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Abstract
There are di¤erent views of the logic of plurals that are now in circu-

lation, two of which we will compare in this paper. One of these is based
on a two-place relation of being among, as in �Peter is among the juveniles
arrested�. This approach seems to be the one that is discussed the most
in philosophical journals today. The other is based on Bertrand Russell�s
early notion of a class as many, by which is meant not a class as one, i.e.,
as a single entity, but merely a plurality of things. It was this notion that
Russell used to explain plurals in his 1903 Principles of Mathematics ; and
it was this notion that I was able to develop as a consistent system that
contains not only a logic of plurals but also a logic of mass nouns as well.
We compare these two logics here and then show that the logic of the
Among relation is reducible to the logic of classes as many.

There are di¤erent views of the logic of plurals that are now in circulation.1

One of these is based on a two-place relation of being among, as in �Peter is
among the juveniles arrested�.2 This approach seems to be the one that is dis-
cussed the most in philosophical journals today. The other is based on Bertrand
Russell�s early notion of a class as many, by which is meant not a class as one,
i.e., as a single entity, but a mere plurality of things. It was this notion that
I developed in 2002 as a provably consistent system that contains not only a
logic of plurals but also a logic of mass nouns as well.3 It also contains, as we
show in this paper, the plural logic based on the Among relation. We will �rst
brie�y describe and compare these two logics here and then show that the logic
of the Among relation as described in Linnebo [2004] is reducible to the logic of
classes as many.
We will �rst brie�y discuss the plural logic based on the Among relation as

described by Linnebo.4 Then we will brie�y explain the basics of the logic of
classes as many, and �nally we will show how the logic of the Among relation
is reducible to the logic of classes as many.

1See, e.g., Boolos [1984], Schein [1993], Cocchiarella [2002], McKay [2006], Linnebo [2004],
Yi [2005] and [2006], and Oliver and Smiley [2006] and [2013].

2The alternative reading for the Among relation is: is one of. We will use only �Among�
in this paper.

3See Cocchiarella [2002], [2007] chapter 11, and [2009].
4We have chosen Linnebo�s paper because it is a quick and easy read, and also because it

is readily accessible by the internet.
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1 One Among Many

The logic of plurals as based on the Among relation has been developed as an
extension of standard �rst-order predicate logic with identity. The extension in-
volves adding a new type of quanti�able variable for what nowadays are called
pluralities (or what Bertrand Russell much earlier called classes as many). When
these plural variables are attached to a quanti�er they are assumed to represent
our use in ordinary language of plural quanti�er phrases, such as �all republi-
cans who voted against the bill�, �some democrats who voted for the bill�, etc.
Pluralities are also what plural de�nite descriptions denote, as in �the juveniles
arrested last night�.
Note that these examples illustrate two di¤erent roles for pluralities, one

as the referents of plural quanti�er phrases such as �all republicans who voted
against the bill�and �some democrats who voted for the bill�, which are plural
quanti�er (noun) phrases of English, and the other as the denotata of plural noun
phrases, and in particular of plural de�nite descriptions such as �the juveniles
arrested last night�. The important di¤erence here is that the latter kind of
phrase occur as �terms� or �arguments� of predicates, and in particular as
arguments (on the right-hand side) of the predicate �is among�. Linnebo does
not include a formal account of the logic of plural de�nite descriptions in his
account of the logic of the Among relation, but some of the other works cited on
this logic do.5 It is convenient not having to deal with such de�nite descriptions
here because that will simplify the details in our proof of the reduction theorem
given later. The logic of classes as many, however, like some of the other works
on the Among relation, does include such an account as part of its logic of
names.
Plural (noun) quanti�er phrases do not occur as �terms�, of course, but

only as quanti�er phrases. Also, strictly speaking, Linnebo�s logic of the Among
relation does not a¢ x quanti�ers to complex plural noun phrases such as �re-
publicans who voted against the bill�, which (as we will see) is how they are
represented in the logic of classes as many. Linnebo and others who work with
the logic of the Among relation analyze these phrases analogous to the way that
most elementary logic texts deal with singular quanti�er phrases, namely as a
conjunction of predicates, e.g., as in

Republican(xx) ^ V oted-against-the-bill(xx);

where xx is a plural variable, which of course su¢ ces. In the plural logic of
classes as many, on the other hand, quanti�ers are a¢ xed to complex plural
noun phrases as well as to simple plurals, and so does the de�nite description
operator (which we take as a special type of quanti�er).
The plural variables of the Among plural logic are contrasted with the so-

called �individual� or singular variables, for which we will use x; y; z, with or
without numerical subscripts. The plural variables, as indicated above, are

5See, e.g., Yi [2006] and Oliver and Smiley [2006] and [2013].
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written as xx, yy, and zz with or without numerical subscripts. Despite ap-
pearances, each plural variable, is of course a single variable, not two variables.
Apparently, writing a single plural variable as xx or yy is supposed to be sug-
gestive of the fact that these variables have pluralities as their values.
Now it is noteworthy that a plurality in both the Among logic and the logic

of classes as many can be made up of a single object, despite our usual view
of thinking of them as consisting of two or more individual objects.6 In other
words, each individual object constitutes a plurality and can be a value of the
plural variables. Thus, quanti�cation over pluralities, as in (8xx)' or (9yy) 
includes quanti�cation over single objects, so that (8xx)' ! (8x)' is valid in
this logic, though of course the converse is not.7

Why have plural variables as well as the usual �rst-order variables? If plural
variables can have single objects as values as well as pluralities, then why can�t
�rst-order variables have pluralities as well as single objects as values? Certainly
there is nothing in ordinary English that suggests that our use of plurals means a
shift to a di¤erent ontological category from that involved in our use of singular
expressions� especially given that single objects are among the values of the
plural variables. Plural terms, as well as singular terms, can occur as arguments
of predicates, and in English both can occur as subjects as well as direct and
indirect objects. It is quite di¤erent if one were to add predicate variables and
quanti�ers binding them, because predicates clearly have a di¤erent functional
role grammatically from that of noun phrases, plural or singular, such as proper
names and plural common nouns, or plural and singular de�nite descriptions� a
di¤erence, moreover, upon which a good deal of the history of philosophy and
metaphysics has been based.
The implicit assumption of this approach to plural logic, apparently, is that

standard �rst-order predicate logic (with identity) is exclusively a logic of singu-
lar reference and therefore not an appropriate medium for representing plurals
or what are now also called pluralities. Certainly, beginning with Gottlob Frege,
that is the way �rst-order logic has been interpreted throughout the 20th Cen-
tury. But must it be interpreted that way, especially given that a logic of plurals
had not been developed until recently? We do not think so, and we reject this
assumption in our account of pluralities as classes as many. It does not follow,
moreover, that having pluralities as values of the �rst-order variables means
that we are ontologically committed to a new type or category of entity, namely
pluralities, over and above single objects. Admittedly, that is exactly what is
suggested by the logic of the Among relation with its separate category or type
of variables for pluralities along with quanti�ers binding such, which means
that the variables cannot be taken only as schema letters. In contrast, on our
view where pluralities are taken as values of the �rst-order variables, and in
particular where pluralities are not taken as constituting a separate ontological
category, we maintain that pluralities are ontologically nothing over and above

