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Abstract

Cognitive representations are typically analyzed in terms of content, vehicle, and format. Although
current work on formats appeals to intuitions about external representations, such as words and
maps, in this article, we develop a computational view of formats that does not rely on intuitions.
In our view, formats are individuated by the computational profiles of vehicles, that is, the set of
constraints that fix the computational transformations vehicles can undergo. The resulting picture
is strongly pluralistic, makes space for a variety of different formats, and is intimately tied to the
computational approach to cognition in cognitive science and artificial intelligence.

1. Introduction
Representation is a central and, arguably, foundational notion in mainstream cognitive
science and artificial intelligence (AI) (Burge 2010; Cummins 1989; Neander 2017; Shea
2018). Appealing to representations internal to biological and artificial systems provides
us with tools to help explain the relational nature of cognition and intelligence: to be
cognitive and intelligent is to behave in such a way as to protect and further the system’s
own interests, satisfying its needs and preserving its existence (and occasionally that of
its group) in interaction with a complex, changing, and often hostile environment. The
defining characteristic of representations is their aboutness, that is to say, the fact that
representations are about something other than themselves. A map can be about the
spatial layout of a region; a sentence can be about the current weather there. Similarly,
internal representations are states and processes within biological and artificial systems
that are about states, processes, and events beyond themselves, typically in the body and
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the environment of the system. What representations are about or refer to are their
contents (Shea 2018, 6).1

Although representations are primarily characterized by their contents—a
representation of the location of my office, a representation of Ursula von der
Leyen’s face—representations can also be characterized in other terms, typically for
somewhat different explanatory purposes. We may be interested in what kinds of
physical states and processes carry, or possess, representational contents. And
perhaps less obviously, we might be interested, roughly put, in the shape or format a
representation takes: Is it a map, a photo, a sentence?

In this article, we will be interested in the latter feature of representations. What
are representational formats? What are they good for? We will investigate such
questions within cognitive science and AI research. Our exclusive focus will be on the
representational states and processes going on in brain areas, layers in artificial
neural networks, and the like, which are at the center of the explanatory and
modeling endeavors in those fields.

We will advance an account of representational formats in which the main aim is
that of capturing the epistemic roles that the notion plays, or can play, in the relevant
areas of science and engineering by appeal to the notion of physical computation, that
is, computation in physical systems (rather than in mathematical theory).
Computational views of representational formats have a long history (Sloman
1978, Larkin and Simon 1987, Fodor 1975). However, such views were often left
relatively underdeveloped and/or focused exclusively on specific kinds of format,
with the linguistic/iconic distinction drawing most of the attention (Fodor 2008;
Sloman 1978). The latter distinction is still among the most discussed (Quilty-Dunn
2019; Quilty-Dunn et al. 2023).2

This is unfortunate for at least two reasons. First, extant accounts of formats,
including the ones inspired by the computational approach, have typically taken for
granted intuitive views about formats modeled on external, public representations,
such as words, pictures, and maps. It is debatable, to say the least, that categories
applicable to public, external representations can or should be applied to capturing
the goings-on in cognitive and computational systems. The focus on intuitive
distinctions—such as linguistic/pictorial, analogue/digital—that have marked the
literature are a symptom of this (typically implicit) assumption. Second, and
relatedly, an account of representational formats should be general and thus able to
capture all the formats that are relevant to cognitive (and computational) processing
rather than being tailored only to account for a subset of formats.

In this article, we will try to free our understanding of representational formats
from its intuitive chains. We will do so by developing a computational view of formats
that takes as its starting point the explanatory needs of the cognitive sciences rather

1 Traditionally, it has been preferred to take a nonreferential view of content, individuating contents
as conditions of satisfaction instead, which in turn pick out referents. This difference will not matter for
our purposes.

2 The terminology in the debate is rather confusing. The iconic format is sometimes also called
“depictive” (Kosslyn et al. 2006), “image-like,” “picture-like,” or “analogue” (Quilty-Dunn 2019; Beck
2018; Maley 2011; Paivio 1986; but see Clarke 2019 for a distinction between iconic and analogue). The
discursive or symbolic format is also called “language-like” (Paivio 1986), “Fregean” (Sloman 1978), or
“propositional” (Pylyshyn 1973).
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than common intuitions. As a consequence, the resulting account yields formats ill-
fitted to the categories traditionally employed in the literature while positing
varieties of representational formats that have no analogue in external representa-
tions. The standard of success for a theory of representational formats for cognitive
science is the epistemic value it has in informing and guiding research, not the extent
to which the resulting formats fit our pre-theoretic expectations. The second part of
the article will thus be dedicated to illustrating the epistemic value of the resulting
computational theory of representational formats.

Here is how we will proceed. After presenting our distinctive perspective on the
question of representational formats in section 2.1, we will briefly go through the
main extant families of views about their nature, making clear where our own view
belongs (sec. 2.2). In section 2.3, we will set out the central explanatory roles played
by representational formats in the cognitive sciences, which, together with broader
philosophical considerations, make up a set of desiderata for any account of
representational formats for those fields. We present and defend the computational
view of formats in section 3, whereas section 4 is dedicated to illustrating the account
by applying it to two case studies: one from neuroscience (the place cell system) and
one from computational modeling (episodic memory recall). Finally, in section 5, we
show that the computational view fulfills the desiderata on theories of representa-
tional formats in the cognitive sciences.

2. Representational formats: Nature and roles
2.1. Three notions of representational format
Colored pieces of paper, binary code stored in a memory drive, and patterns of neural
activation in the brain can all carry representational content: they can all be
representations, say, of von der Leyen’s face. As carriers of content, these internal
states and processes are called representational vehicles.

