables for variable-binding opera-
tors representing second-level concepts, note that were such variables available,
we could represent Frege�s double-correlation thesis as follows:

8Q9F8G[QxG(x)$ F (G)]:

Now sinceQxG(x) can also be taken as an abbreviation of a w¤that contains
G as a free 1-place predicate variable, i.e., a w¤ that could be used to specify a
second-level concept Q in a third-level comprehension principle, then, as Frege
himself noted, we can ignore explicitly introducing quanti�ers for second-level
concepts and capture the correlation in question as an instance of (CP*) instead.
For by (CP*),

9F8x(F (x)$ 9G[x = G ^QxG(x)];
and therefore by (UI*) and other obvious transformations

9F8G[F (G)$ QxG(x)]:

In other words, every instance of Frege�s double-correlation thesis can be cap-
tured as an instance of (CP*).
It is clear, accordingly, that together with (Ext*), the above system of axioms

and rules amounts to a counterpart of Frege�s own original system. Of course,
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like Frege�s original system, the above system, with or without (Ext�), is subject
to Russell�s paradox and therefore is inconsistent. That is, by the following
instance of (CP*),

9F8x(F (x)$ 9G[x = G ^ :G(x)]);

a contradiction is provable in the system. Nevertheless, the framework is re-
pairable, and by a simple modi�cation of Frege�s double-correlation thesis as
well; i.e., by a simple modi�cation of (CP*) as the representation of Frege�s
thesis in the present context. Before turning to this modi�cation, however, let
us note that (CP*) is a consequence of a still simpler form of comprehension
principle: namely,

9Fn(F = [�x1:::xn']); (CP��)

where Fn does not occur free in '. Since a restricted form of (CP��) will yield
only a restricted form of (CP*), we will apply our modi�cation to (CP��) instead.
Note, however, that since (CP��) posits the existence of a concept corresponding
to any given �-abstract, then the restriction in question really amounts to a
restriction as to which �-abstracts are to be regarded as well-formed in the �rst
place.

4 The Theory of Homogeneous Simple Types as
a Second-Order Predicate Logic

Now the point of our �rst modi�cation of Frege�s double-correlation thesis is
that if all higher-level concepts can really be correlated with �rst-level concepts,
which in turn are correlated with their concept-correlates, then the conditions
for specifying the �rst-level concepts in question must be strati�ed in a way
corresponding to the strati�cation of the higher-level concepts to which these
�rst-level concepts and their concept-correlates correspond. The comprehension
principle (CP��), in outer words, must be restricted in a way that corresponds
to the strati�cation of the unsaturated concepts of Frege�s hierarchy.
For reasons indicated below, however, we will actually need a more strin-

gent form of strati�cation than Frege allows. In particular, we will be required
to assume, on pain otherwise of generating Russell�s paradox after all, that
higher-level relations are only homogeneously strati�ed. This in fact is the only
modi�cation of Frege�s original form of logicism that we will assume in our �rst
reconstruction of Frege�s logic.
Returning to the logical grammar of Section 3, accordingly, let us say that

a w¤ or �-abstract ' of that grammar is homogeneously strati�ed i¤ there is an
assignment t of natural numbers to the set of terms occurring in ' (including '
itself if ' is a �-abstract) such that (1) for all terms a and b, if (a = b) occurs
in ', then t(a) = t(b); (2) for all n > 1, all n-place predicate expressions � and
all terms a1; :::; an, if �(a1; :::; an) is a w¤ occurring in ', then (i) t(aj) = t(ak),
for 1 � j; k � n, and (ii) t(�) = t(a1) + 1; (3) for all natural numbers m, all
individual variables x1; :::; xm, and all w¤s  , if [�x1:::xm ] occurs in ', then
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(iii) t(xj) = t(xk), for 1 � j; k � m, and (iv) t([�x1:::xm ]) = t(x1) + 1; and
(4) for all formulas �, if [��] occurs in ' and a1; :::; ak are all of the terms or
predicates occurring in �, then t([�]) � max[t(a1); :::; t(ak)].
If clauses (i) and (iii) are dropped and clauses (ii) and (iv) are replaced by the

weaker requirement that t(�) = 1 + max[t(a1); :::; t(am)] and t([�x1:::xm ]) =
1 + max[t(x1); :::; t(xm)], then we will say that ' is heterogeneously strati�ed.
Of course, by de�nition, every homogeneously strati�ed expression is heteroge-
neously strati�ed; and although not all heterogeneously strati�ed expressions
are homogeneously strati�ed, nevertheless, a monadic expression, i.e., one in
which every predicate is a 1-place predicate, is homogeneously strati�ed if and
only if it is heterogeneously strati�ed. For this reason, homogeneously strati�ed
monadic w¤s will be referred to hereafter simply as strati�ed w¤s.
Now it is clear that Frege�s hierarchy of concepts is heterogeneously strati�ed

and not just homogeneously strati�ed; i.e., some of Frege�s higher-level relations
are unequal-leveled relations. Thus, e.g., the second-level relation of an object
to a concept under which that objects falls is said by Frege to be an unequal
second-level relation because it has as arguments both a saturated object and an
unsaturated �rst-level concept (cf. [7], Section 22). The relevant modi�cation
of his double-correlation thesis, accordingly, would seem to be that we are to
admit as well-formed only those �-abstracts that are heterogeneously strati�ed.
This would certainly exclude the version of Russell�s paradox described above,
because the complex predicate in question, namely [�x9G(x = G ^ :G(x))], is
not heterogeneously strati�ed.
Unfortunately, this proposal does not also exclude other forms of Russell�s

paradox generated in terms of unequal leveled concepts. E.g., since Frege�s
unequal-leveled relation of subsumption under a concept is speci�ed by a het-
erogeneously strati�ed �-abstract, namely, [�xy9G(x = G ^G(y))], then being
impredicable with respect to this relation is also speci�able in terms of such
a �-abstract, namely [�z:[�xv9G(x = G ^ G(yv))](z; z)]. But then Russell�s
paradox of the concept that is subsumed under itself if and only if it is not sub-
sumed under itself is derivable after all. It follows, accordingly, that if Frege�s
double-correlation thesis is to apply to all higher-level unsaturated relations,
then we must assume that none of these relations are inhomogeneously strat-
i�ed, i.e., that there are no unequal higher-level relations. In particular, we
must not assume that there can be such an unequal second-level relation as the
subsumption of an object under a concept; for it is fundamental to Russell�s
paradox that predication cannot stand for a relation between an object and a
concept-correlate.
On the modi�cation in question, accordingly, a �-abstract is considered as

well-formed if and only if it is homogeneously strati�ed; and, in general, let us
say that a meaningful expression of type n is a meaningful expression of �HST �

(where �HST � is the �-version of the theory of homogeneous simple types) if
and only if every �-abstract occurring in that expression is homogeneously strat-
i�ed. (Note that this does not require that w¤s themselves be homogeneously
strati�ed; in particular, F (F ) and :F (F ) are both w¤s of �HST �, and if [�x']
is homogeneously strati�ed, then both [�x']([�x']]) and its negation are w¤s
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of �HST � as well.) By an axiom of �HST �, moreover, let us understand any
w¤ of �HST � that is an instance of (A0*)�(A3*), (LL*), (CP��), (�-Conv*) and
(Id��), i.e., of the axioms already described in Section 3. For convenience, we
will refer to the restriction of (CP��) that is e¤ected hereby as the homogeneously
strati�ed comprehension principle, or more simply as (HSCP �� ). Our proposal
or �rst alternative reconstruction of Frege�s form of logicism, accordingly, is
that it be restricted to the meaningful expressions of �HST � and that it be
represented by the axiom system �HST �+(Ext�). (We assume, as before, that
(MP) and (UG) are the only rules of inference.5)
We need not follow Frege in construing concepts extensionally, incidentally.

E.g., we could also take � as a primitive logical constant and add to the axioms
of �HST � the axiom schemas of the S5 modal propositional logic (and the
rule of modal generalization as well). In that case, instead of (Ext�) we might
assume the corresponding principle of intensionality:

�8x1:::8xn('$  )! [�x1:::xn'] = [�x1:::xn ] (�Ext�)

If we refer to this extension of �HST � as ��HST �, then Russell�s idea of
reducing all talk of classes to talk of concepts can be captured in terms of the
following notion of rigidity :6

Rigid =df [�x9F (x = F ^ 8y[�F (y) _�:F (y)])]:

This su¢ ces because a class, on this analysis, is simply the correlate of a rigid
intensional concept:

Cls =df [�x9F (x = F ^Rigid(F )]:

The �law of logic�that is needed in that case is the following principle of rigidity :

8F9G(Cls(G) ^ 8x[F (x)$ G(x)]): (PR)

It is clear, of course, that by translating � as double negation, �HST � +
(�Ext�)+(PR) reduces to just �HST �+(Ext�), and therefore since the latter is
translatable into the former it follows that the two systems are equiconsistent.7

It should be noted in this context, incidentally, that in ��HST � not all
concepts are rigid, and therefore not all concept-correlates are �classes�. They

5The rewrite law,

[�x1:::xn'] = [�y1:::yn'(y1=x1; :::; yn=xn)];

where no yi occurs in ', is derivable in �HST � on the basis of (Ext�) � or it intensional
counterpart (�Ext�) described later in this paper. If neither of these principle is assumed,
then the rewrite law must be taken as an additional axiom schema of �HST �, or of ��HST �
as described later.

6This notion occurs in Montague [16], p. 132. It also occurs in [11], p. 77, where the
principle of extensional comprehension is the type-theoretical counterpart of the principle of
rigidity described below in the text.

7Although this last claim is correct as it stands, it would nevertheless be more natural to
extend both the notion and the principle of rigidity to relations as well (cf. [5], section 13).
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might, of course, be none other than the intensional concepts themselves� that
is, if, along with Russell, we assume that the latter do not have an unsaturated
nature after all. In that case, �HST �+(�Ext�)+ (PR) might well be taken as
representing a form of logicism that Russell himself seemed to be defending in
his 1902�1904 correspondence with Frege. (Cf. [5] for a defense of this claim.)
There are other options here as well, however, but we will not discuss them
in the present paper (cf. [5], Section 16). In addition, we might even forego
assuming either (Ext�) or (�Ext�), though in that case the idea of classes as
concept-correlates (whether of all concepts or of only rigid concepts) must then
be discarded.8

5 Quine�s Thesis and the Similarity of NF with
�HST � + (�Ext�) + (Q�)

Although motivated in terms of di¤erent notions of a class, the similarity be-
tween Quine�s �set� theory NF and �HST � + (Ext�) as the result of our
�rst modi�cation of Frege�s double-correlation thesis should by now be obvi-
ous. We will examine the details of this similarity by restricting ourselves to
monadic �HST � + (Ext�). (The restriction is inessential, because monadic
�HST � + (Ext�) is equiconsistent with the full system � cf. [6], Chapter 4,
Section 8.)
First, let us note that because urelements other than the empty class are

represented in NF by their singletons or unit classes, then we will have to make
a comparable assumption for �HST � + (Ext�). Although the assumption we
give is actually simpler than Quine�s, we will nevertheless refer to it as Quine�s
thesis. It is the assumption that every object is a concept-correlate:

8x9F (x = F ): (Q�)

Our initial result, accordingly, is that by de�ning membership as follows:

x 2 y =df 9F [y = F ^ F (x)];

every theorem of NF is a theorem of �HST � + (Ext�) + (Q�); i.e., NF is con-
tained in �HST �+(Ext�)+ (Q�) and therefore NF-�sets�can be construed as
Fregean concept-correlates. (We will hereafter assume this analysis of member-
ship when referring to classes as concept-correlates, i.e., as the objects denoted
by nominalized predicates. Because strati�cation in NF coincides under this
analysis with strati�cation in �HST �, incidentally, we will not bother rede�ning
it for �rst-order w¤s with 2 as a primitive 2-place predicate constant.)
By way of proof of this result, note that by de�nition,

`�HST� x 2 F $ F (x):

8See [6], Chapter 6, Section 5 for a semantics of �HST � that does not validate either
(Ext�) or (�Ext�).
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and therefore since by applying (UG) to (A3*),

`�HST� 8F9y(F = y);

then by (HSCP �� ),
`�HST� 9y8x(x 2 y $ ');

where ' is a strati�ed monadic w¤ in which y does not occur free. It follows,
accordingly, that every instance of the strati�ed comprehension principle for
NF-�sets�(when membership is analyzed as above) is a theorem of �HST �. In
regard to the extensionality axiom,

8x8y(8z[z 2 x$ z 2 y]! x = y); (Ext)

we note that in fact

(Ext�) `�HST� (Q�)$ (Ext);

and therefore that Quine�s thesis (Q�) is provably equivalent to the axiom of
extensionality for NF-�sets�(which is another reason for calling it Quine�s the-
sis). Because the proof proceeds by obvious transformations, we will not go into
the details here (especially since they can already be found in [4], p. 511).
Besides NF being contained in �HST � + (Ext�) + (Q�), it is clear that

by (mis)construing predicates as singular terms and interpreting predication as
membership, every theorem of �HST � + (Ext�) + (Q�) will be translated into
a theorem of NF. In other words, �HST � + (Ext�) + (Q�) and each of its
subsystems is consistent relative to NF.
In de�ning the translation function in question, incidentally, we will make

use of the abbreviatory abstraction notation Quine introduced in his discussion
of NF andML. The abbreviations in question, it should be noted, are actually
more appropriate forML than NF, because they essentially involve the notion
of being an element. Nevertheless, because all NF-�sets� are elements, the
addition of this notion is inessential when applied to NF, and de�ning the
abbreviations this way enables us to forego revising them in our later discussion
of ML. The abbreviations, accordingly, are as follows:

x 2 x̂' =df 9z(x 2 z) ^ '; (D1)

z = x̂' =df 8x(x 2 z $ x 2 x̂'); (D2)

x̂' 2 y =df 9z(z = x̂' ^ z 2 y): (D3)