6That in fact is how I thought of the situation in my 2002 paper; but this was later changed
in my 2009 paper. The change ensures that the plural �some�is dual to the plural �all�.

7Linnebo does not in fact stipulate this formula as an axiom, and it is does not seem to be
derivable from the axioms he does list.
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the single objects of which they are constituted. This does not mean that all our
commonsense talk about pluralities, whether in terms of plural predication or
plural reference, can be reduced to talk of singulars. The situation is similar to
the irreducibility of mental states to brain states. That is, even though we can-
not reduce all our common-sense talk about mental states to talk about brain
states, it does not follow that mental states are an ontological type over and
above that of brain states, and that we must then be ontologically committed
to some form of dualism. Perhaps what is needed in these matters is a revised
characterization of ontological commitment.
In any case, as already indicated, the quanti�ers 8 and 9 are a¢ xed to (or

indexed by) plural variables, as in (8xx) and (9yy), as well as to so-called singu-
lar variables in the plural logic of the Among relation. Predicate constants and
constants corresponding to each type of variable can be added when needed in
particular applications. So-called �non-distributive�predicates, i.e., predicates
such as �surround�as in McKay�s example �The students surrounded the Penta-
gon�, are not (and should not be) excluded. In this example, the Pentagon was
(supposedly) surrounded by many students (i.e., a plurality of students), none
of which individually (i.e., alone) can be said to have surrounded the Pentagon.
With a distributive predicate, such as �mortal� as in �All men are mortal�, it
follows that each individual man is mortal if all men are.
The one primitive constant of this logic is a two place-predicate � for the

relation of being among. Unlike ordinary two-place predicates between indi-
viduals, however, this predicate is said to result in a well-formed (meaningful)
formula only when a singular term occurs on the left (or �rst-argument posi-
tion) and a plural term occurs on the right (in the second-argument position),
as in x � yy. It is not clear why only a plurality term (variable or constant)
can occur in the right-hand position of �. After all, single objects, i.e., individ-
uals, are also values of the plurality variable yy, in which case one would think
that x � x would be meaningful, and valid as well. In any case the �rst-order
language with � as a primitive and with both distributive and non-distributive
predicates allowed is called PFO+, where PFO stands for Plural First-Order
logic, which is what Linnebo calls it. Of course, one might well ask whether
PFO really is just a �rst-order logic given that plural variables and quanti�ers
binding such are part of its language and logic.
The most important axiom schema for the Among relation is the following

conditional comprehension principle:

(9x)'(x)! (9yy)(8x)[x � yy $ '(x)]; (Comp)

where ' is a formula of PFO+ that contains x (and possibly other variables)
free but contains no occurrences of the plural variable yy. The antecedent is
essential here because there is no such thing as an empty plurality. So, before
one can posit the �existence�of a plurality of x such that '(x), we need to know
that some object x is such that '(x). The second axiom in fact stipulates that
no plurality is empty:

(8yy)(9x)(x � yy):
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The �nal axiom schema is an axiom of extensionality:

(8yy)(8zz)[(8x)(x � yy $ x � zz)! ('(yy)$ '(zz))]:

What this says in e¤ect is that co-extensive pluralities are indiscernible, which is
an indirect way of saying that they are identical. This is not a problem so long
as we are not extending the language to include tense and modal operators.
But then even if we were to extend the language to include such operators,
Linnebo and other defenders of this approach to plural logic do not �nd this
problematic. That is because they maintain that a plurality �must include
precisely the objects that it in fact includes,�where �must�is interpreted with
necessary force.8 In other words Linnebo and the other defenders of this position
are willing to accept the following two principles:

x � yy ! �(x � yy);

:(x � yy)! �:(x � yy):

To use Linnebo�s example, the individual people who are among the people
now wearing shoes are necessarily among the people now wearing shoes (ibid.).
Plural common nouns, in other words, such as �people who are now wearing
shoes�, are �rigid� in the same way that proper names are said to be rigid in
modal logic.
In our view, this position confuses pluralities with sets, which have their be-

ing in their members and not in the plural concepts expressed by such phrases as
�people now wearing shoes�. Clearly, a plural phrase and the concept it expresses
can refer to (or denote) di¤erent pluralities at di¤erent times, and certainly in
di¤erent possible worlds as well. One of the main reasons for constructing a
logic of plurals is to characterize the implicit logic of natural language where
pluralities are what plural noun phrases denote or refer to? That is certainly
why philosophers beginning with Russell were initially interested in a logic of
plurals. And if so, then don�t we use those phrases to refer to or denote di¤er-
ent pluralities over time and in di¤erent possible worlds? Shouldn�t a logic of
plurals represent the way it is used in natural language?
The above two principles, incidentally, can easily be avoided by simply re-

stricting the above extensionality axiom to extensional formulas, i.e., formulas
in which no tense or modal operators occur. Leibniz�s law for singular terms can
be left without change, because that law applies only to singular terms. In any
case, regardless whether or not the followers of the Among plural logic accept
this suggested modi�cation, the above theses are emphatically rejected in our
alternative approach of the logic of classes as many where pluralities are seen
as what plural concepts refer to or denote.