Importantly, vehicles are individuated not purely in terms of their physical
properties but rather in terms of those physical properties to which an interpreter or
system is sensitive. In a paper map, the vehicles are printed shapes and colors, not the
type of paper used; in an electronic computer, the vehicles are, ultimately, voltage
ranges that code for 1s and 0s during specific time intervals, irrespective of the
continuous values voltages take; in a brain, the vehicles are most likely some aspect(s)
of neural activity, such as firing rates, but not neurons’ color or smell. Often, different
vehicles can carry the same content, thus representing the same thing, and different
things can be represented by the same vehicles.

Qualifying the last sentence with an “often” may seem intuitive enough. It seems
implausible, or at least very doubtful, that a photo of von der Leyen has the very same
content as a verbal description of her facial features. And even if they do have the
same content, they seem to represent it in very different ways. They also seem to be
more appropriate for different uses: a photo will be better than a verbal description
for recognizing von der Leyen in a crowd, whereas a verbal description will be better
if we are interested in a specific, less noticeable feature.

It is not always clear how best to try to accommodate these considerations,
especially when it comes to examples that rely on intuitions about external, public
representations, such as photos, words, and maps. One common attempt is to rely on
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the notion of representational format to shed light on those and related differences
between representations (Beck 2018; Clarke 2019; Fodor 2007, 2008; Quilty-Dunn
2019). Photos and verbal descriptions, intuition suggests, belong to different formats,
insofar as they represent different contents and/or represent them in different ways.
Similar considerations apply to cognitive science and AI research. Some kinds of
internal representations may have different constraints on what they can and cannot
represent and/or on how well or efficiently they can represent what they do.

The general shape that an account of representational formats must take plausibly
differs between different domains of application, such as cognitive science and AI, on
the one hand, and external, public representations, on the other hand. Even within
the former domain, it is likely that there are differences in terms of epistemic needs
and tools when it comes to the states that the cognitive sciences discover and
investigate and the states that populate our folk psychology. Failing to keep these two
domains separate risks generating considerable confusion and unclarity.3

Given their importantly different features, it is to be expected that the expression
“representational format” captures fundamentally different constructs in the two
domains. Indeed, an account of the formats of external, public representations is
highly likely to hinge, in complicated ways, on social practices and conventions for
the production and consumption of representations, as well as on individuals’ goals,
intentions, and interpretative abilities. Moreover, in light of the tight connection
between the social practices of communication and interpretation and the posits of
folk psychology, it is likely that the notion of representational format relevant for folk
psychological explanations is closer to the foregoing than it is to the notion central to
the states and processes that cognitive science and AI focus on.

An account of representational formats suitable to cognitive science and AI can
rely on none of the factors mentioned earlier, on pain of pernicious circularity. This
is so because in these sciences, the notion of format at play is much more basic,
furnishing part of the representational story that endows systems with the very
capacities to engage in social practices and conventions, entertain intentions,
interpret, form goals, and so on.

In what follows, we will thereby remain silent on how to account for the
representational formats of public representations, as well as those in folk
psychology. The computational view of formats we propose is designed to capture
solely the notion useful for the scientific study and engineering of cognitive states.
Thereby, the standards by which it is to be assessed derive from the epistemic value of
appeal to formats within those scientific endeavors.

2.2. Three approaches to formats
There are several ways of carving the space of existing theories of representational
format. A popular way of doing so is in terms of the number and kinds of formats that

3 One way to hash this out is in terms of the personal versus subpersonal distinction. As a reviewer
helpfully pointed out, the distinction can be spelled out in different ways (Drayson 2014). In the
remainder of this article, we shall mainly discuss paradigmatic cases of subpersonal states for ease of
exposition, yet our challenge to the mainstream approach to formats applies equally to personal-level
states. Our account does not depend on the adequacy or other features of the subpersonal/personal
distinction.
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different views commit to. Some theories recognize only one kind of format (Pylyshyn
1973), some recognize two (Fodor 2008; Paivio 1986), and others recognize more, but
not many more (Haugeland 1998). The most commonly mentioned are symbolic,
discursive, iconic, analogue, discrete, and distributed formats. Depending on how each
account individuates formats, some of the terms in that list may be considered to be
synonymous (e.g., discrete and symbolic).

Existing theories of representational formats can be grouped into three broad
categories, depending on what conceptual component of the notion of representation
they take to be central to individuating formats: contents, vehicles, or the function
from the former to the latter (Lee et al. 2022).

Some views take representational formats to be tied essentially to the kinds of
content a representation can possess (Haugeland 1998; Peacocke 2019). In such views,
representations are in different formats insofar as they represent different kinds of
contents. In Peacocke’s (2019) content-based view, representations in analogue
format are those that represent magnitudes (i.e., that have magnitudes as their
contents). According to Haugeland’s (Haugeland 1998) picture, there are at least three
kinds of formats, individuated by the kinds of content they represent: logical or
discursive representations, which represent “absolute elements” (i.e., contents that
stand by themselves, independently of relations to other elements); iconic
representations, which represent “relative elements” (i.e., contents intrinsically tied
to relations to other contents); and distributed representations, which represent
“associative elements” (i.e., contents associated by similarity or by stimulus-response
patterns).

A more common family of views takes formats to depend on the properties of
representational vehicles (Beck 2019). For instance, if a representational system (only)
employs representational vehicles that come in discrete types, such as the digits/
voltage ranges in digital computers, then that system has a discrete format. If, on the
other hand, it employs vehicles typed in terms of continuous variation across one or
more dimensions, as in a mercury thermometer, the system has an analogue format.