Now let �(bar) be a one-to-one mapping of the individual and 1-place pred-
icate variables onto the individual variables. We de�ne a translation function s
on the basis of this mapping by means of a recursion on the meaningful expres-
sions of monadic �HST � as follows:9

9Because we want to both use and mention 2 here, we will take it as an autonymous sign,
i.e., as one that serves to name itself.
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1. if a; b 2 ME0, then s(a = b) = (s(�a) = s(�b));

2. if a 2 ME0, and � 2 ME2, then s(�(a)) = (s(�a) 2 s(��)),

3. s([�x']) = ŷs('), where y = �x,

4. s(:') = :s('),

5. s('!  ) = (s(')! s( )),

6. s(8u0) = 8�us('),

7. if ' 2 ME1, then s([�']) = x̂(s(') ^ x = x).

We observe that if ' is a monadic w¤ of �HST � that is an instance of
either (A0*), (A1*), (A2*), (A3*), (LL*) or (Q�), then by de�nition s(') is
provable in standard �rst-order predicate logic with identity, and therefore s(')
is a theorem of NF. On the other hand, if ' is an instance of (HSCP �� ), then
s(') is of the form 9z(x̂ = z), and therefore by (D2), (D1) and the strati�ed
comprehension principle of NF together with the fact that every NF-�set�is an
element, it follows that s(') is a theorem of NF. Similarly, that the s-transform
of every instance of (�-Conv�) is a theorem of NF also follows from (D1) and
the fact that every NF-�set� is an element. If ' is an instance of (Id��), then
s(') is of the form x̂(x 2 a) = a, and therefore by (D2) and (D1), it follows
that s(') is a theorem of NF. A similar observation applies to the s-transforms
of instances of (Ext�), moreover, and therefore since (MP) and (UG) preserve
theoremhood in NF, it follows that the s-transform of each theorem of monadic
�HST � + (Ext�) + (Q�) is a theorem of NF. Putting our two results together,
we can now state the following metatheorem:

Metatheorem 1. NF is equiconsistent with monadic �HST �+(Ext�)+(Q�);
and therefore because monadic �HST � + (Ext�) + (Q�) is equiconsistent with
the full system, NF is equiconsistent with �HST � + (Ext�) + (Q�).

Before concluding this Section, it is worth noting that Ernst Specker has
shown that NF is equiconsistent with the theory of simple types as a theory of
classes if we add to the latter the assumption that all of the classes of any one
type can be correlated one-to-one with the classes of the next succeeding type
and that all of the classes of urelements can he correlated one-to-one with these
urelements� an assumption that Specker calls �complete typical ambiguity�(cf.
[23], p. 118). Such an assumption, needless to say, runs directly counter to the
idea of sets as classes that are composed of their members, and therefore it fails
to explain in what sense NF is to be viewed as a theory of sets. It does not
run counter to the idea of NF-�sets�as concept-correlates, on the other hand,
and in fact, given the assumption that every object is a concept-correlate, it
conforms perfectly to our generalized form of Frege�s double-correlation thesis
for unsaturated higher-level (unary) concepts. In this regard, we maintain, it is
more appropriate to identify NF-�sets�with the concept-correlates of monadic
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�HST �+(Ext�)+ (Q�) as a reconstruction of Frege�s double-correlation thesis
than to construe NF as a �rst-order reconstruction of the theory of types as a
theory of classes.

6 On Taking Urelements Seriously

The idea that every object is a concept-correlate, i.e., Quine�s thesis, is really
not very plausible, and of course we do not recommend its adoption here. But
because (Q�) is equivalent to (Ext) in our reconstructed Fregean system, then
dropping (Q�) as an assumption means dropping (Ext) as well. Note, however,
that even without (Q�) the following restricted form of (Ext) is provable in
�HST � + (Ext�):

8x8y(9z(z 2 x) ^ 8z[z 2 x$ z 2 y]! x = y): (Ext0)

Now the result of modifyingNF by replacing (Ext) by (Ext0) is precisely the
system NFU (New Foundations with Urelements) described by Jensen in [14].
In that regard, accordingly, what the above observation shows is that NFU
is contained in �HST � + (Ext�) in the same sense in which NF is contained
in �HST � + (Ext�) + (Q�). The question then arises as to whether monadic
�HST � + (Ext�) can also be shown to he consistent relative to NFU.
The answer is a¢ rmative, but in our proof we will proceed through an inter-

mediary system NFU0, which is obtained from NFU by supplementing it with
an individual constant � for the empty class. This means adding the axiom:

:9x(x 2 �);

and modifying the strati�ed comprehension principle of NFU as follows:

9y([9x(x 2 y) _ y = �] ^ 8x[x 2 y $ ']); (CP -NFU 0)

where ' is a strati�ed �rst-order w¤ of NFU0 in which y does not occur free.
This modi�cation of NFU is needed because in �HST � + (Ext�) there is a
unique empty class (as a concept-correlate), whereas in NFU, because of the
switch from (Ext) to (Ext0), there could be more than one empty class. Of
course, because (CP -NFU 0) implies the original comprehension principle of
NF and NFU, then it follows that NFU is contained in NFU0. To prove
that NFU0 can be translated into NFU, on the other hand,.we consider the
following function de�ned recursively on the �rst-order w¤s of NFU0:

1. t(x 2 y) = (x 2 y),

2. t(x 2 �) = (x 6= x),

3. t(� 2 x) = 9y[:9z(z 2 y) ^ y 2 x],

4. t(x = y) = (x = y),
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5. t(x = �) = t(� = x) = :9z(z 2 x),

6. t(:') = :t('),

7. t('!  ) = [t(')! t( )],

8. t(8x') = 8xt(').

Note that the t-transform of any instance of (CP -NFU 0) is a w¤ of NFU
of the form:

9y([9x(x 2 y) _ :9x(x 2 y)] ^ 8x[x 2 y $ ']);

where ' is a strati�ed w¤ in which y does not occur free, and therefore t
translates instances of (CP -NFU 0) into w¤s that are trivially equivalent to
the comprehension principle of NFU. But then because t(Ext0) = (Ext0) and
t(:9x(x 2 �)) = :9x(x 6= x), it follows that every theorem of NFU0 is trans-
lated by t into a theorem of NFU. In other words, NFU0 is equiconsistent with
NFU.
To show that monadic �HST � + (Ext�) is consistent relative to NFU0, we

return to the translation function s de�ned in Section 5, except that clause (6)
in the de�nition of s is revised as follows:

(6a) s(8x') = 8�xs('),
(6b) s(8F') = 8 �F [9z(z 2 �F ) _ �F = �! s(')].