2 The Logic of Names (Noun Phrases)

The logic of classes as many is an extension of a more basic logic called the
logic of names, where by a name we mean a noun phrase consisting of either

8Linnebo [2004].
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a proper name, de�nite description, a common noun, complex or simple, or a
verbal noun, which is used when reference is to events. The theory of reference
implicit in this logic di¤ers from the standard account of analytic philosophy in
that it recognizes general as well as singular reference, whereas the standard view
recognizes only singular reference, i.e., reference involving the use of a proper
name or (singular) de�nite description. On our account, because a basic form of
judgment is expressed by an assertion that consists of a noun phrase and a verb
phrase, the noun phrase is taken as having a referential role regardless whether
or not it is a proper name, a de�nite description, or a quanti�er noun phrase. A
de�nite description, incidentally, is counted in our theory as a quanti�er phrase
on a par with a universal or existential quanti�er phrase, and, because our
�rst-order logic is free of existential presuppositions, so is the use of a proper
name.
A proper name, such as �George�, for example, can occur as part of a quan-

ti�er phrase, as in (9xGeorge)F (x), which indicates that the name �George�
is being used with existential presupposition. It is noteworthy, moreover, that
in our logic of classes as many, which is an extension of our logic of names,
all names, proper or common, can be transformed into �terms�, i.e., argu-
ments of predicates, and one result of such a transformation is that the formula
(9xGeorge)F (x) turns out to be equivalent to the more standard free-logic ex-
pression: (9x)[x = George ^ F (x)].
De�nite descriptions, as far as their logical syntax is concerned, are also

quanti�er phrases, and they are like inde�nite descriptions in that regard.9 Both
de�nite and inde�nite descriptions are quanti�er phrases and as such both can
be used as referential expressions, though of course they di¤er semantically in
their particular referential roles.
A quanti�er phrase is made up of two parts, the �rst being a determiner

such as �every�, �some�, the inde�nite article �a�, and the de�nite article �the��
and others as well, such as �most��few�, etc., which we will not deal with here.
The second part of a quanti�er phrase is a common noun, or what we call a
common name, which could be a mass noun, a count noun, or a gerund in its
role as a verbal noun (enabling us to refer to a kind of event). A count noun
can be simple, such as, e.g., �politician�, or complex, such as �politician who is
conservative�, where the complexity is the result of a¢ xing a qualifying relative
clause, such as �who (or that, or which) is conservative�, to the head noun.
Similarly, a mass noun can be simple, such as, e.g., �water�, or complex as with
�water that is polluted�. Because our concern here is with plurals, we will not
deal with either gerunds or mass nouns in this paper. The interested reader can
�nd our development of the logic of mass nouns in Cocchiarella [2009].
De�nite descriptions, incidentally, can also be used with or without existen-

tial presupposition. We will use 91 for the de�nite description operator when it
is used with such a presupposition. Our analysis of such a use agrees in essen-
tials with Bertrand Russell�s analysis. Thus, e.g., although we symbolize �The

9We agree in this respect with Gareth Evans who held a similar view of de�nite descriptions
in his [1982], p. 57.
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A is (are) F�as (91xA)F (x), the truth conditions of this formula are given in
the following biconditional (which we assume as an axiom schema)10 :

(91xA)F (x)$ (9xA)[(8yA)(y = x) ^ F (x)]:

The logic of names contains absolute as well as relative quanti�er phrases,
i.e., relative quanti�er phrases such as (8xA) and (9xA), where A is a name,
common or proper, and complex or simple. We will use the standard quanti�er
forms (8x) and (9y) for the absolute quanti�er phrases. As indicated, we will
use x; y; z; etc., with or without numerical subscripts, as �rst-order variables
and A;B;C; with or without numerical subscripts, as name variables. Complex
names are formed by adjoining so-called �de�ning�or restricting relative clauses
to names. We will use �=�, as in A='x to represent the adjunction of a formula
'x to the name A (which may itself be complex). We read A='x as �A that is
'x�. Thus, e.g., the quanti�er phrase representing reference to a politician who
is conservative would be symbolized as (9xPolitician=Conservative(x)).
Names and formulas are inductively de�ned simultaneously as follows: (1)

every name variable (or constant) is a name; (2) for all �rst-order variables x; y,
(x = y) is a formula; and if '; are formulas, B is a name (complex or simple),
and x and C are a �rst-order and a name variable respectively, then (3) :', (4)
('!  ), (5) (8x)', (6) (8xB)', (7) (91xB)', and (8) (8C)' are formulas, and
(9) B=' and (10) =' are names. The existential quanti�er and other sentential
connectives are understood as de�ned in the usual way. We assume the usual
de�nitions of bondage and freedom for �rst-order variables and of the proper
substitution of one such variable for another in a formula. We assume as well the
de�nitions of bondage and freedom of occurrences of name variables in formulas,
and the proper substitution in a formula ' of a name variable (or constant) B
for free occurrences of a name variable C.11

As noted, the logic of names consists of free �rst-order predicate logic (with
identity), which we will assume hereafter. Quanti�ers, as indicated in our de�n-
ition of formulahood, apply to name variables as well as to �rst-order variables.
The axioms for these are parallel to those for monadic second-order predicate
logic, namely:
(8C)'! '(B[x]=C), where B is free for C in ' with respect to x;

�! (8C)�, where C is not free in �; and

�! (8x)�, where x is not free in �.

Two additional axioms show how the relative quanti�er phrases are connected
with the absolute quanti�ers:

10We use the dual quanti�er expression 81 for the use of a de�nite description that is without
existential presupposition, as in �The student who writes the best essay will receive a grade of
A�in a context in which two or more students might write the best essays equally well. The
axiom scema for 81 is:

(81xA)F (x)$ (8xA)[(8yA)(y = x)! F (x)]:

11For details see Cocchiarella 2001.
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(8xA)'$ (8x)[(9yA)(x = y)! ']; where x; y are di¤erent variables;

(8xA= )'$ (8xA)[ ! '].

Finally, as primitive inference rules we assume modus ponens and universal
generalization for absolute quanti�ers indexed by either a �rst-order or a name
variable. The rule of universal generalization for relative quanti�ers is deriv-
able. The logic of names as brie�y described here is equivalent, incidentally, to
monadic second-order predicate logic. For proof of the details see Cocchiarella
[2001]. We might also note that Stanislaw Lésniewski�s logic of names, which
he also called ontology, is reducible to this logic of names.12

The logic of names, like the plural logic of the Among relation, extends (free)
�rst-order logic by including a new logico-grammatical category with its own
constants, both simple and complex, and corresponding variables that can be
a¢ xed to quanti�ers. But, unlike the logic of the Among relation, the category
of names is an essential component of a key grammatical category of natural
language, namely the category of noun phrases. It is this category that com-
plements verb phrases, and it is by means of this category that reference, both
general and singular, is achieved. This kind of extension, in other words, allows
for a more natural representation of our speech and mental acts than does a
separate category of plurals as in the logic of Among.