The third family of views, the function-based account, is often conflated with the
former two and especially with the vehicle-based one. This account has it that
representational formats are individuated by the function that maps vehicles into
contents (Lee et al. 2022). A view along these lines might, for example, identify a type
of format in terms of vehicles structurally resembling, or mirroring, their contents
(Beck 2018).

The debate is still open as to which of these approaches, if any, is most adequate.
Challenges have been moved against all of them, typically taking the shape of
examples in which they seem to yield counterintuitive results, such as categorizing a
format as analogue that actually seems to be digital (Shimojima 2001). Often, such
disputes are evaluated in terms of intuitions about public representations, as in
pictures and sentences, or about the nature of our conscious states, such as in
perception and thought. We will not delve into those discussions.

Our purposes here are exclusively constructive—namely, to detail and defend a
version of the vehicle-based approach motivated and shaped by the computationalist
framework in mainstream cognitive science—and aimed at producing a notion of
representational format that can be useful and fruitful for cognitive science and AI
research. Accordingly, our standards of evaluation for accounts of representational
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formats rely not on intuitive judgments about specific cases but rather on the
potential of such accounts to capture the epistemic roles and needs of cognitive
science and AI and to point toward fruitful avenues of research. This distinguishes our
proposal from most other approaches to formats—including vehicle-based ones—
given the latter’s reliance on intuitions rather than on explanatory needs, and their
failure to keep folk psychological considerations separate from those most relevant to
the cognitive sciences, which, as we have pointed out, are likely to involve rather
different factors and constraints.

We must therefore look more closely at the roles that representational formats
play and can play in the explanatory practices of the cognitive sciences in order to
shed light on the nature of representational formats in biological and artificial
cognitive systems. In other words, why are representational formats important for
explaining cognition and intelligence? Why aren’t contents and vehicles enough?

2.3. The role of formats
There is widespread agreement that representational formats play key explanatory
roles in the cognitive sciences. Both early (Sloman 1978, 1994, 2002; Larkin and Simon
1987) and more recent proponents (Fodor 2008) of computation-based approaches to
formats have often characterized formats in analogy to public representations.
Sloman (1978, 144–76) discusses Fregean (discursive) and analogical representational
structures (or “symbolism” in his jargon), such as pictures and diagrams. Fodor (2008,
171–73) distinguishes between discursive representations—modeled on sentences in
natural languages—and icons, understood as akin to pictures (see also Quilty-Dunn
2019; Quilty-Dunn et al. 2023).

Analogies to public representations provide an intuitive grasp of why some
explanations need to appeal to formats. As noted earlier, we use different kinds of
external representations depending on what we want to achieve with them: a city
map is a more immediate and flexible means to convey information about spatial
layout than a series of sentences.

Let us examine in detail an example of this sort of analogical appeal to formats in
science, more specifically in animal cognition research, discussed by Camp (2009).
Some baboon species live in troops of varying size, sometimes comprising several
dozen members, in which there are separate hierarchies of dominance-subalternity
relations for males and females. There are dominance-subalternity relations between
females belonging to different families, forming a hierarchy of high-status, mid-
status, and low-status families. Within families, there is also a hierarchy dictated by
age, with younger mature females having higher status than older sisters (with some
complications; see Lea et al. 2014). Female baboons are very capable of navigating this
complex, two-tiered hierarchy, behaving according to their ranks across and within
families, both when they are directly involved in a dispute and when only a kin
member is. They also seem to show surprise when experimenters play calls associated
with encounters in which lower-ranking females challenge higher-ranking ones
(Cheney and Seyfarth 2007).

The behavior of female baboons indicates that they can represent single
individuals, relations of dominance between individuals and families, and occasional
changes in the hierarchy. We can safely assume that the representational vehicles are
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certain features of neuronal activity in the baboon nervous system. More must be
said, however. How are those contents represented, such that appropriate behavior is
produced, for instance, when there are changes in the dominance relations that call
for prompt adaptation to a partially different social environment?

Some degree of discreteness seems to be required, such that each individual can
independently come to occupy a different place in the represented social hierarchy.
Similarly, some degree of combinatoriality is needed, such that changed social status
changes an individual’s represented dominance-subalternity relations to other
individuals and families. Finally, and more tentatively, it might be expected that the
relevant representations of social hierarchy be in some sense holistic, in the sense
that when an individual’s represented place in the hierarchy changes, all of its
represented relations to other members of the group change in one go, as it were.

In light of considerations along these lines, Camp (2009) hypothesizes that the
format that the social hierarchy representational system takes in those female
baboons is somewhat akin to that of a tree diagram, similar to the genealogical trees
that some humans are quite keen on cobbling together. Indeed, tree diagrams can
represent individuals and their hierarchical relations; they have combinatorial
properties; and when an individual’s position in the tree changes, their relations to all
other individuals change automatically, as it were.4 (Compare: if such representations
were somewhat similar to linguistic representations, then for each change in
dominance relation, a large number of single representations would have to be
updated—X is now higher in the hierarchy than Y; X is now higher than Z, etc.—
which is arguably inefficient and cognitively taxing).

Another explanatory virtue of appealing to tree diagrams or similar formats in this
case study is that it helps explain not only what female baboons can do but also what
they cannot. If we were to ascribe language-like representations to baboons, insofar as
they are also discrete and combinatorial, we would be left with the puzzle of why they
can use such a powerful and flexible representational system to represent social
hierarchy while their behavior in other tasks indicates less powerful representational
capabilities.5

Putting aside whether it is appropriate to frame the discussion in terms of
analogies to public representations, this case study illustrates that questions about
the nature of the representations employed remain even after determining (or
assuming) that the content and vehicle questions have been answered. These
remaining questions are questions about representational format.