Needless to say, the proof that s translates every theorem of monadic �HST �+
(Ext�) into a theorem of NFU0 is the same as our earlier proof regarding the
translation of monadic �HST � + (Ext�) + (Q�) into NF. It follows, of course,
that the product of the translations t and s (i.e., t � s) translates every theorem
of monadic �HST � + (Ext�) into a theorem of NFU. Accordingly, because
for reasons already indicated we are able to drop the restriction to monadic
�HST � + (Ext�), we have now proved the following metatheorem:

Metatheorem 2. �HST � + (Ext�)) is equiconsistent with NFU.

Now aside from the above result, what makes NFU particularly interesting
here are certain results of Jensen regarding both the consistency of NFU and
the status of the axioms of in�nity and choice in NFU. In particular, Jensen
has shown that the axiom of in�nity (Inf) is not provable in NFU, and that
therefore the axiom of choice (AC) is not refutable therein. (Specker�s proof
that (AC) is disprovable in NF makes heavy use of (Ext)) This means that
NFU is essentially weaker than NF, and therefore that (Q�) in particular is
not provable in �HST � + (Ext�). In addition, by the translation functions
already de�ned, it follows that NFU + (Inf) + (AC) is equiconsistent with
�HST � + (Ext�) + (Inf�) + (AC�) (cf. [4], Sections 5 and 8).
Another important result that Jensen has established is thatNFU (+(Inf),

+(Inf) + (AC)) is consistent if weak Zermelo set theory is consistent (+(Inf),
+(Inf) + (AC)). Weak Zermelo set theory (or what we will call weak Z ) is
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the restriction of Zermelo set theory (without (Inf)) to those instances of the
Aussonderungsaxiom in which all quanti�ers in the comprehension clause are
limited or restricted, i.e., in which all quanti�ers have the form (8x 2 y)' or
(9x 2 y)'. It should be noted, however, that Jensen�s proof is semantical; that
is, it does not transform a proof in NFU into a proof in weak Z but rather
constructs a model of NFU in terms of a model of weak Z. Nevertheless, weak
Z is particularly interesting here because Jensen has also shown (again by a
semantical proof) that weak Z (+(Inf), +(Inf)+ (AC)) is equiconsistent with
the theory of simple types (ST) as a theory of classes (plus an axiom of in�nity
or axioms of in�nity and choice in type-theoretical terms).
In [4], however, by using a Fregean semantics for �HST �+(Ext�) (in which

general models are supplemented with a function correlating objects in the do-
main of discourse with values of the predicate variables), it was shown that a
Fregean model of �HST � + (Ext�) (+Inf�), +(Inf�) + (AC�)) can he recon-
structed into a general model of ST (with corresponding type-theoretical axioms
of in�nity and choice). Accordingly, where A and B are arbitrary formal sys-
tems and (A =) B) means that a (general) model of B can be constructed in
terms of a (general) model of A, and (A! B) means that B can be translated
into A so that a proof in B can he transformed into a proof in A, we can repre-
sent the situation described above as follows (noting that the connections hold
with (Inf) or (Inf) + (AC) and their counterparts as well).

weak Z () ST
+ +

NFU $ �HST � + (Ext�)

In other words, all of these formal systems are equiconsistent with on an-
other.

Metatheorem 3. Weak Z, ST, NFU and �HST � + (Ext�), with or without
axioms of in�nity and choice, are all equiconsistent with each other.

it should perhaps be emphasized before concluding this Section, inciden-
tally, that the equiconsistency between all of these systems does not show that
the restricted form of the iterative concept of set (as represented by ST and
weak Z) coincides with the logical concept of class (as represented by NFU
and �HST � + (Ext�). Rather, the fact that some of the consistency proofs in
question are semantical (and may involve general models at that) indicates that
equiconsistency only shows that models of the one concept (as represented by
one of the systems in question) can be constructed in terms of models of the
other.
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7 An AlternativeModi�cation of Frege�s Double-
Correlation Thesis

Now there is another way of modifying Frege�s double-correlation thesis so that
Russell�s paradox does not follow. In particular, instead of modifying the thesis
as it applies directly to the positing of �rst-level concepts and only indirectly
to the positing of concept-correlates� i.e., instead of modifying the thesis as
represented by the original comprehension principle (CP��) � we might instead
modify only its application to the positing of concept-correlates. The framework
for such a modi�cation, incidentally, is implicit, at least in part, in Frege�s
discussion of Russell�s paradox when he suggests that we might �suppose there
are cases where an unexceptional concept has no class answering to it as its
extension�([17], p. 128). That is, instead of assuming that each singular term
actually denotes (a value of the bound individual variables) � i.e., instead of
assuming axiom (A3*) � we might allow that some singular terms, and certain
nominalized predicates in particular, are denotationless. The modi�cation in
question, in other words, is to be formulated in a logic that is free of existential
presuppositions regarding singular terms.
Let us return, accordingly, to the second-order logic with nominalized pred-

icates formulated in Section 3, i.e., the logic that we took as a counterpart to
Frege�s own original system. �-abstracts need not be homogeneously strati�ed
in this logic, it will be remembered, and although this returns us once again
to Russell�s paradox, a contradiction is avoided by adopting the suggestion in
question, i.e., by allowing for denotationless singular terms. We may do so,
moreover, �rst by replacing (A3*) by the following weaker, but clearly unexcep-
tional, �law of logic�:

(A3**) 8x9y(x = y).

Secondly, because without (A3*) the identity law (a = a), where a is an arbitrary
singular term, is no longer derivable, we will have to add (a = a) as an axiom
schema as well. Finally, we will need to replace (�-Conv�) by the presupposition-
free form of �-conversion:

[�x1:::xn'](a1; :::; an)$ 9x1:::9xn(a1 = x1 ^ ::: ^ an = xn ^ ') (9=�-Conv�)

where no xi is free in any aj , for all i; j such that 1 � i; j � n:
Now with the replacement of (A3*) by (A3**) and (a = a) and of (�-Conv�)

by (9=�-Conv�), the principle (Ul�1) of universal instantiation of a singular term
for an individual variable is no longer derivable except in the following quali�ed
form:

9y(a = y)! [8x'! '(a=x)]; (9=UI�1)

where a is any singular term that is free for x in ' and in which y has no
free occurrences. Note that with this quali�cation what follows from Russell�s
paradox is not a contradiction but only that the predicate [�x9G(x = G ^
:G(x))] is denotationless in its occurrences as a singular term; i.e., instead of a
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contradiction, only