3 Classes as Many (Pluralities)

Now, to obtain the logic of classes as many, we extend the logic of names by al-
lowing for a transformation (speci�cally a �nominalization�) of the names that
occur as parts of quanti�er phrases into �terms� that can be substituends of
the �rst-order variables that occur as arguments of �rst-order predicates. As
already noted, this does a¤ect how we interpret the ontological commitments of
�rst-order logic. In our view, just as the nominalization of predicate expressions
has come about through the evolution of language and culture� and hence our
introduction and use of abstract intensional objects� so too our use of �nomi-
nalized�common noun phrases, complex or simple� and hence our introduction
and use of pluralities or classes as many� is a similar development of culture
and language. The logic of both forms of nominalization is part of a more
general ontological framework that I have called conceptual realism.13

With this transformation, proper and common names (count nouns) are
taken as denoting pluralities (including pluralities of one). We need this feature
in a plural logic because predicates can be true of pluralities as arguments no less
so than of single objects, i.e., it is a feature that allows us to denote pluralities
as well as to quantify over and refer to them. In the case of proper names this
means that a proper name can now occur as a �term�, i.e., as an argument of
predicates, just the way it does in standard free logic where it will either denote
nothing or at most a single object. In the case of a common count noun, such

12For proof of this claim see Cocchiarella 2001 or [Cocchiarella 2007], Chapter 10.
13See, e.g., Cocchiarella 2007 for an account of this ontology.
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as �man�, we similarly obtain a �term�, e.g., �mankind�, which might denote
nothing (at a given time, e.g., after a nuclear holocaust), or which might denote
a plurality such as the totality of all humans alive today.
The transformation (�nominalization�) of simple common names and name

variables into terms is no di¤erent than that for proper names. But in order
to transform a complex common name into a complex term we need a variable-
binding operator that functions in the way that the �-operator functions in the
construction of complex predicates. We will use the cap-notation with brack-
ets, [x̂A=:::x:::], for this purpose. Accordingly, where A is a name, proper or
common, complex or simple, we take [x̂A] to be a complex name in which the
variable x is bound and that can occur either as part of a quanti�er phrase or
as a complex term. Thus, where A is a name and ' is a formula, [x̂A], [x̂A='],
and [x̂='] are names in which all of the free occurrences of x in A and ' are
bound. When they occur as terms, we read these expressions as follows:
[x̂A] is read as �(the) things (i.e., single objects) that are A�(or just �(the)

A�s�);
[x̂A='] is read as �(the) A�s that are '�; and
[x̂='] is read as �(the) things (single objects) that are '�.

It should be noted here that only single objects, i.e., things or individuals, can
be members of classes as many.
The simultaneous inductive de�nition of names and formulas given in the

last section is now understood to be extended to include names of this complex
form along with n-place predicate constants (for n 2 !) as well.14 Note that
we now have formulas of the form (8y[x̂A])'(y=x), as well as those of the form
(8xA)'x and (8yA(y=x))'(y=x).15 The �rst of these forms is reducible to the
last because of the addition of the following axiom schema to the axioms for the
simple logic of names:

(8y[x̂A])'$ (8yA(y=x))', where y does not occur in A.

The existential counterpart to this axiom, namely,

(9y[x̂A])'$ (9yA(y=x))'

is theorem 8 of the logic of classes as many. We will later use an instance
of (a rewrite of) this theorem schema in the proof of our counterpart of the
comprehension principle of the logic of Among. There are other axioms and
theorems as well, needless to say, the description of which we will not go into
here. But the interested reader can �nd them in Cocchiarella [2002] or the
appendix of Cocchiarella [2009].16

14See Cocchiarella [2002] for the full de�nition or see the appendix of Cocchiarella [2009].
15We take A(y=x) and '(y=x) to be the result of properly substituting y for x in A and ',

respectively. The slash �=�in these expressions is not to be confused of course with the slash
in the formation of a complex name A='x.
16For a number of interesting theorems of the logic of classes as many, see [Cocchiarella

2002].
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The motivation for these axioms is a result of three important features of
the notion of a class as many as described by Russell in his account of plurals in
his 1903 Principles of Mathematics. The �rst feature is that a vacuous common
name, i.e., a common name that names nothing, has no plurality as its denota-
tum, which is not the same as denoting the empty class as many� because in
fact there is no such thing as an empty plurality. Thus, according to Russell,
�there is no such thing as the null class, though there are null class-concepts.�17

The second feature is that the denotatum of a plural common name that names
just one thing is just that one thing, or, in other words, single objects are them-
selves pluralities, which means that single objects are members of themselves
as classes as many. This corresponds to each individual being �among� itself
in the plural logic of Among. Indeed, it provides the basic rationale for single
objects being pluralities, a rationale that cannot be found independently in the
logic of Among.
Russell�s third feature is that, unlike sets, classes as many are literally made

up of their members, i.e., they are merely pluralities (Vielheiten), and as such
they cannot themselves be members of classes as many. Thus, according to
Russell, �though terms may be said to belong to ... [a] class [as many], the
class [as a plurality] must not be treated as itself a single logical subject.�18 It
is this feature of not being a member of any class as many� unless it is itself
a single object and therefore a member of itself� that partly characterizes the
non-individuality of a class as many as a mere plurality having no being beyond
the objects that make it up, but which nevertheless can be referred to by means
of plural quanti�er phrases or denoted by �nominalized� plural noun phrases
occurring as terms of predicates.
Now it is just as natural, we claim, to speak of membership in a class as

many in the sense of being one among the many that make up that class as it
is of membership in a set, or class as one. We can de�ne this notion of being a
member of a class as many, or being among, as follows.

Def: x 2 y $ (9A)[(y = A) ^ (9zA)(x = z)].

Note that in the de�nition of 2 the occurrence of A in (y = A) is as a term
denoting the plurality of things that fall under the name concept that A stands
for, whereas the occurrence of A in the quanti�er phrase (9zA) stands for the
name concept itself. With membership understood in this way we can de�ne
inclusion, proper or otherwise, in the usual way.