In brief, we need to appeal to representational formats in cognitive science and AI
because they play distinctive epistemic roles: they allow us to identify distinctive
features of cognition and intelligence that call for treatment in ways that are not
exhausted by appeal to contents and vehicles. More specifically, representational
formats are useful in cognitive science and AI, at least in large part, insofar as they
fulfill the following explanatory roles:

4 In a similar vein, Boyle (2019) suggests that mind-reading in apes may be underlain in some cases by
yet another format, namely, map-like representations (see also Camp 2009).

5 For this reason, Camp (2009) rejects Cheney and Seyfarth’s (2007) claim that in light of their ability
to navigate such a complex social hierarchy, baboons must thereby make use of language-like
representations.
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Transformation-based explanations: help explain the workings and behavioral
effects of cognitive states and processes in terms of the specific kinds of
transformation or manipulation available and performed over such states and
processes

Efficiency-based explanations: help explain why certain cognitive states and
processes are more (or less) adequate for a specific task in terms of certain sets
of transformations/manipulations being more efficient, powerful, less taxing,
and/or temporally advantageous6

In addition, a theory of representational formats should be epistemically fruitful
(epistemic fruitfulness). First, in light of the ambiguity of many of the appeals to
representational formats in the literature, a theory of representational formats
should identify a clear, motivated domain of questions that can or should be tackled
by such an appeal. Second, such a theory of formats needs to strike a balance between
overly coarse-grained and overly fine-grained individuation of formats so as to secure
a distinctive explanatory role for representational formats and avoid conflating them
with contents or vehicles. Should such an attempt fail, we would have grounds to be
eliminativists about formats, insofar as their job description could be filled by appeal
to contents and vehicles, thus voiding their explanatory purchase. Third, a theory of
representational formats for cognitive science and AI should provide insight into the
nature of representational formats as explanatory posits in those sciences. It should,
in other words, clarify how formats fit with other posits in the cognitive sciences,
including, therefore, the related notions of representational content, representational
vehicle, and computational process.

These considerations are both a job description and a list of desiderata on theories of
formats suitable for the cognitive sciences. Such theories are to be evaluated in terms of
the extent to which they satisfactorily provide an account that fits that job description.

With this description of the job to do, it is time to put together a job application.

3. The computational view of formats

3.1. Computational vehicles, functions, and formats
Views about the nature of representational formats in cognitive systems have
typically relied heavily on the notions of computation, computational process, and
computational transformation. These notions, in contrast to their use in mathematics
and computability theory, are to be understood in concrete, physical terms: they are
meant to capture the physical systems that are computational and carry out
computational processes, such as laptops, smartphones, artificial neural networks,
and plausibly, nervous systems.

Appeal to computation makes it possible to explain the behaviorally adequate
transitions between and transformations of representations in a purely mechanical
way—in terms, that is, of following computational rules that are appropriate to the
task at hand. Computational rules are regularities in a physical system that capture
the systematic transitions from inputs (and internal states) to internal states and
outputs.

6 For a recent account of mechanistic efficiency-based explanations, see Fuentes (2023).
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Computational vehicles are individuated by their computational roles, not by the
physical details of their implementation. Individuation of computational systems and
the computations they perform abstracts away from implementational details almost
completely: computational vehicles and processes may be equivalent in their roles
and effects while differing, even radically, in what kinds of physical states and
processes implement them—voltages, neuronal spike rates, or beads in an abacus.
Facial identification can be achieved by means of the computations performed by
populations of neurons in the fusiform gyrus of the mammalian brain, as well as,
arguably, by matrix operations performed by an electronic computer, as in artificial
neural networks. Only those properties that allow physical states to perform their
computational roles are relevant to their computational properties. These are the
degrees of freedom, or dimensions of variation, of the subset of physical properties of
the physical vehicles that are computationally relevant (Piccinini 2015, 2020;
Miłkowski 2013; Fresco 2014; Coelho Mollo 2018, 2019).

An important, albeit occasionally rejected (Dewhurst 2018), feature of computa-
tional systems is that they can miscompute (Fresco and Primiero 2013). They can fail
to compute what they are supposed to, or in other words, they can fail to perform the
computations it is their function to perform. An old pocket calculator, say, due to
some dust in a transistor, may generate the wrong values, or no value at all, for an
arithmetic operation it gets as input. Functions to compute may derive from design—
or from human-independent processes in the case of biological systems (Piccinini
2015, Coelho Mollo 2019).

To be a computational system, therefore, is just to be a physical system of a type
that can perform transformations over physical vehicles according to medium-
independent rules and that has the designed or natural function to do so. Similarly, to
be a computational vehicle or a computational operation is just to be a physical state
or process in a computational system individuated in terms of its contributions to its
computational nature.7

According to the mainstream representational-computational approach to
cognition, representational systems in cognitive systems, be they biological or
artificial, are composed of computational states and processes, some of which are also
carriers of content and thus representational vehicles (Colombo and Piccinini
Forthcoming). Computational vehicles are individuated by means of theories of
computational individuation—such as the one briefly presented in this section—
whereas representational vehicles and contents are individuated by means of theories
of cognitive representation (Shea 2018; Neander 2017; Millikan 2017).8

Cognitive systems are regimented so that the transitions between and trans-
formations of computational vehicles mirror the behavioral, semantic, or rational
constraints relevant to the contents they carry. That is, parts of representational

7 For more detail on and detailed defense of this approach to the individuation of physical
computation, see Piccinini (2015).