:9y(y = [�x9G(x = G ^ :G(x))])

is provable. In other words, even though the unquali�ed comprehension prin-
ciple (CP��) posits the existence of an unsaturated concept corresponding to
[�x9G(x = G ^ :G(x))] as a predicate, nevertheless by Russell�s argument it is
provable in the system in question that there can be no saturated object cor-
responding to [�x9G(x = G ^ :G(x))] as a singular term; or in Frege�s words
here is a case �where an unexceptional concept has no class answering to it as
its extension�(ibid.).
That some nominalized predicates must be denotationless in the present

system, incidentally, does not show that all must be denotationless (cf. [5],
Section 14 for a discussion of the latter option). Indeed, if arithmetic is to be
derivable in the framework in question, then we must assume that at least
some concepts have concept-correlates. Of course, such an assumption can
easily be given in terms of the existence conditions for sets in one or another
version of set theory; but the result, while perhaps interesting as a second-
order set theory, will mean giving up the logical concept of class. That is,
since the existence conditions in question are in accordance with the iterative
concept of set, and therefore with the limitation of size doctrine, the resulting
framework would really only be concerned with classes as composed of their
members and not with classes in the logical sense. Note, incidentally, that it
would be philosophically incoherent to drop the axiom of extensionality in such
a second-order set theory (or even in a �rst-order set theory for that matter)
and call the result a theory of properties (as abstract individuals). For even
without an axiom of extensionality, the abstract individuals characterized by
set-theoretical axioms are still posited in accordance with the iterative concept
of set, and in that sense they are still composed of their members. Thus, if the
objects denoted by nominalized predicates are to he �logical objects�, which in
the presence of an axiom of extensionality means that they are to be classes in
the logical sense, then the relevant assumption regarding the positing of such
objects should be in accordance with Frege�s double-correlation thesis and not
with the iterative concept of set.
Now in regard to Frege�s double-correlation thesis, let us note that because

we are retaining the full unrestricted comprehension principle (CP��), then we
are in e¤ect also retaining the unrestricted form of Frege�s double-correlation
thesis insofar as it applies to the positing of �rst-level concepts. That is, we are
retaining that part of the thesis that posits �rst-level concepts corresponding
to unequal-leveled or inhomogeneous higher-level relations no less so than to
homogeneous or equal-leveled relations. Thus, corresponding to Frege�s unequal
second-level relation of subsumption or predication, there is in the system as so
far described a �rst-level relation of subsumption posited by (CP��); i.e.,

9R2(R = [�xy9G(x = G ^G(y))])

is provable in the system in question. Of course, by Russell�s argument this same
predicate when nominalized must be denotationless; i.e., in its occurrences as a
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singular term it must fail to denote (a value of the bound individual variables).
Or, in other words, as applied to concept-correlates, Frege�s double-correlation
thesis must be restricted, and in particular it is not to apply to all of the �rst-
level concepts corresponding to or otherwise Involving inhomogeneous higher-
level relations. The assumption we shall make here is that it is to apply at least
(but by no means therefore only) to all of the �rst-level concepts corresponding to
higher- level unsaturated concepts (including relations) that are homogeneously
strati�ed; i.e., at least to all or the concepts that have concept-correlates in
�HST �.
In order to formulate our assumption as an axiom schema, we will say that

a meaningful expression (as de�ned in terms of the logical grammar of Section
3) is bound to individuals if and only if for all predicate variables F , and all w¤s
', if 8F' is a w¤ occurring in �, then for some individual variable x and some
w¤  , ' is the w¤ [9x(F = x) !  ]. Thus, to be bound to individuals, every
predicate quanti�er occurring in � must refer only to those �rst-level concepts
posited by (CP��) that have corresponding concept-correlates. Our assumption
regarding the existence of concept-correlates may now be formulated as the
following axiom schema:

9y(a1 = y) ^ ::: ^ 9y(ak = y)! 9y(y = [�x1:::xn']); (9=HSCP �� )

where [�x1:::xn'] is homogeneously strati�ed, ' is bound to individuals, y is an
individual variable not occurring in ', and a1; :::; ak are all of the variables (or
nonlogical constants) occurring free in [�x1:::xn'].10

The axiom schemas of our present system, accordingly, are (A0*), (A1*),
(A2*), (A3*), (a = a), where a is any singular term, (LL*), (CP��), (9=�-
Conv�), (ld��) and now (9=HSCP �� ) as well.11 (We retain modus ponens and
universal generalization as our only inference rules.) Because of its relation to
our earlier system �HST �, we will refer to this system here-after as HST �� .
Now it is clear that HST �� is not a conservative extension of �HST

�, be-
cause whereas, by (A3*), 8F9x(F = x) is provable in �HST �, this same w¤,
as witness the predicate [�x9G(x = G ^ :G(x))], is actually disprovable in
HST �� . Nevertheless, because every w¤ of �HST

� is provably equivalent, again
by (A3*), to a w¤ that is bound to individuals, HST �� may be said to contain
�HST � in the sense of the following lemma (which is easily seen to hold).

Lemma: If ' is a w¤ of �HST � that is bound to individuals, y is an individual
variable not occurring in ', and a1; :::; ak are all of the variables (or nonlogical
constants) occurring free in ', then `�HST� ' only if `HST�� 9y(a1 = y) ^ ::: ^
9y(ak = y)! '.

Now because an object that is denoted by a �-abstract of �HST �(+(Ext�),
+(Ext�) + (Q�), etc.) is, by (A3*), also denoted by a �-abstract that is bound

10We understand the �conditional� posited in (9=HSCP �� ) to be just the consequent if
k = 0, i.e., if the �-abstract in question contains no free variables (or nonlogical constants).
11The rewrite law cited in footnote 5 is needed here as well if neither (Ext*) nor (�Ext*)

is assumed as a supplementary axiom schema.