Def: x � y $ (8z)[z 2 x! z 2 y].
Def: x � y $ x � y ^ y * x.

Russell�s paradox is not derivable in this logic, incidentally. Instead of lead-
ing to a contradiction, the Russell class as many, [x̂=(9A)(x = A ^ x =2 A)],
is easily shown not to exist (as a value of the bound �rst-order variables).19

17Russell [1903], §70.
18Russell [1903], §70.
19 It should be remembered that in free logic being a substituend of free �rst-order variables

is not the same as denoting a value of the bound �rst-order variables. In free logic, in other
words, some terms may denote nothing.
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Similarly, the empty class as many, namely, the class of things that are not
self-identical, [x̂=x 6= x], also does not exist (as a value of the bound �rst-order
variables); and neither does the universal class, [x̂=(x = x)], if there are at
least two single objects, i.e., individuals. Following Nelson Goodman [1956], we
will also call individuals atoms.20 The (complex) name for atoms is de�ned as
follows:

Def: Atom = [x̂=:(9y)(y � x)].

This de�nition of an atom goes back to Goodman and the so-called Leonard-
Goodman calculus of individuals, which when formulated within a free logic
turns out to be reducible to our present logic of classes as many.21 We retain
this terminology here because Goodman�s nominalistic dictum that things are
identical if they have the same atoms is provable in the logic of classes as many.
That is,

(8x)(8y)[(8zAtom)(z 2 x$ z 2 y)! x = y]

is a theorem of the logic of classes as many. Indeed, not only is this dictum
provable but it is a consequence of the unquali�ed extensionality principle,

(8z)(z 2 x$ z 2 y)! x = y;

which is taken as an axiom of the logic of classes as many.
The extensionality axiom is a natural assumption for the concept of a class

as many. After all, if plurality A is made up of the same single objects as
plurality B, then they must be the same plurality (regardless of the di¤erence,
if any, between the concept A and the concept B). But perhaps one might
argue that if we were to extend the system to include a tense or modal logic
as well, then we would seem to be committed to the two theses that Linnebo
�nds unproblematic for pluralities, namely, that if x is among a plurality A,
then necessarily x is among that plurality, and similarly that if x is not among
the plurality A, then necessarily x is not among that plurality22 :

x 2 A! �(x 2 A);

x =2 A! �(x =2 A).
This result, we have said, should be rejected in a logic of plurals, and cer-

tainly it should be rejected in the logic of classes as many. After all, common
name concepts generally change the pluralities they refer to or denote over time,
and certainly over di¤erent possible worlds.23 Names of animals and plants that

20For details on these matters see Cocchiarella 2002 or Cocchiarella 2008, Chapter 11.
21See Leonard-Goodman 1940. See Eberle 1970, Chapter 2, for a reconstruction of the

calculus of individuals in a free �rst-order logic.
22As is well-known, various notions of necessity can be de�ned within tense logic. So this

result would apply in tense logic as well.
23Common names will refer to pluralities when they occur as parts of quanti�er phrases,

and they will denote the same pluralities when they occur as terms.
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have become extinct, for example, will no longer denote what they once may
have denoted, and they will no doubt refer to or denote di¤erent pluralities in
di¤erent possible worlds. The claim that common name concepts cannot re-
fer to or denote di¤erent pluralities over time or in di¤erent possible worlds is
certainly a consequence we do not want, and, we maintain, it should be rejected.
Of course, as noted, this result depends on extending our logic of classes as

many to include a tense or modal logic as well. There is no problem, in other
words, so long as we restrict ourself to a strictly extensional logic. But then,
actually there is no problem even with a tense or modal logic added to the
system� so long as we restrict the applications of Leibniz�s law for pluralities
to strictly extensional contexts. Doing so, moreover, does not mean that the
full, unquali�ed version of Leibniz�s law does not apply to atoms, i.e., single
objects. Indeed, the natural solution to this problem is to have two versions of
Leibniz�s law, one restricted to extensional contexts, and the other applicable
to all contexts but only for atoms. The extensional identity of pluralities would
then not lead to their being necessarily identical. Thus, the end result is that
we have two versions of Leibniz�s law, one for all extensional contexts, which is
derivable by induction on formulas from the atomic case:

x = y ! ('!  ); where ',  are atomic formulas and  is
obtained from ' by replacing an
occurrence of y by x24

and the other for all contexts:

(9zAtom)(x = z) ^ (9zAtom)(y = z)! [x = y ! ('$  )];

where  is obtained from ' by replacing one or more

free occurrences of x by free occurrences of y.

This last axiom is redundant, we want to emphasize, if we do not add any
nonextensional contexts to the logic of classes as many. Finally, we note that
the di¤erence between how Leibniz�s law applies to atoms and how it applies to
pluralities is signi�cant in how it distinguishes ontologically the individuality of
atoms from the mere plurality of classes as many.
Finally, we should note that although most common names are not �rigid�

in the pluralities they refer to or denote, nevertheless the common name �Atom�
is �rigid�, i.e., atoms are necessarily atoms:

Atom =df [x̂=�:(9y)(y � x)]:

4 Plural Reference and Plural Predication

What is generally called plural quanti�cation in the literature corresponds to
what in our conceptualist framework of general as well as singular reference we
call plural reference, a terminology that we will continue here. Plural reference

24The full version of Leibniz�s law is derivable from this and the other axioms by a simple
induction on extensional formulas, i.e., formulas in which no intensional operators occur.
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and predication are important, if not central, motivating features of the logic of
classes as many.
Now there are two parts to our analysis of plural reference and plural predi-

cation, which we will brie�y review here.25 The �rst deals with a logical analysis
of plural reference and predication in our speech and mental acts. The second
deals with the logical forms that represent the truth conditions of those acts in
terms of our logic of classes as many. The logical forms representing our speech
and mental acts are a part of the deductive machinery of our overall logic only
insofar as they are connected by meaning postulates to the logical forms that
represent their truth conditions in the logic of classes as many.
We extend the simultaneous inductive de�nition of the meaningful (well-

formed) expressions of the logic of classes as many to include the following
clauses, which are designed to represent plural reference and predication in our
speech and mental acts. Because we are concerned only with plurals in the
present paper, we restrict our de�nition to count nouns.