8 There is ongoing debate about how best to individuate computation, especially in ways that avoid
computations becoming indeterminate (Fresco et al. 2021; Shagrir 2001, 2022; Piccinini 2015). Such a
debate is beyond the scope of the article, but see Coelho Mollo (2018, 2019) for defense of the foregoing
view against indeterminacy worries. At any rate, for our purposes, any theory of computational
individuation that avoids the indeterminacy problem would be suitable, be it the one hinted at here or a
different one.
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systems can be manipulated computationally in ways that are appropriate to their
contents. In explaining and building cognitive systems in cognitive science and AI,
computation and representation typically go together, each playing a distinctive
explanatory role.

3.2. Individuating representational formats computationally
Representational systems can vary considerably in their computationally relevant
dimensions of variation, depending on the computational vehicles of which they are
composed. Such computational vehicles can have a host of different computation-
ally relevant properties. They can vary in the number and nature of the values they
might take across multiple dimensions of variation, and changes in the values
they take across one or more dimensions may lead to constraints on the values that
other computational vehicles may take. We call the limitations over available
values across one or more computationally relevant dimensions of variation of
computational vehicles their inner constraints, and the mutual constraints between
computational vehicles in a representational system are their outer constraints.9

In artificial systems, these constraints typically stem from design choices, as well
as engineering convenience and technical limits. In biological systems, on the other
hand, they likely stem from contingent features of evolutionary and developmental
history, as well as the limitations imposed by the “wetware.”

As an illustrative analogy, consider action figures, a popular kind of toy. One
important feature that distinguishes between action figures is which parts of the toy
can be moved (e.g., arms, legs, head) and how independent their movements are.
Some action figures, often the cheapest ones, are fully rigid, and none of their parts
can be moved. Sophisticated ones, on the other hand, have several mobile parts (legs,
arms, neck, etc.), which can typically be moved independently of the others.
Moreover, their limbs may move fluidly and stop at any specific position, or less
satisfyingly, they may move in jerks and have predetermined stop points. Some less
sophisticated ones, to great frustration, have more constrained movements: moving a
forearm is impossible without moving the whole arm, or moving a leg also makes the
other leg move.10 The parts that can be moved are what we may call, with quite some
stretch, the “vehicles.” The number of relative positions the moving parts can occupy
and the relations between variations over them (e.g., one leg also making the other
leg move) are their inner and outer constraints, respectively.

We can categorize different types of action figures in terms of their moving parts,
the values that those moving parts can take (which positions they can occupy relative
to the body and to each other), and the relations between variations over those parts
(e.g., whether moving a leg also leads to moving the other leg or, rather, an arm), and

9 Outer constraints bear some similarities to what Lande (2021, 651) calls distributional properties, that
is, the properties of a mental state that “characterise how states of that type can, cannot, or must
co-occur in a particular system with mental states of other types” (2021, 651). In contrast to Lande’s
account, however, we focus exclusively on the relevant computational features of cognitive states and
processes.

10 Incidentally, talk of degrees of freedom is not extraneous to talk of action figures: indeed, given the
former’s correlation with quality (and fun), advertisements for these toys often mention their degrees of
freedom explicitly.
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we can do the same with computational vehicles. How many parts of the vehicle can
be computationally wiggled, and what values can they take? How does wiggling one
part affect the possible values of another part? And how does wiggling the values of a
vehicle affect (or not) other computational vehicles—that is, does changing the
values taken by one vehicle affect the values of the others?11

We can thus type representational systems in ways not unlike how we type
action figures, that is, in terms of their computational (moving) parts, the values
(positions) those parts may take across multiple dimensions, and the mutual
constraints between values of the parts of different vehicles. Representational
systems that differ in these respects differ in what we call their computational profiles.

Computational profiles are individuated by the inner and outer constraints of the
computational and representational vehicles in a representational (sub)system. These
factors determine what computations are available to representational systems and
thus which kinds of transformations of representations are available to tackle a
certain behavioral task. To type representations in this way, per the foregoing
computational view of formats, is to type them in terms of their representational
format.12

In sum, we hold that the proper way of characterizing the computational view of
formats is in terms of the following set of claims:

T1: Representational formats are the computational profiles of representational
(sub)systems in cognitive systems, be they biological or artificial.

T2: Computational profiles, in turn, are individuated by the inner and outer
constraints of computational vehicles—that is, the values they can take and
their mutual constraints.

It is a corollary of the view that different representational formats have different
computational properties. In most cases, different formats will be best suited to
solving different tasks and will require different amounts of processing steps—
and thus, in real-time systems, of time—than other task-appropriate formats.

To illustrate how our proposed computational view of formats can tackle relevant
questions in the cognitive sciences, we will apply it to a couple of case studies coming
from the cognitive sciences, namely, the place cell system in the mammalian brain
and computational models of episodic memory recall. We will show that this purely
computational approach to the individuation of representational formats makes
analogies to public representations explanatory redundant and, at best, of heuristic
value (sec. 5).

11 It is important to keep in mind that only the degrees of freedom that are computationally relevant
are to be considered here (see sec. 3.1). For instance, even though physical vehicles in electronic
computers can take continuous voltage values, downstream systems are only sensitive to those values
falling within two specific voltage ranges. Therefore, in such a case there is only one computationally
relevant degree of freedom (i.e., the voltage range is either “0” or “1”).