22



to individuals, it follows, by (9=HSCP �� ), that every object that is a concept-
correlate in �HST �((+Ext�), +(Ext�) + (Q�), etc.) is also a concept-correlate
in HST �� (+(Ext

�), +(Ext�)+(Q�), etc.); and therefore becauseNFU andNF
are contained, respectively, in �HST � + (Ext�) and �HST � + (Ext�) + (Q�),
then NFU and NF are also contained (in the sense of the above lemma) in
�HST � + (Ext�) + (Q�) and HST �� + (Ext

�) + (Q�), respectively. Moreover,
restricting ourselves to pure w¤s (i.e., w¤s in which no predicate or individ-
ual constants occur), it follows by the above lemma that every sentence (w¤
with no free variables) of �HST � that is bound to individuals and provable in
�HST �(+(Ext�), +(Ext�) + (Q�), etc.) is also provable in HST �� (+(Ext

�),
+(Ext�) + (Q�), etc.) as well; i.e., that proofs in �HST � and its extensions
can be transformed into related proofs in HST �� and its corresponding exten-
sions. It follows, accordingly, that if HST �� (+(Ext

�), +(Ext�) + (Q�), etc.) is
consistent, then so is �HST �(+(Ext�), +(Ext�) + (Q�), etc.)
It is also true, moreover, that if �HST � + (Ext�) or any of its extensions is

consistent, then so is HST �� + (Ext
�) and its corresponding extensions. The

proof of this claim, however, is semantical and does not provide a method
whereby a proof in HST �� + (Ext

�) of a w¤ of �HST � can be transformed
into a proof in �HST � + (Ext�). (Cf. [10], p.169, footnote 1, for the related
claim regarding the impossibility of transforming proofs in ML into proofs in
NF.) That is, the proof depends on developing a Fregean semantics for these
systems that we will not go into here (but cf. [6], Chapter 6, Section 4, for the
details of such a semantic proof). Nevertheless, on the basis of the details of
that semantical proof it can be shown that a sentence of �HST � that is bound
to individuals is provable in �HST �+(Ext�) if, as well as only if, it is provable
in HST �� + (Ext

�); and therefore it follows that the one system (and any of its
extensions) is consistent if and only if the other (and its corresponding exten-
sions) is consistent. Putting this result together with those already noted in the
preceding Sections, we have the following in metatheorem.

Metatheorem 4. HST �� + (Ext
�), with or without axioms of in�nity and

choice, is equiconsistent with ) �HST �+(Ext�), weak Z, ST andNFU, all with
or without corresponding axioms of in�nity and choice; and HST �� + (Ext

�) +
(Q�) is equiconsistent with NF.

8 Ultimate Classes and the Similarity of ML
with HST �� + (Ext

�) + (Q�)

Having given a natural motivation for both NF and NFU in terms of our �rst
modi�cation of Frege�s double-correlation thesis, let us now see how our second
or alternative modi�cation of Frege�s thesis can be used to explainML as well.
In ML, it will be remembered, sets are not just classes that are composed of
their members; rather, they are also classes that are elements. That is, inML,
which is also an applied �rst-order theory with 2 as its only primitive predicate
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constant, the notion of a set is de�ned as follows:

Set(x) =df 9z(x 2 z)

Classes which are not sets are then referred to as proper or ultimate classes.
(We will follow Quine [19] and call them ultimate classes hereafter.)
Of course, both the sets and ultimate classes of ML are assumed by Quine to

be classes as composed of their members, which on Quine�s view only means that
the axiom of extensionality, (Ext), holds for both. In other words, according
to Quine, the being of an ultimate class is no di¤erent from that of a class that
is an element; they are both classes as composed of their members. But then
why can�t ultimate classes be elements? That a contradiction, namely Russell�s
paradox, would ensue other-wise surely cannot be taken as an explanation of
why ultimate classes cannot be members of, say, �nite classes (cf. [10], p. 142).
The answer, we maintain, is that ultimate classes are really not objects to

begin with, but are rather unsaturated concepts that have no classes answering
to them as their extensions. That is, not being objects to begin with, we can
hardly demand an explanation of why ultimate classes cannot be elements, for
only an object can be a member, be it of a �nite or an in�nite class. The
�sets� of ML, accordingly, are really not sets in the sense of classes that are
composed of their members but are rather classes in the logical sense; i.e., they
are classes that have their being as concept-correlates, and in particular they
are the concept-correlates of monadic HST �� + (Ext

�) + (Q�).
To see that this is so, let us note that by (9=�-Conv�),

`HST�� [�xF (x)](a)! 9x(a = x);

where x is not free in a; and therefore by (Id��) and (UG),

`HST�� 8F [F (a)! 9x(a = x)]:

In other words, according toHST �� only real objects (in the sense of the values of
the bound individual variables) can fall under concepts (which is not the same
as to say that w¤s containing denotationless singular terms cannot be true).
Accordingly, assuming the same analysis of membership as given in Section 5,
it follows that only real objects can be elements:

`HST�� 9x(a 2 x)! 9x(a = x):

The converse also holds, moreover; for even though (a = a) is true when a is
denotationless, nevertheless by (9=�-Conv�),

`HST�� 9x(a = x ^ x = x)! [�x(x = x)](a);

and therefore because, by (CP��), [�x(x = x)] stands for a concept, it follows by
the de�nition of membership that

`HST�� 9x(a = x)! 9x(a 2 x):

24



That is, according to HST �� only elements can be real objects.
Now the ultimate classes of ML are really not objects, we have said, but

are rather unsaturated concepts � or that in any case is how they should be
viewed if we are to explain or provide a natural motivation for the classes ofML.
Of course, in ML ultimate classes are represented as if they were real objects,
because they are there taken as values of the bound individual variables. But
that only means that the individual variables of ML should be reconstrued
as one-place predicate variables so that all of the �classes� of ML, ultimate
or otherwise, can be seen for what they are, namely as unsaturated concepts;
and then, only if they are also �elements� in ML should they be viewed as
having objects, namely concept-correlates, corresponding to them. It is only in
this way, we maintain, that we can explain why ultimate �classes� cannot be
elements, as well as provide a natural motivation for the classes of ML that are
elements. In other words, where q( ), for each w¤  of ML, is the result of
replacing each individual variable in  by a one-place predicate variable (where
distinct individual variables are replaced by distinct predicate variables), our
claim is that q( ) is a theorem of monadic HST �� + (Ext

�) + (Q�) whenever  
is a theorem of ML.
Note in this regard that where  is an instance of the comprehension principle

*202 of ML for classes, ultimate or otherwise, then q( ) is of the following form:

9F8G(G 2 F $ 9H(G 2 H) ^ '):

In HST �, however, not only does (CP�) follow from (CP��), but, given our
analysis of membership and the above observation that all and only real objects
are elements, we also have the following:

`HST�� 9F8x(x 2 F $ 9z(x 2 z) ^ '):

Therefore, by (Q�), the q-transform of each instance of the comprehension prin-
ciple *202 of ML is a theorem of monadic HST �� + (Q

�).
Now aside from (Ext), the q-transform of which is easily seen to be derivable

in HST �� on the basis of (Ext
�) and (Q�), the remaining axiom schema of ML

is *200 which depends on the notion of normalcy.12 In particular, a w¤  of
ML is said to be normal if all of the bound variables in  are restricted to
elements; i.e., if in all of the subw¤s of  of the form 8x', ' is of the form
[9y(x 2 y)! �]. Axiom schema *200 can then be stated as follows (cf. [18], p.
162):

*200: If  is a strati�ed, normal w¤ of ML, y is new to  , and x; z1; :::; zn are
all of the distinct individual variables occurring free in  , then:
`ML 9y(z1 2 y)^ :::^ 9y(zn 2 y)! 9y(9z(y 2 z)^ 8x[x 2 y  ! 9z(x 2
z) ^  ]).