1. if A is a common count noun, then AP is a plural name;
2. if A is a common count noun, x is a �rst-order variable, and 'x is a

formula, then [x̂A='x]P and [x̂='x]P are plural names;
3. if A='(x) is a (complex) common count noun, then (A='x)P is

AP =[�x'x]P (x) and [x̂A='x]P is [x̂AP =[�x'x]P (x)];
4. if F is a one-place predicate constant, or of the form [�x'(x)], then FP

is a one-place plural predicate constant ; and
5. if AP is a plural name, x is a �rst-order variable, and ' is a formula, then

(8xAP )' and (9xAP )' are formulas.
In regard to clause (5), we read, e.g., �(8xRepublicanP )�as the plural phrase

�all republicans�and �(9xRepublicanP )�as the plural phrase �some republicans�,
and similarly �(8xRepublicanP =Conservative)(x)�as �all republicans who are
conservative�, or more simply �all conservative republicans�, and �(9xRepublicanP
=Conservative(x))� as �some conservative republicans�, etc. We note that a
plural name is not a name simpliciter (in the logic) and that unlike the latter
there is no rule for the �nominalization� (or transformation) of a plural name
into a term. We also note that only monadic predicates are pluralized. With
the addition of �-abstracts, a two-place relation R can be pluralized in either
its �rst- or second-argument position, or even in both, by using a �-abstract,
as, e.g.,

[�xR(x; y)]P ,

[�yR(x; y)]P ,

[�x[�y[R(x; y)]P (y)]P ,

respectively; and a similar observation applies to n-place predicates for n > 2.
We can now represent the plural references and predications we express in

our speech acts in a natural and intuitive way. Also, given the following meaning

25For a more detailed account see Cocchiarella [20o7], chapter 11.
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postulates, we can then represent the truth conditions of these speech acts in
terms of our logic of classes as many. The �rst meaning postulate is for the
plural �Some�:

(9xAP )'x$ (9x=x � A)'x; (SmCount)

and the second is for the plural �All�:

(8xAP )'x$ (8x=x � A)'x: (AllCount)

Thus, for example, the truth conditions of the sentence �All republicans are
conservative�, which can be symbolized as:

(8xRepublicanP )ConservativeP (x);

can now be represented as:

(8x=x � Republican))ConservativeP (x);

where x � Republican means that x is a subplurality of the totality (or class as
many) of republicans. Then, given a meaning postulate to the e¤ect that the
predicate adjective �conservative�is distributive, i.e., the postulate

ConservativeP (x)$ (8y=y 2 x)Conservative(y);

it follows that the original sentence �All republicans are conservative�is equiva-
lent to �Every republican is conservative�, i.e.,

(8yRepublican)Conservative(y):

A similar analysis, which we will not go into here, can then be given for �Some
republicans are conservative�. Non-distributive predicates, such as in �The stu-
dents surrounded the Pentagon�will of course be irreducible in their application
to a plurality. Where A is a name symbol for �the Pentagon�, this sentence can
be symbolized as follows:

(91xStudentP )[�xSurrounded(x;A)]P (x);

which, by (SmCount), initially can be reduced to

(91x=x � [ŷStudent])[�xSurrounded(x;A)]P (x):

But because �surrounded�is non-distributive in its �rst-argument position, no
further reduction can be given. More examples can be found in Cocchiarella
[2007], chapter 11.26

Before concluding this brief description of the logic classes as many, we note
that one possible application of the logic of plurals suggested by Linnebo is that
pluralities might be used in set theory as a way of quantifying over collections
of sets, or what are usually called proper (or ultimate) classes. Indeed, such a
use of classes as many as pluralities had already been formalized by John Bell
in Bell [2000]. It is noteworthy that Bell�s system was shown to be reducible to
the above logic of classes as many in Cocchiarella [2002].
26 In Cocchiarella [2002], [2005] and [2007], I took there to be at least two single objects

in each plurality; that is, pluralities consisting of just a single object were not considered
pluralities. I corrected that position in [2009].
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5 The Reduction of the Plural Logic of Among

We turn now to the reduction of the plural logic of Among to the logic of classes
as many. We �rst describe a translation function from Linnebo�s plural logic
to the logic of classes as many. Then, in the next section we show that the
translation of every theorem of Linnebo�s plural logic is a theorem of the logic
of classes as many, and hence that Linnebo�s plural logic is reducible to the logic
of classes as many.
We �rst describe the formal language LPFO of Linnebo�s Plural First-order

Logic with or without nondistributive predicates or predicates that take plural
arguments. As already indicated, the logic of classes as many can accommodate
both distributive and nondistributive predicates.

(1) singular and plural terms:
singular variables xi
plural variables xxi
singular constants ai
plural constants aai
(2) two dyadic predicates:

= (the identity sign).
� (the relation of �is one of�).
nonlogical predicate constants Rni (for n-place relations).

(3) Formulas:
Atomic formulas:
Rni (t1; :::; tn) for each n-place predicate and singular terms t1;::;tn.

t � T when t is a singular term and T is a plural term.

Complex formulas:
:', (' ^  ) are formulas when '; are formulas.
9v' and 9vv' are formulas when ' is a formula, v is a singular variable and

vv is a plural variable.

Note: Other connectives and operators are understood as abbreviations in
the usual way. As noted in our �rst section, unlike the logic of classes as many,
there are no complex terms in Linnebo�s system, and in particular no complex
terms based on a variable-binding operator, as well as no analysis of plural
de�nite descriptions. We also note here that Linnebo assumes standard �rst-
order logic with identity as the background �rst-order logic part of his system.
This contrasts with the free �rst-order logic of the logic of classes as many. As
a result, the translation function formulated here must take into consideration
that the free singular variables of Linnebo�s plural logic have values that �exist�
in his logic, i.e., their values are the values of bound singular variables, and that
each value of the free plural variables is a plurality that consists of at least one
single object. To accommodate this di¤erence makes the translation function
seem more complicated than it really is.
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5.1 The Translation Function

The translation function f is de�ned on all terms, predicates and formulas of
Linnebo�s plural logic.
(Note: We assume a 1-1 correlation between plural variables xxi and name

variables Ai.)

1) For all singular variables xi, f(xi) =df xi.

2) For all plural variables xxi, f(xxi) =df Ai.

3) For each n-place predicate Rni , f(R
n
i ) =df R

n
i .