12 Of course, computations and representations are ultimately implemented by neural computations
in brains or symbolic or numerical computations in AI systems. However, as pointed out earlier, the
relevant kind of individuation for our purposes is medium independent—that is, computational and
representational—rather than implementational.
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4. Representational formats in the cognitive sciences

4.1 The case of place cells
Place cells are neurons found in the hippocampus of several mammals, which have a
very interesting property: they fire when the animal occupies specific points in space
(O’Keefe and Dostrovsky 1971; Grieves and Jeffery 2017). Together, they form a sort of
array, with different (groups of) cells firing when the animal occupies different points
in space. Due to this property, place cells are believed to be part of the “cognitive
map” system comprising the entorhinal cortex and hippocampus and including other
kinds of cells relevant to spatial cognition, such as grid cells and head-direction cells.
In light of its activation properties, it seems natural to treat this system of brain areas
as forming a mechanism for representing spatial locations and spatial relations in the
immediate environment of mammals, given their abstract similarity to how public
maps represent their content.

However, place cells are not spatially arranged in a way that corresponds to the
spatial locations they respond to: there is no map-like correspondence between the
relative spatial locations of place cells in the hippocampus and the relative spatial
locations of points in the environment. The crucial feature of this system is the
coactivation relations cells have with each other: cells that represent a certain location
tend to produce activation in cells that represent nearby locations, both in online and
offline tasks (Shea 2018; Diba and Buzsáki 2007; Dragoi and Tonegawa 2013).

Let us forget for a second that place cell activation correlates with spatial location
and that cells that are more likely to be coactivated correlate with nearby spatial
locations. Let us look purely at the computational properties of the vehicles
themselves, that is, the populations of cells and their firing patterns. These patterns
constitute a structure of activation relations, which can be described in terms of
probabilistic coactivation relations: if cell A has firing rate a, then cells B, C, D : : : N
will have firing rates in the range x–y with probabilities p, q, r, : : : u. Taken together
across the whole system of place cells, these activation relations constitute a
relational structure of computational vehicles.

The computational view allows us to examine the place cell system purely in terms
of its computational features. We have a set of computational vehicles that can vary
across one dimension and whose values are equivalence classes of firing rates that are
treated as the same by downstream processes. The possible values depend on which
and how many such equivalence classes there are, which in turn hinge on the
physiological properties of the cell and those of the cells it feeds its output to—and
are thus to be empirically determined. These are the inner constraints of the place
cell system.

The outer constraints are more interesting in this case. If each cell probabilistically
modulates the activity of the cells it is strongly connected to, then in computational
terms, each vehicle’s value stochastically constrains the values a subset of the other
vehicles in the system may take. If vehicle V has value H (a high value, say), then
vehicles C, D can take values in the range, say, M (medium) to H, with specific
probabilities assigned to each downstream vehicle and possible value.13 In other

13 This is, of course, a simplification, for the sake of ease of illustration.
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words, we have, roughly, a partially connected stochastic array of computational
vehicles.

In brief, a description of the computationally relevant features of the place cell
system comprises the following:

• A set of computational vehicles A, : : : , N, implemented by the place cells
• Their inner constraints: the values that each vehicle may take, that is, the set of
discrete values a, : : : , n implemented by different firing rates (assuming that
firing rates are what is computationally relevant)

• Their outer constraints, captured by a probabilistic function from values a, : : : , n
of vehicles A, : : : , N to values a, : : : , n of vehicles A, : : : , N – 1

These computational features determine which kinds of representational roles
place cells can adequately play: any representational task that involves representing
concrete or abstract points in a concrete or abstract space of relations should be a
good candidate. Such a computational profile seems well suited to be employed by
representational systems tasked with solving spatial cognition tasks. But there is
evidence suggesting that this system is also employed to solve other kinds of tasks,
having to do with “distance” relations in abstract conceptual spaces (Constantinescu
et al. 2016), as well as other behavioral tasks (Aronov et al. 2017; Miłkowski 2023; Mok
and Love 2019; Whittington et al. 2020). Place cells may not always, nor even often, be
about places. In light of the foregoing computational view, this is to be expected
because the computational profile of that representational system makes it adequate
for a variety of nonspatial tasks.

According to the computational view, these computational features together—
that is to say, the computational profile of the place cell system as a partially
connected stochastic array of vehicles—constitute a representational format.
Analogies with public maps are misleading for at least three reasons.

First, as noted, there is no spatial-to-spatial correspondence relation between
place cells and what they represent, as in maps. Second, the place cell system has
strongly stochastic features that maps do not have. Third, the analogy to public maps
erroneously suggests that the place cell system is only about space. To talk of the
place cell system as having a map-like format—and thus as helping to form “cognitive
maps”—is thereby misguided: the analogy with maps is very partial, and overreliance
on it obscures important computational and representational features of the system.

4.2 The case of episodic memory
Episodic memory is a type of declarative memory that concerns, roughly speaking,
stored information about experienced episodes, such as our memory of whom we met
yesterday and in what context (Cheng and Werning 2016). Growing evidence suggests
that episodic memory retrieval and recollection are generative processes of scenario
construction (Cheng and Werning 2016; Lackey 2005). This means that memories are
reconstructed at each retrieval through the complex, dynamic interaction of different
functional areas that encode different memory traces or engrams (Sekeres et al. 2018).

The main neural locus for episodic memory is the hippocampus and its subregions,
although other brain areas are involved as well (Rolls 2018; Scoville and Milner 1957).
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The anterior hippocampus (aHPC) encodes the memory trace about the gist of the
episode, that is, essential features like the “story elements” that are central to plot
coherence (Sekeres et al. 2018).

For instance, this could be the “storyline” of your 10th birthday party—that there
were other children, it was in the afternoon, and so on. The posterior hippocampus
(pHPC) and the neocortex encode the memory trace with fine-grained perceptual-like
details, such as the shape and color of your birthday cake (Collin et al. 2015; St.-Laurent
et al. 2016). Finally, the aHPC has been shown to interact with the medial prefrontal
cortex (mPFC), which stores the schema engrams, that is, networks of knowledge
structures extracted frommultiple similar experiences (Robin and Moscovitch 2017). In
our example, this would be information about birthday parties in general.