12This notion of normalcy comes from G½odel [12], p. 12. It application to ML was �rst
given in Wang [24].
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Needless to say, but by our above observation that all and only real objects
are elements in HST �� , it is clear that a w¤  of ML is normal if and only
if q( ) is provably equivalent in HST �� to a w¤ that is bound to individuals.
Applying the same observation to (9=HSCP �� ), moreover, we have the following
result:

`HST�� 9y(a1 2 y) ^ ::: ^ 9y(an 2 y)! 9y(y = [�x']);

where y is new to ', and x; a1; :::; an are all the distinct variables occurring free
in ', ' is bound to individuals and [�x'] is homogeneously strati�ed. But,
again by the same observation, and by the same sort of argument that shows
that (CP*) is a consequence of (CP��), the following is easily seen to hold:

`HST�� 9y(y = [�x'])! 9y(9z(y 2 z) ^ 8x[x 2 y $ 9z(x 2 z) ^ ']):

Accordingly, by putting these results together and then applying (Q�), it follows
that the q-transform of every instance of *200 is a theorem of monadic HST �� +
(Ext�) + (Q�); and this completes our proof that the q-transform of a theorem
of ML is a theorem of monadic HST �� + (Ext

�) + (Q�).
We can also show, as might well be expected by now, that every theorem

of monadic HST �� + (Ext
�) + (Q�) can be translated into a theorem of ML.

For this purpose, we need only return to the translation function s de�ned in
Section 5, except that clause (6) is revised as follows:

(6a) s(8x' = 8�x[9z(x 2 z)! s(')],
(6b) s(8F') = 8 �Fs(').

The proof that s translates each axiom of monadicHST ��+(Ext
�)+(Q�) into

a theorem of ML is similar to the proof that s as originally de�ned in Section
5 translates the axioms of monadic �HST � + (Ext�) + (Q�) into theorems of
NF, except that now the element conditions that are part of the abbreviations
(D1)�(D3) are essential to the proof. Putting these two results together, we can
now state the following metatheorem (keeping in mind that monadic HST �� is
equiconsistent with the full system).

Metatheorem 5.
(a) If  is a theorem ofML, then q( ) is a theorem ofHST ��+(Ext

�)+(Q�);
(b) if ' is a theorem of monadic HST �� + (Ext

�) + (Q�), then s(') is a
theorem of ML; and
(c) therefore HST �� + (Ext

�) + (Q�) is equiconsistent with ML.

Finally, letMLU0 (ML with urelements) be the result of replacing (Ext) in
ML by(Ext0), adding � as an individual constant together with the axiom,

:9x(x 2 �);

and modifying the comprehension principle *202 of ML as follows:

9y([9x(x 2 y) _ y = �] ^ 8x[x 2 y $ 9z(x 2 z) ^ ']): (CP-MLU0)
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Then, by revising clause (6b) above of the translation functions as follows,

(6b) s(8F') = 8 �F [9z(z 2 �F ) _ �F = �! s(')],

we can repeat the above argument and show that s translates every theorem of
HST �� + (Ext

�) + (Q�) into a theorem of MLU0.
What cannot be shown, however, is that the theorems of MLU0 can be

translated into theorems of HST �� + (Ext
�). E.g., the q-transform of (Ext0) is

not a theorem of HST �� + (Ext
�), because without (Q�), the conditional

8H(H 2 F $ H 2 G)! 8x(x 2 F $ x 2 G)

is not provable in HST �� + (Ext
�); i.e., without (Q�) neither (Ext) nor the

q-transform of (Ext0) is provable in HST �� on the basis of (Ext
�). On the other

hand, if we drop the idea of correlating the individual variables of ML with
the predicate variables of monadic HST �� + (Ext

�), then, however de�ned, the
transform of (CP-MLU0) will not be provable in HST �� + (Ext

�), because it
will in that case posit the existence of a concept-correlate corresponding to any
given concept, which of course is impossible if HST �� + (Ext

�) is consistent. In
addition, such an alternative would mean giving up the whole idea of explaining
why ultimate classes cannot be elements. The fact, in other words, thatMLU0

cannot be translated into HST �� + (Ext
�) indicates thatMLU0 lacks a natural

motivation, especially because, as already noted in Section 7, every class in
NFU turns out to be a concept-correlate in HST �� + (Ext

�). Accordingly, if
we are to drop Quine�s thesis, whether in the form (Ext) or (Q�), then the
appropriate framework is not MLU0 but HST �� + (Ext

�) instead.

9 On Mathematical Induction and the Class of
Fregean Natural Numbers

Quine�s principal reason for proposing ML, it should be noted, is that, unlike
the situation in NF, mathematical induction can be proved in ML without
restriction to strati�ed w¤s (cf. [I8], p. 165; [19], p. 300). This is because in
both NF and ML it is Frege�s de�nition of the natural numbers that is both
natural and most appropriate (cf. [19], p. 289); and, of course, that is as it
should be if both NF and ML are to be explained in terms of Frege�s double-
correlation thesis. On this de�nition, at least as reconstructed in both NF and
ML, a natural number is any class that belongs to every class, ultimate or
otherwise, to which 0 belongs and that is closed under the successor relation.
By de�nition, accordingly, the only form of mathematical induction that can be
proved in NF is one that is restricted to strati�ed w¤s (even though not all of
the w¤s of NF are strati�ed), because classes in general are speci�ed in NF
only in terms of strati�ed w¤s. In ML, however, strati�cation is not necessary
for the speci�cation of classes in general, but only for the speci�cation of classes
that are elements. Thus, given Frege�s de�nition of the natural numbers, it is
only in ML that the full form of mathematical induction is provable.
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The problem, however, is that although the class of natural numbers is
speci�able in terms of a strati�ed w¤, and therefore can be proved to exist within
NF, the same speci�cation when given inML proves the �existence�of the class
of natural numbers only in the sense of its being a value of the bound individual
variables, and not also in the more critical sense (at least for the purposes of
mathematics) of its being an element. Or, given our reconstrual of the individual
variables of ML as the predicate variables on monadic HST �� + (Ext