4) For each atomic formula Rni (t1; :::; tn), where R
n
i is other than �,

f(Rni (t1; :::; tn)) =df (9yAtom)(y = xj1) ^ ::: ^ (9yAtom)(y = xjk) ^
(9y)(y 2 f(xxi1)) ^ ::: ^ (9y)(y 2 f(xxik))! Rni (f(t1); :::; f(tn)),

where xj1 ; :::; xjk are all the (free) singular variables among the terms t1; :::; tn,
and xxi1 ; :::; xxik are all of the (free) plural variables among the terms t1; :::; tn,
and y is a singular variable not occurring in Rni (t1; :::; tn).

5) For each singular variable x and each plural variable xx,

f(xi � xxi) =df (9yAtom)(y = xi) ^ (9yAtom)(y 2 f(xxi))! xi 2 f(xxi),

where 2 is as de�ned in the logic of classes as many, and y is other than xi.

6) For all formulas ',

f(:') =df (9yAtom)(y = xj1)^:::^ (9yAtom)(y = xjk)^(9y)(y 2 f(xxi1))^ :::
^ (9y)(y 2 f(xxim))! :f('),

where xj1 ; :::; xjk are all the singular variables and xxi1 ; :::; xxim are all of the
plural variables occurring free in ', and y is a singular variable not occurring
in '.

7) For all formulas '; ,

f('^ ) =df (9yAtom)(y = xj1)^ :::^ (9yAtom)(y = xjk)^ (9y)(y 2 f(xxi1))
^ ::: ^ (9y)(y 2 f(xxim))! f(') ^ f( ),

where xj1 ; :::; xjk are all the singular variables and xxi1 ; :::; xxim are all of the
plural variables occurring free in ' or  , and y is a singular variable not occurring
in ' or  .

8) For each formula ' and singular variable xi,

f(9xi') =df (9yAtom)(y = xj1)^:::^ (9yAtom)(y = xjk)^(9y)(y 2 f(xxi1))^:::
^ (9y)(y 2 f(xxim))! (9xiAtom)f('),

where xj1 ; :::; xjk are all the singular variables and xxi1 ; :::; xxij are all of the
plural variables occurring free in 9xi', and y is a singular variable not occurring
in 9xi'.
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9) For each formula ' and plural variable xxi,

f(9xxi') =df (9yAtom)(y = xj1)^:::^ (9yAtom)(y = xjk)^(9y)(y 2 f(xxi1))^
::: ^ (9y)(y 2 f(xxim))! (9Ai)[(9yAtom)(y 2 Ai) ^ f(')],

where xj1 ; :::; xjk are all the singular variables and xxi1 ; :::; xxim are all of the
plural variables occurring free in 9xxi', y is a singular variable not occurring
in 9xxi', and Ai is the name variable corresponding to the plural variable xxi.

5.2 Logical Axioms and Inference Rules for the Logic FPO

Linnebo assumes a natural deduction system as a background logic, but the
system is not described, and we remain unsure just what the rules for his plural
logic are. In any case, for our purposes of showing that the translation of every
theorem of Linnebo�s plural logic is a theorem of our logic of classes as many,
it is preferable to use an axiomatic formulation of the background logic. The
axiomatic version of standard �rst-order logic with identity we will use here is
Tarski�s substitution-free axiom set.27

Axioms for standard �rst-order logic with identity:

1) All tautologous formulas.

2) '! 8xi', where xi is a singular variable not occurring free in '.
3) 8xi('!  )! (8xi'! 8xi ).
4) 9xi(xj = xi), where j 6= i.

5) xi = xj ! (' !  ), where ' is an atomic formula and  is obtained
from ' by replacing an occurrence of xj by an occurrence of xi.28

Note: As inference rules we assume modus ponens and universal generaliza-
tion (of what is provable), i.e.,

If ` ' and ` '!  , then `  , and
If ` ', then ` 8xi' and ` 8xxi'.
The f -transform of axioms (1)-(3) remain unchanged in structure except

for having antecedent clauses regarding the existence and non-emptiness of the
free singular and plural variables occurring free in the formulas in question, and
therefore, because (1)-(3) are also axioms of the logic of classes as many, those
f -transforms are theorems of the free �rst-order logic of the logic of classes as
many. The f -transform of axiom 4 becomes:

(9xkAtom)(xj = xk)! 9xi(xj = xi),

where xi; xj ; xk are distinct (singular) object variables. This result is trivially
provable in the logic of classes as many.
Axiom (5) becomes:

27See Tarski [1965] and Kalish and Montague [1965].
28Leibniz�s law, (LL), for all formulas, atomic or otherwise, follows from axioms (5) and the

other axioms by a simple induction on formulas. Then by universal generalization of (LL),
axioms (3) and (1), and then (2), the schema: 8xi'(x) ! '(y) follows. The identity thesis
xi = xi is provable from axioms (5) and (1).
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�1::: ^ �n ^ (9yAtom)(xi = y) ^ (9yAtom)(xj = y)!
(xi = xj ! [f(')! f( )]);

where �1; :::; �n are the existence statements as described above for the remain-
ing free variables occurring in ' and  . This formula is equivalent to:

�1::: ^ �n ! (8xiAtom)(8xjAtom)(xi = xj ! [f(')! f( )]);

the consequent of which is trivially provable in the logic of classes as many, and
therefore so is the entire formula.
Except for replacing singular variables by plural variables, the axioms for

the plural quanti�ers are entirely similar to the above, and the proof that the
translations of these axioms into the logic of classes as many is entirely similar.
The inference rules of Linnebo�s plural logic lead only from provable translations
to provable translations.