The exact nature of the computations relevant for memory recall in the brain is
still largely unknown (Cheng 2013; Rolls 2018). According to plausible theories about
what is involved in recall, however, we can identify four different components: rich
representations of perceptual and semantic information; a representation of the gist
of the episode; an even less informationally rich memory trace that can reactivate the
relevant episodic gist; and the output representation, namely, the reconstructed
detailed memory that is eventually recalled, where the informational detail left out in
the gist is “filled in” by recourse to rich representations of perceptual and semantic
information. In other words, we have, basically, a process of lossy compression
followed by a process of decompression that includes generative elements (Fayyaz
et al. 2022).

There have been promising recent attempts to model this process in a biologically
plausible way by means of artificial neural networks—for instance, by combining a
variational autoencoder with a convolutional neural network and simple attentional
selection mechanisms (Fayyaz et al. 2022). The details of such models will not concern
us here; what matters for our purposes is that they provide a computational story
through which the process of recall, as described earlier, may be implemented in
brains and/or artificial systems. And that story plausibly involves transitions between
different representational formats.

In order to shed further light on this case, it is helpful to introduce the notions of
vehicular density and inner repleteness.14 Roughly, a representational system can be
more or less dense depending on whether it admits, for each pair of vehicles, a third
vehicle between them or not, and a further one between this third vehicle and
another one, and so on. In turn, a vehicle can be more or less replete, depending on
the range of computationally relevant dimensions of variation it possesses. A vehicle
may be able to take a range of values in one dimension (like a line), in two dimensions
(like a shape), in three dimensions (like a solid), and so on.

A potential way to build episodic gists from perceptual information is by means of
forcing rich perceptual information into a “vehicular funnel” before storage. That is
to say, the system must move from a format with a high density of relatively replete
representational vehicles—which, due to these features, are able to represent the
fine-grained details of an episode—to a format with a rather low density of vehicles
with relatively low repleteness, which encodes only the gist of the episode and thus

14 These notions are inspired by Goodman (1976).
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requires less storage space and may be less energetically expensive to access and
reactivate. Because information is lost, this is a lossy compression process.

Memory recall, in turn, may involve a transformation from a low-density, low-
repleteness format, with its highly compressed representations (the gist), into a
higher-density, higher-repleteness format, marked by a qualitatively higher
availability of vehicles and a larger range of possible values and mutual constraints
between them. Because the compression process involves information loss, recall is
partly a generative process. Gist information can provide pointers to access
information stored elsewhere, for instance, in semantic memory, to fill in the
information lost during compression (Fayyaz et al. 2022).

This case illustrates that in computational models and possibly in cognitive
systems, vehicular density and inner repleteness are computationally relevant
properties that help distinguish different formats because they involve qualitative
differences in the computational profiles of representational systems. Given the lack
of detailed knowledge about the specific features of the vehicles and processes
underlying episodic memory recall, the foregoing computational view of formats can
only provide pointers rather than a precise specification of the formats involved.
However, these pointers can be precious because they help identify some of the likely
features that the underlying vehicles and processes possess and thus the processing
signatures that might be expected from their employment (e.g., more or less sparse
connectivity, higher or lower ranges of values). Moreover, they help identify the
features that need yet to be discovered so that we can have a fuller picture of the
workings of episodic memory recall.

At this juncture, it is worthwhile to point out that small differences in vehicular
density and inner repleteness may be overly fine-grained for the individuation of
different formats. For many explanatory purposes, we may wish to generalize over
formats, which would be hindered by an overproliferation of formats, leading to the
near impossibility of two representational systems sharing the same format.

In the life and cognitive sciences, it is often the case that there are no sharp
boundaries fixed by our explanatory concepts. For many explanatory purposes,
representational formats, like other cognitive and biological concepts, should be seen
as coarser grained and as having fuzzy boundaries: formats are thereby more or less
well-defined clusters of computational profiles that are significantly similar in their
computational capacities to be considered as identical without explanatory loss. On
the other hand, some explanatory purposes may require finer-grained individuation
of formats, say, if one wants to examine small but relevant computational differences
between two place cell–like formats.

The computational view is thus pluralist in more than one sense. It is pluralist
insofar as it recognizes a large variety of different representational formats (instead
of the few intuition-based ones typically discussed in the literature), and it is pluralist
insofar as it recognizes that formats may be individuated in more or less fine-grained
ways depending on the explanatory aims at hand. It is likely that no immediate
analogy can be made to the formats of public representation, but this is no
impediment (or guide) to providing an epistemically useful notion of representational
format for the cognitive sciences.
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5. The explanatory roles of representational formats

5.1. Satisfying the job description without public representations
The foregoing case studies illustrate that reference to public representational
formats—such as words, pictures, and maps—does not play explanatorily relevant
roles and is, at worst, misleading. We contend that a purely computational approach
to formats can fulfill the explanatory roles identified in section 2.3—transformation-
based explanation, efficiency-based explanation, and epistemic fruitfulness—without any
appeal to public representations. Let us look at each explanatory role in turn.

It should be quite clear that the foregoing computational view is well positioned to
meet the role of transformation-based explanation. After all, it individuates
representational formats by appealing to some of their computational properties,
that is, their computational profiles. And the notion of computation in cognitive
science and AI has as its chief role that of allowing explanations of internal state
transitions that are rule based and able to respect semantic, coherence, and
rationality constraints—and all that in naturalistically acceptable ways. The main
innovation of the cognitive revolution was not the vindication of the notion of
internal representation, which has a long history in philosophy and science, but
rather the discovery of that of computation and its ensuing application to explaining
how transitions between representational states can lead, mechanically, to
behaviorally adequate outcomes (Fodor 1975; Haugeland 1981).