�) + (Q�),
it is only the concept of a natural number whose existence (as a value of the
bound predicate variables) is assured, and not also the class of natural numbers
as an object that is correlated with this concept.
Of course, the class of natural numbers whose existence is proved in NF can

be proved to be an element in ML; but, as speci�ed in ML (i.e., in terms of
a w¤ that is both strati�ed and normal), this class does not validate the full
form of mathematical induction. Nevertheless, because the same speci�cation
without the normalcy condition is even more restrictive (i.e., the w¤ without
the normalcy condition implies the w¤ with the normalcy condition), then the
class as speci�ed with the normalcy condition is really the class of natural num-
bers only if it is identical with the class that is speci�ed without the normalcy
condition; and therefore, because the one is an element inML, we may assume
that the �other� is as well (cf. [19], p. 303f). In other words, according to
Quine, we may assume as an additional axiom of ML the identity of the class
of natural numbers as speci�ed with the normalcy condition and as speci�ed
without this condition. ln that way, one can prove inML both the unrestricted
form of mathematical induction and the elementhood of the class of natural
numbers (as speci�ed in terms of ultimate classes, i.e., without the normalcy
condition).
There is an objection to adding such an axiom to ML, however, namely

that insofar as �ML was proposed as an improvement of NF because ML has
full-�edged mathematical induction whereasNF has induction for strati�ed for-
mulae only, one may prefer to stick to NF since, once one starts adjoining to
ML axioms as mentioned, one might as well add an axiom of full mathemat-
ical induction to NF� ([10], p. 171). Now it is important to note that such
an objection, while it might apply to Quine�s own reason for proposing ML
(especially when one attempts to view both NF and ML merely as theories of
classes as composed of their members), completely misses its mark when NF
and ML are explained in terms of Frege�s double-correlation thesis; i.e., when
NF is viewed as contained in �HST +(Ext�)+ (Q�) and ML is viewed (under
the q-transformation) as contained in HST �� + (Ext

�) + (Q�). Of course, in
that case, we might just as well drop (Q�), or equivalently, (Ext), as a form of
Quine�s thesis and replaceNF andML by their preferred Fregean counterparts,
�HST + (Ext�) and HST �� + (Ext

�).
In reconsidering the problem from this perspective, in other words, we must

�rst understand that the reason for proposing HST �� +(Ext
�) as an alternative

to �HST +(Ext�) is not because it has the full form of mathematical induction
as a consequence of Frege�s de�nition of the natural numbers but rather because
it is an alternative to �HST + (Ext�) as a reconstruction of Frege�s double-
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correlation thesis. Such an alternative, moreover, does not extend �HST +
(Ext�) by the introduction of a new notion, such as that of an ultimate class as
opposed to the notion of a class as an element, because in both �HST +(Ext�)
and HST �� + (Ext

�) all classes are elements. Indeed, because the distinction
between an ultimate class and a class that is an element is really that between
a concept and a class, then, on our explanation no new notion has really been
introduced inML after all; for the distinction between concepts and the classes
that are their extensions is as fundamental in �HST+(Ext�) as it is in HST ��+
(Ext�).
Secondly, ifHST ��+(Ext

�) is to be preferred to �HST+(Ext�), then it is not
so much because the unrestricted form of mathematical induction can be proved
therein as because it leaves unmodi�ed the full force of Frege�s double-correlation
thesis insofar as the latter applies to the positing of �rst-level concepts. In
other words, whereas according to �HST + (Ext�) there are no higher-level
inhomogeneous relations, or at least none that can be correlated with the �rst-
level concepts posited in (HSCP��), the situation is completely otherwise in
HST ��+(Ext

�), and in that regard there may well be more classes implicit in the
latter framework than are acknowledged in the former, and therefore more than
are posited in (9/HSCP��). Thus, while Russell�s paradox shows us that not all
of the �rst-level concepts that correspond to or otherwise involve inhomogeneous
higher-level relations have a corresponding concept-correlate, nothing follows to
the e¤ect that none of those concepts can have such a corresponding concept-
correlate.
In particular, where S abbreviates the �-abstract that stands for Frege�s

successor relation (cf. [19], p. 279), and

0 =df [�x9F (x = F ^ :9yF (y))];

N =df [�x8F (F (0) ^ 8y8z[F (y) ^ S(y; z)! F (z)]! F (x))]:

then even though N is not bound to individuals (and therefore is not posited in
(9=HSCP �� ) as denoting a class), nevertheless, it seems plausible to assume

9x(x = N) (N�)

as an additional axiom. That is, it seems plausible to assume that as represented
inHST ��+(Ext

�) the Fregean concept of a natural number has a class answering
to it as its extension. It follows of course that in HST ��+(Ext

�)+(N�) we have
both the class of natural numbers as a concept-correlate and the unrestricted
form of the principle of mathematical induction.
Note, incidentally, that where

N 0 =df [�x8w(0 2 w ^ 8y8z[y 2 w ^ S(y; z)! z 2 w]! x 2 w)];

then although we can prove the following identity w¤ in HST �� + (Ext
�),

N 0 = [�x8F (9w(F = w) ^ F (0) ^ 8y8z[F (y) ^ S(y; z)! F (z)]! F (x))];
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nevertheless we cannot prove (N = N 0) in HST �� + (Ext
�) without assuming

(N�). In other words, because 8x[N(x) ! N 0(x)] is provable even in HST �� ,
the class denoted by N 0 may contain objects other than the natural numbers
as well; and if that is the case, then this alone would su¢ ce as a reason to
prefer HST �� +(Ext

�)+(N�) over �HST �+(Ext�) even when the unrestricted
principle of mathematical induction is added to the latter. For it is easily seen
that (N = N 0)$ (N�) is provable in HST �� + (Ext

�).
Now we are not suggesting that (N 6= N 0) is true in the framework rep-

resented by HST �� + (Ext
�), but only that one appropriate way to investi-

gate this question is by considering additional axioms or principles regarding
the positing of concept-correlates for �rst-level concepts that either correspond
to or otherwise involve inhomogeneous higher-level relations, and which might
thereby warrant assuming (N�), from which (N = N 0) follows inHST ��+(Ext

�).
The initial system HST �� , in other words, is not proposed as an alternative to
�HST � because it allows for the unrestricted principle of mathematical induc-
tion, but rather because it captures the full force of Frege�s double-correlation
thesis at least as far as the positing of �rst-level concepts is concerned. The
axiom (9=HSCP �� ) then assures us that all of the concept-correlates (or classes,
given (Ext�)) that can be proved to exist in �HST � are carried over into HST �� ,
but by no means does it exhaust all of the possibilities as to which concepts can
or cannot have concept-correlates.
In concluding, it should perhaps he noted that without Quine�s thesis, whether

in the form (Ext) or (Q�), the axiom of in�nity is not provable in either
�HST � + (Ext�) or HST �� + (Ext

�) + (N�). Because such an axiom is needed
at least for the purposes of logicism, it may be added to both of these systems
in either one of the usual forms (cf. [4], Section 5) or as follows when relations
are included as well:

8Fm8Gn(F 6= G); (Inf�)

where m;n are arbitrary natural numbers such that m 6= n.
In other words, if for all distinct natural numbers m and n the concept-

correlate of any m-ary relation is other than the concept-correlate of any n-
ary relation, then there are in�nitely many (or at least a potential in�nity) of
concept-correlates. Such an assumption, it should he noted, is independent of
the question of how many objects other than concept-correlates there are, and
in particular of how many concrete objects there are.
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