5.3 The Plural Axioms of the Plural Logic FPO

Every instance of the extensionality axiom schema in Linnebo�s logic, namely:

(8yy)(8zz)[(8x)(x � yy $ x � zz)! ('(yy)$ '(zz))];

is easily seen to be a consequence of the following instance of the extensionality
axiom of the logic of classes as many:

(8A)(8B)[(8x)(x 2 A$ x 2 B)! A = B]:

The f -translation of Linnebo�s extensionality axiom would have an initial con-
ditional clause regarding the variables occurring free in ', which we can ignore
here because the consequent of the whole conditional is provable in the logic
of classes as many. The f -translation of the indiscernibility clause in Linnebo�s
axiom schema, i.e., the biconditional '(yy)$ '(zz), is of course a consequence
of Leibniz�s law applied to A = B.
The remaining two axioms of Linnebo�s plural logic are the comprehension

principle,
9u'(u)! 9xx8u[u � xx$ '(u)] (comp)

and an axiom stipulating that every plurality is nonempty:

8xx9x(x � xx):

The f -translation of this axiom is:

(8A)(9xAtom)[(9yAtom)(y = x) ^ (9yAtom)(y 2 A)! x 2 A];

where f(xx) = A. This f -translation says in e¤ect that every nonempty class
as many is nonempty, which is trivially provable.
The f -translation of (comp) is as follows:
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�1::: ^ �n !
[(9uAtom)f('(u))! (9A)((9yAtom)(y 2 A) ^ (8uAtom)[u 2 A$ f(')])];

where �1; :::; �n are the existence statements as described above for all the
free variables in 9u'(u). Suppose the antecedent �1 ^ ::: ^ �n and also that
(9uAtom)f('(u)) are given, and let A = [û=((9yAtom)(u = y) ^ f('(u))].
Finally, let  (u) be f('(u)), which, by hypothesis, means that (9uAtom) (u)
is given. It then su¢ ces to show that

(9yAtom)(y 2 A) ^ (8uAtom)[u 2 A$  (u)])

follows. Assume now that u is an atom. Accordingly, if u 2 A, i.e., if u 2
[û=(9yAtom)(u = y) ^  (u)], then, by de�nition of 2 in the logic of classes as
many, (9z[û=(9yAtom)(u = y) ^  (u)])(z = u), and by a rewrite of Theorem 8
of the same logic, namely the schema,

(9z[ûB])�$ (9zB(z=u))�;

(substituting [û=(9yAtom)(u = y) ^  (u)] for [ûB]), (9z=(9yAtom)(z = y) ^
 (z))(z = u) follows, from which (9yAtom)(u = y) ^  (u) then follows, which
is the left-to-right direction of the biconditional to be shown. For the right-
to-left direction, assume  (u) and show that u 2 A follows, i.e., that u 2
[û=(9yAtom)(u = y) ^  (u)] follows. Note that by assumption (9yAtom)(u =
y), and therefore we have the conjunction (9yAtom)(u = y) ^  (u). Now by
assumption and theorem 8 again we have:

(9z[û=(9yAtom)(u = y) ^  (u)])(u = z);

and hence, by de�nition of 2, u 2 [û=(9yAtom)(u = y) ^  (u)], i.e., u 2 A. We
conclude then that

(8uAtom)[u 2 A$  (u)],

which what was to be shown. Finally, we note that by assumption

(9uAtom)f('(u));

that is, (9uAtom) (u), and therefore by the above biconditional

(9uAtom)(u 2 A).

It follows accordingly by existential generalization on A that the f -translation
of (comp) is provable in the logic of classes as many.
Conclusion: The f -translation of every theorem of Linnebo�s plural logic

is a theorem of my logic of classes as many, and hence that Linnebo�s plural
logic is reducible to my logic classes as many.

19



References

[1] Bell, John, 2000, �Sets and Classes as Many,�Journal of Philosphical Logic,
29: 585�601.

[2] Boolos, George, 1984, �To Be Is To Be a Value of a Variable (or to Be Some
Values of Some Variables),�Journal of Philosophy, 81: 430�50.

[3] Cocchiarella, Nino B. 2001, �A Conceptualist Interpretation of Lésniewski�s
Ontology,�History and Philosophy of Logic 22: 29�43.

[4] Cocchiarella, Nino B., 2002, �On the Logic of Classes as Many,� Studia
Logica, 70: 303�38.

[5] Cocchiarella, Nino B., 2005, �Denoting Concepts, Reference, and the Logic
of Names, Classes as Many, Groups, and Plurals,� in Linguistics and Phi-
losophy, vol. 28 (2005): 135�179.

[6] Cocchiarella, Nino B., 2007, Formal Ontology and Conceptual Realism,
Springer, Synthese Library vol. 339, Dordrecht.

[7] Cocchiarella, Nino B., 2009, �Mass Nouns in a Logic of Classes as Many,�
Journal of Philosophical Logic, vol. 38, no. 3: 343�361.

[8] Evans, Gareth, 1982, The Varieties of Reference, Clarendon Press, Oxford.

[9] Goodman, Nelson, 1956, �A World of Individuals,� in The Problem of
Universals, University of Notre Dame Press, Notre Dame, reprinted in
Goodman�s Problems and Projects, 1972, The Bobbs-Merrill Co., Inc., In-
dianapolis and New York.

[10] Eberle, Rolf A., 1970, Nominalistic Systems, Synthese Library, D. Reidel
Pub. Co., Dordrecht.

[11] Kalish, D. and R.M. Montague, 1965, �On Tarski�s Formalization of Predi-
cate Logic with Identity,�Arch. f. Math. Logik und Grundl, vol. 7: 81�101.

[12] Leonard, H.S. and N. Goodman, 1940, �The Calculus of Individuals,�The
Journal of Symbolic Logic 5: 45�55.

[13] Linnebo, Øystein �Plural Quanti�cation,�2004, Stanford Encyclopedia of
Philosophy, revised 2012.

[14] McKay, Thomas, 2006, Plural Predication, Oxford: Oxford University
Press.

[15] Oliver, Alex and Smiley, Timothy, 2006, Journal of Philosophical Logic 35:
317�348.

[16] Oliver, Alex and Smiley, Timothy, 2013, Plural Logic, Oxford University
Press, Oxford.

20



[17] Russell, Bertrand, 1903, The Principles of Mathematics, second edition,
Norton & Co., N.Y., 1938.

[18] Schein, Barry, 1993, Plurals and Events, Cambridge, MA: MIT Press.

[19] Tarski, A., 1965, �A Simpli�ed Formulation of Predicate Logic with Iden-
tity,�Arch. f. Math. Logik und Grundl, vol. 7: 61�79.

[20] Yi, Byeong-Uk, 2005, �The Logic and Meaning of Plurals, Part I,�Journal
of Philosophical Logic, vol. 34: 459�506.

[21] Yi, Byeong-Uk, 2005, �The Logic and Meaning of Plurals, Part II�Journal
of Philosophical Logic, vol. 35: 239�288.

21