The computational view has it that the proper way of understanding formats is in
terms of the computational transformations that representational systems can
undergo, which are determined in turn by the nature of the computationally
individuated vehicles that compose them, and the constraints they pose in light of
their computational properties. By capturing such computational properties, the
notion of representational format opens the way to explaining how computational
goings-on in representational systems go along, or map onto, goings-on in the subject
matter represented, such as to lead to adequate behavior. Therefore, the role of
transformation-based explanation is satisfied: representational formats capture the
computational operations available to representational systems, which have
important consequences for the behavioral appropriateness of their outputs.

There are typically many different possible solutions to one and the same problem.
The same applies to behavioral problems and the representational and computational
states and processes that can solve them. That, of course, does not mean that every
solution is equally desirable. There are better or worse, quicker or slower, more or
less efficient ways of solving problems. Rube Goldberg machines, for instance, do
solve problems, but in absurdly, unnecessarily complicated ways. Something similar
applies to formats: some computational solutions to a behavioral problem can be
more or less efficient in terms of resources employed, such as (metabolic) energy and
time. The more appropriate the computational profile of a certain representational
(sub)system to a task, the fewer or less expensive the computations to reach the
solution will be.

In brief, by capturing the relevant computational properties of representational
systems, the computational view of formats allows us to explain why certain
representational formats are better suited to specific kinds of tasks—such as spatial
navigation—than others. More appropriate formats will typically involve fewer,
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less complex, and less expensive computations than less appropriate ones. In
consequence, the view satisfies the role of efficiency-based explanation.

Moreover, this sort of consideration can be of quite some epistemic value: even
though natural selection does not typically lead to optimal outcomes, it is, in any case,
to be expected that it will have led to representational formats that approximate to
some extent the most adequate one for a certain task. Thereby, we can try to reverse-
engineer the representational format at work in a certain behavioral task by trying to
find the best computational solutions to that task, and then we can assess whether
behavioral, psychological, neuroscientific, or explainable AI techniques suggest that
something similar is taking place in the cognitive system at hand. This is one of the
aspects that makes the computational view also fulfill the third and final part of the
job description, namely, epistemic fruitfulness.

5.2. Format pluralism and the fate of public representations
Approaches to formats that are modeled on public representations are typically
saddled with dichotomies, such as the much-discussed one between propositional and
pictorial formats. However, once we have freed the computational view of formats
from the shackles of intuition, a more pluralistic perspective opens up, in which there
are many different varieties of formats—many more than typically discussed. For
instance, in the case of episodic memory, we have shown that vehicular density and
inner repleteness are computationally relevant properties. Both density and inner
repleteness are dimensions of variation that admit different degrees. There can be
computational structures that are more or less dense and more or less replete, and
these features can be combined in different ways in different systems.

Although we still lack a good understanding of the computational workings of
cognitive systems, a purely computational view of formats sheds light on what we
should be looking for when we look for representational formats in cognitive systems,
be they biological or artificial, namely, computational profiles. There are no a priori
limitations on what sort of computationally relevant dimensions of variation may be
discovered.

The resulting picture is thus highly pluralistic because it envisages the following:

• Multiple computationally relevant dimensions that must be empirically
discovered

• Graded computationally relevant dimensions rather than only all-or-nothing
ones

• Multiple possible combinations of such dimensions

It is clear that this pluralism about formats goes well beyond the frequently
discussed formats based on public representations.

Before we conclude, let us briefly return to public representations and look at what
epistemic roles, if any, they can still play. Consider once again the case of baboon
social navigation. Camp’s reasoning that the format of baboon social cognition is
more diagrammatic than pictorial or language-like may be construed as a heuristic. On
the basis of observable behavior, we can put forward conjectures about what sorts of
properties the underlying representational structures should possess, such that they

Philosophy of Science 17

https://doi.org/10.1017/psa.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.123


can explain the capacities observed, as well as the capacities that are not displayed by
the system under investigation. Such initial conjectures may helpfully tap into
analogies with the behavioral capacities we display when we use specific types of
external, public representation.

When used as heuristic tools, public representations work as format schemas, that
is, sketchy, tentative hypothetical models of the computational profiles that internal
representational systems might possess (Machamer, Darden, and Craver 2000). Such
tentative models can then be improved and adjusted in light of more fine-grained
information (behavioral, psychological, neuroscientific, etc.) about the cognitive
system at hand. This process is likely to generate more advanced explanatory
models that depart considerably from the initial format schemas based on public
representations as the heuristically useful analogies break down.

6. Concluding remarks
In this article, we have shown that the computational theory of representational
formats—targeted at capturing an explanatorily useful notion of format for cognitive
science and AI research—not only does not require but can actually be hindered by
overbearing analogies to public representations. This computational view offers an
account of what representational formats are: the computational features of physical
vehicles that capture the kinds of transformation/manipulation they can undergo. We
have dubbed such features inner and outer constraints, which, together, come to form
computational profiles. Per the computational view, representational formats are just
the computational profiles of representational (sub)systems.

Representational formats can be individuated in coarser- or finer-grained ways,
depending on the explanatory purposes at hand. The computational view also
detaches the question of what formats are, and how many there are, from intuitions
based on public representations. We have taken some preliminary, speculative case
studies from current neuroscience and computational modeling to illustrate the type
of analysis that the computational view provides and the lines of further empirical
investigation that it invites, both in biological organisms and artificial systems.
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